$\Upsilon(11020)$

VALUE (MaV)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

COMMENT

$\Upsilon(11020)$ MASS

TECN

DOCUMENT ID

VALUE (IVIEV)	DOCUMENT ID		TLCIV	COMMENT	
11000 \pm 4 OUR AV	ERAGE				
11000.0^{+}_{-} $\begin{array}{ccc} 4.0 + & 1.0 \\ 4.5 - & 1.3 \end{array}$	¹ MIZUK	19	BELL	$e^+e^-\to$	Υ (1S, 2S, 3S) $\pi^+\pi^-$
$10999.0 {}^{+}_{-} {{7.3} {+} 16.9} \\ {{7.8} {-} 1.0}$	² MIZUK	16	BELL	$e^+e^-\to$	$h_b(1P, 2P)\pi^+\pi^-$
• • • We do not use the	e following data for	avera	ges, fits,	limits, etc.	• • •
$11001 \ \pm \ 1$	³ DONG	20A		$e^+e^- \to$	$b\overline{b}$
$11003.0 \pm 1.1 ^{+}_{-} \stackrel{0.9}{1.0}$	^{4,5} SANTEL	16	BELL	$e^+e^-\to$	hadrons
$10987.5^{+}_{-} \begin{array}{l} 6.4 + & 9.1 \\ 2.5 - & 2.3 \end{array}$	6,7 SANTEL	16	BELL	$e^+e^-\to$	γ (1S, 2S, 3S) $\pi^+\pi^-$
10996 ± 2	⁸ AUBERT	09E	BABR	$e^+e^- \rightarrow$	hadrons
$11019 ~\pm~ 5 ~\pm~ 7$	BESSON	85	CLEO	$e^+e^- \rightarrow$	hadrons
11020 ± 30	LOVELOCK	85	CUSB	$e^+e^- \rightarrow$	hadrons

¹ From a simultaneous fit to the $\Upsilon(\text{nS})\pi^+\pi^-$, n=1, 2, 3, cross sections at 28 energy points within $\sqrt{s}=10.6$ –11.05 GeV, including the initial-state radiation at $\Upsilon(10860)$.

² From a simultaneous fit to the $h_b(\text{nP})\pi^+\pi^-$, n=1, 2 cross sections at 22 energy points within $\sqrt{s}=10.77$ –11.02 GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single relative phase, a single relative amplitude, and two overall normalization factors, one for each n). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.

³ From a fit to the dressed cross sections of AUBERT 09E by BaBar and SANTEL 16 by Belle above 10.68 GeV with a coherent sum of a continuum amplitude and three Breit-Wigner functions with constant widths.

⁴ From a fit to the total hadronic cross sections measured at 60 energy points within \sqrt{s} = 10.82–11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with $1/\sqrt{s}$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, one relative phase, and one decoherence coefficient).

⁵ Not including uncertain and potentially large systematic errors due to assumed continuum amplitude $1/\sqrt{s}$ dependence and related interference contributions.

⁶ From a simultaneous fit to the $\Upsilon(\text{nS})\pi^+\pi^-$, n=1, 2, 3, cross sections at 25energy points within $\sqrt{s}=10.6$ –11.05 GeV to a pair of interfering Breit-Wigner amplitudesmodified by phase space factors, with fourteen resonance parameters (a mass, width, and threeamplitudes for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single universal relativephase, and three decoherence coefficients, one for each n). Continuum contributions weremeasured (and therefore fixed) to be zero.

⁷Superseded by MIZUK 19.

⁸ In a model where a flat non-resonant $b\overline{b}$ -continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.

Created: 5/31/2023 09:10

Υ (11020) WIDTH

VALUE (MeV) DOCUMENT ID TECN COMMENT

24 + 8 - 6 OUR AVERAGE

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ From a simultaneous fit to the $\Upsilon(nS)\pi^+\pi^-$, n=1, 2, 3, cross sections at 28 energy points within $\sqrt{s}=10.6$ –11.05 GeV, including the initial-state radiation at $\Upsilon(10860)$.

From a simultaneous fit to the $h_b(\text{nP})\pi^+\pi^-$, n=1, 2 cross sections at 22 energy points within $\sqrt{s}=10.77-11.02$ GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single relative phase, a single relative amplitude, and two overall normalization factors, one for each n). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.

³ From a fit to the dressed cross sections of AUBERT 09E by BaBar and SANTEL 16 by Belle above 10.68 GeV with a coherent sum of a continuum amplitude and three Breit-Wigner functions with constant widths.

⁴ From a fit to the total hadronic cross sections measured at 60 energy points within $\sqrt{s}=10.82$ –11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with $1/\sqrt{s}$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, one relative phase, and one decoherence coefficient).

⁵ Not including uncertain and potentially large systematic errors due to assumed continuum amplitude $1/\sqrt{s}$ dependence and related interference contributions.

⁶ From a simultaneous fit to the $\Upsilon(nS)\pi^+\pi^-$, $n{=}1,2,3$, cross sections at 25energy points within $\sqrt{s}=10.6{-}11.05$ GeV to a pair of interfering Breit-Wigner amplitudesmodified by phase space factors, with fourteen resonance parameters (a mass, width, and threeamplitudes for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single universal relativephase, and three decoherence coefficients, one for each n). Continuum contributions weremeasured (and therefore fixed) to be zero.

⁷Superseded by MIZUK 19.

