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9. Quantum chromodynamics 1

9. QUANTUM CHROMODYNAMICS

9.1. The QCD Lagrangian

Revised September 1997 by I. Hinchliffe (LBNL).

Quantum Chromodynamics (QCD), the gauge field theory which describes the
strong interactions of colored quarks and gluons, is one of the components of the
SU(3)×SU(2)×U(1) Standard Model. A quark of specific flavor (such as a charm quark)
comes in 3 colors; gluons come in eight colors; hadrons are color-singlet combinations of
quarks, anti-quarks, and gluons. The Lagrangian describing the interactions of quarks
and gluons is (up to gauge-fixing terms)

LQCD = −1
4
F

(a)
µν F (a)µν + i

∑
q

ψiq γ
µ (Dµ)ij ψjq

−
∑
q

mq ψ
i
q ψqi , (9.1)

F
(a)
µν = ∂µ A

a
ν − ∂ν Aaµ + gs fabc A

b
µ A

c
ν , (9.2)

(Dµ)ij = δij ∂µ − igs
∑
a

λai,j
2
Aaµ , (9.3)

where gs is the QCD coupling constant, and the fabc are the structure constants of the
SU(3) algebra (the λ matrices and values for fabc can be found in “SU(3) Isoscalar Factors
and Representation Matrices,” Sec. 33 of this Review). The ψiq(x) are the 4-component
Dirac spinors associated with each quark field of (3) color i and flavor q, and the Aaµ(x)
are the (8) Yang-Mills (gluon) fields. A complete list of the Feynman rules which derive
from this Lagrangian, together with some useful color-algebra identities, can be found in
Ref. 1.

The principle of “asymptotic freedom” (see below) determines that the renormalized
QCD coupling is small only at high energies, and it is only in this domain that
high-precision tests—similar to those in QED—can be performed using perturbation
theory. Nonetheless, there has been in recent years much progress in understanding and
quantifying the predictions of QCD in the nonperturbative domain, for example, in soft
hadronic processes and on the lattice [2]. This short review will concentrate on QCD at
short distances (large momentum transfers), where perturbation theory is the standard
tool. It will discuss the processes that are used to determine the coupling constant of
QCD. Other recent reviews of the coupling constant measurements may be consulted for
a different perspective [3].

CITATION: C. Caso et al., European Physical Journal C3, 1 (1998)
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2 9. Quantum chromodynamics

9.2. The QCD coupling and renormalization scheme

The renormalization scale dependence of the effective QCD coupling αs = g2
s/4π is

controlled by the β-function:

µ
∂αs
∂µ

= −β0

2π
α2
s −

β1

4π2
α3
s −

β2

64π3
α4
s − · · · , (9.4a)

β0 = 11− 2
3
nf , (9.4b)

β1 = 51− 19
3
nf , (9.4c)

β2 = 2857− 5033
9

nf +
325
27

n2
f ; (9.4d)

where nf is the number of quarks with mass less than the energy scale µ. The expression
for the next term in this series (β3) can be found in Ref. 4. In solving this differential
equation for αs, a constant of integration is introduced. This constant is the one
fundamental constant of QCD that must be determined from experiment. The most
sensible choice for this constant is the value of αs at a fixed-reference scale µ0, but it
is more conventional to introduce the dimensional parameter Λ, since this provides a
parametrization of the µ dependence of αs. The definition of Λ is arbitrary. One way
to define it (adopted here) is to write a solution of Eq. (9.4) as an expansion in inverse
powers of ln (µ2):

αs(µ) =
4π

β0 ln (µ2/Λ2)

[
1− 2β1

β2
0

ln
[
ln (µ2/Λ2)

]
ln (µ2/Λ2)

+
4β2

1

β4
0 ln2(µ2/Λ2)

×
((

ln
[
ln (µ2/Λ2)

]
− 1

2

)2
+
β2β0

8β2
1

− 5
4

)]
. (9.5a)

The last term in this expansion is

O
(

ln2 [ln (µ2/Λ2)]
ln3 (µ2/Λ2)

