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29.6. Exact confidence intervals

29.6.1. Two methodologies:
There are two different approaches to statistical inference, which we may call

Frequentist and Bayesian. For the cases considered up to now, both approaches give
the same numerical answers, even though they are based on fundamentally different
assumptions. However, for exact results for small samples and for measurements near a
physical boundary, the different approaches may yield very different confidence limits,
so we are forced to make a choice. There is an enormous amount of literature devoted
to the question of Bayesian vs non-Bayesian methods, most of it written by people who
are fervent advocates of one or the other methodology, which often leads to exaggerated
conclusions. For a reasonably balanced discussion, we recommend the following articles:
by a statistician [9], and by a physicist [6].

29.6.2. Bayesian: The Bayesian concept of probability is not based on limiting
frequencies, but is more general and includes degrees of belief. It can therefore be used
for experiments which cannot be repeated, where a frequency definition of probability
would not be applicable (for example, one can consider the probability that it will
rain tomorrow). Bayesian methods also allow for a natural way to input additional
information such as physical boundaries and subjective information; in fact they require
as input the prior distribution for any parameter to be estimated.

The Bayesian methodology, while well adapted to decision-making situations, is not in
general appropriate for the objective presentation of experimental data. This can be seen
from the following example.

An experiment sets out to measure the value of a parameter whose true value cannot
be negative (such as the neutrino mass squared), but let us assume that the true value is
in fact zero. We should then expect that about half of the time, an unbiased experimental
measurement should yield a negative (unphysical) result. Now if our experiment produces
a negative result, the question arises what value to report. If we wish to make a decision
concerning the most likely value of this parameter, we would use a Bayesian approach
which would assure that the reported value is positive, since it would be nonsense to
assert that the most likely value is one which cannot be true. On the other hand, if we
wish to report an unbiased result which can be combined with other measurements, it
is better to report the unphysical result. Everyone understands what it means to quote
a result of, for example, m2 = −1.2± 2.0 eV2. This result could then be averaged with
other results, half of which would be positive, and the average would eventually converge
toward zero, the true value. If Bayesian estimates are averaged, they do not converge to
the true value, since they have all been forced to be positive.
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10 29. Statistics

29.6.3. Frequentist, or classical confidence intervals: As the name implies, the
Frequentist concept of probability is based entirely on the limiting frequency, so it only
makes sense in situations where experiments are repeatable, at least in principle. This is
clearly the case for the kind of data we are concerned with, and the methods we present
here are based on the Frequentist point of view.

The classical construction of exact confidence intervals which we describe here was first
proposed by Neyman [10].
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Figure 29.1: Confidence intervals for a single unknown parameter α. One might
think of the p.d.f. f(x;α) as being plotted out of the paper as a function of x along
each horizontal line of constant α. The domain D(ε) contains a fraction 1− ε of the
area under each of these functions.

We wish to set limits on the parameter α whose true value is fixed but unknown. The
properties of our experimental apparatus are expressed in the function f(x;α) which gives
the probability of observing data x if the true value of the parameter is α. This function
must be known, otherwise it is impossible to interpret the results of an experiment. For
a large complex experiment, this function is usually determined numerically using Monte
Carlo simulation.

Given the function f(x;α), we can find for every value of α, two values x1(α, ε)
and x2(α, ε) such that repeated experiments would produce results x in the interval
x1 < x < x2 a fraction 1− ε of the time, where

P (x1 < x < x2) = 1− ε =
∫ x2

x1

f(x;α)dx . (29.33)

This situation is shown in Fig. 29.1, where the region between the curves x1(α, ε)
and x2(α, ε) is indicated by the domain D(ε). We require that the curves x1(α, ε) and
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x2(α, ε) be monotonic functions of α, so they can be labeled either as functions of x
or of α. Dropping the argument ε for simplicity, we may then label the curve x1(α) as
α1(x) and x2(α) as α2(x). Now consider some arbitrary particular value of α, say α0, as
indicated in the figure. We notice from the figure that for all values of x between x1(α0)
and x2(α0), it happens that α0 lies between α1(x) and α2(x). Thus we can write:

