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QUARK MASSES

Written by A. Manohar (University of California, San Diego).

A. Introduction

This note discusses some of the theoretical issues involved in

the determination of quark masses. Unlike the leptons, quarks

are confined inside hadrons and are not observed as physical

particles. Quark masses cannot be measured directly, but must

be determined indirectly through their influence on hadron

properties. As a result, the values of the quark masses depend

on precisely how they are defined; there is no one definition

that is the obvious choice. Though one often speaks loosely of

quark masses as one would of the electron or muon mass, any

careful statement of a quark mass value must make reference

to a particular computational scheme that is used to extract

the mass from observations. It is important to keep this scheme

dependence in mind when using the quark mass values tabulated

in the data listings.

The simplest way to define the mass of a quark is by making

a fit of the hadron mass spectrum to a nonrelativistic quark

model. The quark masses are defined as the values obtained

from the fit. The resulting masses only make sense in the

limited context of a particular quark model. They depend on

the phenomenological potential used, and on how relativistic

effects are modelled. The quark masses used in potential models

also cannot be connected with the quark mass parameters in

the QCD Lagrangian. Fortunately, there exist other definitions

of the quark mass that have a more general significance, though

they also depend on the method of calculation. The purpose of

this review is to explain the most important such definitions

and their interrelations.

B. Mass parameters and the QCD Lagrangian

The QCD Lagrangian for NF quark flavors is

L =

NF∑
k=1

qk (i /D−mk) qk − 1
4
GµνG

µν , (1)

where /D = (∂µ − igAµ) γµ is the gauge covariant derivative, Aµ

is the gluon field, Gµν is the gluon field strength, mk is the mass
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parameter of the kth quark, and qk is the quark Dirac field. The

QCD Lagrangian Eq. (1) gives finite scattering amplitudes after

renormalization, a procedure that invokes a subtraction scheme

to render the amplitudes finite, and requires the introduction of

a dimensionful scale parameter µ. The mass parameters in the

QCD Lagrangian Eq. (1) depend on the renormalization scheme

used to define the theory, and also on the scale parameter µ.

The most commonly used renormalization scheme for QCD

perturbation theory is the MS scheme.

The QCD Lagrangian has a chiral symmetry in the limit

that the quark masses vanish. This symmetry is spontaneously

broken by dynamical chiral symmetry breaking, and explicitly

broken by the quark masses. The nonperturbative scale of

dynamical chiral symmetry breaking, Λχ, is around 1 GeV. It

is conventional to call quarks heavy if m > Λχ, so that explicit

chiral symmetry breaking dominates, and light if m < Λχ, so

that spontaneous chiral symmetry breaking dominates. The c,

b, and t quarks are heavy, and the u, d and s quarks are light.

The computations for light quarks involve an expansion in

mq/Λχ about the limit mq = 0, whereas for heavy quarks, they

involve an expansion in Λχ/mq about mq =∞. The corrections

are largest for the s and c quarks, which are the heaviest light

quark and the lightest heavy quark, respectively.

At high energies or short distances, nonperturbative effects

such as chiral symmetry breaking are unimportant, and one

can in principle analyze mass-dependent effects using QCD

perturbation theory to extract the quark mass values. The

QCD computations are conventionally performed using the MS

scheme at a scale µ � Λχ, and give the MS “running” mass

m(µ). The µ dependence of m(µ) at short distances can be

calculated using the renormalization group equations.

For heavy quarks, one can obtain useful information on the

quark masses by studying the spectrum and decays of hadrons

containing heavy quarks. One method of calculation uses the

heavy quark effective theory (HQET), which defines a HQET

quark mass mQ. Other commonly used definitions of heavy

quark masses such as the pole mass are discussed in Sec. C.

QCD perturbation theory at the heavy quark scale µ = mQ can
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be used to relate the various heavy quark masses to the MS

mass m(µ), and to each other.

For light quarks, one can obtain useful information on

the quark mass ratios by studying the properties of the light

pseudoscalar mesons using chiral perturbation theory, which

utilizes the symmetries of the QCD Lagrangian Eq. (1). The

quark mass ratios determined using chiral perturbation theory

are those in a subtraction scheme that is independent of the

quark masses themselves, such as the MS scheme.

A more detailed discussion of the masses for heavy and

light quarks is given in the next two sections. The MS scheme

applies to both heavy and light quarks. It is also commonly

used for predictions of quark masses in unified theories, and

for computing radiative corrections in the Standard Model. For

this reason, we use the MS scheme as the standard scheme in

reporting quark masses. One can easily convert the MS masses

into other schemes using the formulæ given in this review.

