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15. BIG-BANG COSMOLOGY

Revised April 1998 by K.A. Olive (University of Minnesota).

At early times, and today on a sufficiently large scale, our Universe is very nearly
homogeneous and isotropic. The most general space-time metric for a homogeneous,
isotropic space is the Friedmann-Robertson-Walker metric (with c = 1) [1,2,3]:

ds2 = dt2 −R2(t)
[

dr2

1− κr2
+ r2 (dθ2 + sin2 θ dφ2)

]
. (15.1)

R(t) is a scale factor for distances in comoving coordinates. With appropriate rescaling
of the corrdinates, κ can be chosen to be +1, −1, or 0, corresponding to closed, open, or
spatially flat geometries. Einstein’s equations lead to the Friedmann equation

H2 ≡
(
Ṙ

R

)2

=
8π GN ρ

3
− κ

R2 +
Λ
3
, (15.2)

as well as to

R̈

R
=

Λ
3
− 4πGN

3
(ρ+ 3p) , (15.3)

where H(t) is the Hubble parameter, ρ is the total mass-energy density, p is the
isotropic pressure, and Λ is the cosmological constant. (For limits on Λ, see the Table of
Astrophysical Constants; we will assume here Λ = 0.) The Friedmann equation serves to
define the density parameter Ω0 (subscript 0 indicates present-day values):

κ/R2
0 = H2

0 (Ω0 − 1) , Ω0 = ρ0/ρc ; (15.4)

and the critical density is defined as

ρc ≡
3H2

8π GN
= 1.88× 10−29 h2 g cm−3 , (15.5)

with

H0 = 100h0 km s−1 Mpc−1 = h0/(9.78 Gyr) . (15.6)

Observational bounds give 0.4 < h0 < 1. The three curvature signatures κ = +1,−1, and
0 correspond to Ω0 > 1, < 1, and = 1. Knowledge of Ω0 is even poorer than that of h0.
Luminous matter (stars and associated material) contribute Ωlum ≤ 0.01. There is no
lack of evidence for copious amounts of dark matter: rotation curves of spiral galaxies,
virial estimates of cluster masses, gravitational lensing by clusters and individual galaxies,
and so on. The minimum amount of dark matter required to explain the flat rotation
curves of spiral galaxies only amounts to Ω0 ∼ 0.1, while estimates for Ω0 based upon
cluster virial masses suggests Ω0 ∼ 0.2− 0.4. The highest estimates for the mass density
come from studies of the peculiar motions of galaxies (including our own); estimates
for Ω0 obtained by relating peculiar velocity measurements to the distribution galaxies
within a few hundred Mpc approach unity. A conservative range for the mass density is:
0.1 ≤ Ω0 ≤ 2. The excess of Ω0 over Ωlum leads to the inference that most of the matter
in the Universe is nonluminous dark matter.
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In an expanding universe, the wavelength of light emitted from a distant source is
shifted towards the red. The redshift z is defined such that 1 + z is the ratio of the
detected wavelength (λ) to emitted (laboratory) wavelength (λe) of some electromagnetic
spectral feature. It follows from the metric given in Eq. (15.1) that

1 + z = λ/λe = R0/Re (15.7)

where Re is the value of the scale factor at the time the light was emitted. For light
emitted in the not too distant past, one can expand Re and write Re ' R0 + (te − t0)Ṙ0.
For small (compared to H−1

0 ) ∆t = (te − t0), Eq. (15.7) takes the form of Hubble’s law

z ≈ ∆t
Ṙ0

R0
≈ `H0 , (15.8)

where ` is the distance to the source.
Energy conservation implies that

ρ̇ = −3(Ṙ/R)(ρ+ p) , (15.9)

so that for a matter-dominated (p = 0) universe ρ ∝ R−3, while for a radiation-dominated
(p = ρ/3) universe ρ ∝ R−4. Thus the less singular curvature term κ/R2 in the
Friedmann equation can be neglected at early times when R is small. If the Universe
expands adiabatically, the entropy per comoving volume (≡ R3s) is constant, where the
entropy density is s = (ρ + p)/T and T is temperature. The energy density of radiation
can be expressed (with ~ = c = 1) as

ρr =
π2

30
N(T )(kT )4 , (15.10)

where N(T ) counts the effectively massless degrees of freedom of bosons and fermions:

N(T ) =
∑
B

gB +
7
8

∑
F

gF . (15.11)

For example, for mµ > kT > me, N(T ) = gγ + 7/8 (ge + 3gν) = 2 + 7/8 [4 + 3(2)] = 43/4.
For mπ > kT > mµ, N(T ) = 57/4. At temperatures less than about 1 MeV, neutrinos
have decoupled from the thermal background, i.e., the weak interaction rates are no
longer fast enough compared with the expansion rate to keep neutrinos in equilibrium
with the remaining thermal bath consisting of γ, e±. Furthermore, at temperatures
kT < me, by entropy conservation, the ratio of the neutrino temperature to the photon
temperature is given by (Tν/Tγ)3 = gγ/(gγ + 7

8ge) = 4/11.

In the early Universe when ρ ≈ ρr, then Ṙ ∝ 1/R, so that R ∝ t1/2 and Ht → 1/2 as
t→ 0. The time-temperature relationship at very early times can then be found from the
above equations:

t =
2.42√
N(T )

(
1 MeV
kT

)2

sec . (15.12)
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At later times, since the energy density in radiation falls off as R−4 and the energy
density in non-relativistic matter falls off as R−3, the Universe eventually became
matter dominated. The epoch of matter-radiation density equality is determined by
equating the matter density at teq, ρm = Ω0ρc(R0/Req)3 to the radiation density,
ρr = (π2/30)[2 + (21/4)(4/11)4/3](kT0)4(R0/Req)4 where T0 is the present temperature
of the microwave background (see below). Solving for (R0/Req) = 1 + zeq gives

zeq + 1 = Ω0h
2
0/4.2× 10−5 = 2.4× 104 Ω0h

2
0 ;

kTeq = 5.6Ω0h
2
0 eV ;

teq ≈ 0.39(Ω0H
2
0 )−1/2(1 + zeq)−3/2

= 3.2× 1010(Ω0h
2
0)
−2 sec . (15.13)

Prior to this epoch the density was dominated by radiation (relativistic particles; see
Eq. (15.10)), and at later epochs matter density dominated. Atoms formed at z ≈ 1300,
and by zdec ≈ 1100 the free electron density was low enough that space became essentially
transparent to photons and matter and radiation were decoupled. These are the photons
observed in the microwave background today.

The age of the Universe today, t0, is related to both the Hubble parameter and the
value of Ω0 (still assuming that Λ = 0). In the Standard Model, t0 � teq and we can
write

t0 = H−1
0

∫ 1

0

(
1− Ω0 + Ω0x

−1
)−1/2

dx . (15.14)

Constraints on t0 yield constraints on the combination Ω0h
2
0. For example, t0 ≥ 13× 109

yr implies that Ω0h
2
0 ≤ 0.25 for h0 ≥ 0.5, or Ω0h

2
0 ≤ 0.45 for h0 ≥ 0.4, while t0 ≥ 10× 109

yr implies that Ω0h
2
0 ≤ 0.8 for h0 ≥ 0.5, or Ω0h

2
0 ≤ 1.1 for h0 ≥ 0.4.

The present temperature of the microwave background is T0 = 2.728 ± 0.002 K as
measured by COBE [4], and the number density of photons nγ = (2ζ(3)/π2)(kT0)3 ≈
412 cm−3. The energy density in photons (for which gγ = 2) is ργ = (π2/15)(kT0)4. At
the present epoch, ργ = 4.66× 10−34 g cm−3 = 0.262 eV cm−3. For nonrelativistic matter
(such as baryons) today, the energy density is ρB = mBnB with nB ∝ R−3, so that
for most of the history of the Universe nB/s is constant. Today, the entropy density is
related to the photon density by s = (4/3)(π2/30)[2 + (21/4)(4/11)](kT0)3 = 7.0nγ. Big
Bang nucleosynthesis calculations limit η = nB/nγ to 2.8 × 10−10 ≤ η ≤ 4.0 × 10−10.
The parameter η is also related to the portion of Ω in baryons

ΩB = 3.67× 107η h−2
0 (T0/2.728 K)3 , (15.15)

so that 0.010 < ΩB h2
0 < 0.015, and hence the Universe cannot be closed by baryons.
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