THE $a_1(1260)$

Written March 1998 by S. Eidelman (Novosibirsk).

The main experimental data on the $a_1(1260)$ may be grouped into two classes:

- (1) Hadronic Production. This comprises diffractive production with incident π^- (DAUM 80, 81B) and charge-exchange production with low-energy π^- (DANKOWYCH 81, ANDO 92). The 1980's experiments explain the $I^GLJ^P=1^+S0^+$ data using a phenomenological amplitude consisting of a rescattered Deck amplitude plus a direct resonance-production term. They agree on an $a_1(1260)$ mass of about 1270 MeV and a width of 300–380 MeV. ANDO 92 finds rather lower values for the mass (1121 MeV) and width (239 MeV) in a partial-wave analysis based on the isobar model of the $\pi^+\pi^-\pi^0$ system. However, in this analysis, only Breit-Wigner terms were considered.
- (2) τ Decay. Five experiments reported good data on $\tau \to a_1(1260)\nu_{\tau} \to \rho\pi\nu_{\tau}$ (RUCKSTUHL 86, SCHMIDKE 86, ALBRECHT 86B, BAND 87, and ACKERSTAFF 97R). They are somewhat inconsistent concerning the $a_1(1260)$ mass, which can, however, be attributed to model-dependent systematic uncertainties (BOWLER 86, ALBRECHT 93C, ACKERSTAFF 97R). They all find a width greater than 400 MeV.

The discrepancies between the hadronic- and τ -decay results have stimulated several reanalyses. BASDEVANT 77, 78 used the early diffractive dissociation and τ decay data and showed that they could be well reproduced with an a_1 resonance mass of 1180 ± 50 MeV and width of 400 ± 50 MeV. Later, BOWLER 86, TORNQVIST 87, ISGUR 89, and IVANOV 91 have studied the process $\tau \to 3\pi\nu_{\tau}$. Despite quite different approaches, they all found a good overall description of the τ -decay data with an $a_1(1260)$ mass near 1230 MeV, consistent with the hadronic data. However, their widths remain significantly larger (400–600 MeV) than those extracted from diffractive-hadronic data. This is also the case with the later OPAL experiment (ACKER-STAFF 97R). In the high statistics analysis of ACKERSTAFF 97R the models of ISGUR 89 and KUHN 90 are used to fit

distributions of the 3π invariant mass as well as the 2π invariant mass projections of the Dalitz plot and neither model is found to provide a completely satisfactory description of the data. Another recent high statistics analysis of ABREU 98G obtains good description of the $\tau \to 3\pi$ data using the model of FEINDT 90 which includes the a_1' meson, a radial excitation of the $a_1(1260)$ meson, with a mass of 1700 MeV and a width of 300 MeV.

BOWLER 88 showed that good fits to both the hadronic and the τ -decay data could be obtained with a width of about 400 MeV. However, applying the same type of analysis to the ANDO 92 data, the low mass and narrow width they obtained with the Breit-Wigner PWA do not change appreciably.

CONDO 93 found no evidence for charge-exchange photoproduction of the $a_1(1260)$ (but found a clear signal of $a_2(1320)$ photoproduction). They show that it is consistent with either an extremely large $a_1(1260)$ hadronic width or with a small radiative width to $\pi\gamma$, which could be accommodated if the a_1 mass is somewhat below 1260 MeV.