P
[
x1(α0) < x < x2(α0)] = 1− ε = P [α2(x) < α0 < α1(x)

]
. (29.34)

And since, by construction, this is true for any value α0, we can drop the subscript 0
and obtain the relationship we wanted to establish for the probability that the confidence
limits will contain the true value of α:

P [α2(x) < α < α1(x)] = 1− ε . (29.35)

In this probability statement, α1 and α2 are the random variables (not α), and we can
verify that the statement is true, as a limiting ratio of frequencies in random experiments,
for any assumed value of α. In a particular real experiment, the numerical values α1

and α2 are determined by applying the algorithm to the real data, and the probability
statement appears to be a statement about the true value α since this is the only
unknown remaining in the equation. It should however be understood that it gives only
the probability of obtaining values α1 and α2 which include the true value of α, in an
ensemble of identical experiments. Any method which gives confidence intervals that
contain the true value with probability 1 − ε (no matter what the true value of α is)
is said to have coverage. The frequentist intervals as constructed above have coverage
by construction. Coverage is considered the most important property of confidence
intervals [6].

The condition of coverage Eq. (29.33) does not determine x1 and x2 completely, since
any range which gives the desired value of the integral would give the same coverage.
Additional criteria are needed to determine the intervals uniquely. The most common
criterion is to choose central intervals such that the area of the excluded tail on either
side is ε/2. This criterion is sufficient in most cases, but there is a more general ordering
principle which reduces to centrality in the usual cases and produces confidence intervals
with better properties when in the neighborhood of a physical limit. This ordering
principle, which consists of taking the interval which includes the largest values of a
likelihood ratio, is described by Feldman and Cousins [11].

29.6.4. Gaussian errors:
If the data are such that the distribution of the estimator(s) satisfies the central limit

theorem discussed in Sec. 28.3.3, the function f(x;α) is the Gaussian distribution. If
there is more than one parameter being estimated, the multivariate Gaussian is used. For
the univariate case with known σ,

1− ε =
∫ µ+δ

µ−δ
e

−(x− µ)2

2σ2 dx = erf
(

δ√
2 σ

)
(29.36)
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12 29. Statistics

Table 29.1: Area of the tails ε outside ±δ from the mean of a Gaussian distribution.
ε (%) δ ε (%) δ

31.73 1σ 20 1.28σ
4.55 2σ 10 1.64σ
0.27 3σ 5 1.96σ

6.3×10−3 4σ 1 2.58σ
5.7×10−5 5σ 0.1 3.29σ
2.0×10−7 6σ 0.01 3.89σ

is the probability that the measured value x will fall within ±δ of the true value µ. From
the symmetry of the Gaussian with respect to x and µ, this is also the probability that
the true value will be within ±δ of the measured value. Fig. 29.2 shows a δ = 1.64σ
confidence interval unshaded. The choice δ =

√
Var(µ ) ≡ σ gives an interval called the

standard error which has 1− ε = 68.27% if σ is known. Confidence coefficients ε for other
frequently used choices of δ are given in Table 29.1.

−3 −2 −1 0 1 2 3

f (x; µ,σ)

ε /2ε /2

(x−µ) /σˆ

ˆ

1−ε

Figure 29.2: Illustration of a symmetric 90% confidence interval (unshaded) for
a measurement of a single quantity with Gaussian errors. Integrated probabilities,
defined by ε, are as shown.

For other δ, find ε as the ordinate of Fig. 28.1 on the n = 1 curve at χ2 = (δ/σ)2. We
can set a one-sided (upper or lower) limit by excluding above µ + δ (or below µ− δ); ε’s
for such limits are 1/2 the values in Table 29.1.

