Supersymmetric Particle Searches

A REVIEW GOES HERE – Check our WWW List of Reviews A REVIEW GOES HERE – Check our WWW List of Reviews

MINIMAL SUPERSYMMETRIC STANDARD MODEL ASSUMPTIONS

All results shown below (except where stated otherwise) are based on the Minimal Supersymmetric Standard Model (MSSM) as described in the Note on Supersymmetry. This includes the assumption that *R*-parity is conserved. In addition the following assumptions are made in most cases:

- 1) The $\tilde{\chi}_1^0$ (or $\tilde{\gamma}$) is the lightest supersymmetric particle (LSP).
- 2) $m_{\widetilde{f}_L} = m_{\widetilde{f}_R}$ where \widetilde{f}_L and \widetilde{f}_R refer to the scalar partners of left-and right-handed fermions.

Limits involving different assumptions either are identified with comments or are in the miscellaneous section.

When needed, specific assumptions of the eigenstate content of neutralinos and charginos are indicated (use of the notation $\widetilde{\gamma}$ (photino), \widetilde{H} (Higgsino), \widetilde{W} (w-ino), and \widetilde{Z} (z-ino) indicates the approximation of a pure state was made).

$\widetilde{\chi}_1^0$ (Lightest Neutralino) MASS LIMIT

 $\widetilde{\chi}_1^0$ is likely to be the lightest supersymmetric particle (LSP). See also the $\widetilde{\chi}_2^0$, $\widetilde{\chi}_3^0$, $\widetilde{\chi}_4^0$ section below.

We have divided the $\widetilde{\chi}^0_1$ listings below into four sections:

- 1) Accelerator limits for $\widetilde{\chi}_1^0$,
- 2) Bounds on $\widetilde{\chi}_1^0$ from dark matter searches,
- 3) Other bounds on $\widetilde{\chi}_1^0$ from astrophysics and cosmology, and
- 4) Bounds on unstable $\widetilde{\chi}_1^0$.

Accelerator limits for $\tilde{\chi}_1^0$

These papers generally exclude regions in the $M_2-\mu$ parameter plane based on accelerator experiments. Unless otherwise stated, these papers assume minimal supersymmetry and GUT relations (gaugino-mass unification condition). $\Delta m_0 = m_{\widetilde{\chi}^0_2} - m_{\widetilde{\chi}^0_2}$.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>30.1	95	¹ ABBIENDI	99G OPAL	$\tan\beta=1$, all Δm_0 , $m_0=500$ GeV
>24.2	95	¹ ABBIENDI	99G OPAL	tan β =1, all Δm_0 , all m_0
>29.1	95	² ABREU		$ aneta \geq 1$, all Δm_0 , $m_0 = 1$ TeV
>10.9	95	³ ACCIARRI	98F L3	$ an\!eta>\!1$
>12.8	95	⁴ BUSKULIC	96A ALEP	$m_{\widetilde{\nu}} > 200 \text{ GeV}$
>23	95	⁵ ACCIARRI	95E L3	$\tan \beta > 3$

HTTP://PDG.LBL.GOV

Page 1

• • • We do not use the following data for averages, fits, limits, etc. • • •

>29	95	⁶ BARATE	99E ALEP	$e^+e^- \rightarrow \widetilde{\chi}\widetilde{\chi}$, $\widetilde{\chi}=\widetilde{\chi}^0_{1,2}$, $\widetilde{\chi}^{\pm}_1$
		⁷ ABBOTT	98c D0	$ \begin{array}{ccc} \rho\overline{\rho} & \to & \widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0 \\ \rho\overline{\rho} & \to & \widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0 \end{array} $
>41	95	⁸ ABE	98」CDF	$p\overline{p} \rightarrow \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^{\overline{0}}$
>24.9	95	⁹ ABREU	98 DLPH	1 2
>13.3	95	¹⁰ ACKERSTAFF		taneta>1
>23	95	¹¹ BARATE	98s ALEP	$e^+e^- \rightarrow \widetilde{\chi}\widetilde{\chi}, \widetilde{\chi} = \widetilde{\chi}_{1,2}^0, \widetilde{\chi}_1^{\pm}$
>17	95	¹² ELLIS	97c RVUE	All $tan eta$
		¹³ ABREU	960 DLPH	
		¹⁴ ACCIARRI	96F L3	
>12.0	95	¹⁵ ALEXANDER	96J OPAL	$1.5 < an\!eta < 35$
>12.5	95	¹⁶ ALEXANDER	96L OPAL	taneta > 1.5
≥ 0		¹⁷ FRANKE	94 RVUE	$\widetilde{\chi}_1^0$ mixed with a singlet
>20	95	¹⁸ DECAMP	92 ALEP	$\tan \beta > 3$
>5	90	¹⁹ HEARTY	89 ASP	$\widetilde{\gamma}$; for $m_{\widetilde{e}} < 55 \text{ GeV}$

- 1 ABBIENDI 99G searches for both chargino and neutralino production in data collected at $\sqrt{s}{=}181{-}184$ GeV. The production cross sections and decay branching ratios are evaluated within the MSSM, with common scalar gaugino masses at the GUT scale. The parameter space is scanned in the domain 0 $<\!M_2$ < 2000 GeV, $|\mu|$ < 500 GeV, and for various values of A. No dependence of the limits on A is found. The analysis includes the effects of gaugino cascade decays. In the case of radiative neutralino decays, the limits from ACKERSTAFF 98J are assumed. The limit for all values of m_0 assumes $m_{\widetilde{\nu}_e} >$ 43 GeV and direct limits on charged sleptons. See Table 5 for limits under different assumptions on Δm_+ and $\tan\beta$.
- 2 ABREU 99E searches for both chargino and neutralino production in data collected at $\sqrt{s}{=}183$ GeV. These results include and update the limits from ABREU 98. The production cross sections and decay branching ratios are evaluated within the MSSM, with common scalar and gaugino masses at the GUT scale. The parameter space is scanned in the domain $0 < M_2 < 3000$ GeV, $|\mu| < 400$ GeV, $1 < \tan\beta < 35$. The analysis includes the effects of gaugino cascade decays. In the case of radiative neutralino decays, the limits from ABREU 97J are assumed.
- ³ ACCIARRI 98F evaluates production cross sections and decay branching ratios within the MSSM, and includes in the analysis the effects of gaugino cascade decays. The limit is obtained for $0 < M_2 < 2000$, $|\mu| < 500$, and $1 < \tan \beta < 40$, but remains valid outside this domain. No dependence on the trilinear-coupling parameter A is found. The limit holds for all values of m_0 consistent with scalar lepton contraints. It improves to 24.6 GeV for $m_{\widetilde{\nu}} > 200$ GeV. Data taken at $\sqrt{s} = 130$ –172 GeV.
- ⁴BUSKULIC 96A puts a lower limit on $m_{\widetilde{\chi}_1^0}$ from the negative search for neutralinos, charginos. The bound holds for $m_{\widetilde{\nu}} > 200$ GeV. A small region of (μ, M_2) still allows $m_{\widetilde{\chi}_1^0} = 0$ if sneutrino is lighter. This analysis combines data from e^+e^- collisions at $\sqrt{s} = 91.2$ and at 130–136 GeV.
- ⁵ ACCIARRI 95E limit for $\tan\beta > 2$ is 20 GeV, and the bound disappears if $\tan\beta \sim 1$.
- ⁶ BARATE 99E looked for the decay of gauginos via *R*-violating couplings $LQ\overline{D}$. The bound holds for $\tan\beta$ =1.41, m_0 =500 GeV, and is significantly reduced for smaller values of m_0 . Data collected at \sqrt{s} =130–172 GeV.
- ⁷ABBOTT 98C searches for trilepton final states $(\ell = e, \mu)$. See footnote to ABBOTT 98C in the Chargino Section for details on the assumptions. Assuming a negligible decay rate of $\widetilde{\chi}_1^{\pm}$ and $\widetilde{\chi}_2^0$ to quarks, they obtain $m_{\widetilde{\chi}_2^0} \gtrsim 51$ GeV.

- ⁸ ABE 98J searches for trilepton final states ($\ell=e,\mu$). See footnote to ABE 98J in the Chargino Section for details on the assumptions. The quoted result corresponds to the best limit within the selected range of parameters, obtained for $m_{\widetilde{q}} > m_{\widetilde{g}}$, $\tan\beta=2$, and $\mu=-600$ GeV.
- 9 ABREU 98 bound combines the chargino and neutralino searches at \sqrt{s} =161, 172 GeV with single-photon-production results at LEP-1 from ABREU 97J. The limit is based on the same assumptions as ALEXANDER 96J except m_0 =1 TeV.
- 10 ACKERSTAFF 98L evaluates production cross sections and decay branching ratios within the MSSM, and includes in the analysis the effects of gaugino cascade decays. The bound is determined indirectly from the $\widetilde{\chi}_1^+$ and $\widetilde{\chi}_2^0$ searches within the MSSM. The limit is obtained for $0 < M_2 < 1500, \ |\mu| < 500$ and $\tan\beta > 1$, but remains valid outside this domain. The limit holds for the smallest value of m_0 consistent with scalar lepton constraints (ACKERSTAFF 97H). It improves to 24.7 GeV for $m_0{=}1$ TeV. Data taken at $\sqrt{s}{=}130{-}172$ GeV.
- 11 BARATE 98S looked for the decay of gauginos via *R*-violating coupling *LLE*. The bound improves to 25 GeV if the chargino decays into neutralino which further decays into lepton pairs. Data collected at $\sqrt{s}{=}130{-}172$ GeV.
- 12 ELLIS 97C uses constraints on χ^{\pm} , χ^{0} , and $\tilde{\ell}$ production obtained by the LEP experiments from $e^{+}\,e^{-}$ collisions at $\sqrt{s}=130$ –172 GeV. It assumes a universal mass m_{0} for scalar leptons at the grand unification scale.
- ¹³ ABREU 960 searches for possible final states of neutralino pairs produced in e^+e^- collisions at $\sqrt{s}=130$ –140 GeV. See their Fig. 3 for excluded regions in the (μ,M_2) plane.
- ¹⁴ ACCIARRI 96F searches for possible final states of neutralino pairs produced in e^+e^- collisions at \sqrt{s} = 130–140 GeV. See their Fig. 5 for excluded regions in the (μ, M_2) plane.
- ¹⁵ ALEXANDER 96J bound is determined indirectly from the $\widetilde{\chi}_1^\pm$ and $\widetilde{\chi}_2^0$ searches within MSSM. A universal scalar mass m_0 at the grand unification scale is assumed. The bound is for the smallest possible value of m_0 allowed by the LEP $\widetilde{\ell}$, $\widetilde{\nu}$ mass limits. Branching fractions are calculated using minimal supergravity. The bound is for $m_{\widetilde{\chi}_2^0} m_{\widetilde{\chi}_1^0} > 10$ GeV. The limit improves to 21.4 GeV for m_0 =1 TeV. Data taken at $\sqrt{s} = 130$ –136 GeV. ACKERSTAFF 96C, using data from $\sqrt{s} = 161$ GeV, improves the limit for $m_0 = 1$ TeV to 30.3 GeV.
- 16 ALEXANDER 96L bound for $\tan\beta = 35$ is 26.0 GeV.
- 17 FRANKE 94 reanalyzed the LEP constraints on the neutralinos in the MSSM with an additional singlet.
- ¹⁸ DECAMP 92 limit for $tan\beta > 2$ is m>13 GeV.
- ¹⁹ HEARTY 89 assumed pure $\widetilde{\gamma}$ eigenstate and $m_{\widetilde{e}_L}=m_{\widetilde{e}_R}$. There is no limit for $m_{\widetilde{e}}>58$ GeV. Uses $e^+e^-\to \gamma\widetilde{\gamma}\widetilde{\gamma}$. No GUT relation assumptions are made.

Bounds on $\widetilde{\chi}_1^0$ from dark matter searches

These papers generally exclude regions in the $M_2-\mu$ parameter plane assuming that $\widetilde{\chi}_1^0$ is the dominant form of dark matter in the galactic halo. These limits are based on the lack of detection in laboratory experiments or by the absence of a signal in underground neturino detectors. The latter signal is expected if $\widetilde{\chi}^0_1$ accumlates in the Sun or the Earth and annihilates into high-energy ν 's.

VALUE	DOCUMENT ID		TECN
• • • We do not use the following of	data for averages	, fits,	, limits, etc. • • •
	⁰ BOTTINO	97	DAMA
	¹ LOSECCO	95	RVUE
	² MORI	93	KAMI
		92	COSM
	⁴ BOTTINO	91	RVUE
	⁵ GELMINI	91	COSM
	⁶ KAMIONKOW.	.91	RVUE
	⁷ MORI	91 B	KAMI
none 4–15 GeV	⁸ OLIVE	88	COSM

²⁰BOTTINO 97 points out that the current data from the dark-matter detection experiment DAMA are sensitive to neutralinos in domains of parameter space not excluded by terrestrial laboratory searches.

