$$I(J^P) = 0(\frac{1}{2}^+)$$ $\mathsf{Charge} = -\tfrac{1}{3} \; e$ $\mathsf{Bottom} = -1$ Created: 6/29/1998 12:07 TECN COMMENT ## **b-QUARK MASS** The b-quark mass is estimated from bottomonium and B masses. It corresponds to the "running" mass m_b ($\mu=m_b$) in the $\overline{\rm MS}$ scheme. We have converted masses in other schemes to the \overline{MS} scheme using one-loop QCD pertubation theory with $\alpha_s(\mu=m_h)=0.22$. The range 4.1–4.5 GeV for the $\overline{\text{MS}}$ mass corresponds to 4.5–4.9 GeV for the pole mass (see the "Note on Quark Masses"). DOCUMENT ID ## VALUE (GeV) 4.1 to 4.4 OUR EVALUATION • • We do not use the following data for averages, fits, limits, etc. | 3.91 ± 0.67 | ¹ ABREU | 981 | DLPH | MS scheme | |--------------------------|-------------------------|-------------|------|-----------| | $4.15 \pm 0.05 \pm 0.20$ | ² GIMENEZ | 97 | LATT | MS scheme | | 4.13 ± 0.06 | ³ JAMIN | 97 | THEO | MS scheme | | $4.16 \pm 0.32 \pm 0.60$ | ⁴ RODRIGO | 97 | THEO | MS scheme | | 4.22 ± 0.05 | ⁵ NARISON | 95 B | THEO | MS scheme | | 4.415 ± 0.006 | ⁶ VOLOSHIN | 95 | THEO | MS scheme | | 4.0 ± 0.1 | ⁷ DAVIES | 94 | THEO | MS scheme | | \geq 4.26 | ⁸ LIGETI | 94 | THEO | MS scheme | | \geq 4.2 | ⁹ LUKE | 94 | THEO | MS scheme | | 4.23 ± 0.04 | ¹⁰ NARISON | 94 | THEO | MS scheme | | 4.397 ± 0.025 | ¹¹ TITARD | 94 | THEO | MS scheme | | 4.32 ± 0.05 | ¹² DOMINGUEZ | 92 | THEO | | | 4.24 ± 0.05 | ¹³ NARISON | 89 | THEO | | | 4.18 ± 0.02 | ¹⁴ REINDERS | 88 | THEO | | | 4.30 ± 0.13 | ¹⁵ NARISON | 87 | THEO | | | 4.25 ± 0.1 | ¹⁶ GASSER | 82 | THEO | | | | | | | | $^{^{1}}$ ABREU 981 determines the $\overline{\rm MS}$ mass $m_{b}=2.67\pm0.25\pm0.34\pm0.27$ GeV at $\mu{=}M_{Z}$ from three jet heavy quark production at LEP. ABREU 981 have rescaled the result to $\bar{\mu}$ $= m_b \text{ using } \alpha_s = 0.118 \pm 0.003.$ $^{^2}$ GIMENEZ 97 uses lattice computations of the B-meson propagator and the B-meson binding energy $\overline{\Lambda}$ in the HQET. Their systematic (second) error for the $\overline{\text{MS}}$ mass is an estimate of the effects of higher-order corrections in the matching of the HQET operators (renormalon effects). $^{^3}$ JAMIN 97 apply the QCD moment method to the \varUpsilon system. They also find a pole mass ⁴ RODRIGO 97 determines the $\overline{\rm MS}$ mass $m_b=2.85\pm0.22\pm0.20\pm0.36$ GeV at $\mu{=}M_Z$ from three jet heavy quark production at $\tilde{\text{L}}\text{EP}.