graviton

J = 2

OMITTED FROM SUMMARY TABLE

graviton MASS

All of the following limits are obtained assuming Yukawa potential in weak field limit. VANDAM 70 argue that a massive field cannot approach general relativity in the zero-mass limit; however, see GOLD-HABER 74 and references therein. h_0 is the Hubble constant in units of 100 km s⁻¹ Mpc⁻¹.

VALUE (eV)	DOCUMENT ID		COMMENT		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
	¹ DAMOUR	91	Binary pulsar PSR 1913+16		
$< 2 \times 10^{-29} h_0^{-1} < 7 \times 10^{-28}$	GOLDHABER	74	Rich clusters		
$< 7 \times 10^{-28}$	HARE	73	Galaxy		
$< 8 \times 10^4$	HARE	73	2γ decay		

¹ DAMOUR 91 is an analysis of the orbital period change in binary pulsar PSR 1913+16, and confirms the general relativity prediction to 0.8%. "The theoretical importance of the [rate of orbital period decay] measurement has long been recognized as a direct confirmation that the gravitational interaction propagates with velocity *c* (which is the immediate cause of the appearance of a damping force in the binary pulsar system) and thereby as a test of the existence of gravitational radiation and of its quadrupolar nature." TAYLOR 93 adds that orbital parameter studies now agree with general relativity to 0.5%, and set limits on the level of scalar contribution in the context of a family of tensor [spin 2]-biscalar theories.

graviton REFERENCES

TAYLOR	93	Nature 355 132	+Wolszczan, Damoi	ur+ (PRIN, ARCBO, BURE, CARLC) J
DAMOUR	91	APJ 366 501	+Taylor	(BURE, MEUD, PRIN)
GOLDHABER	74	PR D9 1119	+Nieto	(LANL, STON)
HARE	73	CJP 51 431		(SASK)
VANDAM	70	NP B22 397	van Dam, Veltma	n (ÙTRE)

HTTP://PDG.LBL.GOV