 21 LOSECCO 95 reanalyzed the IMB data and places lower limit on $m_{\widetilde{\chi}^0_1}$ of 18 GeV if the LSP is a photino and 10 GeV if the LSP is a higgsino based on LSP annihilation in the sun producing high-enery neutrinos and the limits on neutrino fluxes from the IMB detector.

MORI 93 excludes some region in M_2 - μ parameter space depending on tan β and lightest scalar Higgs mass for neutralino dark matter $m_{\widetilde{\chi}0}>m_W$, using limits on upgoing muons produced by energetic neutrinos from neutralino annihilation in the Sun and the Earth.

 $^{23}\,\mathrm{BOTTINO}$ 92 excludes some region M_2 - μ parameter space assuming that the lightest neutralino is the dark matter, using upgoing muons at Kamiokande, direct searches by Ge detectors, and by LEP experiments. The analysis includes top radiative corrections on Higgs parameters and employs two different hypotheses for nucleon-Higgs coupling. Effects of rescaling in the local neutralino density according to the neutralino relic abundance are taken into account.

24 BOTTINO 91 excluded a region in $M_2-\mu$ plane using upgoing muon data from Kamioka experiment, assuming that the dark matter surrounding us is composed of neutralinos and that the Higgs boson is not too heavy.

 $^{25}\,\mathrm{GELMINI}$ 91 exclude a region in $M_2-\mu$ plane using dark matter searches.

 26 KAMIONKOWSKI 91 excludes a region in the $\it M_2$ - $\it \mu$ plane using IMB limit on upgoing muons originated by energetic neutrinos from neutralino annihilation in the sun, assuming that the dark matter is composed of neutralinos and that $m_{H^0} \lesssim 50$ GeV. See Fig. 8 in the paper.

 27 MORI 91B exclude a part of the region in the M_2 - μ plane with $m_{\widetilde{\chi}^0_1} \lesssim$ 80 GeV using a limit on upgoing muons originated by energetic neutrinos from neutralino annihilation in the earth, assuming that the dark matter surrounding us is composed of neutralinos and that $m_{H_1^0} \lesssim 80$ GeV.

 28 OLIVE 88 result assumes that photinos make up the dark matter in the galactic halo. Limit is based on annihilations in the sun and is due to an absence of high energy neutrinos detected in underground experiments. The limit is model dependent.

Other bounds on $\widetilde{\chi}_1^0$ from astrophysics and cosmology Most of these papers generally exclude regions in the $M_2-\mu$ parameter plane by requiring that the $\widetilde{\chi}_1^0$ contribution to the overall cosmological density is less than some maximal value to avoid overclosure of the Universe. Those not based on the cosmological density are indicated. Many of these papers also include LEP and/or other bounds.

VALUE	CL%		DOCUMENT ID		TECN	COMMENT
>42	95	29	ELLIS	98	RVUE	
• • • We do not use th	e followi	ng	data for average	s, fit	s, limits	, etc. • • •
>40		30	ELLIS	97 C	RVUE	
>21.4	95	31	ELLIS	96 B	RVUE	$ an\!eta>1.2$, $\mu<\!0$
		32	FALK	95		CP-violating phases
			DREES	93	COSM	Minimal supergravity
			FALK	93	COSM	Sfermion mixing
			KELLEY	93	COSM	Minimal supergravity
			MIZUTA	93		Co-annihilation
			ELLIS			Minimal supergravity
			KAWASAKI	92		Minimal supergravity, $m_0 = A = 0$
			LOPEZ	92	COSM	Minimal supergravity, $m_0 = A = 0$
			MCDONALD	92	COSM	-
			NOJIRI	91	COSM	Minimal supergravity
		33	OLIVE	91	COSM	
			ROSZKOWSKI		COSM	
		21	ELLIS	90	COSM	
		35	GRIEST	90	COSM	~ 611 100-1
		33	GRIFOLS	90	ASTR	$\widetilde{\gamma}$; SN 1987A
		33	KRAUSS OLIVE	90	COSM	
> 100 eV		36	ELLIS	89	COSM	≈. CN 1007A
	.\/		SREDNICKI	88 00B		$\widetilde{\gamma}$; SN 1987A
none 100 eV – (5–7) Ge	e V					$\widetilde{\gamma}$; $m_{\widetilde{f}}$ =60 GeV
none 100 eV – 15 GeV			SREDNICKI	88	COSM	$\widetilde{\gamma}$; $m_{\widetilde{f}} = 100 \text{ GeV}$
none 100 eV-5 GeV			ELLIS	84	COSM	$\widetilde{\gamma}$; for $m_{\widetilde{f}} = 100 \text{ GeV}$
			GOLDBERG	83	COSM	$\widetilde{\gamma}$
		37	KRAUSS	83	COSM	$\widetilde{\widetilde{\gamma}}$
			VYSOTSKII	83	COSM	$\widetilde{\gamma}$

 $^{^{29}\, \}text{ELLIS}$ 98 updates ELLIS 97C (see relative footnote). Use is made of one-loop mass and coupling relations, as well as of chargino limits from e^+e^- data at \sqrt{s} =183 GeV. The limits on $\tan\beta$ from ELLIS 97C improve to: $\tan\beta > 2$ ($\mu < 0$) and $\tan\beta > 1.65$ ($\mu > 0$).

 $^{^{30}}$ ELLIS 97C uses in addition to cosmological constraints, data from e^+e^- collisions at 170-172 GeV. It assumes a universal scalar mass for both the Higgs and scalar leptons, as well as radiative supersymmetry breaking with universal gaugino masses. ELLIS 97C also uses the absence of Higgs detection (with the assumptions listed above) to set a limit on $\tan \beta > 1.7$ for $\mu < 0$ and $\tan \beta > 1.4$ for $\mu > 0$. This paper updates ELLIS 96B.

 $^{^{31}}$ ELLIS 96B uses, in addition to cosmological constraints, data from BUSKULIC 96K and SUGIMOTO 96. It assumes a universal scalar mass m_0 and radiative Supersymmetry breaking, with universal gaugino masses.

 $^{^{32}}$ Mass of the bino (=LSP) is limited to $m_{\widetilde{B}} \lesssim 350$ GeV for $m_t = 174$ GeV.

Unstable $\widetilde{\chi}_1^0$ (Lightest Neutralino) MASS LIMIT

Unless otherwise stated, the goldstino or gravitino mass $m_{\widetilde{G}}$ is assumed to be negligible relative to all other masses. In the following, \widetilde{G} is assumed to be undetected and to give rise to a missing energy (\cancel{E}) signature.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do	not use t	the following data fo	or averages,	fits, limits, etc. \bullet \bullet
		³⁸ ABBIENDI	99F OPAL	$e^+e^- ightarrow \ \widetilde{G}\widetilde{\chi}^0_1\ (\widetilde{\chi}^0_1 ightarrow \ \gamma\widetilde{G})$
none 45–83	95	³⁹ ABBIENDI	99F OPAL	$e^+e^- ightarrow \ \widetilde{B}\widetilde{\widetilde{B}}^{}(\widetilde{B}\stackrel{}{ ightarrow} \gamma\widetilde{G})$
>83	95	⁴⁰ ABREU	99D DLPH	
		⁴¹ ABREU	99F DLPH	${ m e^+e^-} ightarrow~\widetilde{\chi}^0_1\widetilde{\chi}^0_1$, with $\widetilde{\chi}^0_1 ightarrow~ au\widetilde{ au}$
				$(\widetilde{ au} ightarrow \ au \widetilde{ ilde{G}})$
>77	95	⁴² ABBOTT	98 D0	
				$\gamma \widetilde{G}$
>65	95	⁴³ ABE	98L CDF	$p\overline{p} \rightarrow \widetilde{\chi}\widetilde{\chi}, \ \widetilde{\chi} = \widetilde{\chi}_{1,2}^0, \widetilde{\chi}_1^{\pm}, \ \widetilde{\chi}_1^0 \rightarrow$
				$\gamma\widetilde{G}$
		⁴⁴ ABREU	98 DLPH	$e^+e^- \rightarrow \widetilde{\chi}_1^0\widetilde{\chi}_1^0(\widetilde{\chi}_1^0 \rightarrow \gamma\widetilde{G})$
		⁴⁵ ACCIARRI	98V L3	
>79	95	⁴⁶ ACCIARRI	98∨ L3	$e^+e^- ightarrow \ \widetilde{B} \widetilde{B}^{'}(\widetilde{B} \stackrel{1}{ ightarrow} \gamma \widetilde{G})$
		⁴⁷ ACKERSTAFF	98J OPAL	$e^+e^- ightarrow~\widetilde{\chi}^0_1\widetilde{\chi}^0_1~(\widetilde{\chi}^0_1 ightarrow~\gamma~\widetilde{G})$
		⁴⁸ BARATE	98H ALEP	. ~ ~ ~ ~ ~
>71	95	⁴⁹ BARATE	98H ALEP	. ~~ ~ ~ ~ ~
		⁵⁰ BARATE	98J ALEP	$e^+e^- ightarrow \ \widetilde{G}\widetilde{\chi}_1^0(\widetilde{\chi}_1^0 ightarrow \gamma\widetilde{\widetilde{G}})$

 $^{^{33}\,\}mathrm{Mass}$ of the bino (=LSP) is limited to $m_{\widetilde{B}}\lesssim 350$ GeV for $m_t\leq 200$ GeV. Mass of the higgsino (=LSP) is limited to $m_{\widetilde{H}}\lesssim 1$ TeV for $m_t\leq 200$ GeV.

³⁴ Mass of the bino (=LSP) is limited to $m_{\widetilde{B}} \lesssim 550$ GeV. Mass of the higgsino (=LSP) is limited to $m_{\widetilde{H}} \lesssim 3.2$ TeV.

 $^{^{35}}$ GRIFOLS 90 argues that SN1987A data exclude a light photino ($\lesssim 1$ MeV) if $m_{\widetilde q} < 1.1$ TeV, $m_{\widetilde e} < 0.83$ TeV.

 $^{^{36}}$ ELLIS 88B argues that the observed neutrino flux from SN 1987A is inconsistent with a light photino if 60 GeV $\lesssim m_{\widetilde{q}} \lesssim$ 2.5 TeV. If $m({\rm higgsino})$ is $O(100~{\rm eV})$ the same argument leads to limits on the ratio of the two Higgs v.e.v.'s. LAU 93 discusses possible relations of ELLIS 88B bounds.

 $^{^{37}}$ KRAUSS 83 finds $m_{\widetilde{\gamma}}$ not 30 eV to 2.5 GeV. KRAUSS 83 takes into account the gravitino decay. Find that limits depend strongly on reheated temperature. For example a new allowed region $m_{\widetilde{\gamma}}=$ 4–20 MeV exists if $m_{\rm gravitino}$ <40 TeV. See figure 2.

^38 ABBIENDI 99F obtained an upper bound on the cross section for the process $e^+e^- \to \widetilde{G}\,\widetilde{\chi}_1^0$ followed by the prompt decay $\widetilde{\chi}_1^0 \to \widetilde{G}\,\gamma$ of 0.46–0.075 pb for $m_{\widetilde{\chi}_1^0}$ =91–183 GeV. See Fig. 8 for the detailed dependence of $m_{\widetilde{\chi}_1^0}$. Data taken at \sqrt{s} =183 GeV.

- ³⁹ ABBIENDI 99F looked for $\gamma\gamma E$ final states at \sqrt{s} =183 GeV. The limit is for pure bino \widetilde{B} and assumes $m_{\widetilde{e}_R}$ =1.35 $m_{\widetilde{B}}$ and $m_{\widetilde{e}_L}$ =2 $m_{\widetilde{e}_R}$. See Fig. 13 for the cross-section limits as a function of $m_{\widetilde{\chi}_1^0}$.
- 40 ABREU 99D looked for $\gamma\gamma \not \!\!\!E$ final states at \sqrt{s} =130–183 GeV. The limit is for prompt decay of pure bino \widetilde{B} and assumes $m_{\widetilde{e}_R}$ =1.1 $m_{\widetilde{B}}$ GeV. The limit reduces to 76 GeV for $m_{\widetilde{e}_R}$ =150 GeV. See Fig. 14 for the limits as a function of $m_{\widetilde{e}_R}$. Model-independent cross-section limits in the range 0.10–0.13 pb are shown in Fig. 9, for neutralino masses in the range 45–81.5 GeV. Cross section limits were also derived, see Fig. 13, as function of the decay length, including non-pointing single photon final states.

⁴¹ ABREU 99F looked for acoplanar ditaus, taus with large impact parameters, kinks, and stable heavy-charged tracks at \sqrt{s} =130–183 GeV. See Table 5 for explicit $m_{\widetilde{\chi}_1^0}$ limits under different model assumptions.

⁴² ABBOTT 98 studied the chargino and neutralino production, where the lightest neutralino in their decay products further decays into $\gamma \widetilde{G}$. The limit assumes the gaugino mass unification.

