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23. PASSAGE OF PARTICLES THROUGH MATTER

Revised May 1998 by D.E. Groom (LBNL).

23.1. Notation

Table 23.1: Summary of variables used in this section. The kinematic variables β
and γ have their usual meanings.

Symbol Definition Units or Value

α Fine structure constant 1/137.035 989 5(61)
M Incident particle mass MeV/c2

E Incident particle energy γMc2 MeV
T Kinetic energy MeV

mec2 Electron mass × c2 0.510 999 06(15) MeV
re Classical electron radius 2.817 940 92(38) fm

e2/4πε0mec2

NA Avogadro’s number 6.022 136 7(36)× 1023 mol−1

ze Charge of incident particle
Z Atomic number of medium
A Atomic mass of medium g mol−1

K/A 4πNAr2
emec2/A 0.307 075 MeV g−1 cm2

for A = 1 g mol−1

I Mean excitation energy eV
δ Density effect correction to ionization energy loss

~ωp Plasma energy 28.816
√
ρ〈Z/A〉 eV(a)√

4πNer3
e mec2/α

Nc Electron density (units of re)−3

wj Weight fraction of the jth element in a compound or mixture
nj ∝ number of jth kind of atoms in a compound or mixture
X0 Radiation length g cm−2

— 4αre2NA/A (716.408 g cm−2)−1

for A = 1 g mol−1

Ec Critical energy MeV
Es Scale energy

√
4π/α mec2 21.2052 MeV

RM Molière radius MeV g−1 cm2

(a) For ρ in g cm−3.

CITATION: C. Caso et al., European Physical Journal C3, 1 (1998)
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2 23. Passage of particles through matter

23.2. Ionization energy loss by heavy particles [1–5]

Moderately relativistic charged particles other than electrons lose energy in matter
primarily by ionization. The mean rate of energy loss (or stopping power) is given by
the Bethe-Bloch equation,

−dE
dx

= Kz2Z

A

1
β2

[
1
2

ln
2mec2β2γ2Tmax

I2
− β2 − δ

2

]
. (23.1)

Here Tmax is the maximum kinetic energy which can be imparted to a free electron in a
single collision, and the other variables are defined in Table 23.1. The units are chosen so
that dx is measured in mass per unit area, e.g., in g cm−2.

In this form, the Bethe-Bloch equation describes the energy loss of pions in a material
such as copper to about 1% accuracy for energies between about 6 MeV and 6 GeV.
At lower energies corrections for tightly-bound atomic electrons and other effects must
be made, and at higher energies radiative effects begin to be important. These limits of
validity depend on both the effective atomic number of the absorber and the mass of the
slowing particle. Low-energy effects will be discussed in Sec. 23.2.2.

The function as computed for pions on copper is shown by the solid curve in Fig. 23.1,
and for pions on other materials in Fig. 23.2. A minor dependence on M at the highest
energies is introduced through Tmax, but for all practical purposes in high-energy physics
dE/dx in a given material is a function only of β. Except in hydrogen, particles of the
same velocity have very similar rates of energy loss in different materials; there is a
slow decrease in the rate of energy loss with increasing Z. The qualitative difference in
stopping power behavior at high energies between a gas (He) and the other materials
shown in Fig. 23.2 is due to the density-effect correction, δ, discussed below. The stopping
power functions are characterized by broad minima whose position drops from βγ = 3.5
to 3.0 as Z goes from 7 to 100.

In practical cases, most relativistic particles (e.g., cosmic-ray muons) have energy loss
rates close to the minimum, and are said to be minimum ionizing particles, or mip’s.

Eq. (23.1) may be integrated to find the total range R for a particle which loses energy
only through ionization. Since dE/dx depends only on β, R/M is a function of E/M
or pc/M . In practice, range is a useful concept only for low-energy hadrons (R <∼ λI ,
where λI is the nuclear interaction length), and for muons below a few hundred GeV
(above which radiative effects dominate). R/M as a function of βγ = pc/M is shown for
a variety of materials in Fig. 23.3.
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Figure 23.1: Energy loss rate in copper. The function without the density-effect
correction, δ, is also shown, as is the loss rate excluding energy transfers with
T > 0.5 MeV. The shell correction is indicated. The conventional β−2 low-energy
approximation is compared with β−5/3.

For a particle with mass M and momentum Mβγc, Tmax is given by
Tmax =

2mec2 β2γ2

1 + 2γme/M + (me/M)2
. (23.2)

It is usual [1,2] to make the “low-energy” approximation
Tmax = 2mec2 β2γ2, valid for 2γme/M � 1; this, in fact, is done implicitly in many
standard references. For a pion in copper, the error thus introduced into dE/dx is greater
than 6% at 100 GeV. The correct expression should be used.

At energies of order 100 GeV, the maximum 4-momentum transfer to the electron
can exceed 1 GeV/c, where structure effects significantly modify the cross sections. This
problem has been investigated by J.D. Jackson [6], who concluded that for hadrons (but
not for large nuclei) corrections to dE/dx are negligible below energies where radiative
effects dominate. While the cross section for rare hard collisions is modified, the average
stopping power, dominated by many softer collisions, is almost unchanged.