)
, (9.5b)

and is usually neglected in the definition of Λ. We choose to include it. For a fixed value
of αs(MZ ), the inclusion of this term shifts the value of Λ by ∼ 15 MeV. This solution
illustrates the asymptotic freedom property: αs → 0 as µ→∞. Alternative definitions of
Λ are possible. We adopt this as the standard. Values given by experiments using other
definitions are adjusted as needed to meet our definition.
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9. Quantum chromodynamics 3

Consider a “typical” QCD cross section which, when calculated perturbatively, starts
at O(αs):

σ = A1 αs +A2 α
2
s + · · · . (9.6)

The coefficients A1, A2 come from calculating the appropriate Feynman diagrams. In
performing such calculations, various divergences arise, and these must be regulated
in a consistent way. This requires a particular renormalization scheme (RS). The most
commonly used one is the modified minimal subtraction (MS) scheme [5]. This involves
continuing momentum integrals from 4 to 4–2ε dimensions, and then subtracting off the
resulting 1/ε poles and also (ln 4π − γE), which is another artifact of continuing the
dimension. (Here γE is the Euler-Mascheroni constant.) To preserve the dimensionless
nature of the coupling, a mass scale µ must also be introduced: g → µεg. The finite
coefficients Ai (i > 2) thus obtained depend implicitly on the renormalization convention
used and explicitly on the scale µ.

The first two coefficients (β0, β1) in Eq. (9.4) are independent of the choice of RS’s. In
contrast, the coefficients of terms proportional to αns for n > 3 are RS-dependent. The
form given above for β2 is in the MS scheme. It has become conventional to use the MS

scheme for calculating QCD cross sections beyond leading order.
The fundamental theorem of RS dependence is straightforward. Physical quantities, in

particular the cross section, calculated to all orders in perturbation theory, do not depend
on the RS. It follows that a truncated series does exhibit RS dependence. In practice,
QCD cross sections are known to leading order (LO), or to next-to-leading order (NLO),
or in a few cases, to next-to-next-to-leading order (NNLO); and it is only the latter two
cases, which have reduced RS dependence, that are useful for precision tests. At NLO
the RS dependence is completely given by one condition which can be taken to be the
value of the renormalization scale µ. At NNLO this is not sufficient, and µ is no longer
equivalent to a choice of scheme; both must now be specified. One, therefore, has to
address the question of what is the “best” choice for µ within a given scheme, usually MS.
There is no definite answer to this question—higher-order corrections do not “fix” the
scale, rather they render the theoretical predictions less sensitive to its variation.

One could imagine that choosing a scale µ characteristic of the typical energy scale (E)
in the process would be most appropriate. In general, a poor choice of scale generates
terms of order ln (E/µ) in the Ai’s. Various methods have been proposed including
choosing: the scale for which the next-to-leading-order correction vanishes (“Fastest
Apparent Convergence [6]”); the scale for which the next-to-leading-order prediction is
stationary [7], (i.e., the value of µ where dσ/dµ = 0); or the scale dictated by the effective
charge scheme [8] or by the BLM scheme [9]. By comparing the values of αs that different
reasonable schemes give, an estimate of theoretical errors can be obtained. It has also
been suggested to replace the perturbation series by its Pade approximant [10]. Results
obtained using this method have, in certain cases, a reduced scale dependence [11,12].

An important corollary is that if the higher-order corrections are naturally small, then
the additional uncertainties introduced by the µ dependence are likely to be less than
the experimental measurement errors. There are some processes, however, for which the
choice of scheme can influence the extracted value of ΛMS. There is no resolution to
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4 9. Quantum chromodynamics

this problem other than to try to calculate even more terms in the perturbation series.
It is important to note that, since the perturbation series is an asymptotic expansion,
there is a limit to the precision with which any theoretical quantity can be calculated.
In some processes, the highest-order perturbative terms may be comparable in size to
nonperturbative corrections (sometimes called higher-twist or renormalon effects, for a
discussion see [13]); an estimate of these terms and their uncertainties is required if a
value of αs is to be extracted.

