3. INTERNATIONAL SYSTEM OF UNITS (SI)

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Name of unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>length</td>
<td>meter</td>
<td>m</td>
</tr>
<tr>
<td>mass</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>time</td>
<td>second</td>
<td>s</td>
</tr>
<tr>
<td>electric current</td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>temperature</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>amount of substance</td>
<td>mole</td>
<td>mol</td>
</tr>
<tr>
<td>luminous intensity</td>
<td>candela</td>
<td>cd</td>
</tr>
<tr>
<td>Derived units with special names</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plane angle</td>
<td>radian</td>
<td>rad</td>
</tr>
<tr>
<td>solid angle</td>
<td>steradian</td>
<td>sr</td>
</tr>
<tr>
<td>frequency</td>
<td>hertz</td>
<td>Hz</td>
</tr>
<tr>
<td>energy</td>
<td>joule</td>
<td>J</td>
</tr>
<tr>
<td>force</td>
<td>newton</td>
<td>N</td>
</tr>
<tr>
<td>pressure</td>
<td>pascal</td>
<td>Pa</td>
</tr>
<tr>
<td>power</td>
<td>watt</td>
<td>W</td>
</tr>
<tr>
<td>electric charge</td>
<td>coulomb</td>
<td>C</td>
</tr>
<tr>
<td>electric potential</td>
<td>volt</td>
<td>V</td>
</tr>
<tr>
<td>electric resistance</td>
<td>ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>electric conductance</td>
<td>siemens</td>
<td>S</td>
</tr>
<tr>
<td>electric capacitance</td>
<td>farad</td>
<td>F</td>
</tr>
<tr>
<td>magnetic flux</td>
<td>weber</td>
<td>Wb</td>
</tr>
<tr>
<td>inductance</td>
<td>henry</td>
<td>H</td>
</tr>
<tr>
<td>magnetic flux density</td>
<td>tesla</td>
<td>T</td>
</tr>
<tr>
<td>luminous flux</td>
<td>lumen</td>
<td>lm</td>
</tr>
<tr>
<td>illuminance</td>
<td>lux</td>
<td>lx</td>
</tr>
<tr>
<td>celsius temperature</td>
<td>degree celsius</td>
<td>°C</td>
</tr>
<tr>
<td>activity (of a radioactive source)*</td>
<td>becquerel</td>
<td>Bq</td>
</tr>
<tr>
<td>absorbed dose (of ionizing radiation)*</td>
<td>gray</td>
<td>Gy</td>
</tr>
<tr>
<td>dose equivalent*</td>
<td>sievert</td>
<td>Sv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SI prefixes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{24}</td>
<td>yotta (Y)</td>
</tr>
<tr>
<td>10^{21}</td>
<td>zetta (Z)</td>
</tr>
<tr>
<td>10^{18}</td>
<td>exa (E)</td>
</tr>
<tr>
<td>10^{15}</td>
<td>peta (P)</td>
</tr>
<tr>
<td>10^{12}</td>
<td>tera (T)</td>
</tr>
<tr>
<td>10^9</td>
<td>giga (G)</td>
</tr>
<tr>
<td>10^6</td>
<td>mega (M)</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo (k)</td>
</tr>
<tr>
<td>10^2</td>
<td>hecto (h)</td>
</tr>
<tr>
<td>10</td>
<td>deca (da)</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>deci (d)</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>centi (c)</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>milli (m)</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>micro (μ)</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>nano (n)</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>pico (p)</td>
</tr>
<tr>
<td>10^{-15}</td>
<td>femto (f)</td>
</tr>
<tr>
<td>10^{-18}</td>
<td>atto (a)</td>
</tr>
<tr>
<td>10^{-21}</td>
<td>zepto (z)</td>
</tr>
<tr>
<td>10^{-24}</td>
<td>yocto (y)</td>
</tr>
</tbody>
</table>

*See our section 26, on “Radioactivity and radiation protection,” p. 163.