For multivariate α the scalar Var(µ) becomes a full variance-covariance matrix.
Assuming a multivariate Gaussian, Eq. (28.22), and subsequent discussion the standard
error ellipse for the pair ( α̂m, α̂n) may be drawn as in Fig. 29.3.

The minimum χ2 or maximum likelihood solution is at ( α̂m, α̂n). The standard errors
σm and σn are defined as shown, where the ellipse is at a constant value of χ2 = χ2

min + 1
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or lnL = lnLmax − 1/2. The angle of the major axis of the ellipse is given by

tan 2φ =
2ρmn σm σn
σ2
m − σ2

n
. (29.37)

For non-Gaussian or nonlinear cases, one may construct an analogous contour from the
same χ2 or lnL relations. Any other parameters α̂`, ` 6= m,n must be allowed freely to
find their optimum values for every trial point.

αnˆ

αn

αmˆ αm

φ
mσ mσ

nσ

nσ

Figure 29.3: Standard error ellipse for the estimators α̂m and α̂n. In this case the
correlation is negative.

For any unbiased procedure (e.g., least squares or maximum likelihood) being used
to estimate k parameters αi, i = 1, . . . , k, the probability 1 − ε that the true values of
all k lie within the s-standard deviation ellipsoid may be found from Fig. 28.1. Read
the ordinate as ε; the correct value of ε occurs on the n = k curve at χ2 = s2. For
example, for k = 2, the probability that the true values of α1 and α2 simultaneously lie
within the one-standard-deviation error ellipse (s = 1), centered on α̂1 and α̂2, is 39%.
This probability only assumes Gaussian errors, unbiased estimators, and that the model
describing the data in terms of the αi is correct.

29.6.5. Upper limits and two-sided intervals:
When a measured value is close to a physical boundary, it is natural to report a

one-sided confidence interval (often an upper limit). It is straightforward to force the
procedure of Sec. 29.6.3 to produce only an upper limit, by setting x2 =∞ in Eq. (29.33).
Then x1 is uniquely determined. Clearly this procedure will have the desired coverage,
but only if we always choose to set an upper limit. In practice one might decide after
seeing the data whether to set an upper limit or a two-sided limit. In this case the upper
limits calculated by Eq. (29.33) will not give exact coverage, as has been noted in Ref. 11.

In order to correct this problem and assure coverage in all circumstances, it is necessary
to adopt a unified procedure, that is, a single ordering principle which will provide coverage
globally. Then it is the ordering principle which decides whether a one-sided or two-sided
interval will be reported for any given set of data. The appropriate unified procedure and
ordering principle are given in Ref. 11. We reproduce below the main results.
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29.6.6. Gaussian data close to a boundary:

One of the most controversial statistical questions in physics is how to report a
measurement which is close to the edge or even outside of the allowed physical region.
This is because there are several admissible possibilities depending on how the result is
to be used or interpreted. Normally one or more of the following should be reported:

(a) The actual measurement should be reported, even if it is outside the physical
region. As with any other measurement, it is best to report the value of a quantity which
is nearly Gaussian distributed if possible. Thus one may choose to report mass squared
rather than mass, or cos θ rather than θ. For a complex quantity z close to zero, report
Re(z) and Im(z) rather than amplitude and phase of z. Data carefully reported in this
way can be unbiased, objective, easily interpreted and combined (averaged) with other
data in a straightforward way, even if they lie partly or wholly outside the physical region.
The reported error is a direct measure of the intrinsic accuracy of the result, which cannot
always be inferred from the upper limits proposed below.

(b) If the data are to be used to make a decision, for example to determine the
dimensions of a new experimental apparatus for an improved measurement, it may be
appropriate to report a Bayesian upper limit, which must necessarily contain subjective
feelings about the possible values of the parameter, as well as containing information about
the physical boundary. Its interpretation requires knowledge of the prior distribution
which was necessarily used to obtain it.