In the cases where the higher-order corrections to a process are known and are large,
some caution should be exercised when quoting the value of αs. In what follows, we will
attempt to indicate the size of the theoretical uncertainties on the extracted value of αs.
There are two simple ways to determine this error. First, we can estimate it by comparing
the value of αs(µ) obtained by fitting data using the QCD formula to highest known order
in αs, and then comparing it with the value obtained using the next-to-highest-order
formula (µ is chosen as the typical energy scale in the process). The corresponding Λ’s
are then obtained by evolving αs(µ) to µ = MZ using Eq. (9.4) to the same order in αs
as the fit. Alternatively, we can vary the value of µ over a reasonable range, extracting a
value of Λ for each choice of µ. This method is of its nature imprecise, since “reasonable”
involves a subjective judgment. In either case, if the perturbation series is well behaved,
the resulting error on αs(MZ ) will be small.

In the above discussion we have ignored quark-mass effects, i.e., we have assumed an
idealized situation where quarks of mass greater than µ are neglected completely. In this
picture, the β-function coefficients change by discrete amounts as flavor thresholds are
crossed when integrating the differential equation for αs. It follows that, for a relationship
such as Eq. (9.5) to remain valid for all values of µ, Λ must also change as flavor thresholds
are crossed. This leads to the concept of a different Λ for each range of µ corresponding
to an effective number of massless quarks: Λ → Λ(nf ). There is some arbitrariness in
how this relationship is set up. As an idealized case, consider QCD with nf − 1 massless
quarks and one quark of mass M . Now imagine an experiment at energy scale µ; for
example, this could be e+e− → hadrons at center-of-mass energy µ. If µ�M , the mass
M is negligible and the process is well described by QCD with nf massless flavors and its
parameter Λ(nf ) up to terms of order M2/µ2. Conversely if µ � M , the heavy quark
plays no role and the process is well described by QCD with nf − 1 massless flavors and
its parameter Λ(nf−1) up to terms of order µ2/M2. If µ ∼ M , the effects of the quark
mass are process-dependent and cannot be absorbed into the running coupling.
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9. Quantum chromodynamics 5

A mass scale µ′ is chosen where the relationship between Λ(nf−1) and Λ(nf ) will
be fixed. µ′ should be of order M and the relationship should not depend on it. A
prescription has been given [14] which has this property. We use this procedure choosing
µ′ = MQ, where MQ is the mass of the value of the running quark mass defined in the MS

scheme (see the note on “Quark Masses” in the Particle Listings for more details), i.e.,
where MMS(MQ) = MQ. Then [14]

β
nf−1

0 ln
( Λ(nf )

Λ(nf−1)

)2
= (β

nf
0 − βnf−1

0 ) ln
( MQ

Λ(nf )

2)
+ 2
(βnf1

β
nf
0

−
β
nf−1

1

β
nf−1

0

)
ln
[
ln
( MQ

Λ(nf )

)2]

−
2β

nf−1
1

β
nf−1

0

ln
( β

nf
0

β
nf−1

0

)
(9.7)

+

4
β
nf
1

(β
nf
0 )2

(βnf1

β
nf
0

−
β
nf−1

1

β
nf−1

0

)
ln
[
ln
(MQ

Λnf

)2]
ln
( MQ

Λ(nf )

)2

+

1

β
nf
0

[(2β
nf
1

β
nf
0

)2
−
(2β

nf−1

1

β
nf−1

0

)2
−

β
nf
2

2β
nf
0

+
β
nf−1

2

2β
nf−1

0

− 22
9

]
ln
( MQ

Λ(nf )

)2
.

This result is valid to order α3
s (or alternatively to terms of order 1/ ln2[(MQ/Λ

(nf ))2]).
The order α4

s expression is also available [15].
An alternative matching procedure can be used [16]. This procedure requires the

equality αs(µ)(nf ) = αs(µ)(nf−1) for µ = MQ. This matching is somewhat arbitrary;
a different relation between Λ(nf ) and Λ(nf−1) would result if µ = MQ/2 were used.
In practice, the differences between these procedures are very small. Λ(5) = 200 MeV
corresponds to Λ(4) = 289 MeV in the scheme of Ref. 16 and Λ(4) = 280 MeV in the
scheme adopted above. Note that the differences between Λ(5) and Λ(4) are numerically
very significant.