⁴³ ABE 98L looked for chargino and neutralino production, where the lightest neutralino in their decay products further decays into $\gamma \tilde{G}$. The limit assumes the gaugino mass unification, and holds for $1 < \tan \beta < 25$, $M_2 < 200$ GeV, and all μ .

⁴⁴ ABREU 98 uses data at \sqrt{s} =161 and 172 GeV. Upper bounds on $\gamma\gamma E$ cross section are obtained. Similar limits on γE are also given, relevant for $e^+e^- \rightarrow \widetilde{\chi}_1^0 \widetilde{G}$ production.

⁴⁵ ACCIARRI 98V obtained an upper bound on the cross section for the process $e^+e^- \to \widetilde{G} \widetilde{\chi}^0_1$ followed by the prompt decay $\widetilde{\chi}^0_1 \to \widetilde{G} \gamma$ of 0.28–0.07 pb $m_{\widetilde{\chi}^0_1}$ =0–183 GeV. See Fig. 4b for the detailed dependence on $m_{\widetilde{\chi}^0_1}$. Data taken at \sqrt{s} =183 GeV.

- ⁴⁶ ACCIARRI 98V looked for $\gamma\gamma E$ final states at \sqrt{s} =183 GeV. The limit is for pure bino \widetilde{B} and assumes $m_{\widetilde{e}_{R},L}$ =150 GeV. The limit improves to 84 GeV for $m_{\widetilde{e}_{R},L}$ =100 GeV. See Fig. 7 for the cross-section limits as a function of $m_{\widetilde{\chi}_{1}^{0}}$, for different cases of neutralino composition.
- 47 ACKERSTAFF 98J looked for $\gamma\gamma E$ final states at \sqrt{s} =161–172 GeV. They set limits on $\sigma(e^+e^- \to \widetilde{\chi}^0_1\widetilde{\chi}^0_1)$ in the range 0.22–0.50 pb for $m_{\widetilde{\chi}^0_1}$ in the range 45–86 GeV. Mass limits for explicit models from the literature are given in Fig. 19 of their paper. Similar limits on γ +missing energy are also given, relevant for $\widetilde{\chi}^0_1\widetilde{G}$ production.
- 48 BARATE 98H obtained an upper bound on the cross section for the process $e^+e^-
 ightarrow \widetilde{G} \widetilde{\chi}_1^0$ followed by the prompt decay $\widetilde{\chi}_1^0
 ightarrow \widetilde{G} \gamma$ of 0.4–0.75 pb for $m_{\widetilde{\chi}_1^0} = 40$ –170 GeV. Data taken at $\sqrt{s} = 161,172$ GeV.
- 49 BARATE 98H looked for $\gamma\gamma\not\!\!E$ final states at $\sqrt{s}=161{,}172$ GeV. The limit is for pure bino \widetilde{B} with $\tau(\widetilde{B})<3$ ns and assumes $m_{\widetilde{e}_R}=1.5m_{\widetilde{B}}$. See Fig. 5 for the dependence of the limit on $m_{\widetilde{e}_R}$.
- 51 BARATE 98J looked for $\gamma\gamma\not\sqsubseteq$ final states at $\sqrt{s}=161$ –183 GeV. The limit is for pure bino \widetilde{B} with $\tau(\widetilde{B})<3$ ns and assumes $m_{\widetilde{e}_R}=1.1m_{\widetilde{B}}$. See Fig. 5 for the dependence of the limit on $m_{\widetilde{e}_R}$.
- 52 ACCIARRI 97V looked for $\gamma\gamma E$ final states at \sqrt{s} =161 and 172 GeV. They set limits on $\sigma(e^+e^- \to \widetilde{\chi}^0_1\widetilde{\chi}^0_1)$ in the range 0.25–0.50 pb for masses in the range 45–85 GeV. The lower limits on $m_{\widetilde{\chi}^0_1}$ vary in the range of 64.8 GeV (pure bino with 90 GeV slepton) to 75.3 GeV (pure higgsino). There is no limit for pure zino case.
- 53 ELLIS 97 reanalyzed the LEP2 (\sqrt{s} =161 GeV) limits of $\sigma(\gamma\gamma + E_{\rm miss}) < 0.2$ pb to exclude $m_{\widetilde{\chi}_1^0} < 63$ GeV if $m_{\widetilde{e}_L} = m_{\widetilde{e}_R} < 150$ GeV and $\widetilde{\chi}_1^0$ decays to γ \widetilde{G} inside detector.
- 54 BUSKULIC 96U extended the search for $e^+\,e^-\to\widetilde{\chi}^0_1\,\widetilde{\chi}^0_1$ in BUSKULIC 95E under the same assumptions. See their Fig. 5 for excluded region in the neutralino-chargino parameter space. Data taken at $\sqrt{s}=130$ –136 GeV.
- ⁵⁵ BUSKULIC 95E looked for $e^+e^- \to \widetilde{\chi}^0_1\widetilde{\chi}^0_1$, where $\widetilde{\chi}^0_1$ decays via R-parity violating interaction into one neutrino and two opposite-charge leptons. The bound applies provided that B($Z \to \widetilde{\chi}^0_1\widetilde{\chi}^0_1$)> $3 \times 10^{-5}\beta^3$, β being the final state $\widetilde{\chi}^0_1$ velocity.
- 56 BUSKULIC 95E looked for $e^+\,e^-\to\widetilde{\gamma}\widetilde{\gamma}$, where $\widetilde{\gamma}$ decays via R-parity violating interaction into one neutrino and two opposite-charge leptons. They extend the domain in the $(m_{\widetilde{e}},m_{\widetilde{\gamma}})$ plane excluded by ACTON 93G to $m_{\widetilde{e}}>$ 220 GeV/ c^2 (for $m_{\widetilde{\gamma}}=$ 15 GeV/ c^2) and to $m_{\widetilde{\gamma}}>$ 2 GeV/ c^2 (for $m_{\widetilde{e}}<$ 220 GeV/ c^2).
- ⁵⁷ ACTON 93G assume *R*-parity violation and decays $\widetilde{\gamma} \to \tau^{\pm} \ell^{\mp} \nu_{\ell}$ ($\ell = e \text{ or } \mu$). They exclude $m_{\widetilde{\gamma}} =$ 4–43 GeV for $m_{\widetilde{e}_L} <$ 42 GeV, and $m_{\widetilde{\gamma}} =$ 7–30 GeV for $m_{\widetilde{e}_L} <$ 100 GeV (95% CL). Assumes \widetilde{e}_R much heavier than \widetilde{e}_L , and lepton family number violation but L_e - L_μ conservation.
- ⁵⁸ ABE 89J exclude $m_{\widetilde{\gamma}}=0.15$ –25 GeV (95%CL) for $d=(100~{\rm GeV})^2$ and $m_{\widetilde{e}}=40~{\rm GeV}$ in the case $\widetilde{\gamma}\to \gamma \widetilde{G}$, and $m_{\widetilde{\gamma}}$ up to 23 GeV for $m_{\widetilde{e}}=40~{\rm GeV}$ in the case $\widetilde{\gamma}\to \gamma \widetilde{H}^0$.
- ⁵⁹ BEHREND 87B limit is for unstable photinos only. Assumes B($\widetilde{\gamma} \rightarrow \gamma(\widetilde{G} \text{ or } \widetilde{H}^0)$) =1, $m_{\widetilde{G} \text{ or } \widehat{H}^0} \ll m_{\widetilde{\gamma}}$ and pure $\widetilde{\gamma}$ eigenstate. $m_{\widetilde{e}_L} = m_{\widetilde{e}_R} < 100 \text{ GeV}$.

- ⁶⁰ ADEVA 85 is sensitive to $\tilde{\gamma}$ decay path <5 cm. With $m_{\tilde{e}} = 50$ GeV, limit (CL = 90%) is $m_{\widetilde{\gamma}} > 20.5$ GeV. Assume $\widetilde{\gamma}$ decays to photon + goldstino and search for acoplanar photons with large missing p_T .
- 61 BALL 84 is FNAL beam dump experiment. Observed no $\widetilde{\gamma}$ decay, where $\widetilde{\gamma}$'s are expected to come from \widetilde{g} 's produced at the target. Three possible $\widetilde{\gamma}$ lifetimes are considered. Gluino decay to goldstino + gluon is also considered.
- 62 BEHREND 83 and BARTEL 84B look for 2γ events from $\widetilde{\gamma}$ pair production. With supersymmetric breaking parameter d = $(100 \text{ GeV})^2$ and $m_{\tilde{e}} = 40 \text{ GeV}$ the excluded regions at CL = 95% would be $m_{\widetilde{\gamma}}=100$ MeV -13 GeV for BEHREND 83 $m_{\widetilde{\gamma}}=100$ 80 MeV – 18 GeV for BARTEL 84B. Limit is also applicable if the $\tilde{\gamma}$ decays radiatively within the detector.
- 63 CABIBBO 81 consider $\widetilde{\gamma} \to ~\gamma+$ goldstino. Photino must be either light enough (<30 eV) to satisfy cosmology bound, or heavy enough (>0.3 MeV) to have disappeared at early universe.

 $\widetilde{\chi}_2^0$, $\widetilde{\chi}_3^0$, $\widetilde{\chi}_4^0$ (Neutralinos) MASS LIMITS Neutralinos are unknown mixtures of photinos, z-inos, and neutral higgsinos (the supersymmetric partners of photons and of Z and Higgs bosons). The limits here apply only to $\widetilde{\chi}_2^0$, $\widetilde{\chi}_3^0$, and $\widetilde{\chi}_4^0$. $\widetilde{\chi}_1^0$ is the lightest supersymmetric particle (LSP); see $\widetilde{\chi}_1^0$ Mass Limits. It is not possible to quote rigorous mass limits because they are extremely model dependent; i.e. they depend on branching ratios of various $\widetilde{\chi}^0$ decay modes, on the masses of decay products $(\widetilde{e}, \widetilde{\gamma}, \widetilde{q}, \widetilde{g})$, and on the \widetilde{e} mass exchanged in $e^+e^- \to \widetilde{\chi}^0_i \widetilde{\chi}^0_j$. Often limits are given as contour plots in the $m_{\widetilde{\chi}^0} - m_{\widetilde{e}}$ plane vs other parameters. When specific assumptions are made, e.g., the neutralino is a pure photino $(\tilde{\gamma})$, pure z-ino (\tilde{Z}) , or pure neutral higgsino (\tilde{H}^0) , the neutralinos will be labelled as such.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
> 44	95	⁶⁴ ABBIENDI		$\widetilde{\chi}_{2}^{0}$, tan $eta>1$, $\Delta m_{0}>10$ GeV
>102	95	⁶⁴ ABBIENDI	99G OPAL	$\widetilde{\chi}_{3}^{\overline{0}}$, tan $eta{=}1.5$, $\Delta m_{0}>10$ GeV
>127	95	⁶⁵ ACCIARRI	95E L3	$\widetilde{\chi}_{f 4}^{f 0}$, tan $eta>$ 3

We do not use the following data for averages, fits, limits, etc.

•	o vve do no	t ase the	ronowing data for	averages, mes	s, mmts, etc. • • •
			⁶⁶ ABBIENDI		$e^+e^- ightarrow \ \widetilde{\chi}^0_2\widetilde{\chi}^0_1\ (\widetilde{\chi}^0_2 ightarrow \ \gamma\widetilde{\chi}^0_1)$
			⁶⁷ ABBIENDI		$e^+e^- ightarrow \ \widetilde{\chi}_2^{ar{0}}\widetilde{\chi}_2^{ar{0}} \ (\widetilde{\chi}_2^{ar{0}} ightarrow \ \gamma \widetilde{\chi}_1^{ar{0}})$
			⁶⁸ ABREU	99D DLPH	$e^+e^- ightarrow \ \widetilde{\chi}_2^{ar{0}}\widetilde{\chi}_2^{ar{0}} \ (\widetilde{\chi}_2^{ar{0}} ightarrow \ \gamma \widetilde{\chi}_1^{ar{0}})$
			⁶⁹ ABBOTT	98C D0	$p\overline{p} \rightarrow \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^{0}$
>	82.2	95	⁷⁰ ABE	98J CDF	$p\overline{p} \rightarrow \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^{\overline{0}}$
>	92	95	⁷¹ ACCIARRI	98F L3	\widetilde{H}_{2}^{0} , tan $\beta = 1.41$, $M_{2} < 500 \text{ GeV}$
			⁷² ACCIARRI	98V L3	$e^{+}e^{-} ightarrow$ $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1,2}^{0}$ $(\widetilde{\chi}_{2}^{0} ightarrow$
					$\gamma \widetilde{\chi}^0_1)$
>	45.3	95	⁷³ ACKERSTAFF	98L OPAL	$\widetilde{\chi}_2^0$, $ aneta>1$
>	75.8	95	⁷³ ACKERSTAFF	98L OPAL	$\widetilde{\chi}_{f 3}^{f ar 0}$, tan $eta>1$
>	53	95	⁷⁴ BARATE	98н ALEP	$e^{\overset{\checkmark}{+}}e^{-} \rightarrow \widetilde{\gamma}\widetilde{\gamma}\;(\widetilde{\gamma}\rightarrow \gamma\widetilde{H}^{0})$

