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The most commonly used SU(3) isoscalar factors, corresponding to the singlet, octet, and
decuplet content of 8 ® 8 and 10 ® 8, are shown at the right. The notation uses particle names
to identify the coefficients, so that the pattern of relative couplings may be seen at a glance. We
illustrate the use of the coefficients below. See J.J de Swart, Rev. Mod. Phys. 35, 916 (1963) for
detailed explanations and phase conventions.

A~/ is to be understood over every integer in the matrices; the exponent 1/2 on each matrix is a
reminder of this. For example, the = — 2K element of the 10 — 1028 matrix is —v/6/v/24 = —1/2.

Intramultiplet relative decay strengths may be read directly from the matrices. For example,
in decuplet — octet + octet decays, the ratio of 2* — ZK and A — N7 partial widths is, from
the 10 — 8 x 8 matrix,

r2*— 2ZK) 12

T@ASNT =3 % (phase space factors) . (47.1)

Including isospin Clebsch-Gordan coefficients, we obtain, e.g.,

r*= —=2%") 1/2 12 3
=1 x Z xps.f.== xps.f. 47.2
AT S pr0) 23 % ¢ *Psl =g xpsd (472)

Partial widths for 8 — 8 ® 8 involve a linear superposition of 8; (symmetric) and 82 (antisym-
metric) couplings. For example,

[9 3\
F(E’*—)EW)N(— %gl—l— 12g2> . (47.3)

The relations between g; and g2 (with de Swart’s normalization) and the standard D and F
couplings that appear in the interaction Lagrangian,

¥ =-V2DTr({B,B}M)+V2FTr([B,B|M) , (47.4)

where [B, B = BB — BB and {B, B} = BB + BB, are

/30 V6
D='= F=>2"g. 47.
40 T 24 P2 (47.5)
Thus, for example,
INE* = Zn)~ (F-D)*~(1-2a)?, (47.6)

where a« = F/(D + F). (This definition of « is de Swart’s. The alternative D/(D + F'), due to
Gell-Mann, is also used.)

The generators of SU(3) transformations, A\, (a = 1, 8), are 3 x 3 matrices that obey the
following commutation and anticommutation relationships:

[)\a, )\b] = )\a)\b — )\b)\a = Qifabc)\c (47.7)

4
{)\a, )\b} = )\a)\b =+ /\b)\a = géab[ + 2dabc/\c , (478)

where [ is the 3 x 3 identity matrix, and d,; is the Kronecker delta symbol. The f,;. are odd under
the permutation of any pair of indices, while the dup. are even. The nonzero values are:
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1-8®8
_ 1 1/2
(A) — (NK Ir An :K) = ﬁ(2 3 —1 —2)
8, - 8®8
1/2
N Nr Nn XK AK 9 -1 -9 -1
x NE $m Ar 3y 2K | 1 -6 0 4 4 -6
A NK ¥r An 5K V202 12 -4 -2
= YK AK =Zn =n 9 -1 -9 -1
8 - 8®8Y
1/2
N Nr Nnp XK AK 3 3 3 -3
2N N NK n Ar »p 2K | 1 |12 8 0 0 =2
A NK r Ay EK S Ji2| 6 0 0 6
=) YK AK Ern Ep 3 3 3 -3
10-8®8
A Nrn XK —6 6 1/2
z NK Sr Ar Sn E 1 (-2 2 -3 3 2
= SK AK Er =p /12 3 -3 3 3
) ZEK 12
8—->10®8
N An YK —12 3 1/2
x AK Xr ¥n EK 1 8 -2 -3 2
— = —
A rr EK 15 -9 6
= YK Er En 0K 3 -3 -3 6
10 -10® 8
A Ar  An TK 15 3 —6 1/2
b)) N AK »n 3y 2K | 1 8 8 0 -8
= SK =x =n QK| 2412 3 -3 —6
9] EK q 12 —12
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abe fabe abc  dgpe abe dabe
123 1 18 1/v/3 355 1/2
147 1/2 146 1/2 366 —~1/2
156 —1/2 157 1/2 377 —1/2
246 1/2 228 1/V/3 448 —1/(2V/3)
257 1/2 247 —1/2 558  —1/(2v/3)
345 1/2 256 1/2 668 —1/(2v/3)
367 —1/2 338 1/V3 78 —1/(2V3)
458  /3/2 344 1/2 888  —1//3
678 /3/2
The \,’s are
010 0—i 0 1 00
AM=(1 00 =7 0 0 A3=(0-1 0
0 00 0 00 000
0 01 0 0—: 0 00
AM=1(0 00 A=1(0 0 0 X=(0 0 1
1 00 1 00 010
0 0 0 1 1 00
AM=1[(0 0—i ds=—=1(0 1 0
0 7 0 V310 0-2

Equation (47.7) defines the Lie algebra of SU(3). A general d-dimensional representation is
given by a set of d x d matrices satisfying Eq. (47.7) with the fu. given above. Equation (47.8) is
specific to the defining 3-dimensional representation.
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