$\eta_b(2S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

OMITTED FROM SUMMARY TABLE

Quantum numbers shown are quark-model predictions.

$\eta_b(2S)$ MASS

VALUE (MeV)EVTSDOCUMENT IDTECNCOMMENT9999.0 \pm 3.5 $^{+2.8}_{-1.9}$ 26k1 MIZUK12BELL $e^+e^- \rightarrow \gamma \pi^+ \pi^- +$

• • We do not use the following data for averages, fits, limits, etc. • •

 $9974.6 \pm 2.3 \pm 2.1$

$$11\,\pm\,4~^{2,3,4}\,\text{DOBBS}$$

12

$$\Upsilon(2S)
ightarrow \gamma$$
 hadrons

$m \gamma_{(2S)} - m_{\eta_b(2S)}$

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
24.3±3.5 ^{+2.8} _{-1.9}	26k	⁵ MIZUK	12	BELL	$e^+e^- \rightarrow \gamma \pi^+\pi^- +$

• • • We do not use the following data for averages, fits, limits, etc. • •

 $48.7 \pm 2.3 \pm 2.1$

$$11\pm4~6,7,8~\text{DOBBS}$$

$$\Upsilon(2S)
ightarrow \gamma$$
 hadrons

Created: 5/31/2023 09:11

$\eta_b(2S)$ WIDTH

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
<24	90	MIZUK	12	BELL	$e^+e^- ightarrow \gamma \pi^+\pi^-$ hadrons

¹ Assuming $\Gamma_{\eta_b(2S)}=$ 4.9 MeV. Not independent of the corresponding mass difference measurement.

²SANDILYA 13 (Belle Collab.) search for such a state reconstructed in the same 26 exclusive hadronic final states as DOBBS 12 using a sample of (157.8 \pm 3.6) \times 10⁶ Υ (2S) decays or about 17 times larger and find no evidence for a signal. Their 90% C.L. upper limit on the branching fraction B(Υ (2S) \to η_b (2S) γ) \times \sum_i B(η_b (2S) \to X_i) < 4.9 \times 10⁻⁶, summed over the exclusive hadronic final states X_i , is an order of magnitude smaller than that reported by DOBBS 12.

 $^{^{3}}$ Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.

⁴ Assuming $\Gamma_{\eta_b(2S)}=5$ MeV. Not independent of the corresponding mass difference measurement.

 $^{^5}$ Assuming $\Gamma_{\eta_b(2S)}=$ 4.9 MeV. Not independent of the corresponding mass measurement.

⁶ SANDILYA 13 (Belle Collab.) search for such a state reconstructed in the same 26 exclusive hadronic final states as DOBBS 12 using a sample of $(157.8\pm3.6)\times10^6~\Upsilon(2S)$ decays or about 17 times larger and find no evidence for a signal. Their 90% C.L. upper limit on the branching fraction B($\Upsilon(2S)\to\eta_b(2S)\gamma$) $\times\sum_i$ B($\eta_b(2S)\to X_i$) < 4.9 \times 10⁻⁶, summed over the exclusive hadronic final states X_i , is an order of magnitude smaller than that reported by DOBBS 12.

 $^{^{7}}$ Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.

⁸ Assuming $\Gamma_{\eta_h(2S)} = 5$ MeV. Not independent of the corresponding mass measurement.

$\eta_b(2S)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	hadrons	seen

$\eta_b(2S)$ BRANCHING RATIOS

$\Gamma(hadrons)/\Gamma_{total}$

 Γ_1/Γ

, , -						-,
<u>VALUE</u>	<u>EVTS</u>	DOCUMENT IL)	TECN	COMMENT	
seen	26k	MIZUK	12	BELL	$e^+e^- \rightarrow \gamma \pi^+\pi^- h$	nadrons
• • We do not use the following data for averages, fits, limits, etc. • •						
seen	9,	¹⁰ DOBBS	12		$\Upsilon(2S) ightarrow \gamma$ hadrons	

⁹ SANDILYA 13 (Belle Collab.) search for such a state reconstructed in the same 26 exclusive hadronic final states as DOBBS 12 using a sample of $(157.8\pm3.6)\times10^6~\Upsilon(2S)$ decays or about 17 times larger and find no evidence for a signal. Their 90% C.L. upper limit on the branching fraction B($\Upsilon(2S) \to \eta_b(2S)\gamma$) $\times \sum_i \mathrm{B}(\eta_b(2S) \to X_i)$ < 4.9 \times 10⁻⁶, summed over the exclusive hadronic final states X_i , is an order of magnitude smaller than that reported by DOBBS 12.

$\eta_b(2S)$ REFERENCES

SANDILYA	13	PRL 111 112001	S. Sandilya <i>et al.</i>	(BELLE Collab.)
DOBBS	12	PRL 109 082001	S. Dobbs et al.	,
MIZUK	12	PRL 109 232002	R. Mizuk et al.	(BELLE Collab.)

Created: 5/31/2023 09:11

 $^{^{10}\,\}mathrm{Obtained}$ by analyzing CLEO III data but not authored by the CLEO Collaboration.