Data from deep-inelastic scattering are in a range of energy where the bottom quark
is not readily excited, and hence, these experiments quote Λ

(4)

MS . Most data from PEP,

PETRA, TRISTAN, LEP, and SLC quote a value of Λ
(5)

MS since these data are in an
energy range where the bottom quark is light compared to the available energy. We have
converted it to Λ

(4)

MS as required. A few measurements, including the lattice gauge theory

values from the ψ system and from τ decay are at sufficiently low energy that Λ
(3)

MS is
appropriate.
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6 9. Quantum chromodynamics

In order to compare the values of αs from various experiments, they must be evolved
using the renormalization group to a common scale. For convenience, this is taken to be
the mass of the Z boson. This evolution uses third-order perturbation theory and can
introduce additional errors particularly if extrapolation from very small scales is used.
The variation in the charm and bottom quark masses (mb = 4.3± 0.2 and mc = 1.3± 0.3
are used) can also introduce errors. These result in a fixed value of αs(2 GeV) giving an
uncertainty in αs(MZ) = ±0.001 if only perturbative evolution is used. There could be
additional errors from nonperturbative effects that enter at low energy. All values are in
the MS scheme unless otherwise noted.

9.3. QCD in deep-inelastic scattering

The original and still one of the most powerful quantitative tests of perturbative
QCD is the breaking of Bjorken scaling in deep-inelastic lepton-hadron scattering. In the
leading-logarithm approximation, the measured structure functions Fi(x,Q2) are related
to the quark distribution functions qi(x,Q2) according to the naive parton model, by the
formulae in “Cross-section Formulae for Specific Processes,” Sec. 36 of this Review. (In
that section, qi is denoted by the notation fq). In describing the way in which scaling is
broken in QCD, it is convenient to define nonsinglet and singlet quark distributions:

FNS = qi − qj FS =
∑
i

(qi + qi) . (9.8)

The nonsinglet structure functions have nonzero values of flavor quantum numbers such
as isospin or baryon number. The variation with Q2 of these is described by the so-called
DGLAP equations [17,18]:

Q2 ∂F
NS

∂Q2 =
αs(|Q|)

2π
P qq ∗ FNS (9.9a)

Q2 ∂

∂Q2

(
FS

G

)
=
αs(|Q|)

2π

(
P qq

P gq

2nfP qg

P gg

)
∗
(
FS

G

)
(9.9b)

where ∗ denotes a convolution integral:

f ∗ g =
∫ 1

x

dy

y
f(y) g

(
x

y

)
. (9.10)

The leading-order Altarelli-Parisi [18] splitting functions are

P qq =
4
3

[
1 + x2

(1 − x)+

]
+ 2δ(1− x) , (9.11a)

P qg =
1
2

[
x2 + (1− x)2

]
, (9.11b)

P gq =
4
3

[
1 + (1− x)2

x

]
, (9.11c)

P gg = 6
[

1− x
x

+ x(1 − x) +
x

(1− x)+
+

11
12
δ(1− x)

]
−
nf
3
δ(1− x) . (9.11d)
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9. Quantum chromodynamics 7

Here the gluon distribution G(x,Q2) has been introduced and 1/(1− x)+ means∫ 1

0
dx

f(x)
(1 − x)+

=
∫ 1

0
dx

f(x) − f(1)
(1 − x)

. (9.12)

The precision of contemporary experimental data demands that higher-order corrections
also be included [19]. The above results are for massless quarks. At low Q2 values, there
are also important “higher-twist” (HT) contributions of the form:

Fi(x,Q2) = F
(LT )
i (x,Q2) +

F
(HT )
i (x,Q2)

Q2
+ · · · . (9.13)

Leading twist (LT) indicates a term whose behavior is predicted by perturbative QCD.
These corrections are numerically important only for Q2<O(few GeV2) except for x very
close to 1. At very large values of x corrections proportional to log(1 − x) can become
important [20].

A detailed review of the current status of the experimental data can be found, for
example, in Refs. [21–23], and only a brief summary will be presented here. We shall
only include determinations of Λ from the recently published results; the earlier editions
of this Review should be consulted for the earlier data. In any event, the recent results
will dominate the average since their errors are smaller. Data now exist from HERA at
much smaller values of x than the fixed-target data. They provide valuable information
about the shape of the antiquark and gluon distribution functions at x ∼ 10−4 [24].