> 74	95	 75 BARATE 76 ABACHI 77 ABE 78 ACCIARRI 	98J ALEP 96 D0 96к CDF 96F L3	$p\overline{p} \rightarrow \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0$
> 06.2	OF	79 ACKERSTAFF		
> 86.3 > 45.3	95 95	80 ALEXANDER		Š
				•
> 33.0	95	81 ALEXANDER	96L OPAL	12
> 68	95	82 BUSKULIC	96K ALEP	$\tilde{\chi}_2^0$
> 52	95	⁶⁵ ACCIARRI	95E L3	$\widetilde{\chi}_2^0$, tan $eta>$ 3
> 84	95	⁶⁵ ACCIARRI	95E L3	$\widetilde{\chi}^0_3$, tan $eta >$ 3
> 45	95	⁸³ DECAMP	92 ALEP	$\widetilde{\chi}_{2}^{0}$, tan $eta >$ 3
		⁸⁴ ABREU	90G DLPH	$ \begin{array}{ccc} Z \to & \widetilde{\chi}^0 \widetilde{\chi}^0 \\ Z \to & \widetilde{\chi}^0 \widetilde{\chi}^0 \end{array} $
		85 AKRAWY	90N OPAL	$Z \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^0$
> 57	90	⁸⁶ BAER	90 RVUE	$\widetilde{\chi}^0_3$; $\Gamma(Z)$; $ aneta > 1$
		⁸⁷ BARKLOW	90 MRK2	$Z ightarrow \ \widetilde{\chi}_1^0 \widetilde{\chi}_2^0, \ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0$
		88 DECAMP	90K ALEP	$Z \rightarrow \widetilde{\chi}^0 \widetilde{\chi}^0$
> 41	95	⁸⁹ SAKAI	90 AMY	$Z \rightarrow \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{2}^{0} \widetilde{\chi}_{2}^{0}$ $Z \rightarrow \widetilde{\chi}_{2}^{0} \widetilde{\chi}_{2}^{0}$ $e^{+} e^{-} \rightarrow \widetilde{H}_{1}^{0} \widetilde{H}_{2}^{0} (\widetilde{H}_{2}^{0} \rightarrow \mathbb{I}_{2}^{0})$
				$f f H_1^0$
> 31	95	⁹⁰ BEHREND	87B CELL	$e^+e^- \rightarrow \widetilde{\gamma}\widetilde{Z}$
> 30	95	⁹¹ BEHREND	87B CELL	$e^{+}e^{-}\stackrel{1'}{\rightarrow}\widetilde{\gamma}\widetilde{Z}$ $(\widetilde{Z}\rightarrow q\overline{q}\widetilde{\gamma}), m_{\widetilde{e}} < 70 \text{ GeV}$ $e^{+}e^{-}\rightarrow\widetilde{\gamma}\widetilde{Z}$
> 30	95	DEHKEND	OIB CELL	$(\widetilde{Z} \rightarrow a\overline{a}\widetilde{e})$
> 31.3	95	⁹² BEHREND	87B CELL	$(\widetilde{Z} ightarrow q \overline{q} \widetilde{g})$ $e^{+} e^{-} ightarrow \widetilde{H}_{1}^{0} \widetilde{H}_{2}^{0}$ $(\widetilde{H}_{2}^{0} ightarrow f \overline{f} \widetilde{H}_{1}^{0})$
				$(\widetilde{H}_{2}^{0} \rightarrow f^{\frac{1}{f}}\widetilde{H}_{1}^{0})$
> 22	95	⁹³ BEHREND	87B CELL	$e^+e^- \rightarrow \gamma \widetilde{\gamma} \widetilde{Z}$
		0.4		$(\widetilde{Z} \rightarrow \widetilde{\nu} \nu)$ $e^+e^- \rightarrow \widetilde{\gamma} \widetilde{\chi}^0$
		⁹⁴ AKERLOF	85 HRS	$e^+e^- \rightarrow \widetilde{\gamma}\widetilde{\chi}^0$
none 1–21	95	⁹⁵ BARTEL	85ı IADE	$(\chi^{\circ} \rightarrow q q \gamma)$ $e^{+}e^{-} \rightarrow \widetilde{H}0 \widetilde{H}0$
	30	5, 22	002 3/122	$\widetilde{H}^0 \rightarrow f \widetilde{f} \widetilde{H}^0$
		⁹⁶ BEHREND	85 CFLI	$e^+e^- \rightarrow \text{monoiet X}$
> 35	95	97 ADEVA	84B MRKJ	$\begin{array}{c} e^{+}e^{-}\rightarrow\widetilde{\gamma}\widetilde{\chi}^{0} \\ (\widetilde{\chi}^{0}\rightarrowq\overline{q}\widetilde{\gamma}) \\ e^{+}e^{-}\rightarrow\widetilde{H}_{1}^{0}\widetilde{H}_{2}^{0}, \\ \widetilde{H}_{2}^{0}\rightarrowf\overline{f}\widetilde{H}_{1}^{0} \\ e^{+}e^{-}\rightarrow\text{monojet}\;X \\ e^{+}e^{-}\rightarrow\gamma\widetilde{Z} \\ (\widetilde{Z}\rightarrow\ell\overline{\ell}\widetilde{\gamma}) \\ e^{+}e^{-}\rightarrow\gamma\widetilde{Z} \\ (\widetilde{Z}\rightarrowf\overline{f}\widetilde{\gamma}) \end{array}$
				$(\widetilde{Z} ightarrow \ \ell \dot{\overline{\ell}} \widetilde{\gamma})$
> 28	95	⁹⁸ BARTEL	84C JADE	$e^+e^- \rightarrow \gamma Z$
		⁹⁹ ELLIS	84 COSM	$(Z \rightarrow \tau \tau \gamma)$

 $^{^{99}}$ ELLIS $_{84}$ COSIVI 64 ABBIENDI 99G uses the results of direct searches in the $e^+\,e^-\to\,\widetilde{\chi}^0_1\widetilde{\chi}^0_{2,3}$ channels, as well as the indirect limits from $\widetilde{\chi}^0_1,\widetilde{\chi}^\pm_1$ searches within the MSSM. See the footnote to ABBIENDI 99G in the Chargino Section for further details on the assumptions. Data collected at $\sqrt{s}{=}181{-}184$ GeV.

⁶⁵ ACCIARRI 95E limits go down to 0 GeV $(\widetilde{\chi}_2^0)$, 60 GeV $(\widetilde{\chi}_3^0)$, and 90 GeV $(\widetilde{\chi}_4^0)$ for $\tan\beta=1$.

⁶⁶ ABBIENDI 99F looked for γE final states at \sqrt{s} =183 GeV. They obtained an upper bound on the cross section for the production $e^+e^- \to \widetilde{\chi}^0_2 \widetilde{\chi}^0_1$ followed by the prompt

- decay $\widetilde{\chi}_2^0 \to \gamma \widetilde{\chi}_1^0$ of 0.075–0.80 pb in the region $m_{\widetilde{\chi}_2^0} + m_{\widetilde{\chi}_1^0} > m_Z$, $m_{\widetilde{\chi}_2^0} = 91$ –183 GeV, and $\Delta m_0 > 5$ GeV. See Fig. 7 for explicit limits in the $(m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_1^0})$ plane.
- 67 ABBIENDI 99F looked for $\gamma\gamma E$ final states at \sqrt{s} =183 GeV. They obtained an upper bound on the cross section for the production $e^+e^- \to \widetilde{\chi}_2^0\widetilde{\chi}_2^0$ followed by the prompt decay $\widetilde{\chi}_2^0 \to \gamma\widetilde{\chi}_1^0$ of 0.08–0.37 pb for $m_{\widetilde{\chi}_2^0}$ =45–81.5 GeV, and $\Delta m_0 > 5$ GeV. See Fig. 11 for explicit limits in the $(m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_2^0})$ plane.
- ⁶⁹ ABBOTT 98C searches for trilepton final states (ℓ =e, μ). See footnote to ABBOTT 98C in the Chargino Section for details on the assumptions. Assuming a negligible decay rate of $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ to quarks, they obtain $m_{\tilde{\chi}_2^0} \gtrsim 103$ GeV.
- ABE 98J searches for trilepton final states $(\ell=e,\mu)$. See footnote to ABE 98J in the Chargino Section for details on the assumptions. The quoted result for $m_{\widetilde{\chi}_2^0}$ corresponds to the best limit within the selected range of parameters, obtained for $m_{\widetilde{q}} > m_{\widetilde{g}}$, $\tan\beta = 2$, and $\mu = -600$ GeV.
- ⁷¹ ACCIARRI 98F is obtained from direct searches in the $e^+e^- \to \widetilde{\chi}^0_{1,2}\widetilde{\chi}^0_2$ production channels, and indirectly from $\widetilde{\chi}^\pm_1$ and $\widetilde{\chi}^0_1$ searches within the MSSM. See footone to ACCIARRI 98F in the chargino Section for futher details on the assumptions. Data taken at $\sqrt{s}=130$ –172 GeV.
- ⁷² ACCIARRI 98V looked for $\gamma(\gamma)$ final states at \sqrt{s} =183 GeV. They obtained an upper bound on the cross section for the production $e^+e^- \to \widetilde{\chi}^0_2 \widetilde{\chi}^0_{1,2}$ followed by the prompt decay $\widetilde{\chi}^0_2 \to \gamma \widetilde{\chi}^0_1$. See Figs. 4a and 6a for explicit limits in the $(m_{\widetilde{\chi}^0_2}, m_{\widetilde{\chi}^0_1})$ plane.
- 73 ACKERSTAFF 98L is obtained from direct searches in the $e^+\,e^-\to\widetilde{\chi}^0_1\widetilde{\chi}^0_{2,3}$ production channels, and indirectly from $\widetilde{\chi}^\pm_1$ and $\widetilde{\chi}^0_1$ searches within the MSSM. See footnote to ACKERSTAFF 98L in the chargino Section for further details on the assumptions. Data taken at $\sqrt{s}{=}130{-}172$ GeV.
- 74 BARATE 98H looked for $\gamma\gamma\not\sqsubseteq$ final states at $\sqrt{s}=161,\!172$ GeV. They obtained an upper bound on the cross section for the production $e^+\,e^-\to\widetilde{\chi}_2^0\,\widetilde{\chi}_2^0$ followed by the prompt decay $\widetilde{\chi}_2^0\to\gamma\widetilde{\chi}_1^0$ of 0.4–0.8 pb for $m_{\widetilde{\chi}_2^0}=10$ –80 GeV. The bound above is for the specific case of $\widetilde{\chi}_1^0=\widetilde{H}^0$ and $\widetilde{\chi}_2^0=\widetilde{\gamma}$ and $m_{\widetilde{e}_R}=100$ GeV. See Fig. 6 and 7 for explicit limits in the $(\widetilde{\chi}_2^0,\widetilde{\chi}_1^0)$ plane and in the $(\widetilde{\chi}_2^0,\widetilde{e}_R)$ plane.
- 75 BARATE 98J looked for $\gamma\gamma\not \!\!\!E$ final states at $\sqrt{s}=161$ –183 GeV. They obtained an upper bound on the cross section for the production $e^+e^-\to \widetilde{\chi}^0_2\widetilde{\chi}^0_2$ followed by the prompt decay $\widetilde{\chi}^0_2\to \gamma\widetilde{\chi}^0_1$ of 0.08–0.24 pb for $m_{\widetilde{\chi}^0_2}<$ 91 GeV. The bound above is for the specific case of $\widetilde{\chi}^0_1=\widetilde{H}^0$ and $\widetilde{\chi}^0_2=\widetilde{\gamma}$ and $m_{\widetilde{e}_R}=100$ GeV.
- ⁷⁶ ABACHI 96 searches for 3-lepton final states. Efficiencies are calculated using mass relations and branching ratios in the Minimal Supergravity scenario. Results are presented as lower bounds on $\sigma(\widetilde{\chi}_1^{\pm}\,\widetilde{\chi}_2^0) \times \mathsf{B}(\widetilde{\chi}_1^{\pm} \to \ell\nu_\ell\widetilde{\chi}_1^0) \times \mathsf{B}(\widetilde{\chi}_2^0 \to \ell^+\ell^-\widetilde{\chi}_1^0)$ as a function of $m_{\widetilde{\chi}_1^0}$. Limits range from 3.1 pb ($m_{\widetilde{\chi}_1^0} = 45$ GeV) to 0.6 pb ($m_{\widetilde{\chi}_1^0} = 100$ GeV).

