$$I(J^P) = 0(\frac{1}{2}^+)$$ $\mathsf{Charge} = -\frac{1}{3} \ e \qquad \mathsf{Bottom} = -1$ ## **b-QUARK MASS** The *b*-quark mass is estimated from bottomonium and \underline{B} masses. It corresponds to the "running" mass m_b ($\mu=m_b$) in the $\overline{\rm MS}$ scheme. We have converted masses in other schemes to the $\overline{\rm MS}$ scheme using one-loop QCD pertubation theory with $\alpha_s(\mu=m_b)=0.22$. The range 4.1–4.5 GeV for the $\overline{\rm MS}$ mass corresponds to 4.5–4.9 GeV for the pole mass (see the "Note on Quark Masses"). | VALUE (GeV) | DOCUMENT ID | | TECN | COMMENT | |-----------------------------------|-------------------------|-------------|-----------|-----------| | 4.1 to 4.4 OUR EVALUATION | _ | | | | | • • • We do not use the following | g data for averages | , fits | , limits, | etc. ● ● | | 4.25 ± 0.09 | $^{ m 1}$ HOANG | 99 | THEO | MS scheme | | 3.91 ± 0.67 | ² ABREU | 981 | DLPH | MS scheme | | 4.14 ± 0.04 | ³ KUEHN | 98 | THEO | MS scheme | | $4.15 \pm 0.05 \pm 0.20$ | ⁴ GIMENEZ | 97 | LATT | MS scheme | | 4.13 ± 0.06 | ⁵ JAMIN | 97 | THEO | MS scheme | | $4.16 \pm 0.32 \pm 0.60$ | ⁶ RODRIGO | 97 | THEO | MS scheme | | 4.22 ± 0.05 | ⁷ NARISON | 95 B | THEO | MS scheme | | 4.415 ± 0.006 | ⁸ VOLOSHIN | 95 | THEO | MS scheme | | 4.0 ± 0.1 | ⁹ DAVIES | 94 | THEO | MS scheme | | \geq 4.26 | ¹⁰ LIGETI | 94 | THEO | MS scheme | | ≥ 4.2 | ¹¹ LUKE | 94 | THEO | MS scheme | | 4.23 ± 0.04 | ¹² NARISON | 94 | THEO | MS scheme | | 4.397 ± 0.025 | ¹³ TITARD | 94 | THEO | MS scheme | | 4.32 ± 0.05 | ¹⁴ DOMINGUEZ | 92 | THEO | | | 4.24 ± 0.05 | ¹⁵ NARISON | 89 | THEO | | | 4.18 ± 0.02 | ¹⁶ REINDERS | 88 | THEO | | | 4.30 ± 0.13 | ¹⁷ NARISON | 87 | THEO | | | 4.25 ± 0.1 | ¹⁸ GASSER | 82 | THEO | | $^1\,\text{HOANG}$ 99 uses a NNLO calculation of the vacuum polarization function to determine spectral moments of the masses and electronic decay widths of the Υ mesons. 2 ABREU 98I determines the $\overline{\rm MS}$ mass $m_b=2.67\pm0.25\pm0.34\pm0.27$ GeV at $\mu{=}M_Z$ from three jet heavy quark production at LEP. ABREU 98I have rescaled the result to $\mu=m_b$ using $\alpha_s{=}0.118\pm0.003$. 3 KUEHN 98 uses a calculation of the vacuum polarization function, including resumming threshold effects, to determine spectral moments of the masses of the Υ mesons. We have converted their extracted value of 4.75 ± 0.04 for the pole mass to the $\overline{\text{MS}}$ scheme. ⁴ GIMENEZ 97 uses lattice computations of the *B*-meson propagator and the *B*-meson binding energy $\overline{\Lambda}$ in the HQET. Their systematic (second) error for the $\overline{\text{MS}}$ mass is an estimate of the effects of higher-order corrections in the matching of the HQET operators (renormalon effects). 5 JAMIN 97 apply the QCD moment method to the \varUpsilon system. They also find a pole mass of 4.60 \pm 0.02. ⁶ RODRIGO 97 determines the $\overline{\rm MS}$ mass $m_b=2.85\pm0.22\pm0.20\pm0.36$ GeV at $\mu=M_Z$ from three jet heavy quark production at LEP. We have rescaled the result. 