C. Heavy quarks

The commonly used definitions of the quark mass for heavy

quarks are the pole mass, the MS mass, the Georgi-Politzer

mass, the potential model mass used in ψ and Υ spectroscopy,

and the HQET mass.

The strong interaction coupling constant at the heavy quark

scale is small, and one can compute the heavy quark propagator

using QCD perturbation theory. For an observable particle such

as the electron, the position of the pole in the propagator is the

definition of the particle mass. In QCD this definition of the

quark mass is known as the pole mass mP , and is independent of

the renormalization scheme used. It is known that the on-shell

quark propagator has no infrared divergences in perturbation

theory [1], so this provides a perturbative definition of the

quark mass. The pole mass cannot be used to arbitrarily high

accuracy because of nonperturbative infrared effects in QCD.

The full quark propagator has no pole because the quarks are

confined, so that the pole mass cannot be defined outside of

perturbation theory.

The MS running mass m(µ) is defined by regulating the

QCD theory using dimensional regularization, and subtracting
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the divergences using the modified minimal subtraction scheme.

The MS scheme is particularly convenient for Feynman diagram

computations, and is the most commonly used subtraction

scheme.

The Georgi-Politzer mass m̂ is defined using the momentum

space subtraction scheme at the spacelike point −p2 = m̂2 [2].

A generalization of the Georgi-Politzer mass that is often used

in computations involving QCD sum rules [3] is m̂(ξ), defined

at the subtraction point p2 = −(ξ + 1)m2
P . QCD sum rules

are discussed in more detail in the next section on light quark

masses.

Lattice gauge theory calculations can be used to obtain

heavy quark masses from ψ and Υ spectroscopy. The quark

masses are obtained by comparing a nonperturbative computa-

tion of the meson spectrum with the experimental data. The

lattice quark mass values can then be converted into quark mass

values in the continuum QCD Lagrangian Eq. (1) using lattice

perturbation theory at a scale given by the inverse lattice spac-

ing. A recent computation determines the b-quark pole mass to

be 5.0± 0.2 GeV, and the MS mass to be 4.0± 0.1 GeV [4].

Potential model calculations of the hadron spectrum also

involve the heavy quark mass. There is no way to relate the

quark mass as defined in a potential model to the quark

mass parameter of the QCD Lagrangian, or to the pole mass.

Even in the heavy quark limit, the two masses can differ by

nonperturbative effects of order ΛQCD. There is also no reason

why the potential model quark mass should be independent of

the particular form of the potential used.

Recent work on the heavy quark effective theory [5–9] has

provided a definition of the quark mass for a heavy quark that

is valid when one includes nonperturbative effects and will be

called the HQET mass mQ. The HQET mass is particularly

useful in the analysis of the 1/mQ corrections in HQET.

The HQET mass agrees with the pole mass to all orders in

perturbation theory when only one quark flavor is present, but

differs from the pole mass at order α2
s when there are additional

flavors [10]. Physical quantities such as hadron masses can

in principle be computed in the heavy quark effective theory
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in terms of the HQET mass mQ. The computations cannot

be done analytically in practice because of nonperturbative

effects in QCD, which also prevent a direct extraction of the

quark masses from the original QCD Lagrangian, Eq. (1).

Nevertheless, for heavy quarks, it is possible to parametrize the

nonperturbative effects to a given order in the 1/mQ expansion

in terms of a few unknown constants that can be obtained

from experiment. For example, the B and D meson masses in

the heavy quark effective theory are given in terms of a single

nonperturbative parameter Λ,

M(B) =mb + Λ +O
(

Λ
2

mb

)
,

M(D) =mc + Λ +O
(

Λ
2

mc

)
. (2)

This allows one to determine the mass difference mb −mc =

M(B) −M(D) = 3.4 GeV up to corrections of order Λ
2
/mb −

Λ
2
/mc. The extraction of the individual quark masses mb and

mc requires some knowledge of Λ. An estimate of Λ using

QCD sum rules gives Λ = 0.57 ± 0.07 GeV [11]. The HQET

masses with this value of Λ are mb = 4.74 ± 0.14 GeV and

mc = 1.4 ± 0.2 GeV, where the spin averaged meson masses

(3M(B∗) +M(B))/4 and (3M(D∗) +M(D))/4 have been used

to eliminate the spin-dependent O(Λ
2
/mQ) correction terms.

The errors reflect the uncertainty in Λ and the unknown spin-

averaged O(Λ
2
/mQ) correction. The errors do not include any

theoretical uncertainty in the QCD sum rules, which could be

large. A quark model estimate suggests that Λ is the constituent

quark mass (≈ 350 MeV), which differs significantly from the

sum rule estimate. In HQET, the 1/mQ corrections to heavy

meson decay form-factors are also given in terms of Λ. Thus

an accurate enough measurement of these form-factors could

be used to extract Λ directly from experiment, which then

determines the quark masses up to corrections of order 1/mQ.