The mean excitation energy I is (10 ± 1 eV)× Z for elements heavier than sulphur.
The values adopted by the ICRU for the chemical elements [7] are now in wide use;
these are shown in Fig. 23.4. Machine-readable versions can also be found [8]. Given the
availability of these constants and their variation with atomic structure, there seems little
point to depending upon approximate formulae, as was done in the past.

Ionization losses by electrons and positrons [7,9,10] are not discussed here. Above
the critical energy, which is a few tens of MeV in most materials (see Fig. 23.7),
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Figure 23.2: Energy loss rate in liquid (bubble chamber) hydrogen, gaseous
helium, carbon, aluminum, tin, and lead.

bremsstrahlung is the dominant source of energy loss. This important case is discussed
below. The contributions of various electron energy-loss processes in lead are shown in
Fig. 24.4.

23.2.1. The density effect: As the particle energy increases, its electric field flattens
and extends, so that the distant-collision contribution to Eq. (23.1) increases as lnβγ.
However, real media become polarized, limiting the field extension and effectively
truncating this part of the logarithmic rise [4,11–14]. At very high energies,

δ/2→ ln(~ωp/I) + lnβγ − 1/2 , (23.3)

where δ/2 is the density effect correction introduced in Eq. (23.1) and ~ωp is the plasma
energy defined in Table 23.1. A comparison with Eq. (23.1) shows that |dE/dx| then
grows as lnβγ rather than lnβ2γ2, and that the mean excitation energy I is replaced by
the plasma energy ~ωp. The stopping power as calculated with and without the density
effect correction is shown in Fig. 23.1. Since the plasma frequency scales as the square
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Figure 23.3: Range of heavy charged particles in liquid (bubble chamber)
hydrogen, helium gas, carbon, iron, and lead. For example: For a K+ whose
momentum is 700 MeV/c, βγ = 1.42. For lead we read R/M ≈ 396, and so the
range is 195 g cm−2.

root of the electron density, the correction is much larger for a liquid or solid than for a
gas, as is illustrated by the examples in Fig. 23.2.

The density effect correction is usually computed using Sternheimer’s parameteriza-
tion [11]:

δ =


2(ln 10)x− C if x ≥ x1;
2(ln 10)x− C + a(x1 − x)k if x0 ≤ x < x1;
0 if x < x0 (nonconductors);
δ0102(x−x0) if x < x0 (conductors)

(23.4)
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Figure 23.4: Excitation energies (divided by Z) as adopted by the ICRU [7]. Those
based on measurement are shown by points with error flags; the interpolated values
are simply joined. The solid point is for liquid H2; the open point at 19.2 is for H2
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Here x = log10 η = log10(p/Mc). C (the negative of the C used in Ref. 11) is obtained
by equating the high-energy case of Eq. (23.4) with the limit given in Eq. (23.3). The
other parameters are adjusted to give a best fit to the results of detailed calculations
for momenta below Mc exp(x1). Parameters for elements and nearly 200 compounds and
mixtures of interest are published in a variety of places, notably in Ref. 14. A recipe for
finding the coefficients for nontabulated materials given by Sternheimer and Peierls [13]
is summarized in Ref. 10.

The remaining relativistic rise can be attributed to large energy transfers to a few
electrons. If these escape or are otherwise accounted for separately, the energy deposited
in an absorbing layer (in contrast to the energy lost by the particle) approaches a
constant value, the Fermi plateau (see Sec. 23.2.5 below). The curve in Fig. 23.1 labeled
“Tcut = 0.5 MeV” illustrates this behavior. At extreme energies (e.g., > 321 GeV for
muons in iron), radiative effects are more important than ionization losses. These are
especially relevant for high-energy muons, as discussed in Sec. 23.6.
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23.2.2. Energy loss at low energies: A shell correction C/Z is often included in the
square brackets of Eq. (23.1) [3,5,7] to correct for atomic binding having been neglected
in calculating some of the contributions to Eq. (23.1). We show the Barkas form [3] in
Fig. 23.1. For copper it contributes about 1% at βγ = 0.3 (kinetic energy 6 MeV for a
pion), and the correction decreases very rapidly with energy.

Eq. (23.1) is based on a first-order Born approximation. Higher-order corrections,
again important only at lower energy, are normally included by adding a term z2L2(β)
inside the square brackets.

An additional “Barkas correction” zL1(β) makes the stopping power for a negative
particle somewhat larger than for a positive particle with the same mass and velocity. In
a 1956 paper, Barkas et al. noted that negative pions had a longer range than positive
pions [15]. The effect has been measured for a number of negative/positive particle pairs,
most recently for antiprotons at the CERN LEAR facility [16].

A detailed discussion of low-energy corrections to the Bethe formula is given in
ICRU Report 49 [5]. When the corrections are properly included, the accuracy of the
Bethe-Bloch treatment is accurate to about 1% down to β ≈ 0.05, or about 1 MeV for
protons.