From Eq. (9.9), it is clear that a nonsinglet structure function offers in principle the
most precise test of the theory, since the Q2 evolution is independent of the unmeasured
gluon distribution. The CCFR collaboration fit to the Gross-Llewellyn Smith sum
rule [25] is known to order α3

s [26]∫ 1

0
dx
(
F νp3 (x,Q2) + F νp3 (x,Q2)

)
=

3
[(

1− αs
π

(1 + 3.58
αs
π

+ 19.0(
αs
π

)2
)
−∆HT

]
, (9.14)

where the higher-twist contribution ∆HT = (0.09± 0.045)/Q2 [26,27]. Using the CCFR
data [28], this gives αs (1.76 GeV) = 0.26 ± 0.035 (expt.) ± 0.03 (theory). The error
from higher-twist terms dominates the theoretical error, the higher-twist term being
approximately 50% larger than the α3

s term. The CCFR data have been recalibrated
since this result was published [29] so this result can be expected to change; it should
not therefore be included in an average. An experiment at Serpukov [30] has measured
the sum rule at < Q2 >= 1.7 GeV2 and obtains αs (1.7 GeV) = 0.35 ± 0.03 (expt.)
or Λ

(4)

MS = 359 ± 59(expt.) MeV. The error does not include (theoretical) errors arising
from the choice of µ and the higher-twist terms. Estimating the uncertainty from the
higher-twist terms as 50% of their effect gives ±60 MeV of additional error in the
extracted value of Λ

(4)

MS
.
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8 9. Quantum chromodynamics

Measurements involving singlet-dominated structure functions, such as F2, result in
correlated measurements of Λ

(4)

MS and the gluon distribution. By utilizing high-statistics
data at large x (> 0.25) and large Q2, where F2 behaves like an nonsinglet and F3

at smaller x, a nonsinglet fit can be performed with better statistical precision, and
hence, the error on the measured value of Λ

(4)

MS is much reduced. Recently, CCFR gives

Λ
(4)

MS = 337 ± 28 ± 13(higher-twist) MeV [29] from F2(νN) and F3(νN). There is an
additional uncertainty of ±59 MeV from the choice of scale. The NMC collaboration [31]
gives αs(7 GeV2) = 0.264 ± 0.018(stat.) ± 0.070(syst.) ± 0.013( higher-twist). The
systematic error is larger than the CCFR result, partially because the data are at smaller
values of x and the gluon distribution is more important. A reanalysis [32] of EMC
data [33] gives Λ

(4)

MS = 211± 80± 80 MeV from F2(νN). Finally a combined analysis [34]

of SLAC [35] and BCDMS [36] data gives Λ
(4)

MS = 263± 42± 55 MeV. Here the systematic
error is an estimate of the uncertainty due to the choice of Q2 used in the argument of αs,
and in the scale at which the structure functions (factorization scale) used in the QCD
calculation are evaluated.

The results from Refs. [29–32], [34], and [37] can be combined to give Λ
(4)

MS =
305± 25± 50 MeV which corresponds to αs(MZ ) = 0.117± 0.002± 0.004, Here the first
error is a combination of statistical and systematic errors, and the second error is due to
the scale uncertainty. This result is an average of the results weighted by their statistical
and systematic errors. The scale error, which is common to all, is then reapplied to the
average.

The spin-dependent structure functions, measured in polarized lepton nucleon
scattering, can also be used to determine αs. Here the values of Q2 ∼ 2.5 GeV2 are small
and higher-twist corrections are important. A fit [38] using the measured spin dependent
structure functions themselves [39] gives αs(MZ ) = 0.120+0.004

−0.005(expt.)+0.009
−0.006(theory).

These authors also determine αs from the Bjorken sum rule [40] and obtain
αs(MZ ) = 0.118+0.010

−0.024; consistent with an earlier determination [41], the larger error
being due to the extrapolation into the (unmeasured) small x region. Theoretically, the
sum rule is preferable as the perturbative QCD result is known to higher order and these
terms are important at the low Q2 involved. It has been shown that the theoretical
errors associated with the choice of scale are considerably reduced by the use of Pade
approximants [11] which results in αs(1.7 GeV) = 0.328 ± 0.03(expt.) ± 0.025(theory)
corresponding to αs(MZ ) = 0.116+0.003

−0.005(expt.)± 0.003(theory). No error is included from
the extrapolation into the region of x that is unmeasured. If data were to become available
at smaller values of x so that this extrapolation could be more tightly constrained, the
sum rule method would provide the best determination of αs; the more conservative
result from the structure functions themselves is used in the average.