- $^{77}\,\mathsf{ABE}$ 96K looked for tripleton events from chargino-neutralino production. They obtained lower bounds on $m_{\widetilde{\chi}^0_2}$ as a function of μ . The lower bounds are in the 45–50 GeV range for gaugino-dominant $\tilde{\chi}_2^0$ with negative μ , if $\tan\beta < 10$. See paper for more details of the assumptions.
- ⁷⁸ ACCIARRI 96F looked for associated production $e^+e^- \rightarrow \widetilde{\chi}^0_1\widetilde{\chi}^0_2$. See the paper for upper bounds on the cross section. Data taken at $\sqrt{s}=130$ –136 GeV.
- 79 ACKERSTAFF 96C is obtained from direct searches in the $e^+e^-
 ightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_2$ production channel, and indirectly from $\widetilde{\chi}_1^\pm$ searches within MSSM. Data from $\sqrt{s}=130$, 136, and 161 GeV are combined. The same assumptions and constraints of ALEXANDER 96J apply. The limit improves to 94.3 GeV for $m_0=1\,\mathrm{TeV}.$
- ⁸⁰ ALEXANDER 96J looked for associated $e^+e^- o \tilde{\chi}_1^0 \tilde{\chi}_2^0$. A universal scalar mass m_0 at the grand unification scale is assumed. The bound is for the smallest possible value of m_0 alowed by the LEP $\widetilde{\ell}$, $\widetilde{\nu}$ mass limits, 1.5 <tan β <35. Branching fractions are calculated using minimal supergravity. The bound is for $m_{\widetilde{\chi}^0_2}-m_{\widetilde{\chi}^0_1}>$ 10 GeV. The limit improves to 47.5 GeV for $m_0 = 1$ TeV. Data taken at $\sqrt{s} = 130 - 136$ GeV. ACKERSTAFF 96C, using data from $\sqrt{s} = 161$ GeV, improves the limit for $m_0 = 1$ TeV to 51.9 GeV.
- 81 ALEXANDER 96L bound for $\tan\!eta\!=\!35$ is 51.5 GeV.
- 82 BUSKULIC 96K looked for associated $e^+\,e^-
 ightarrow ~\widetilde{\chi}^0_1 \, \widetilde{\chi}^0_2$ and assumed the dominance of off-shell Z-exchange in the $\widetilde{\chi}_2^0$ decay. The bound is for $m_{\widetilde{\chi}_2^0}-m_{\widetilde{\chi}_1^0}>$ 9 GeV. Data taken at $\sqrt{s} = 130-136$ GeV.
- ⁸³ For $\tan\beta > 2$ the limit is > 40 GeV; and it disappears for $\tan\beta < 1.6$. ⁸⁴ ABREU 90G exclude B($Z \to \widetilde{\chi}^0_1 \widetilde{\chi}^0_2$) $\geq 10^{-3}$ and B($Z \to \widetilde{\chi}^0_2 \widetilde{\chi}^0_2$) $\geq 2 \times 10^{-3}$ assuming $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 f \bar{f}$ via virtual Z. These exclude certain regions in model parameter space, see their Fig. 5.
- ⁸⁵ AKRAWY 90N exclude B($Z \to \widetilde{\chi}_1^0 \widetilde{\chi}_2^0$) $\gtrsim 3-5 \times 10^{-4}$ assuming $\widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 f \overline{f}$ or $\widetilde{\chi}_1^0 \gamma$ for most accessible masses. These exclude certain regions in model parameter space, see their Fig. 7.
- $^{86}\,\mathrm{BAER}$ 90 is independent of decay modes. Limit from analysis of supersymmetric parameter space restrictions implied by $\Delta\Gamma(Z) < 120$ MeV. These result from decays of Z to all combinations of $\widetilde{\chi}_i^\pm$ and $\widetilde{\chi}_i^0$. Minimal supersymmetry with $\tan\beta>1$ is assumed.
- ⁸⁷ See Figs. 4, 5 in BARKLOW 90 for the excluded regions.
- $^{88}\,\text{DECAMP}$ 90K exclude certain regions in model parameter space, see their figures.
- ⁸⁹ SAKAI 90 assume $m_{\widetilde{H}_1^0}=0$. The limit is for $m_{\widetilde{H}_2^0}$.
- ⁹⁰ Pure $\widetilde{\gamma}$ and pure \widetilde{Z} eigenstates. B($\widetilde{Z} \to q \overline{q} \widetilde{\gamma}$) = 0.60 and B($\widetilde{Z} \to e^+ e^- \widetilde{\gamma}$) = 0.13. $m_{\widetilde{e}_L} = m_{\widetilde{e}_R} < 70$ GeV. $m_{\widetilde{\gamma}} < 10$ GeV.
- 91 Pure $\widetilde{\gamma}$ and pure \widetilde{Z} eigenstates. $\mathsf{B}(\widetilde{Z} \to q \overline{q} \widetilde{g}) = 1$. $m_{\widetilde{e}_L} = m_{\widetilde{e}_R} < 70$ GeV. $m_{\widetilde{\gamma}} = 0$.
- $^{92}\,\mathrm{Pure}$ higgsino. The LSP is the other higgsino and is taken massless. Limit degraded if $\widetilde{\chi}^0$ not pure higgsino or if LSP not massless.
- 93 Pure $\widetilde{\gamma}$ and pure \widetilde{Z} eigenstates. B $(\widetilde{Z} \to \widetilde{\nu} \nu) = 1$. $m_{\widetilde{e}_L} = m_{\widetilde{e}_R} = 26$ GeV. $m_{\widetilde{\gamma}} = 10$ GeV. No excluded region remains for $m_{\widetilde{e}} > 30$ GeV.
- 94 AKERLOF 85 is e^+e^- monojet search motivated by UA1 monojet events. Observed only one event consistent with $e^+e^- \to \widetilde{\gamma} + \widetilde{\chi}^0$ where $\widetilde{\chi}^0 \to$ monojet. Assuming that missing- p_T is due to $\widetilde{\gamma}$, and monojet due to $\widetilde{\chi}^0$, limits dependent on the mixing and $m_{\widetilde{e}}$ are given, see their figure 4.
- ⁹⁵ BARTEL 85L assume $m_{\widetilde{H}_1^0}=0$, $\Gamma(Z\to\widetilde{H}_1^0\widetilde{H}_2^0)\gtrsim \frac{1}{2}\;\Gamma(Z\to\nu_e\overline{\nu}_e)$. The limit is for $m_{\widetilde{H}_{2}^{0}}$.

- 96 BEHREND 85 find no monojet at $E_{\rm cm}=$ 40–46 GeV. Consider $\widetilde{\chi}^0$ pair production via Z^0 . One is assumed as massless and escapes detector. Limit is for the heavier one, decaying into a jet and massless $\widetilde{\chi}^0$. Both $\widetilde{\chi}^0$'s are assumed to be pure higgsino. For these very model-dependent results, BEHREND 85 excludes m=1.5–19.5 GeV.
- 97 ADEVA 84B observed no events with signature of acoplanar lepton pair with missing energy. Above example limit is for $m_{\widetilde{\gamma}}$ <2 GeV and $m_{\widetilde{e}}$ <40 GeV, and assumes
- B($\widetilde{Z} \to \mu^+ \mu^- \widetilde{\gamma}$) = B($\widetilde{Z} \to e^+ e^- \widetilde{\gamma}$) = 0.10. BR = 0.05 gives 33.5 GeV limit. 98 BARTEL 84C search for $e^+ e^- \to \widetilde{Z} + \widetilde{\gamma}$ with $\widetilde{Z} \to \widetilde{\gamma} + e^+ e^-$, $\mu^+ \mu^-$, $q \overline{q}$, etc. They see no acoplanar events with missing- p_T due to two $\widetilde{\gamma}$'s. Above example limit is for $m_{\widetilde{e}}$

= 40 GeV and for light stable $\tilde{\gamma}$ with B($\tilde{Z} \rightarrow e^+e^-\tilde{\gamma}$) = 0.1.

⁹⁹ ELLIS 84 find if lightest neutralino is stable, then $m_{\widetilde{\chi}^0}$ not 100 eV – 2 GeV (for $m_{\widetilde{q}}=40$ GeV). The upper limit depends on $m_{\widetilde{q}}$ (similar to the $\widetilde{\gamma}$ limit) and on nature of $\widetilde{\chi}^0$. For pure higgsino the higher limit is 5 GeV.

$\widetilde{\chi}_1^{\pm}$, $\widetilde{\chi}_2^{\pm}$ (Charginos) MASS LIMITS

Charginos $(\widetilde{\chi}^{\pm})$'s) are unknown mixtures of w-inos and charged higgsinos (the supersymmetric partners of W and Higgs bosons). Mass limits are relatively model dependent, so assumptions concerning branching ratios need to be specified. When specific assumptions are made, e.g. the chargino is a pure w-ino (\widetilde{W}) or pure charged higgsino (\widetilde{H}^{\pm}) , the charginos will be labelled as such.

In the Listing below, we use $\Delta m_+ = m_{\widetilde{\chi}_1^\pm} - m_{\widetilde{\chi}_1^0} \, \Delta m_{\nu} = m_{\widetilde{\chi}_1^\pm} - m_{\widetilde{\nu}}$, or simply Δm to indicate that the constraint applies to both Δm_+ and Δm_{ν} .

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
> 90.0	95	¹⁰⁰ ABBIENDI	99G OPAL	tan $eta{=}1.5$, $\Delta m_{+}~>~5$ GeV,
				<i>m</i> 0=500 Ge√
> 69.1	95	¹⁰⁰ ABBIENDI	99G OPAL	tan β =1.5, $\Delta m_+ >$ 5 GeV, all m_0
> 89.4	95	¹⁰¹ ABREU	99E DLPH	$\Delta m_+ > 10$ GeV, $m_{\widetilde{ u}} > 300$ GeV
> 88.8	95	¹⁰¹ ABREU		$\Delta m_{+}^{\prime} > 5$ GeV, $m_{\widetilde{\nu}} > 41$ GeV
> 69.2	95	¹⁰² ACCIARRI	98F L3	$ aneta^{'} < 1.41$
> 68	95	¹⁰³ BARATE	98X ALEP	$ an\!eta\!=\!1.41$
> 64	95	¹⁰⁴ ACCIARRI	96F L3	$e^+e^- ightarrow ~\widetilde{\chi}^+\widetilde{\chi}^-$, $m_{\widetilde{\chi}0} <$ 43 GeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

o o o o o o o o o o o o o o o o o o o	iot asc	the following data is	or averages, i	res, mines, ecc. e e e
> 90.5	95	¹⁰⁵ ABREU		$e^+e^- ightarrow~\widetilde{\chi}_1^+\widetilde{\chi}_1^-$, $\widetilde{\chi}_1^0 ightarrow~\gamma\widetilde{G}$
> 82	95	¹⁰⁶ BARATE	99E ALEP	${ m e^+e^-} ightarrow~\widetilde{\chi}_1^+\widetilde{\chi}_1^-$, <i>R</i> -parity viola-
>150	95	¹⁰⁷ ABBOTT	98 D0	$p\overline{p} \xrightarrow{\widetilde{p}} \widetilde{\chi} \widetilde{\chi}, \ \widetilde{\chi} = \widetilde{\chi}_{1,2}^0, \widetilde{\chi}_1^{\pm}, \ \widetilde{\chi}_1^0 \rightarrow$
		100		$\gamma \widetilde{G}$
		¹⁰⁸ ABBOTT	98C D0	$p\overline{p} \rightarrow \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^{0}$
> 81.5	95	¹⁰⁹ ABE	98J CDF	$ \begin{array}{ccc} \rho\overline{\rho} & \to & \widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0 \\ \rho\overline{\rho} & \to & \widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0 \end{array} $
>120	95	¹¹⁰ ABE	98L CDF	$ \rho \overline{\rho} \rightarrow \widetilde{\chi} \widetilde{\chi}, \ \widetilde{\chi} = \widetilde{\chi}_{1,2}^0, \widetilde{\chi}_1^{\pm}, \ \widetilde{\chi}_1^0 \rightarrow$
				$\gamma\widetilde{G}$
> 67.6	95	¹¹¹ ABREU	98 DLPH	$\Delta(m) > 10 \; GeV$
> 71.8	95	¹¹² ABREU	98 DLPH	$e^+e^- ightarrow \widetilde{\chi}^+\widetilde{\chi}^-, \widetilde{\chi}_1^0 ightarrow \widetilde{G} \gamma$
		¹¹³ ACKERSTAFF	98ĸ OPAL	$\widetilde{\chi}^+ \rightarrow \ell^+ E$
> 65.7	95	¹¹⁴ ACKERSTAFF	98L OPAL	$\Delta(m)_{+} > 3 \text{ GeV}$