The quark mass mQ of HQET can be related to other quark

mass parameters using QCD perturbation theory at the scale
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mQ. The relation between mQ and m̂Q(ξ) at one loop is [12]

mQ =m̂Q(ξ)

[
1 +

α̂s(ξ)

π

ξ + 2

ξ + 1
log (ξ + 2)

]
, (3)

where α̂s(ξ) is the strong interaction coupling constant in the

momentum space subtraction scheme. The relation betweenmQ

and the MS mass mQ is known to two loops [13],

mQ = mQ(mQ)

[
1 +

4αs(mQ)

3π

+

(
13.44 − 1.04

∑
k

(
1− 4

3

mQk

mQ

))(
αs(mQ)

π

)2]
, (4)

where αs(µ) is the strong interaction coupling constants in the

MS scheme, and the sum on k extends over all flavors Qk lighter

than Q. For the b-quark, Eq. (4) reads

mb = mb (mb) [1 + 0.09 + 0.05] , (5)

where the contributions from the different orders in αs are

shown explicitly. The two loop correction is comparable in size

and has the same sign as the one loop term. There is presumably

an error of order 0.05 in the relation between mb and mb(mb)

from the uncalculated higher order terms.

D. Light quarks

For light quarks, one can use the techniques of chiral per-

turbation theory to extract quark mass ratios. The light quark

part of the QCD Lagrangian Eq. (1) has a chiral symmetry in

the limit that the light quark masses are set to zero, under

which left- and right-handed quarks transform independently.

The mass term explicitly breaks the chiral symmetry, since

it couples the left- and right-handed quarks to each other. A

systematic analysis of this explicit chiral symmetry breaking

provides some information on the light quark masses.

It is convenient to think of the three light quarks u, d and s

as a three component column vector Ψ, and to write the mass

term for the light quarks as

ΨMΨ = ΨLMΨR + ΨRMΨL, (6)
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where M is the quark mass matrix M ,

M =

mu 0 0
0 md 0
0 0 ms

 . (7)

The mass term ΨMΨ is the only term in the QCD Lagrangian

that mixes left- and right-handed quarks. In the limit that M →
0, there is an independent SU(3) flavor symmetry for the left-

and right-handed quarks. This Gχ = SU(3)L × SU(3)R chiral

symmetry of the QCD Lagrangian is spontaneously broken,

which leads to eight massless Goldstone bosons, the π’s, K’s,

and η, in the limit M → 0. The symmetry Gχ is only an

approximate symmetry, since it is explicitly broken by the

quark mass matrix M . The Goldstone bosons acquire masses

which can be computed in a systematic expansion in M in

terms of certain unknown nonperturbative parameters of the

theory. For example, to first order in M one finds that [14,15]

m2
π0 =B (mu +md) ,

m2
π± =B (mu +md) + ∆em ,

m2
K0 = m2

K
0 =B (md +ms) , (8)

m2
K± =B (mu +ms) + ∆em ,

m2
η =

1

3
B (mu +md + 4ms) ,

with two unknown parameters B and ∆em, the electromagnetic

mass difference. From Eq. (8), one can determine the quark

mass ratios [14]

mu

md
=

2m2
π0 −m2

π+ +m2
K+ −m2

K0

m2
K0 −m2

K+ +m2
π+

= 0.56 ,

ms

md
=
m2
K0 +m2

K+ −m2
π+

m2
K0 +m2

π+ −m2
K+

= 20.1 , (9)

to lowest order in chiral perturbation theory. The error on these

numbers is the size of the second-order corrections, which are

discussed at the end of this section. Chiral perturbation theory

cannot determine the overall scale of the quark masses, since it
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uses only the symmetry properties of M , and any multiple of

M has the same Gχ transformation law as M . This can be seen

from Eq. (8), where all quark masses occur only in the form

Bm, so that B and m cannot be determined separately.

The mass parameters in the QCD Lagrangian have a scale

dependence due to radiative corrections, and are renormaliza-

tion scheme dependent. Since the mass ratios extracted using

chiral perturbation theory use the symmetry transformation

property of M under the chiral symmetry Gχ, it is important

to use a renormalization scheme for QCD that does not change

this transformation law. Any quark mass independent subtrac-

tion scheme such as MS is suitable. The ratios of quark masses

are scale independent in such a scheme.