At very small values of x and Q2, the x and Q2 dependence of the structure
functions is predicted by perturbative QCD [42]. Here terms to all orders in αs ln(1/x)
are summed. The data from HERA [24] on F ep2 (x,Q2) can be fitted to this form [43],
including the NLO terms which are required to fix the Q2 scale. The data are
dominated by 4 GeV2 < Q2 < 100 GeV2. The fit [45] using H1 data [46] gives
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9. Quantum chromodynamics 9

αs(MZ ) = 0.122 ± 0.004 (expt.) ± 0.009 (theory). (The theoretical error is taken from
Ref. 43.) The dominant part of the theoretical error is from the scale dependence; errors
from terms that are suppressed by 1/ log(1/x) in the quark sector are included [44] while
those from the gluon sector are not.

Typically, Λ is extracted from the deep inelastic scattering data by parameterizing the
parton densities in a simple analytic way at some Q2

0, evolving to higher Q2 using the
next-to-leading-order evolution equations, and fitting globally to the measured structure
functions to obtain Λ

(4)

MS . Thus, an important by-product of such studies is the extraction
of parton densities at a fixed-reference value of Q2

0. These can then be evolved in Q2

and used as input for phenomenological studies in hadron-hadron collisions (see below).
To avoid having to evolve from the starting Q2

0 value each time, a parton density is
required; it is useful to have available a simple analytic approximation to the densities
valid over a range of x and Q2 values. A package is available from the CERN computer
library that includes an exhaustive set of fits [47]. Most of these fits are obsolete. In
using a parameterization to predict event rates, a next-to-leading order fit must be used
if the process being calculated is known to next-to-leading order in QCD perturbation
theory. In such a case, there is an additional scheme dependence; this scheme dependence
is reflected in the O(αs) corrections that appear in the relations between the structure
functions and the quark distribution functions. There are two common schemes: a
deep-inelastic scheme where there are no order αs corrections in the formula for F2(x,Q2)
and the minimal subtraction scheme. It is important when these next-to-leading order fits
are used in other processes (see below), that the same scheme is used in the calculation
of the partonic rates.

9.4. QCD in decays of the τ lepton

The semi-leptonic branching ratio of the tau (τ → ντ + hadrons, Rτ ) is an inclusive
quantity. It is related to the contribution of hadrons to the imaginary part of the W self
energy

(
Π(s)

)
. However, it is more inclusive than R since it involves an integral

Rτ ∼
∫ m2

τ

0

ds

m2
τ

(1 − s

m2
τ

)2 Im (Π(s)) .

Since the scale involved is low, one must take into account nonperturbative (higher-twist)
contributions which are suppressed by powers of the τ mass.

Rτ =3.058
[
1 +

αs(mτ )
π

+ 5.2
(αs(mτ )

π

)2
+ 26.4

(αs(mτ )
π

)3

+ a
m2

m2
τ

+ b
mψψ

m4
τ

+ c
ψψψψ

m6
τ

+ · · ·
]
. (9.15)

Here a, b, and c are dimensionless constants and m is a light quark mass. The term of
order 1/m2

τ is a kinematical effect due to the light quark masses and is consequently very
small. The nonperturbative terms are estimated using sum rules [48]. In total, they are
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10 9. Quantum chromodynamics
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Figure 9.1: Summary of the values of αs(MZ) and Λ(5) from various processes.
The values shown indicate the process and the measured value of αs extrapolated up
to µ = MZ . The error shown is the total error including theoretical uncertainties.

estimated to be −0.014 ± 0.005 [49,50]. This estimate relies on there being no term of

order Λ2/m2
τ

(
note that

αs(mτ )
π

∼ (
0.5 GeV
mτ

)2

)
. The a, b, and c can be determined

from the data [51] by fitting to moments of the Π(s). The values so extracted [52,53] are
consistent with the theoretical estimates. If the nonperturbative terms are omitted from
the fit, the extracted value of αs(mτ ) decreases by ∼ 0.02.