$ We have rescaled the result. $^{^{5}}$ NARISON 95B uses finite energy sum rules to two-loop accuracy to determine a b-quark pole mass of 4.61 \pm 0.05 GeV. $^{^6}$ VOLOSHIN 95 result was converted from a pole mass of 4827 \pm 7 MeV using the oneloop formula. Pole mass was extracted using moments of the total cross section for $e^+e^- \rightarrow b$ hadrons. $^{^7}$ DAVIES 94 uses lattice computation of \varUpsilon spectroscopy. They also quote a value of 5.0 ± 0.2 GeV for the *b*-quark pole mass. The numerical computation includes quark vacuum polarization (unquenched); they find that the masses are independent of n_f to within their errors. Their error for the pole mass is larger than the error for the MS mass, - because both are computed from the bare lattice quark mass, and the conversion for the pole mass is less accurate. - 8 LIGETI 94 computes lower bound of 4.66 GeV on pole mass using HQET, and experimental data on inclusive B and D decays. - 9 LUKE 94 computes lower bound of 4.60 GeV on pole mass using HQET, and experimental data on inclusive B and D decays. - 10 NARISON 94 uses spectral sum rules to two loops, and $J/\psi(1S)$ and \varUpsilon systems. - ¹¹ TITARD 94 uses one-loop computation of the quark potential with nonperturbative gluon condensate effects to fit $J/\psi(1S)$ and Υ states. - 12 DOMINGUEZ 92 determines pole mass to be 4.72 \pm 0.05 using next-to-leading order in $^{1/m}$ in moment sum rule. - 13 NARISON 89 determines the Georgi-Politzer mass at $p^2 = -m^2$ to be 4.23 \pm 0.05 GeV using QCD sum rules. - 14 REINDERS 88 determines the Georgi-Politzer mass at $p^2=-m^2$ to be 4.17 \pm 0.02 using moments of $\overline{b}\gamma^\mu$ b. This technique leads to a value for the mass of the B meson of 5.25 \pm 0.15 GeV. - 15 NARISON 87 determines the pole mass to be 4.70 \pm 0.14 using QCD sum rules, with $\Lambda(\overline{\rm MS})=180\pm80$ MeV. - 16 GASSER 82 uses SVZ sum rules. The renormalization point is $\mu=$ guark mass. ## $m_b - m_c$ MASS DIFFERENCE The mass difference m_b-m_c in the HQET scheme is 3.4 ± 0.2 GeV (see the "Note on Quark Masses"). VALUE (GeV) DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • \geq 3.29 $ext{17}$ GROSSE 78 17 GROSSE 78 obtain $(m_b-m_c) \geq 3.29$ GeV based on eigenvalue inequalities in potential models. ## **b**-QUARK REFERENCES | ABREU
GIMENEZ
JAMIN | 98I
97
97 | PL B418 430
PL B393 124
NP B507 334 | P. Abreu+
V. Gimenez, G
M. Jamin, A. | (DELPHI Collab.)
i. Martinelli, C.T. Sachrajda
Pich | |---------------------------|-----------------|---|--|---| | RODRIGO | 97 | PRL 79 193 | G. Rodrigo, A. | Santamaria, M. Bilenky | | NARISON | 95B | PL B352 122 | | (MONP) | | VOLOSHIN | 95 | IJMP A10 2865 | | (MINN) | | DAVIES | 94 | PRL 73 2654 | +Hornbostel+ | (GLAS, SMU, CORN, EDIN, OSU, FSU) | | LIGETI | 94 | PR D49 R4331 | +Nir | (REHO) | | LUKE | 94 | PL B321 88 | +Savage | (TNTO, UCSD, CMU) | | NARISON | 94 | PL B341 73 | | (CERN, MONP) | | TITARD | 94 | PR D49 6007 | +Yndurain | (MICH, MADU) | | DOMINGUEZ | 92 | PL B293 197 | +Paver | (CAPE, TRST, INFN) | | NARISON | 89 | PL B216 191 | | (ICTP) | | REINDERS | 88 | PR D38 947 | | (BONN) | | NARISON | 87 | PL B197 405 | | (CERN) | | GASSER | 82 | PRPL 87 77 | +Leutwyler | (BERN) | | GROSSE | 78 | PL 79B 103 | +Martin | (CERN) |