The absolute normalization of the quark masses can be de-

termined by using methods that go beyond chiral perturbation

theory, such as QCD sum rules [3]. Typically, one writes a sum

rule for a quantity such as B in terms of a spectral integral over

all states with certain quantum numbers. This spectral integral

is then evaluated by assuming it is dominated by one (or two) of

the lowest resonances, and using the experimentally measured

resonance parameters [16]. There are many subtleties involved,

which cannot be discussed here [16].

Another method for determining the absolute normaliza-

tion of the quark masses, is to assume that the strange quark

mass is equal to the SU(3) mass splitting in the baryon mul-

tiplets [14,16]. There is an uncertainty in this method since

in the baryon octet one can use either the Σ–N or the Λ–N

mass difference, which differ by about 75 MeV, to estimate the

strange quark mass. But more importantly, there is no way to

relate this normalization to any more fundamental definition of

quark masses.

One can extend the chiral perturbation expansion Eq. (8)

to second order in the quark masses M to get a more accurate

determination of the quark mass ratios. There is a subtlety that

arises at second order [17], because

M
(
M†M

)−1
detM† (10)
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transforms in the same way under Gχ as M . One can make the

replacement M → M(λ) = M + λM
(
M†M

)−1
detM† in all

formulæ,

M(λ) = diag (mu(λ) , md(λ) , ms(λ))

= diag (mu + λmdms , md + λmums , ms + λmumd) ,(11)

so it is not possible to determine λ by fitting to data. One

can only determine the ratios mi(λ)/mj(λ) using second-order

chiral perturbation theory, not the desired ratios mi/mj =

mi(λ = 0)/mj(λ = 0).

Dimensional analysis can be used to estimate [18] that

second-order corrections in chiral perturbation theory due to

the strange quark mass are of order λms ∼ 0.25. The ambiguity

due to the redefinition Eq. (11) (which corresponds to a second-

order correction) can produce a sizeable uncertainty in the ratio

mu/md. The lowest-order value mu/md = 0.56 gets corrections

of order λms(md/mu−mu/md) ∼ 30%, whereas ms/md gets a

smaller correction of order λms(mu/md −mumd/m
2
s) ∼ 15%.

A more quantitative discussion of second-order effects can be

found in Refs. 17,19,20. Since the second-order terms have a

single parameter ambiguity, the value of mu/md is related to

the value of ms/md.

The ratio mu/md is of great interest since there is no strong

CP problem if mu = 0. To determine mu/md requires fixing λ

in the mass redefinition Eq. (11). There has been considerable

effort to determine the chiral Lagrangian parameters accurately

enough to determine mu/md, for example from the analysis of

the decays ψ′ → ψ + π0, η, the decay η → 3π, using sum rules,

and from the heavy meson mass spectrum [16,21–24]. A recent

paper giving a critique of these estimates is Ref. 25.

Eventually, lattice gauge theory methods will be accurate

enough to be able to compute meson masses directly from the

QCD Lagrangian Eq. (1), and thus determine the light quark

masses. For a reliable determination of quark masses, these

computations will have to be done with dynamical fermions,

and with a small enough lattice spacing that one can accu-

rately compute the relation between lattice and continuum

Lagrangians.
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The quark masses for light quarks discussed so far are often

referred to as current quark masses. Nonrelativistic quark mod-

els use constituent quark masses, which are of order 350 MeV

for the u and d quarks. Constituent quark masses model the

effects of dynamical chiral symmetry breaking, and are not re-

lated to the quark mass parameters mk of the QCD Lagrangian

Eq. (1). Constituent masses are only defined in the context of

a particular hadronic model.

E. Numerical values and caveats

The quark masses in the particle data listings have been ob-

tained by using the wide variety of theoretical methods outlined

above. Each method involves its own set of approximations and

errors. In most cases, the errors are a best guess at the size

of neglected higher-order corrections. The expansion parameter

for the approximations is not much smaller than unity (for

example it is m2
K/Λ

2
χ ≈ 0.25 for the chiral expansion), so an

unexpectedly large coefficient in a neglected higher-order term

could significantly alter the results. It is also important to note

that the quark mass values can be significantly different in the

different schemes. For example, assuming that the b-quark pole

mass is 5.0 GeV, and αs(mb) ≈ 0.22 gives the MS b-quark mass

mb(µ = mb) = 4.6 GeV using the one-loop term in Eq. (4), and

mb(µ = mb) = 4.3 GeV including the one-loop and two-loop

terms. The heavy quark masses obtained using HQET, QCD

sum rules, or lattice gauge theory are consistent with each other

if they are all converted into the same scheme. When using the

data listings, it is important to remember that the numerical

value for a quark mass is meaningless without specifying the

particular scheme in which it was obtained. All non-MS quark

masses have been converted to MS values in the data listings

using one-loop formulæ, unless an explicit two-loop conversion

is given by the authors in the original article.
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