HTTP://PDG.LBL.GOV

Page 13

> 73	95	¹¹⁵ ACKERSTAFF ¹¹⁶ BARATE	98V OPAL 98S ALEP	light gluino ${ m e^+e^-} ightarrow { ilde \chi}_1^+ { ilde \chi}_1^-$, <i>R</i> -parity viola-
		¹¹⁷ CARENA	97 THEO	tion $g_{\mu}-2$
		¹¹⁸ KALINOWSKI		$^{-}\mu$
		119 ABE	97 THEO	$vv \rightarrow x_1 x_1$ $\approx \pm \approx 0$
. FC 2	٥٦	120 ABREU		$ \rho \overline{ ho} ightarrow \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{\overline{0}} $
> 56.3 > 62	95 95			$e^+e^- \rightarrow \widetilde{\chi}^+\widetilde{\chi}^ e^+e^- \rightarrow \widetilde{\chi}^+\widetilde{\chi}^-$
> 02 > 58.7	95 95	122 ALEXANDER		$e^+e^- \rightarrow \widetilde{\chi}^+\widetilde{\chi}^-$
> 63	95 95	123 BUSKULIC		$e^+e^- \rightarrow \widetilde{\chi}^+\widetilde{\chi}^-$
<i>></i> 00	33	¹²⁴ BUSKULIC	96U ALEP	$e^+e^- ightarrow \widetilde{\chi}_1^+\widetilde{\chi}_1^-$; <i>R</i> -parity viola-
> 44.0	95	125 ADRIANI	93M L3	$Z \stackrel{tion}{ o} \widetilde{\chi}_{+}^{+} \widetilde{\chi}_{-}^{-}, \Gamma(Z)$
> 45.2	95	126 DECAMP	92 ALEP	$Z \to \widetilde{\chi}^+ \widetilde{\chi}^-$, all $m_{\widetilde{\chi}_1^0}$
> 47	95	¹²⁶ DECAMP		$Z \rightarrow \widetilde{\chi}^+ \widetilde{\chi}^-$.
				$m_{\widetilde{\chi}_1^0}$ <41 GeV
> 99	95	¹²⁷ HIDAKA	91 RVUE	
> 44.5	95	¹²⁸ ABREU		
				$Z \rightarrow \widetilde{\chi}^+ \widetilde{\chi}^-, m_{\widetilde{\gamma}} < 20 \text{ GeV}$
> 45	95	¹²⁹ AKESSON	90B UA2	$p\overline{p} \rightarrow ZX$
		130		$(Z \rightarrow \widetilde{W}^+\widetilde{W}^-)$
> 45	95	¹³⁰ AKRAWY	90D OPAL	$e^{+}e^{-} \rightarrow \widetilde{\chi}^{+}\widetilde{\chi}^{-};$ $m_{\widetilde{\gamma}} < 20 \text{ GeV}$
> 45	95	¹³¹ BARKLOW	00 MRK2	$Z \rightarrow \widetilde{W}^+ \widetilde{W}^-$
> 42	95 95	132 BARKLOW		$Z \rightarrow \widetilde{H}^+\widetilde{H}^-$
> 44.5	95	133 DECAMP		
,				$e^+e^- \rightarrow \tilde{\chi}^+\tilde{\chi}^-; m_{\tilde{\gamma}} < 28 \text{ GeV}$
> 25.5	95	¹³⁴ ADACHI	89 TOPZ	$e^+e^- ightarrow \widetilde{\chi}^+\widetilde{\chi}^-$
> 44	95	¹³⁵ ADEVA	89B L3	$e^+e^- ightarrow \ \widetilde{W}^+\widetilde{W}^-$,
. 45	00	¹³⁶ ANSARI	075 1140	$\widetilde{W} ightarrow \ell \widetilde{ u}$ or $\ell \nu \widetilde{\gamma}$
> 45	90	- ANSAKI	87D UA2	$p\overline{p} \rightarrow ZX$ $(Z \rightarrow \widetilde{W}^{+}\widetilde{W}^{-}, \widetilde{W}^{\pm} \rightarrow$
				$(Z \rightarrow VV + VV , VV + \rightarrow e^{\pm}\widetilde{\nu})$
				· ν)

ABBIENDI 99G searches for both chargino and neutralino production in data collected at \sqrt{s} =181–184 GeV. The production cross sections and decay branching ratios are evaluated within the MSSM, with common scalar gaugino masses at the GUT scale. The parameter space is scanned in the domain 0 < M_2 < 2000 GeV, $|\mu|$ < 500 GeV, and for various values of A. No dependence of the limits on A is found. The analysis includes the effects of gaugino cascade decays. In the case of radiative neutralino decays, the limits from ACKERSTAFF 98J are assumed. The limit for all values of m_0 assumes $m_{\widetilde{\nu}_e} > 43$ GeV and direct limits on charged sleptons. See Table 5 for limits under different assumptions on Δm_+ and $\tan\beta$.

 101 ABREU 99E searches for both chargino and neutralino production in data collected at $\sqrt{s}{=}183$ GeV. These results include and update the limits from ABREU 98. The production cross sections and decay branching ratios are evaluated within the MSSM, with common scalar and gaugino masses at the GUT scale. The parameter space is scanned in the domain 0 $<\!M_2$ < 3000 GeV, $|\mu|$ < 400 GeV, $1{<}{\tan\beta}$ < 35. The analysis includes the effects of gaugino cascade decays. In the case of radiative neutralino decays, the limits from ABREU 97J are assumed.

- 102 ACCIARRI 98F evaluates production cross sections and decay branching ratios within the MSSM, and includes in the analysis the effects of gaugino cascade decays. The limit is obtained for $0 < M_2 < 2000$, $\tan \beta < 1.41$, and $\mu = -200$ GeV, and holds for all values of m_0 . No dependence on the trilinear-coupling parameter A is found. It improves to 84 GeV for large sneutrino mass, at μ =-200 GeV. See the paper for limits obtained with specific assumptions on the gaugino/higgsino composition of the state. Data taken at $\sqrt{s} = 130-172 \text{ GeV}.$
- $103\,\mathrm{BARATE}$ 98X limit assumes the universal scalar mass at the GUT scale to calculate the chargino branching fractions, and uses the results of the search for both chargino and neutralino production. It holds for all values of m_0 consistent with the slepton mass limits of BARATE 97N. The limit improves to 79 GeV for a mostly higgsino $\widetilde{\chi}_1^{\pm}$ (with $\Delta(m)>$ 5 GeV) and to 85.5 GeV for a mostly gaugino $\widetilde{\chi}_1^\pm$ ($\mu=-500$ GeV and $m_{\widetilde{
 u}}>200$ GeV). Limits for values of $\tan \beta > 1.41$ tend to be stronger. The cases of $m_{\widetilde{\chi}_1^\pm}^{\pm} > m_{\widetilde{\nu}}$ or nonuniversal scalar mass or nonuniversal gaugino mass are also studied in the paper. Data collected at \sqrt{s} =161–172 GeV.
- $^{104}\,\mathrm{ACCIARRI}$ 96F assume $m_{\widetilde{\nu}}$ >200 GeV and $m_{\widetilde{\chi}_1^\pm} < \!\! m_{\widetilde{\chi}_2^0}.$ See their Fig. 4 for excluded regions in the $(m_{\widetilde{\chi}^{\pm}}, m_{\widetilde{\chi}^0})$ plane. Data taken at $\sqrt{s}=130$ –136 GeV.
- 105 This ABREU 99E limit holds for $\Delta m_0 > 10$ GeV and $m_{\widetilde{\nu}} > 300$ GeV. For the other assumptions, see previous footnote to ABREU 99E in this Section. A limit of 90.6 GeV is obtained for $\Delta m_{+} = 1$ GeV and $m_{\widetilde{\nu}} > 41$ GeV.
- $^{106}\,\mathrm{BARATE}$ 99E looked for the decay of charginos via R-violating couplings LQD. The bound holds for $\tan\beta$ =1.41, m_0 =500 GeV, and is reduced to 56 GeV for m_0 =80 GeV (in the case of decays via a neutralino), and to 51 GeV for m_0 =70 GeV (in the case of direct *R*-violating decays). Data collected at \sqrt{s} =130–172 GeV.
- $107\,\mathrm{ABBOTT}$ 98 studied the chargino and neutralino production, where the lightest neutralino in their decay products further decays into γ G. The limit assumes the gaugino mass unification.
- 108 ABBOTT 98C searches for trilepton final states ($\ell = e, \mu$). Efficiencies are calculated using mass relations in the Minimal Supergravity scenario, exploring the domain of parameter space defined by $m_{\widetilde{\chi}_1^\pm}=m_{\widetilde{\chi}_2^0}$ and $m_{\widetilde{\chi}_1^\pm}=2m_{\widetilde{\chi}_1^0}$. Results are presented in Fig. 1 as upper
 - bounds on $\sigma(p\overline{p}\to\widetilde{\chi}_1^\pm\widetilde{\chi}_2^0)\times \mathsf{B}(3\ell)$. Assuming equal branching ratio for all possible leptonic decays, limits range from 2.6 pb ($m_{\widetilde{\chi}_1^\pm}$ =45 GeV) to 0.4 pb ($m_{\widetilde{\chi}_1^\pm}$ =124 GeV) at
 - 95%CL. Assuming a negligible decay rate of $\widetilde{\chi}_1^\pm$ and $\widetilde{\chi}_2^0$ to quarks, this corresponds to $m_{\widetilde{\chi}_1^{\pm}} > 103 \text{ GeV}.$
- 109 ABE 98J searches for trilepton final states ($\ell = e, \mu$). Efficiencies are calculated using mass relations in the Minimal Supergravity scenario, exploring the domain of parameter space defined by 1.1 <taneta < 8, -1000 < μ (GeV)< -200, and $m_{\widetilde{q}}/m_{\widetilde{g}}$ =1-2. In this region $m_{\widetilde{\chi}_1^\pm} \sim m_{\widetilde{\chi}_2^0}$ and $m_{\widetilde{\chi}_1^\pm} \sim 2 m_{\widetilde{\chi}_1^0}$. Results are presented in Fig. 1 as upper bounds on $\sigma(p\overline{p} \to \widetilde{\chi}_1^\pm \widetilde{\chi}_2^0) \times \mathsf{B}(3\ell)$. Limits range from 0.8 pb $(m_{\widetilde{\chi}_1^\pm} = 50 \text{ GeV})$ to
 - 0.23 pb $(m_{\widetilde{\chi}_1^\pm} = 100 \text{ GeV})$ at 95%CL. The gaugino mass unification hypothesis and the
 - assumed mass relation between squarks and gluinos define the value of the leptonic branching ratios. The quoted result corresponds to the best limit within the selected range of parameters, obtained for $m_{\widetilde{q}} > m_{\widetilde{g}}$, $\tan \beta = 2$, and $\mu = -600$ GeV. Mass limits for different values of $\tan\!\beta$ and μ are given in Fig. 2.
- $^{110}\,\mathrm{ABE}$ 98L looked for chargino and neutralino production, where the lightest neutralino in their decay products further decays into $\gamma \, \widetilde{\it G}$. The limit assumes the gaugino mass unification, and holds for 1 <tan β < 25, M_2 < 200 GeV, and all μ .

