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10 23. Passage of particles through matter

23.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many small-angle scatters.
Most of this deflection is due to Coulomb scattering from nuclei, and hence the effect
is called multiple Coulomb scattering. (However, for hadronic projectiles, the strong
interactions also contribute to multiple scattering.) The Coulomb scattering distribution
is well represented by the theory of Molière [29]. It is roughly Gaussian for small
deflection angles, but at larger angles (greater than a few θ0, defined below) it behaves
like Rutherford scattering, having larger tails than does a Gaussian distribution.

If we define

θ0 = θ rms
plane =

1√
2
θrms
space . (23.8)

then it is sufficient for many applications to use a Gaussian approximation for the central
98% of the projected angular distribution, with a width given by [30,31]

θ0 =
13.6 MeV

βcp
z
√
x/X0

[
1 + 0.038 ln(x/X0)

]
. (23.9)

Here p, βc, and z are the momentum, velocity, and charge number of the incident particle,
and x/X0 is the thickness of the scattering medium in radiation lengths (defined below).
This value of θ0 is from a fit to Molière distribution [29] for singly charged particles with
β = 1 for all Z, and is accurate to 11% or better for 10−3 < x/X0 < 100.

Eq. (23.9) describes scattering from a single material, while the usual problem involves
the multiple scattering of a particle traversing many different layers and mixtures. Since it
is from a fit to a Molière distribution, it is incorrect to add the individual θ0 contributions
in quadrature; the result is systematically too small. It is much more accurate to apply
Eq. (23.9) once, after finding x and X0 for the combined scatterer.

Lynch and Dahl have extended this phenomenological approach, fitting Gaussian
distributions to a variable fraction of the Molière distribution for arbitrary scatterers [31],
and achieve accuracies of 2% or better.
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Figure 23.5: Quantities used to describe multiple Coulomb scattering. The particle
is incident in the plane of the figure.
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23. Passage of particles through matter 11

The nonprojected (space) and projected (plane) angular distributions are given
approximately by [29]

1
2π θ2

0

exp

−θ2
space

2θ2
0

dΩ , (23.10)

1√
2π θ0

exp

−θ2
plane

2θ2
0

 dθplane , (23.11)

where θ is the deflection angle. In this approximation, θ2
space ≈ (θ2

plane,x+ θ2
plane,y), where

the x and y axes are orthogonal to the direction of motion, and dΩ ≈ dθplane,x dθplane,y.
Deflections into θplane,x and θplane,y are independent and identically distributed.

Figure 23.5 shows these and other quantities sometimes used to describe multiple
Coulomb scattering. They are

ψ rms
plane =

1√
3
θ rms

plane =
1√
3
θ0 , (23.12)

y rms
plane =

1√
3
xθ rms

plane =
1√
3
xθ0 , (23.13)

s rms
plane =

1
4
√

3
xθ rms

plane =
1

4
√

3
xθ0 . (23.14)

All the quantitative estimates in this section apply only in the limit of small θ rms
plane

and in the absence of large-angle scatters. The random variables s, ψ, y, and θ in a
given plane are distributed in a correlated fashion (see Sec. 28.1 of this Review for the
definition of the correlation coefficient). Obviously, y ≈ xψ. In addition, y and θ have
the correlation coefficient ρyθ =

√
3/2 ≈ 0.87. For Monte Carlo generation of a joint

(y plane, θplane) distribution, or for other calculations, it may be most convenient to work
with independent Gaussian random variables (z1, z2) with mean zero and variance one,
and then set

yplane =z1 xθ0(1− ρ2
yθ)

1/2/
√

3 + z2 ρyθxθ0/
√

3

=z1 xθ0/
√

12 + z2 xθ0/2 ; (23.15)
θplane =z2 θ0 . (23.16)

Note that the second term for y plane equals xθplane/2 and represents the displacement
that would have occurred had the deflection θplane all occurred at the single point x/2.

