$$\Lambda_c(2595)^+$$

$$I(J^P) = O(\frac{1}{2})$$
 Status: ***

The $\Lambda_c^+\pi^+\pi^-$ mode is largely, and perhaps entirely, $\Sigma_c\pi$, which is just at threshold; since the Σ_c has $J^P=1/2^+$, the J^P here is almost certainly $1/2^-$. This result is in accord with the theoretical expectation that this is the charm counterpart of the strange $\Lambda(1405)$.

$\Lambda_c(2595)^{+}$ MASS

The mass is obtained from the $\Lambda_{\it C}(2595)^+ - \Lambda_{\it C}^+$ mass-difference measurements below.

VALUE (MeV)

DOCUMENT ID

2592.25 ± 0.28 OUR FIT

$\Lambda_c(2595)^+ - \Lambda_c^+$ MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
305.79 ± 0.24 OUR F	IT				
$305.79 \pm 0.14 \pm 0.20$	3.5k	AALTONEN	11H	CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use	the following $ \\$	data for averages,	fits,	limits, et	tc. • • •
305.6 ± 0.3		$^{ m 1}$ BLECHMAN			
$309.7 \pm 0.9 \pm 0.4$	19	ALBRECHT	97	ARG	e^+e^-pprox 10 GeV
$309.2 \pm 0.7 \pm 0.3$	14 ± 4.5	FRABETTI	96	E687	γ Be, $\overline{\it E}_{\gamma} pprox $ 220 GeV
$307.5 \pm 0.4 \pm 1.0$	112 ± 17	EDWARDS	95	CLE2	$e^+e^-\stackrel{'}{pprox}$ 10.5 GeV

 $^{^1}$ BLECHMAN 03 finds that a more sophisticated treatment than a simple Breit-Wigner for the proximity of the threshold of the dominant decay, $\Sigma_c(2455)\pi$, lowers the $\Lambda_c(2595)^+ - \Lambda_c^+$ mass difference by 2 or 3 MeV. The analysis of AALTONEN 11H bears this out

$\Lambda_{c}(2595)^{+}$ WIDTH

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$2.59\pm0.30\pm0.47$	3.5k	² AALTONEN	11H	CDF	$p\overline{p}$ at 1.96 TeV
ullet $ullet$ We do not use	the following da	ata for averages, f	its, lin	nits, etc.	. • • •
$2.9 \begin{array}{c} +2.9 & +1.8 \\ -2.1 & -1.4 \end{array}$	19	ALBRECHT	97	ARG	e^+e^-pprox 10 GeV
$3.9 \begin{array}{c} +1.4 & +2.0 \\ -1.2 & -1.0 \end{array}$	112 ± 17	EDWARDS	95	CLE2	$e^+e^-\approx~10.5~\text{GeV}$
² AALTONEN 11H treats the three charged modes $\Lambda_c(2595)^+ \to \Sigma_c(2455)^{++}\pi^-$, $\Sigma_c(2455)^+\pi^0$, $\Sigma_c(2455)^0\pi^+$ separately in terms of a common coupling constant h_2 and obtains $h_2^2=0.36\pm0.08$. From this the width is determined.					

Created: 5/31/2023 09:09

$\Lambda_c(2595)^+$ DECAY MODES

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma_c(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

	Mode	Fraction (Γ_i/Γ)	
$\overline{\Gamma_1}$	$\Lambda_c^+ \pi^+ \pi^-$	[a] —	
Γ_2	$\Sigma_c(2455)^{++}\pi^-$	24 \pm 7 %	
Γ_3	$\Sigma_{c}(2455)^{0}\pi^{+}$	24 \pm 7 %	
Γ_4	$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 \pm 10 %	
Γ_5	$\Lambda_c^+ \pi^+ \pi^-$ 3-body $\Lambda_c^+ \pi^0$ $\Lambda_c^+ \gamma$	[b] not seen	
Γ_6	$\Lambda_c^+ \gamma$	not seen	

- [a] See AALTONEN 11H, Fig. 8, for the calculated ratio of $\Lambda_c^+\pi^0\pi^0$ and $\Lambda_c^+\pi^+\pi^-$ partial widths as a function of the $\Lambda_c(2595)^+-\Lambda_c^+$ mass difference. At our value of the mass difference, the ratio is about 4.
- [b] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .

$\Lambda_c(2595)^+$ BRANCHING RATIOS

$\Gamma(\Sigma_c(2455)^{++}\pi^-)/\Gamma(\Lambda_c^+\pi^+\pi^-)$ Γ_2/Γ_1					
VALUE		DOCUMENT ID		TECN	COMMENT
0.36 ± 0.10 OUR AVERA	GE				
$0.37\!\pm\!0.12\!\pm\!0.13$		ALBRECHT	97	ARG	$e^+e^-pprox~$ 10 GeV
$0.36 \pm 0.09 \pm 0.09$		EDWARDS	95	CLE2	$e^+e^-pprox~10.5~{ m GeV}$
$\Gamma(\Sigma_c(2455)^0\pi^+)/\Gamma($	$\Lambda_c^+ \pi^+ \pi^-$	-)			Γ_3/Γ_1
VALUE		DOCUMENT ID		TECN	COMMENT
0.37 ± 0.10 OUR AVERA	GE				
$0.29\!\pm\!0.10\!\pm\!0.11$		ALBRECHT	97	ARG	e^+e^-pprox 10 GeV
$0.42\pm0.09\pm0.09$		EDWARDS	95	CLE2	$e^+e^-pprox~10.5~{ m GeV}$
$\left[\Gamma(\Sigma_{c}(2455)^{++}\pi^{-}) + \Gamma(\Sigma_{c}(2455)^{0}\pi^{+})\right]/\Gamma(\Lambda_{c}^{+}\pi^{+}\pi^{-}) \qquad (\Gamma_{2}+\Gamma_{3})/\Gamma_{1}$					
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for average	s, fits,	, limits,	etc. • • •
$0.66^{+0.13}_{-0.16}{\pm}0.07$					$e^+e^-pprox~10~{ m GeV}$
>0.51	90	³ FRABETTI	96	E687	$\gamma{ m Be},\overline{\overline{\it E}}_{\gamma}pprox$ 220 GeV
³ The results of FRABETTI 96 are consistent with this ratio being 100%.					
$\Gamma(\Lambda_c^+\pi^0)/\Gamma(\Lambda_c^+\pi^+\pi^-)$ Γ_5/Γ_1					
$\Lambda_c^+\pi^0$ decay is for	bidden by	isospin conservat	ion if	this stat	te is in fact a Λ_c .
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<3.53	90	EDWARDS	95	CLE2	$e^+e^-pprox~10.5~{ m GeV}$
https://pdg.lbl.gov		Page 2		Creat	ted: 5/31/2023 09:09

$\Gamma(\Lambda_c^+ \gamma)/\Gamma(\Lambda_c^+ \pi^+ \pi^-)$					Γ_6/Γ_1
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.98	90	EDWARDS	95	CLE2	$e^+e^-pprox~10.5~\text{GeV}$

$\Lambda_c(2595)^+$ REFERENCES

AALTONEN	11H	PR D84 012003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
BLECHMAN	03	PR D67 074033	A.E. Blechman et al.	(JHU, FLOR)
ALBRECHT	97	PL B402 207	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
FRABETTI	96	PL B365 461	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
EDWARDS	95	PRL 74 3331	K.W. Edwards et al.	(CLEO Collab.)

Created: 5/31/2023 09:09