(c) If it is desired to report an upper limit in an objective way such that it has
a well-defined statistical meaning in terms of a limiting frequency, then report the
Frequentist confidence bound(s) as given by the unified Feldman-Cousins approach. This
algorithm always gives a non-null interval (that is, the confidence limits are always inside
the physical region, even for a measurement well outside the physical region), and still
has correct global coverage. These confidence limits for a Gaussian measurement close
to a non-physical boundary are summarized in Fig. 29.4. Additional tables are given in
Ref. 11.

29.6.7. Poisson data for small samples:

When the observable is restricted to integer values (as in the case of Poisson and
binomial distributions), it is not generally possible to construct confidence intervals with
exact coverage for all values of α. In these cases the integral in Eq. (29.33) becomes a
sum of finite contributions and it is no longer possible (in general) to find consecutive
terms which add up exactly to the required confidence level 1− ε for all values of α. Thus
one constructs intervals which happen to have exact coverage for a few values of α, and
unavoidable over-coverage for all other values. This is the best that can be done and still
guarantee coverage for any true value.

In addition to the problem posed by the discreteness of the data, we usually have
to contend with possible background whose expectation must be evaluated separately
and may not be known precisely. For these reasons, the reporting of this kind of data
is even more controversial than the Gaussian data near a boundary as discussed above.
This is especially true when the number of observed counts is greater than the expected
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Figure 29.4: Plot of 99%, 95%, 90%, and 68.27% (“one σ”) confidence intervals
for a physical quantity µ based on a Gaussian measurement x (in units of standard
deviations), for the case where the true value of µ cannot be negative. The curves
become straight lines above the horizontal tick marks. The probability of obtaining
an experimental value at least as negative as the left edge of the graph (x = −2.33)
is less than 1%. Values of x more negative than −1.64 (dotted segments) are less
than 5% probable, no matter what the true value of µ.

background. As for the Gaussian case, there are at least three possibilities for reporting
such results depending on how the result is to be used:

(a) The actual measurements should be reported, which means (1) the number
of recorded counts, (2) the expected background, possibly with its error, and
(3) normalization factor which turns the number of counts into a cross section, decay rate,
etc. As with Gaussian data, these data can be combined with that of other experiments,
to make improved upper limits for example.

(b) A Bayesian upper limit may be reported. This has the advantages and disadvantages
of any Bayesian result as discussed above. It is especially difficult to find an acceptable
prior probability distribution for this case.

(c) An upper limit (or confidence region) with optimal coverage can be reported
using the unified approach of Ref. 11. At the moment these confidence limits have been
calculated only for the case of exactly known background expectation. The main results
can be read from Fig. 29.5 or from Table 29.2; more extensive tables can be found in
Ref. 11.

None of the above gives a single number which quantifies the quality or sensitivity of
the experiment. This is a serious shortcoming of most upper limits including those of
method (c), since it is impossible to distinguish, from the upper limit alone, between a
clean experiment with no background and a lucky experiment with fewer observed counts
than expected background. For this reason, we suggest that in addition to (a) and (c)
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Figure 29.5: 90% confidence intervals [µ1, µ2]on the number of signal events as
a function of the expected number of background events b. For example, if the
expected background is 8 events and 5 events are observed, then the signal is 2.60
or less with 90% confidence. Dotted portions of the µ2 curves on the upper left
indicate regions where µ1 is non-zero (as shown by the inset). Dashed portions in
the lower right indicate regions where the probability of obtaining the number of
events observed or fewer is less than 1%, even if µ = 0. Horizontal curve sections
occur because of discrete number statistics. Tables showing these data as well as
the CL = 68.27%, 95%, and 99% results are given in Ref. 11.

above, a measure of the sensitivity should be reported whenever expected background is
larger or comparable to the number of observed counts. The best such measure we know
of is that proposed and tabulated in Ref. 11, defined as the average upper limit that
would be attained by an ensemble of experiments with the expected background and no
true signal.
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