For αs(mτ ) = 0.35 the perturbative series for Rτ is Rτ ∼ 3.058(1+0.112+0.064+0.036).
The size (estimated error) of the nonperturbative term is 20% (7%) of the size of the
order α3

s term. The perturbation series in not very well convergent; if the order α3
s term

is omitted, the extracted value of αs(mτ ) increases by 0.05. The order α4
s term has been

estimated [54] and attempts made to resum the entire series [55,56]. These estimates can
be used to obtain an estimate of the errors due to these unknown terms [57,58]. We
assign an uncertainty of ±0.02 to αs(mτ ) from these sources.
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Rτ can be extracted from the semi-leptonic branching ratio from the relation
Rτ = 1/(B(τ → eνν) − 1.97256; where B(τ → eνν) is measured directly or extracted
from the lifetime, the muon mass, and the muon lifetime assuming universality
of lepton couplings. Using the average lifetime of 290.7 ± 1.3 fs and a τ mass of
1777.00± 0.30 MeV from the PDG fit gives Rτ = 3.642± 0.024. The direct measurement
of B(τ → eνν) can be combined with B(τ → µνν) to give B(τ → eνν) = 0.1783± 0.0007
which Rτ = 3.636 ± 0.021. Averaging these yields αs(mτ ) = 0.350 ± 0.008 using the
experimental error alone. We assign a theoretical error equal to 40% of the contribution
from the order α3 term and all of the nonperturbative contributions. This then gives
αs(mτ ) = 0.35± 0.03 for the final result.

9.5. QCD in high-energy hadron collisions

There are many ways in which perturbative QCD can be tested in high-energy hadron
colliders. The quantitative tests are only useful if the process in question has been
calculated beyond leading order in QCD perturbation theory. The production of hadrons
with large transverse momentum in hadron-hadron collisions provides a direct probe of
the scattering of quarks and gluons: qq → qq, qg → qg, gg → gg, etc. Recent higher–order
QCD calculations of the jet rates [59] and shapes are in impressive agreement with
data [60]. This agreement has led to the proposal that these data could be used to
provide a determination of αs [61]. Data are also available on the angular distribution of
jets; these are also in agreement with QCD expectations [62,63].

QCD corrections to Drell-Yan type cross sections (i.e., the production in hadron
collisions by quark-antiquark annihilation of lepton pairs of invariant massQ from virtual
photons, or of real W or Z bosons), are known [64]. These O(αs) QCD corrections are
sizable at small values of Q. It is interesting to note that the corresponding correction to
W and Z production, as measured in pp collisions at

√
s = 0.63 TeV and

√
s = 1.8 TeV,

has essentially the same theoretical form and is of order 30%.
The production of W and Z bosons and photons at large transverse momentum

can also be used to test QCD. The leading-order QCD subprocesses are qq → γg and
qg → γq. If the parton distributions are taken from other processes and a value of Λ

(4)

MS
assumed, then an absolute prediction is obtained. Conversely, the data can be used to
extract information on quark and gluon distributions and on the value of Λ

(4)

MS . The
next-to-leading-order QCD corrections are known [65,66] (for photons), and for W/Z
production [67], and so a precision test is possible in principle. Data exist from the
CDF and DØ collaborations [68,69]. The UA2 collaboration [70] has extracted a value of

αs(MW ) = 0.123±0.018(stat.)±0.017(syst.) from the measured ratio RW =
σ(W + 1jet)
σ(W + 0jet)

.

The result depends on the algorithm used to define a jet, and the dominant systematic
errors due to fragmentation and corrections for underlying events (the former causes jet
energy to be lost, the latter causes it to be increased) are connected to the algorithm.
The scale at which αs(M) is to be evaluated is not clear. A change from µ = MW
to µ = MW /2 causes a shift of 0.01 in the extracted αs. The quoted error should be
increased to take this into account. There is dependence on the parton distribution
functions, and hence, αs appears explicitly in the formula for RW , and implicitly in
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the distribution functions. The DØ collaboration has performed an analysis similar to
UA2. They are unable to obtain a fit where the two values of αs are consistent with one
another, and do not quote a value of αs [71]. The values from this process are no longer
used in determining the overall average value of αs.
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