For heavy ions the multiple Coulomb scattering has been measured and compared with
various theoretical distributions [32].
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12 23. Passage of particles through matter

23.4. Radiation length and associated quantities

In dealing with electrons and photons at high energies, it is convenient to measure the
thickness of the material in units of the radiation length X0. This is the mean distance
over which a high-energy electron loses all but 1/e of its energy by bremsstrahlung, and is
the appropriate scale length for describing high-energy electromagnetic cascades. X0 has
been calculated and tabulated by Y.S. Tsai [33]:

1
X0

= 4αr2
e
NA
A

{
Z2[Lrad − f(Z)

]
+ Z L′rad

}
. (23.17)

For A = 1 g mol−1, 4αre2NA/A = (716.408 g cm−2)−1. Lrad and L′rad are given in
Table 23.2. The function f(Z) is an infinite sum, but for elements up to uranium can be
represented to 4-place accuracy by

f(Z) = a2[(1 + a2)−1 + 0.20206

−0.0369 a2 + 0.0083 a4 − 0.002 a6] , (23.18)

where a = αZ [34].

Table 23.2: Tsai’s Lrad and L′rad, for use in calculating the radiation length in an
element using Eq. (23.17).

Element Z Lrad L′rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15Z−1/3) ln(1194Z−2/3)

Although it is easy to use Eq. (23.17) to calculate X0, the functional dependence on Z
is somewhat hidden. Dahl provides a compact fit to the data [35]:

X0 =
716.4 g cm−2A

Z(Z + 1) ln(287/
√
Z)

(23.19)

Results obtained with this formula agree with Tsai’s values to better than 2.5% for all
elements except helium, where the result is about 5% low.

The radiation length in a mixture or compound may be approximated by

1/X0 =
∑

wj/Xj , (23.20)

where wj and Xj are the fraction by weight and the radiation length for the jth element.
An electron loses energy by bremsstrahlung at a rate nearly proportional to its energy,

while the ionization loss rate varies only logarithmically with the electron energy. The
critical energy Ec is sometimes defined as the energy at which the two loss rates are
equal [36]. Berger and Seltzer [36] also give the approximation Ec = (800 MeV)/(Z+1.2).
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Figure 23.6: Two definitions of the critical energy Ec.

This formula has been widely quoted, and has been given in previous editions of this
Review [23]. Among alternate definitions is that of Rossi [1], who defines the critical
energy as the energy at which the ionization loss per radiation length is equal to the
electron energy. Equivalently, it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. These definitions are illustrated in the case of copper in Fig. 23.6.

The accuracy of approximate forms for Ec has been limited by the failure to distinguish
between gases and solid or liquids, where there is a substantial difference in ionization
at the relevant energy because of the density effect. We distinguish these two cases in
Fig. 23.7. Fits were also made with functions of the form a/(Z+b)α, but α was essentially
unity.

The transverse development of electromagnetic showers in different materials scales
fairly accurately with the Molière radius RM , given by [37,38]

RM = X0Es/Ec , (23.21)

where Es ≈ 21 MeV (see Table 23.1), and the Rossi definition of Ec is used.
In a material containing a weight fraction wj of the element with critical energy Ecj

and radiation length Xj , the Molière radius is given by
1
RM

=
1
Es

∑ wj Ecj
Xj

. (23.22)

For very high-energy photons, the total e+e− pair-production cross section is
approximately

σ = 7
9(A/X0NA) , (23.23)
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Figure 23.7: Electron critical energy for the chemical elements, using Rossi’s
definition [1]. The fits shown are for solids and liquids (solid line) and gases (dashed
line). The rms deviation is 2.2% for the solids and 4.0% for the gases. (Computed
with code supplied by A. Fassó.)

where A is the atomic weight of the material and NA is Avogadro’s number.
Equation Eq. (23.23) is accurate to within a few percent down to energies as low as
1 GeV. The cross section decreases at lower energies, as shown in Fig. 24.4 of this Review.
As the energy decreases, a number of other processes become important, as is shown in
Fig. 24.3 of this Review.

23.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick absorber, it initiates
an electromagnetic cascade as pair production and bremsstrahlung generate more
electrons and photons with lower energy. The longitudinal development is governed by
the high-energy part of the cascade, and therefore scales as the radiation length in the
material. Electron energies eventually fall below the critical energy, and then dissipate
their energy by ionization and excitation rather than by the generation of more shower
particles. In describing shower behavior, it is therefore convenient to introduce the scale
variables

t = x/X0

y = E/Ec , (23.24)

so that distance is measured in units of radiation length and energy in units of critical
energy.
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Figure 23.8: An EGS4 simulation of a 30 GeV electron-induced cascade in iron.
The histogram shows fractional energy deposition per radiation length, and the
curve is a gamma-function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes at X0/2 intervals
(scale on right) and the squares the number of photons with E ≥ 1.5 MeV crossing
the planes (scaled down to have same area as the electron distribution).