- ABREU 98 uses data at \sqrt{s} =161 and 172 GeV. The universal scalar mass at the GUT scale is assumed to compute branching fractions and mass spectrum. The limit is for 41 $< m_{\widetilde{\nu}} <$ 100 GeV, and $\tan \beta$ =1–35. The limit improves to 84.3 GeV for $m_{\widetilde{\nu}} >$ 300 GeV. For $\Delta(m)_+$ below 10 GeV, the limit is independent of $m_{\widetilde{\nu}}$, and is given by 80.3 GeV for $\Delta(m)_+ = 5$ GeV, and by 52.4 GeV for $\Delta(m)_+ = 3$ GeV.
- 112 ABREU 98 uses data at \sqrt{s} =161 and 172 GeV. The universal scalar mass at the GUT scale is assumed to compute branching fractions and mass spectrum, and the radiative decay of the lightest neutralino into gravitino is assumed. The limit is for $\Delta(m) > 10$ GeV, 41 $< m_{\widetilde{\nu}} < 100$ GeV, and $\tan \beta$ =1–35. The limit improves to 84.5 GeV if either $m_{\widetilde{\nu}} > 300$ GeV, or $\Delta(m)_+$ =1 GeV independently of $m_{\widetilde{\nu}}$.
- ¹¹³ ACKERSTAFF 98K looked for dilepton+ $\not\!\!E_T$ final states at \sqrt{s} =130–172 GeV. Limits on $\sigma(e^+e^- \to \widetilde{\chi}_1^+ \widetilde{\chi}_1^-) \times B^2(\ell)$, with $B(\ell)=B(\chi^+ \to \ell^+ \nu_\ell \chi_1^0)$ ($B(\ell)=B(\chi^+ \to \ell^+ \widetilde{\nu}_\ell)$), are given in Fig. 16 (Fig. 17).
- 114 ACKERSTAFF 98L evaluates production cross sections and decay branching ratios within the MSSM, and includes in the analysis the effects of gaugino cascade decays. The limit is obtained for $0 < M_2 < 1500$, $|\mu| < 500$ and $\tan\beta > 1$, but remains valid outside this domain. The dependence on the trilinear-coupling parameter A is studied, and found neglibible. The limit holds for the smallest value of m_0 consistent with scalar lepton constraints (ACKERSTAFF 97H) and for all values of m_0 where the condition $\Delta m_{\widetilde{\nu}} > 2.0$ GeV is satisfied. $\Delta m_{\nu} > 10$ GeV if $\widetilde{\chi}^{\pm} \to \ell \widetilde{\nu}_{\ell}$. The limit improves to 84.5 GeV for m_0 =1 TeV. Data taken at \sqrt{s} =130–172 GeV.
- 115 ACKERSTAFF 98V excludes the light gluino with universal gaugino mass where charginos, neutralinos decay as $\widetilde{\chi}_1^{\pm}$, $\widetilde{\chi}_2^0 \rightarrow q \overline{q} \widetilde{g}$ from total hadronic cross sections at \sqrt{s} =130–172 GeV. See paper for the case of nonuniversal gaugino mass.
- ¹¹⁶ BARATE 98S looked for the decay of charginos via *R*-violating coupling *LLE*. The bound improves to 78 GeV if the chargino decays into neutralino which further decays into lepton pairs. Data collected at \sqrt{s} =130–172 GeV.
- ¹¹⁷ CARENA 97 studied the constraints on chargino and sneutrino masses from muon g-2. The bound can be important for large $\tan \beta$.
- Invisible," i.e., if $\widetilde{\chi}_1^\pm$ dominantly decays into $\widetilde{\nu}_\ell \ell^\pm$ with little energy for the lepton. Small otherwise allowed regions could be excluded.
- 119 ABE 96K looked for tripleton events from chargino-neutralino production. The bound on $m_{\widetilde{\chi}_1^\pm}$ can reach up to 47 GeV for specific choices of parameters. The limits on the combined production cross section times 3-lepton branching ratios range between 1.4 and 0.4 pb, for $45 < m_{\widetilde{\chi}_1^\pm} (\text{GeV}) < 100$. See the paper for more details on the parameter dependence of the results.
- 120 ABREU 96L assumes the dominance of off-shell W-exchange in the chargino decay and $\Delta(m)>$ 10 GeV. The bound is for the smallest $\widetilde{\ell}$, $\widetilde{\nu}$ mass allowed by LEP, provided either $m_{\widetilde{\nu}}>m_{\widetilde{\chi}^{\pm}}$ or $m_{\widetilde{\chi}^{\pm}}-m_{\widetilde{\nu}}>$ 10 GeV. 1<tan $\beta<$ 35. For a mostly higgsino $\widetilde{\chi}^+$ ($m_{\widetilde{\chi}^{\pm}}-m_{\widetilde{\nu}}>$ 5 GeV) the limit is 63.8 GeV, independently of the $\widetilde{\ell}$ masses. Data taken at $\sqrt{s}=1$ 30–136 GeV.
- 121 ACKERSTAFF 96C assumes the dominance of off-shell W-exchange in the chargino decay and applies for $\Delta(m)>10$ GeV in the region of parameter space defined by: $M_2<1500$ GeV, $|\mu|<500$ GeV and $\tan\beta>1.5$. The bound is for the smallest $\widetilde{\ell},\widetilde{\nu}$ mass allowed by LEP, with the efficiency for $\widetilde{\chi}^\pm\to\widetilde{\nu}\nu$ decays set to zero. The limit improves to 78.5 GeV for $m_0=1$ TeV. Data taken at $\sqrt{s}=130,136$, and 161 GeV.
- ¹²² ALEXANDER 96J assumes a universal scalar mass m_0 at the grand unification scale. The bound is for the smallest possible value of m_0 alowed by the LEP $\widetilde{\ell}$, $\widetilde{\nu}$ mass limits.

- 1.5 < aneta < 35. Branching fractions are calculated using minimal supergravity. The bound is for $\Delta(m) > 10$ GeV. The limit improves to 65.4 GeV for $m_0 = 1$ TeV. Data taken at $\sqrt{s} = 130 136$ GeV.
- 123 BUSKULIC 96K assumes the dominance of off-shell W-exchange in the chargino decay and applies throughout the (M_2,μ) plane for $1.41 < \tan\beta < 35$ provided either $m_{\widetilde{\nu}} > m_{\widetilde{\chi}^\pm}$ and $m_{\widetilde{\chi}^\pm} m_{\widetilde{\chi}^0_1} > 4$ GeV, or $m_{\widetilde{\chi}^\pm} m_{\widetilde{\nu}} > 4$ GeV. The limit improves to 67.8 GeV for a pure gaugino $\widetilde{\chi}^\pm$ and $m_{\widetilde{\nu}} > 200$ GeV. Data taken at $\sqrt{s} = 130-136$ GeV.
- $^{124}\,\text{BUSKULIC}$ 96U searched for pair-produced charginos which decay into $\widetilde{\chi}^0_1$ with either leptons or hadrons, where $\widetilde{\chi}^0_1$ further decays leptonically via R-parity violating interactions. See their Fig. 5 for excluded region in the neutralino-chargino parameter space. Data taken at $\sqrt{s}=130\text{--}136$ GeV.
- 125 ADRIANI 93M limit from $\Delta\Gamma(Z)$ < 35.1 MeV. For pure wino, the limit is 45.5 GeV.
- ¹²⁶ DECAMP 92 limit is for a general $\tilde{\chi}^{\pm}$ (all contents).
- 127 HIDAKA 91 limit obtained from LEP and preliminary CDF limits on the gluino mass (as analyzed in BAER 91).
- ¹²⁸ ABREU 90G limit is for a general $\tilde{\chi}^{\pm}$. They assume charginos have a three-body decay such as $\ell^+ \nu \tilde{\gamma}$.
- $^{129}\, {\rm AKESSON}$ 90B assume $\widetilde{W} \to e \widetilde{\nu}$ with B > 20% and $m_{\widetilde{\nu}}=$ 0. The limit disappears if $m_{\widetilde{\nu}}$ > 30 GeV.
- 130 AKRAWY 90D assume charginos have three-body decay such as $\ell^+ \, \nu \, \widetilde{\gamma}$ (i.e. $m_{\widetilde{\nu}} > m_{\widetilde{\chi}^+}$). A two-body decay, $\widetilde{\chi}^+ \to \, \ell \, \widetilde{\nu}$ would have been seen by their search for acoplanar leptons. The result is independent of the hadronic branching ratio. They search for acoplanar
- electromagnetic clusters and quark jets. 131 BARKLOW 90 assume 100% $\widetilde{W} \to W^* \widetilde{\chi}_1^0$. Valid up to $m_{\widetilde{\chi}_1^0} \lesssim [m_{\widetilde{W}} - 5 \text{ GeV}]$.
- ¹³² BARKLOW 90 assume 100% $\widetilde{H} \rightarrow H^* \widetilde{\chi}_1^0$. Valid up to $m_{\widetilde{\chi}_1^0} \lesssim [m_{\widetilde{H}} 8 \text{ GeV}]$.
- ¹³³ DECAMP 90C assume charginos have three-body decay such as $\ell^+ \nu \widetilde{\gamma}$ (i.e. $m_{\widetilde{\nu}} > m_{\widetilde{\chi}^+}$), and branching ratio to each lepton is 11%. They search for acoplanar dimuons, dielectrons, and μe events. Limit valid for $m_{\widetilde{\gamma}} <$ 28 GeV.
- ADACHI 89 assume only single photon annihilation in the production. The limit applies for arbitrary decay branching ratios with B($\widetilde{\chi} \to e \nu \widetilde{\gamma}$) + B($\widetilde{\chi} \to \mu \nu \widetilde{\gamma}$) + B($\widetilde{\chi} \to \tau \nu \widetilde{\gamma}$) + B($\widetilde{\chi} \to q \overline{q} \widetilde{\gamma}$) = 1 (lepton universality is *not* assumed). The limit is for $m_{\widetilde{\gamma}} = 0$ but a very similar limit is obtained for $m_{\widetilde{\gamma}} = 10$ GeV. For B($\widetilde{\chi} \to q \overline{q} \widetilde{\gamma}$) = 1, the limit increases to 27.8 GeV.
- ADEVA 89B assume for $\ell\nu\widetilde{\gamma}$ ($\ell\widetilde{\nu}$) mode that B(e) = B(μ) = B(τ) = 11% (33%) and search for acoplanar dimuons, dielectrons, and μe events. Also assume $m_{\widetilde{\gamma}} <$ 20 GeV and for $\ell\widetilde{\nu}$ mode that $m_{\widetilde{\nu}} =$ 10 GeV.
- ANSARI 87D looks for high p_T e^+e^- pair with large missing p_T at the CERN $p\overline{p}$ collider at $E_{\rm cm}=546$ –630 GeV. The limit is valid when $m_{\widetilde{\nu}}\lesssim 20$ GeV, ${\sf B}(\widetilde{W}\to e\,\widetilde{\nu}_e)=1/3$, and ${\sf B}(Z\to \widetilde{W}^+\widetilde{W}^-)$ is calculated by assuming pure gaugino eigenstate. See their Fig. 3(b) for excluded region in the $m_{\widetilde{W}}-m_{\widetilde{\nu}}$ plane.

Long-lived $\tilde{\chi}^{\pm}$ (Chargino) MASS LIMITS

Limits on charginos which leave the detector before decaying.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT	
none 2-87.5		137 ABREU	98P DLPH	$m_{\widetilde{\nu}} > 41 \; {\sf GeV}$	
>89.5	95	¹³⁸ ACKERSTAFF	98P OPAL	-	

• • • We do not use the following data for averages, fits, limits, etc. • •

>80	95	¹³⁹ ABREU	97D DLPH
>83	95	¹⁴⁰ BARATE	97K ALEP
>45	95	ABREU	90G DLPH
>28.2	95	ADACHI	90C TOP7

¹³⁷ ABREU 98P searches for production of pairs of heavy, charged particles in e^+e^- annihilation at \sqrt{s} =130–183 GeV. The upper bound improves to 89.5 GeV for $m_{\widetilde{\nu}}>$ 200 GeV. These limits include and update the results of ABREU 97D.

$\widetilde{\nu}$ (Sneutrino) MASS LIMIT

The limit depends on the number, $N(\widetilde{\nu})$, of sneutrinos assumed to be degenerate in mass. Only $\widetilde{\nu}_L$ (not $\widetilde{\nu}_R$) exist. It is possible that $\widetilde{\nu}$ could be the lightest supersymmetric particle (LSP).

'OUR LIMIT' is based on the limit on invisible Z decays $\Delta\Gamma_{\mbox{inv.}} < 2.8$ MeV taken from the LEP/SLD Electroweak Working Group (LEP 99) , and assumes three degenerate $\widetilde{\nu}$'s.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
> 44.4 (CL =	= 95%)	OUR LIMIT			
> 43.1	95	¹⁴¹ ELLIS	96 B	RVUE	$\Gamma(Z \rightarrow \text{invisible}); N(\widetilde{\nu})=3$
> 41.8	95	¹⁴² ADRIANI	93M	L3	$\Gamma(Z \rightarrow \text{invisible}); N(\widetilde{\nu})=3$
> 37.1	95	¹⁴² ADRIANI	93M	L3	$\Gamma(Z \rightarrow \text{invisible}); N(\widetilde{\nu})=1$
> 41	95	¹⁴³ DECAMP	92	ALEP	$\Gamma(Z \rightarrow \text{invisible}); N(\widetilde{\nu})=3$
> 36	95	ABREU	91F	DLPH	$\Gamma(Z \rightarrow \text{invisible}); N(\widetilde{\nu})=1$
> 32	95				$\Gamma(Z)$; $N(\widetilde{\nu})=1$
> 31.2	95	¹⁴⁵ ALEXANDER	91F	OPAL	$\Gamma(Z o \text{ invisible}); N(\widetilde{\nu})=1$
 • • We do r 	not use	the following data for	or ave	rages, f	its, limits, etc. • • •
none 100-215	95	¹⁴⁶ ABBIENDI	99	OPAL	$\widetilde{ u}_{\mu, au}$, <i>R</i> -parity violation
none 100-195	95	¹⁴⁷ ABBIENDI	99	OPAL	
none 100-160	95	¹⁴⁸ ABBIENDI	99	OPAL	$\widetilde{\nu}_{m{e}}$, <i>R</i> -parity violation
> 51	95	¹⁴⁹ BARATE		ALEP	
> 49	95	¹⁵⁰ BARATE	98 S	ALEP	
> 58	95	¹⁵⁰ BARATE	98 S	ALEP	$\widetilde{\nu}_{e}$, R-parity violation
\neq m $_{Z}$	95	¹⁵¹ ACCIARRI	97 U	L3	<i>R</i> -parity violation
none 125–180	95	¹⁵¹ ACCIARRI	97 U	L3	R-parity violation
		¹⁵² CARENA	97	THEO	$g_{\mu}-2$
> 46.0	95	¹⁵³ BUSKULIC	95E	ALEP	$N(\widetilde{\nu})=1, \ \widetilde{\nu} \rightarrow \nu \nu \ell \overline{\ell}'$
none 20-25000)	¹⁵⁴ BECK	94	COSM	Stable $\widetilde{\nu}$, dark matter
<600		¹⁵⁵ FALK	94	COSM	$\widetilde{ u}$ LSP, cosmic abundance
none 3–90	90	¹⁵⁶ SATO	91	KAMI	Stable $\widetilde{ u}_{\mathbf{e}}$ or $\widetilde{ u}_{\mu}$,
nana 4 00	00	¹⁵⁶ SATO	01	IZ A B A I	dark matter
none 4–90	90	157 ADEVA		KAMI	,
> 31.4	95 05	157 ADEVA		L3	,, , ,
> 39.4	95	ADEVA	901	L3	$\Gamma(Z \to \text{invisible}); N(\widetilde{\nu})=3$

 $^{^{138}}$ ACKERSTAFF 98P bound assumes a heavy sneutrino $m_{\widetilde{\nu}} >$ 500 GeV. Data collected at $\sqrt{s} = 130$ –183 GeV.