⁸ In a model where a flat non-resonant $b\overline{b}$ -continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.

au(11020) DECAY MODES

Mode Fraction $(Γ_i/Γ)$ $Γ_1 e^+e^- (5.4^{+1.9}_{-2.1}) \times 10^{-6}$ $Γ_2 γ(1S) π^+π^ Γ_3 γ(2S) π^+π^-$

https://pdg.lbl.gov Page 2 Created: 5/31/2023 09:10

$$\begin{array}{lll} \Gamma_4 & \varUpsilon(3S)\pi^+\pi^- \\ \Gamma_5 & \chi_{bJ}(1P)\pi^+\pi^-\pi^0 & (9 \ ^{+9}_{-8} \)\times 10^{-3} \\ \Gamma_6 & \chi_{b1}(1P)\pi^+\pi^-\pi^0 & \text{seen} \\ \Gamma_7 & \chi_{b2}(1P)\pi^+\pi^-\pi^0 & \text{seen} \end{array}$$

$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	seen	
<u> </u>	11020) PARTIAL WIDTHS	5
$\Gamma(e^+e^-)$ VALUE (keV)	DOCUMENT IDTEC	Γ ₁
0.130 \pm 0.030 OUR AVERAGE 0.095 \pm 0.03 \pm 0.035 0.156 \pm 0.040		$e^+e^- ightarrow$ hadrons $e^+e^- ightarrow$ hadrons
$\Gamma(e^+e^-) \times \Gamma(\Upsilon(1S)\pi^+e^-)$	*	$\Gamma_1 \Gamma_2 / \Gamma$
• • • We do not use the follow	ing data for averages, fits, limit	s, etc. • • •
0.46 ± 0.08	1,2 MIZUK 19 BELL	$e^+e^- ightarrow~\gamma({ m nS})\pi^+\pi^-$
points within $\sqrt{s}=10.6$ –1: 2 Reported as the range 0.38-	the $\Upsilon(nS)\pi^+\pi^-$, $n=1, 2, 3$ 05 GeV, including the initial-si-0.54 eV obtained from multiples a sum of Breit-Wigner function	tate radiation at $\Upsilon(10860)$. solutions of an amplitude fit
$\Gamma(e^+e^-) \times \Gamma(\Upsilon(2S)\pi^+e^-)$	$(\Gamma^-)/\Gamma_{ ext{total}}$	$\Gamma_1\Gamma_3/\Gamma$
VALUE (eV)	•	COMMENT
ullet $ullet$ We do not use the follow	ing data for averages, fits, limit	es, etc. • • •
0.65 ± 0.52	1,2 MIZUK 19 BELL	$e^+e^- ightarrow~ \Upsilon({ m nS})\pi^+\pi^-$
points within $\sqrt{s} = 10.6 - 1.5$ Reported as the range 0.13-	the $\Upsilon(nS)\pi^+\pi^-$, $n=1,2,3$ 05 GeV, including the initial-s $\cdot 1.16$ eV obtained from multiples a sum of Breit-Wigner function	tate radiation at $\Upsilon(10860)$. solutions of an amplitude fit
$\Gamma(e^+e^-) \times \Gamma(\Upsilon(3S)\pi^+e^-)$	•	$\Gamma_1\Gamma_4/\Gamma$
• • We do not use the follow	· · · · · · · · · · · · · · · · · · ·	
0.33±0.16		${ m e^+e^-} ightarrow~\gamma ({ m nS})\pi^+\pi^-$
points within $\sqrt{s}=10.6$ –1. 2 Reported as the range 0.17-	the $\Upsilon(nS)\pi^+\pi^-$, $n=1, 2, 3$ 05 GeV, including the initial-solution $0.49 \; eV$ obtained from multiples a sum of Breit-Wigner function	, cross sections at 28 energy tate radiation at $\Upsilon(10860)$. solutions of an amplitude fit
$\Gamma(\chi_{bJ}(1P)\pi^+\pi^-\pi^0)/\Gamma_{\rm tot}$	al	Γ ₅ /Γ
$VALUE \text{ (units } 10^{-3}\text{)}$	DOCUMENT ID TEC	N COMMENT
8.7±4.3 ^{+7.6} -6.6		$e^+e^- ightarrow hadrons$
$\Gamma(\chi_{b1}(1P)\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}}$	al <u>DOCUMENT ID</u> <u>TEC</u>	Γ ₆ /Γ
seen		LL $e^+e^- \rightarrow \text{hadrons}$
https://pdg.lbl.gov	Page 3 Cr	eated: 5/31/2023 09:10

$\Gamma(\chi_{b2}(1P)\pi^+\pi^-\pi^0)/\Gamma_{ m tota}$	al				Γ_7/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
seen	YIN	18	BELL	$e^+e^- \rightarrow$	hadrons
$\Gamma(\chi_{b2}(1P)\pi^+\pi^-\pi^0)/\Gamma(\chi_b)$	$_{b1}(1P)\pi^{+}\pi^{-}\pi^{0})$				Γ_7/Γ_6
$\Gamma(\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0})/\Gamma(\chi_{b})$	$_{b1}(1P)\pi^{+}\pi^{-}\pi^{0})$		<u>TECN</u>	COMMENT	Γ ₇ /Γ ₆

au(11020) REFERENCES

DONG MIZUK YIN MIZUK SANTEL AUBERT BESSON	19 18 16 16 09E 85	CP C44 083001 JHEP 1910 220 PR D98 091102 PRL 117 142001 PR D93 011101 PRL 102 012001 PRL 54 381	XK. Dong et al. R. Mizuk et al. J.H. Yin et al. R. Mizuk et al. D. Santel et al. B. Aubert et al. D. Besson et al. D. M. L. Loveleck et al.	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (CLEO Collab.)
LOVELOCK	85	PRL 54 377	D.M.J. Lovelock et al.	(CUSB Collab.)

Created: 5/31/2023 09:10