For 0.01 < β < 0.05, there is no satisfactory theory. For protons, one usually relies
on the empirical fitting formulae developed by Andersen and Ziegler [5,17]. For particles
moving more slowly than ≈ 0.01c (more or less the velocity of the outer atomic electrons),
Lindhard has been quite successful in describing electronic stopping power, which is
proportional to β [18,19]. Finally, we note that at low energies, e.g., for protons of less
than several hundred eV, non-ionizing nuclear recoil energy loss dominates the total
energy loss [5,19,20].

As shown in ICRU49 [5] (using data taken from Ref. 17), the nuclear plus electronic
proton stopping power in copper is 113 MeV cm2 g−1 at T = 10 keV, rises to a maximum
of 210 MeV cm2 g−1 at 100–150 keV, then falls to 120 MeV cm2 g−1 at 1 MeV. Above
0.5–1.0 MeV the corrected Bethe-Block theory is adequate.

23.2.3. Fluctuations in energy loss: The quantity (dE/dx)δx is the mean energy
loss via interaction with electrons in a layer of the medium with thickness δx. For finite
δx, there are fluctuations in the actual energy loss. The distribution is skewed toward
high values (the Landau tail) [1,21]. Only for a thick layer [(dE/dx)δx � Tmax] is the
distribution nearly Gaussian. The large fluctuations in the energy loss are due to the
small number of collisions involving large energy transfers. The fluctuations are smaller
for the so-called restricted energy loss rate, as discussed in Sec. 23.2.5 below.

23.2.4. Energy loss in mixtures and compounds: A mixture or compound can be
thought of as made up of thin layers of pure elements in the right proportion (Bragg
additivity). In this case,

dE

dx
=
∑

wj
dE

dx

∣∣∣∣
j
, (23.5)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2) in the jth element.
Eq. (23.1) can be inserted into Eq. (23.5) to find expressions for 〈Z/A〉, 〈I 〉, and 〈δ〉;
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8 23. Passage of particles through matter

for example, 〈Z/A〉 =
∑
wjZj/Aj =

∑
njZj/

∑
njAj . However, 〈I 〉 as defined this way

is an underestimate, because in a compound electrons are more tightly bound than in
the free elements, and 〈δ〉 as calculated this way has little relevance, because it is the
electron density which matters. If possible, one uses the tables given in Refs. 14 and 10,
which include effective excitation energies and interpolation coefficients for calculating
the density effect correction for the chemical elements and nearly 200 mixtures and
compounds. If a compound or mixture is not found, then one uses the recipe for δ given
in Ref. 13 (or Ref. 22), and calculates 〈I〉 according to the discussion in Ref. 9. (Note the
“13%” rule!)

23.2.5. Restricted energy loss rates for relativistic ionizing particles: Fluctua-
tions in energy loss are due mainly to the production of a few high-energy knock-on
electrons. Practical detectors often measure the energy deposited, not the energy lost.
When energy is carried off by energetic knock-on electrons, it is more appropriate to
consider the mean energy loss excluding energy transfers greater than some cutoff Tcut.
The restricted energy loss rate is

−dE
dx

∣∣∣∣
T<Tcut

= Kz2Z

A

1
β2

[
1
2

ln
2mec2β2γ2Tupper

I2

−β
2

2

(
1 +

Tupper

Tmax

)
− δ

2

]
(23.6)

where Tupper = MIN(Tcut, Tmax). This form agrees with the equation given in previous
editions of this Review [23] for Tcut � Tmax but smoothly joins the normal Bethe-Bloch
function (Eq. (23.1)) for Tcut > Tmax.

23.2.6. Energetic knock-on electrons (δ rays): The distribution of secondary
electrons with kinetic energies T � I is given by [1]

d2N

dTdx
=

1
2
Kz2Z

A

1
β2

F (T )
T 2 (23.7)

for I � T ≤ Tmax, where Tmax is given by Eq. (23.2). The factor F is spin-dependent,
but is about unity for T � Tmax. For spin-0 particles F (T ) = (1− β2T/Tmax); forms for
spins 1/2 and 1 are also given by Rossi [1]. When Eq. (23.7) is integrated from Tcut to
Tmax,one obtains the difference between Eq. (23.1) and Eq. (23.6). For incident electrons,
the indistinguishability of projectile and target means that the range of T extends only to
half the kinetic energy of the incident particle. Additional formulae are given in Ref. 24.
Equation (23.7) is inaccurate for T close to I: for 2I . T . 10I, the 1/T 2 dependence
above becomes approximately T−η, with 3. η. 5 [25].
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23.2.7. Ionization yields: Physicists frequently relate total energy loss to the number
of ion pairs produced near the particle’s track. This relation becomes complicated for
relativistic particles due to the wandering of energetic knock-on electrons whose ranges
exceed the dimensions of the fiducial volume. For a qualitative appraisal of the nonlocality
of energy deposition in various media by such modestly energetic knock-on electrons,
see Ref. 26. The mean local energy dissipation per local ion pair produced, W , while
essentially constant for relativistic particles, increases at slow particle speeds [27]. For
gases, W can be surprisingly sensitive to trace amounts of various contaminants [27].
Furthermore, ionization yields in practical cases may be greatly influenced by such factors
as subsequent recombination [28].
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