$$\Sigma^0$$

$$I(J^P) = 1(\frac{1}{2}^+)$$
 Status: ***

COURANT 63 and ALFF-STEINBERGER 65, using $\Sigma^0 \to \Lambda e^+ e^-$ decays (Dalitz decays), determined the Σ^0 parity to be positive, given that J=1/2 and that certain very reasonable assumptions about form factors are true. The results of experiments involving the Primakoff effect, from which the Σ^0 mean life and $\Sigma^0 \to \Lambda$ transition magnetic moment come (see below), strongly support J=1/2.

Σ^0 MASS

The fit uses Σ^+ , Σ^0 , Σ^- , and Λ mass and mass-difference measurements.

<i>VALUE</i> (MeV)	<u>EVTS</u>	<u>DOCUMENT</u>	<u>ID</u>	TECN	COMMENT
1192.642±0.024 OUR FIT	7				
• • • We do not use the f	ollowing	data for average	s, fits, li	mits, etc	S. • • •
$1192.65 \pm 0.020 \pm 0.014$	3327	$^{ m 1}$ WANG	97	SPEC	
					$(p\pi^{-})(e^{+}e^{-})$

 1 This WANG 97 result is redundant with the Σ^0 - Λ mass-difference measurement below.

m_{Σ^-}	_	m	2
----------------	---	---	---

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
4.807±0.035 OUR FIT	Error	includes scale factor	of 1.	1.	
4.86 ± 0.08 OUR AVE	RAGE	Error includes scale	facto	or of 1.2	
4.87 ± 0.12	37	DOSCH	65	HBC	
5.01 ± 0.12	12	SCHMIDT	65	HBC	See note with Λ mass
4.75 ± 0.1	18	BURNSTEIN	64	HBC	

$m_{\Sigma^0} - m_{\Lambda}$

TECN

COMMENT

Created: 6/23/1999 10:35

DOCUMENT ID

EVTS

76.959±0.023 OUR FIT	-				
$76.966 \pm 0.020 \pm 0.013$	3327	WANG	97	SPEC	$\Sigma^0 o \Lambda \gamma o$
					$(p\pi^{-})(e^{+}e^{-})$
• • • We do not use th	e following o	data for averages	s, fits	, limits,	etc. • • •
76.23 ± 0.55	109	COLAS	75	HLBC	$\Sigma^0 o \Lambda \gamma$

VALUE (MeV)

Σ^0 MEAN LIFE

These lifetimes are deduced from measurements of the cross sections for the Primakoff process $\Lambda \to \Sigma^0$ in nuclear Coulomb fields. An alternative expression of the same information is the Σ^0 - Λ transition magnetic moment given in the following section. The relation is $(\mu_{\Sigma} \Lambda/\mu_N)^2 \ \tau =$ 1.92951×10^{-19} s (see DEVLIN 86).

VALUE (10 ⁻²⁰ s)	DOCUMENT ID				
7.4±0.7 OUR EVALUATION	Using $\mu_{\sum \Lambda}$ (see th	e above note).			
$6.5^{+1.7}_{-1.1}$	² DEVLIN	86 SPEC Primakoff effect			
$7.6 \pm 0.5 \pm 0.7$	³ PETERSEN	86 SPEC Primakoff effect			
 • • We do not use the following data for averages, fits, limits, etc. 					
5.8 ± 1.3	² DYDAK	77 SPEC See DEVLIN 86			
imation made in that work		YDAK 77 removing a numerical approxalism is estimated to be $< 5\%$.			

$|\mu(\Sigma^0 \to \Lambda)|$ TRANSITION MAGNETIC MOMENT

See the note in the Σ^0 mean-life section above. Also, see the "Note on Baryon Magnetic Moments" in the Λ Listings.

$VALUE(\mu_N)$	DOCUMENT ID		TECN	COMMENT
1.61±0.08 OUR AVERAGE				
$1.72^{igoplus 0.17}_{-0.19}$	⁴ DEVLIN	86	SPEC	Primakoff effect
$1.59\!\pm\!0.05\!\pm\!0.07$	⁵ PETERSEN	86	SPEC	Primakoff effect
• • • We do not use the following	g data for average	s, fits	s, limits,	etc. • • •
$1.82^{igoplus 0.25}_{igoplus 0.18}$	⁴ DYDAK	77	SPEC	See DEVLIN 86

⁴DEVLIN 86 is a recalculation of the results of DYDAK 77 removing a numerical approx- $_5$ imation made in that work. 5 An additional uncertainty of the Primakoff formalism is estimated to be < 2.5%.

Σ^0 DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$\Lambda\gamma$	100 %	
	$\Lambda\gamma\gamma$	< 3 %	90%
Γ ₃	$\Lambda e^+ e^-$	[a] 5×10^{-3}	

[a] A theoretical value using QED.

Σ^0 Branching ratios

$\Gamma(\Lambda\gamma\gamma)/\Gamma_{total}$				
VALUE	CL%	DOCUMENT I	'D	TECN
<0.03	90	COLAS	75	HLBC

HTTP://PDG.LBL.GOV Page 2 Created: 6/23/1999 10:35

FEINBERG

58

PR 109 1019

 Γ_3/Γ

(BNL)

 $\Gamma(\Lambda e^+e^-)/\Gamma_{total}$ See COURANT 63 and ALFF-STEINBERGER 65 for measurements of the invariantmass spectrum of the Dalitz pairs.

spec	cium of the Danta	z pairs.	
		DOCUMENT ID	COMMENT
		FEINBERG 5	Theoretical QED calculation
		Σ ⁰ REFERENCE	≣S
97	PR D56 2544	+Hartouni, Kreisler-	+ (BNL-E766 Collab.)
86	PR D34 1626	+Petersen, Beretvas	(RUTG)
86	PRL 57 949	+Beretvas, Devlin,	Luk+ (RUTG, WISC, MICH, MINN)
77	NP B118 1	+Navarria, Overseth	n, Steffen+ (CERN, DORT, HEIDH)
75	NP B91 253	+Farwell, Ferrer, Si	x (ORSAY)
65	PR 137B 1105	C. Alff-Steinberger	r+ (COLU, RUTG, BNL) P
65	PL 14 239	+Engelmann, Filthu	th, Hepp, Kluge+ (HEID)
65	PR 140B 1328		(COLU)
64	PRL 13 66	+Day, Kehoe, Zorn	, Snow (UMD)
63	PRL 10 409	$H. \; Courant +$	(CERN, UMD) P
	97 86 86 77 75 65 65 65 64	97 PR D56 2544 86 PR D34 1626 86 PRL 57 949 77 NP B118 1 75 NP B91 253 65 PR 137B 1105 65 PL 14 239 65 PR 140B 1328 64 PRL 13 66	FEINBERG 5 **To REFERENCI** 97 PR D56 2544 86 PR D34 1626 86 PR L 57 949 77 NP B118 1 75 NP B91 253 65 PR 137B 1105 65 PL 14 239 65 PR 140B 1328 64 PRL 13 66 **Feinberge + Engelmann, Filthur + Pay, Kehoe, Zorn

Created: 6/23/1999 10:35