7 NARISON 95B uses finite energy sum rules to two-loop accuracy to determine a b-quark pole mass of 4.61 \pm 0.05 GeV. Created: 6/23/1999 10:18 - ⁸ VOLOSHIN 95 uses moments of the total cross section for $e^+e^- \rightarrow b$ hadrons. We have converted the value of of 4.827 \pm 0.007 MeV for the pole mass to the $\overline{\text{MS}}$ scheme using the two-loop formula. - ⁹ DAVIES 94 uses lattice computation of Υ spectroscopy. They also quote a value of 5.0 ± 0.2 GeV for the b-quark pole mass. The numerical computation includes quark vacuum polarization (unquenched); they find that the masses are independent of n_f to within their errors. Their error for the pole mass is larger than the error for the $\overline{\text{MS}}$ mass, because both are computed from the bare lattice quark mass, and the conversion for the pole mass is less accurate. - 10 LIGETI 94 computes lower bound of 4.66 GeV on pole mass using HQET, and experimental data on inclusive B and D decays. - 11 LUKE 94 computes lower bound of 4.60 GeV on pole mass using HQET, and experimental data on inclusive B and D decays. - 12 NARISON 94 uses spectral sum rules to two loops, and $J/\psi(1S)$ and \varUpsilon systems. - ¹³ TITARD 94 uses one-loop computation of the quark potential with nonperturbative gluon condensate effects to fit $J/\psi(1S)$ and Υ states. - 14 DOMINGUEZ 92 determines pole mass to be 4.72 ± 0.05 using next-to-leading order in $^{1/m}$ in moment sum rule. - 15 NARISON 89 determines the Georgi-Politzer mass at $p^2 = -m^2$ to be 4.23 ± 0.05 GeV using QCD sum rules. - ¹⁶ REINDERS 88 determines the Georgi-Politzer mass at $p^2=-m^2$ to be 4.17 \pm 0.02 using moments of $\overline{b}\gamma^{\mu}b$. This technique leads to a value for the mass of the B meson of 5.25 \pm 0.15 GeV. - of 5.25 \pm 0.15 GeV. 17 NARISON 87 determines the pole mass to be 4.70 \pm 0.14 using QCD sum rules, with $\Lambda(\overline{\rm MS})=180$ \pm 80 MeV. - 18 GASSER 82 uses SVZ sum rules. The renormalization point is $\mu=$ quark mass. ## $m_b - m_c$ MASS DIFFERENCE The mass difference m_b-m_c in the HQET scheme is 3.4 ± 0.2 GeV (see the "Note on Quark Masses"). VALUE (GeV) DOCUMENT ID ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet 19 GROSSE 78 obtain $(m_b-m_c) \geq 3.29$ GeV based on eigenvalue inequalities in potential models. ## **b-QUARK REFERENCES** | HOANG
ABREU | 99
981 | PR D59 014039
PL B418 430 | A.H. Hoang
P. Abreu+ | (DELPHI Collab.) | | |----------------|-----------|------------------------------|---|-----------------------------------|--| | KUEHN | 98 | NP B534 356 | J.H. Kuehn, A.A. Penin, A.A. Pivovarov | | | | GIMENEZ | 97 | PL B393 124 | V. Gimenez, G. Martinelli, C.T. Sachrajda | | | | JAMIN | 97 | NP B507 334 | M. Jamin, A. Pich | | | | RODRIGO | 97 | PRL 79 193 | G. Rodrigo, A. Santamaria, M. Bilenky | | | | NARISON | 95B | PL B352 122 | | (MONP) | | | VOLOSHIN | 95 | IJMP A10 2865 | | (MINN) | | | DAVIES | 94 | PRL 73 2654 | +Hornbostel + | (GLAS, SMU, CORN, EDIN, OSU, FSU) | | | LIGETI | 94 | PR D49 R4331 | +Nir | (REHO) | | | LUKE | 94 | PL B321 88 | +Savage | (TNTO, UCSD, CMU) | | | NARISON | 94 | PL B341 73 | | (CERN, MONP) | | | TITARD | 94 | PR D49 6007 | +Yndurain | (MICH, MADU) | | | DOMINGUEZ | 92 | PL B293 197 | +Paver | (CAPE, TRST, INFN) | | | NARISON | 89 | PL B216 191 | | (ICTP) | | | REINDERS | 88 | PR D38 947 | | (BONN) | | | NARISON | 87 | PL B197 405 | | (CERN) | | | GASSER | 82 | PRPL 87 77 | +Leutwyler | (BERN) | | | GROSSE | 78 | PL 79B 103 | +Martin | (CERN) | | | | | | | | | Created: 6/23/1999 10:18