Longitudinal profiles for an EGS4 [22] simulation of a 30 GeV electron-induced
cascade in iron are shown in Fig. 23.8. The number of particles crossing a plane (very
close to Rossi’s Π function [1]) is sensitive to the cutoff energy, here chosen as a total
energy of 1.5 MeV for both electrons and photons. The electron number falls off more
quickly than energy deposition. This is because, with increasing depth, a larger fraction
of the cascade energy is carried by photons. Exactly what a calorimeter measures depends
on the device, but it is not likely to be exactly any of the profiles shown. In gas counters
it may be very close to the electron number, but in glass Čerenkov detectors and other
devices with “thick” sensitive regions it is closer to the energy deposition (total track
length). In such detectors the signal is proportional to the “detectable” track length Td,
which is in general less than the total track length T . Practical devices are sensitive
to electrons with energy above some detection threshold Ed, and Td = T F (Ed/Ec).
An analytic form for F (Ed/Ec) obtained by Rossi [1] is given by Fabjan [39]; see also
Amaldi [40].

The mean longitudinal profile of the energy deposition in an electromagnetic cascade
is reasonably well described by a gamma distribution [41]:

dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
(23.25)

The maximum tmax occurs at (a− 1)/b. We have made fits to shower profiles in elements
ranging from carbon to uranium, at energies from 1 GeV to 100 GeV. The energy
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16 23. Passage of particles through matter

deposition profiles are well described by Eq. (23.25) with

tmax = (a− 1)/b = 1.0× (ln y + Cj) , j = e, γ , (23.26)

where Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for photon-induced
cascades. To use Eq. (23.25), one finds (a− 1)/b from Eq. (23.26) and Eq. (23.24), then
finds a either by assuming b ≈ 0.5 or by finding a more accurate value from Fig. 23.9. The
results are very similar for the electron number profiles, but there is some dependence on
the atomic number of the medium. A similar form for the electron number maximum was
obtained by Rossi in the context of his “Approximation B,” [1] (see Fabjan’s review in
Ref. 39), but with Ce = −1.0 and Cγ = −0.5; we regard this as superseded by the EGS4
result.
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Figure 23.9: Fitted values of the scale factor b for energy deposition profiles
obtained with EGS4 for a variety of elements for incident electrons with
1 ≤ E0 ≤ 100 GeV. Values obtained for incident photons are essentially the same.

The “shower length” Xs = X0/b is less conveniently parameterized, since b depends
upon both Z and incident energy, as shown in Fig. 23.9. As a corollary of this
Z dependence, the number of electrons crossing a plane near shower maximum is
underestimated using Rossi’s approximation for carbon and seriously overestimated for
uranium. Essentially the same b values are obtained for incident electrons and photons.
For many purposes it is sufficient to take b ≈ 0.5.

The gamma distribution is very flat near the origin, while the EGS4 cascade (or a real
cascade) increases more rapidly. As a result Eq. (23.25) fails badly for about the first two
radiation lengths; it was necessary to exclude this region in making fits.
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Because fluctuations are important, Eq. (23.25) should be used only in applications
where average behavior is adequate. Grindhammer et al. have developed fast simulation
algorithms in which the variance and correlation of a and b are obtained by fitting
Eq. (23.25) to individually simulated cascades, then generating profiles for cascades using
a and b chosen from the correlated distributions [42].

Measurements of the lateral distribution in electromagnetic cascades are shown in
Refs. 37 and 38. On the average, only 10% of the energy lies outside the cylinder with
radius RM . About 99% is contained inside of 3.5RM , but at this radius and beyond
composition effects become important and the scaling with RM fails. The distributions
are characterized by a narrow core, and broaden as the shower develops. They are often
represented as the sum of two Gaussians, and Grindhammer [42] describes them with the
function

f(r) =
2r R2

(r2 +R2)2 , (23.27)

where R is a phenomenological function of x/X0 and lnE.
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