¹³⁹ ABREU 97D bound applies only to masses above 45 GeV. Data collected in e^+e^- collisions at \sqrt{s} =130–172 GeV. The limit improves to 84 GeV for $m_{\widetilde{\nu}} >$ 200 GeV.

¹⁴⁰ BARATE 97K uses e^+e^- data collected at $\sqrt{s}=130$ –172 GeV. Limit valid for $\tan\beta=\sqrt{2}$ and $m_{\widetilde{\nu}}>100$ GeV. The limit improves to 86 GeV for $m_{\widetilde{\nu}}>250$ GeV.

- ¹⁴¹ ELLIS 96B uses combined LEP data available in the Summer 1995, which constrain the number of neutrino species to N_{ν} =2.991 \pm 0.016.
- ¹⁴² ADRIANI 93M limit from $\Delta\Gamma(Z)$ (invisible)< 16.2 MeV.
- ¹⁴³ DECAMP 92 limit is from Γ(invisible)/Γ($\ell\ell$) = 5.91 ± 0.15 (N_{12} = 2.97 ± 0.07).
- ¹⁴⁴ ABREU 91F limit (>32 GeV) is independent of sneutrino decay mode.
- ¹⁴⁵ ALEXANDER 91F limit is for one species of $\tilde{\nu}$ and is derived from $\Gamma(\text{invisible, new})/\Gamma(\ell\ell)$ < 0.38.
- <0.38. ABBIENDI 99 studied the effect of s- and t-channel τ or μ sneutrino exchange in $e^+\,e^-\to\ e^+\,e^-$ at $\sqrt{s}{=}130{-}183$ GeV, via the R-parity violatin coupling $\lambda_{1j1}L_1L_je_1$ (i=2 or 3). The limits quoted here hold for $\lambda_{1j1}>0.13$. The effect of t-channel electron-sneutrino exchange on rate and asymmetries of $e^+\,e^-\to\ \tau^+\,\tau^-$ leads to weaker limits on the electron sneutrino mass.
- 147 ABBIENDI 99 studied the effect of s-channel τ sneutrino exchange in $e^+e^- \rightarrow \mu^+\mu^-$ at \sqrt{s} =130–183 GeV, in presence of the R-parity violating couplings $\lambda_{i3i}L_iL_{3ei}$ (i=1 and 2), with $\lambda_{131}=\lambda_{232}$. The limits quoted here hold for $\lambda_{131}>0.09$.
- ¹⁴⁸ ABBIENDI 99 studied the effect of *t*-channel electron sneutrino exchange in $e^+e^- \rightarrow \tau^+\tau^-$ at \sqrt{s} =130–183 GeV, in presence of the *R*-parity violating couplings $\lambda_{131}L_1L_3e_1$. The limits quoted here hold for $\lambda_{131}>0.6$.
- ¹⁴⁹ BARATE 99E looked for $\widetilde{\nu}_{\mu}$ pairs with decay $\widetilde{\nu}_{\mu} \to jj$ via *R*-violating coupling $LQ\overline{D}$. Data collected at \sqrt{s} =130–172 GeV.
- $^{150}\, {\rm BARATE}$ 98S looked for $\widetilde{\nu}_\ell$ pairs with decay $\widetilde{\nu}_\ell \to \ell\, \widetilde{\chi}^0_1$, where $\widetilde{\chi}^0_1$ further decays to $\ell^+\ell^-\nu$ via R-violating coupling LLE. The limit assumes $\tan\!\beta\!=\!2$, The bound on $\widetilde{\nu}_e$ is for the higgsino region. It improves to 72 GeV for the gaugino region. Data collected at $\sqrt{s}\!=\!130\text{--}172$ GeV.
- 151 ACCIARRI 97U studied the effect of the s-channel tau-sneutrino exchange in $e^+\,e^-\to e^+\,e^-$ at $\sqrt{s}=m_Z$ and $\sqrt{s}=130$ –172 GeV, via the R-parity violating coupling $\lambda_{131}L_1L_ie_1$. The limits quoted here hold for $\lambda_{131}>0.05$. Similar limits were studied in $e^+\,e^-\to \mu^+\mu^-$ together with $\lambda_{232}L_2L_3e_2$ coupling.
- ¹⁵² CARENA 97 studied the constraints on chargino and sneutrino masses from muon g-2. The bound can be important for large $\tan \beta$.
- ¹⁵³BUSKULIC 95E looked for $Z \to \widetilde{\nu} \overline{\widetilde{\nu}}$, where $\widetilde{\nu} \to \nu \chi_1^0$ and χ_1^0 decays via *R*-parity violating interactions into two leptons and a neutrino.
- ¹⁵⁴ BECK 94 limit can be inferred from limit on Dirac neutrino using $\sigma(\tilde{\nu}) = 4\sigma(\nu)$. Also private communication with H.V. Klapdor-Kleingrothaus.
- ¹⁵⁵ FALK 94 puts an upper bound on $m_{\widetilde{\nu}}$ when $\widetilde{\nu}$ is LSP by requiring its relic density does not overclose the Universe.
- 156 SATO 91 search for high-energy neutrinos from the sun produced by annihilation of sneutrinos in the sun. Sneutrinos are assumed to be stable and to constitute dark matter in our galaxy. SATO 91 follow the analysis of NG 87, OLIVE 88, and GAISSER 86.
- 157 ADEVA 901 limit is from $\Delta N_{
 u} < 0.19$.

\tilde{e} (Selectron) MASS LIMIT

Limits assume $m_{\widetilde{e}_L}=m_{\widetilde{e}_R}$ unless otherwise stated. When the assumption of a universal scalar mass parameter m_0 for \widetilde{e}_L and \widetilde{e}_R is mentioned, the relation between $m_{\widetilde{e}_R}$ and $m_{\widetilde{e}_L}$ can be found in the "Note on Supersymmetry."

In the Listings below, we use $\Delta m = m_{\widetilde{e}} - m_{\widetilde{\chi}^0_1}$.

For decays with final state gravitinos (\widetilde{G}) , $m_{\widetilde{G}}$ is assumed to be negligible relative to all other masses.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
none 45-73.7	95	¹⁵⁸ ABREU	99C DLPH	$m_{\widetilde{\chi}_1^0} <$ 40 GeV, $\widetilde{e}_R^+ \widetilde{e}_R^-$
> 56	95	¹⁵⁹ ACCIARRI	98F L3	$\Delta(m) > 5 \text{ GeV}, \ \widetilde{e}_{R}^{+} \widetilde{e}_{R}^{-}, \ \tan\beta \geq$
> 58.0	95	¹⁶⁰ ACKERSTAFF	98K OPAL	$\Delta(m) > 5$ GeV, $\widetilde{e}_R^+ \widetilde{e}_R^-$
> 78	95	¹⁶¹ BARATE	98K ALEP	$\Delta(m) > 5$ GeV, $\widetilde{e}_R^+ \widetilde{e}_R^-$
• • • We do r	not use	the following data fo	or averages, f	fits, limits, etc. • • •
> 57	95	¹⁶² BARATE	99E ALEP	<i>R</i> -parity violation, $\Delta(m)>10$ GeV
> 77	95	¹⁶³ BARATE	98K ALEP	Any $\Delta(m)$, $\widetilde{e}_R^+\widetilde{e}_R^-$, $\widetilde{e}_R^- \to e \gamma \widetilde{G}$
> 71	95	¹⁶⁴ BARATE	98ĸ ALEP	$\widetilde{e}_{R}^{+}\widetilde{e}_{R}^{-},\widetilde{e}_{R}^{-} ightarrowe\widetilde{G}$, any $ au(\widetilde{e}_{R})$
> 65	95	¹⁶⁵ BARATE	98K ALEP	$\widetilde{e}_R^+\widetilde{e}_{L,R}^-$, $\widetilde{\mu}_R^+\widetilde{\mu}_R^-$, universal scalar
> 64	95	¹⁶⁶ BARATE	98s ALEP	mass <i>R</i> -parity violation
> 77	95	¹⁶⁷ BREITWEG	98 ZEUS	$m_{\widetilde{a}} = m_{\widetilde{e}}, \ m(\widetilde{\chi}_1^0) = 40 \ \text{GeV}$
> 55	95	¹⁶⁸ ACKERSTAFF	97H OPAL	$\Delta(m) > 5 \text{ GeV}, \ \widetilde{e}_R^+ \widetilde{e}_R^-$
> 58	95	¹⁶⁹ BARATE	97N ALEP	$\Delta(m) > 3$ GeV, $\widetilde{e}_R^+ \widetilde{e}_R^-$
> 35	95	¹⁷⁰ BARATE	97N RVUE	\tilde{e}_R , $\Gamma^{\text{inv}}(Z)$
> 50	95	¹⁷¹ ACCIARRI	96F L3	$\Delta(m) > 5$ GeV, $\widetilde{e}^+ \widetilde{e}^-$
> 63	95	¹⁷² AID	96C H1	$m_{\widetilde{q}} = m_{\widetilde{e}}, m_{\widetilde{\chi}_1^0} = 35 \text{ GeV}$
> 50	95	¹⁷³ BUSKULIC	96к ALEP	$\Delta(m) > 10 \text{ GeV}, \ \widetilde{e}_R^+ \widetilde{e}_R^-, \ \mu = 1$
> 63	90	¹⁷⁴ SUGIMOTO	96 AMY	$m_{\widetilde{\gamma}}$ <5 GeV, $\gamma \widetilde{\gamma} \widetilde{\gamma}$
> 77	90	¹⁷⁵ SUGIMOTO	96 RVUE	$m_{\widetilde{\gamma}}^{'} <$ 5 GeV, $\gamma \widetilde{\gamma} \widetilde{\gamma}$
> 46	90	¹⁷⁶ ABE	95A TOPZ	$m_{\widetilde{\gamma}}^{'}$ <5 GeV, $\gamma\widetilde{\gamma}\widetilde{\gamma}$
> 45.6	95	¹⁷⁷ BUSKULIC	95E ALEP	$\widetilde{e} \stackrel{\prime}{ o} e \nu \ell \overline{\ell}'$
> 51.9	90	HOSODA	94 VNS	$m_{\widetilde{\gamma}}$ =0; $\gamma \widetilde{\gamma} \widetilde{\gamma}$
> 45	95	¹⁷⁸ ADRIANI	93M L3	$\Delta(m) > 5$ GeV, $\widetilde{e}_R^+ \widetilde{e}_R^-$
> 45	95	¹⁷⁹ DECAMP	92 ALEP	$\Delta(m) > 4$ GeV, $\widetilde{e}_R^+ \widetilde{e}_R^-$
> 42	95	ABREU	90G DLPH	$m_{\widetilde{\gamma}} < 40 \text{ GeV}; \stackrel{\widetilde{e}}{e} + \stackrel{\widetilde{e}}{e}$
> 38	95	¹⁸⁰ AKESSON	90B UA2	$m_{\widetilde{\gamma}}^{'}=0;\ p\overline{p}\rightarrow\ ZX\ (Z\rightarrow$
				$\widetilde{e}^+\widetilde{e}^-)$

> 43.4	95	181	AKRAWY	90 D	OPAL	$m_{\widetilde{\gamma}} <$ 30 GeV; $\widetilde{e}^+\widetilde{e}^-$
> 38.1	90		BAER	90	RVUE	\widetilde{e}_{I} ; $\Gamma(Z)$; $\tan \beta > 1$
> 43.5	95	183	DECAMP	90 C	ALEP	$m_{\widetilde{\gamma}}$ < 36 GeV; $\widetilde{e}^+\widetilde{e}^-$
>830			GRIFOLS	90	ASTR	$m_{\widetilde{\gamma}}^{'} < 1 \; MeV$
> 29.9	95		SAKAI	90	AMY	$m_{\widetilde{\gamma}}$ < 20 GeV; $\widetilde{e}^+\widetilde{e}^-$
> 29	95		TAKETANI	90	VNS	$m_{\widetilde{\gamma}}$ < 25 GeV; $\widetilde{e}^+\widetilde{e}^-$
> 60		184	ZHUKOVSKII	90	ASTR	$m_{\widetilde{\gamma}}^{'}=0$
> 28	95		ADACHI	89	TOPZ	$m_{\widetilde{\gamma}} \lesssim 0.85 m_{\widetilde{e}}; \ \widetilde{e}^+ \widetilde{e}^-$
> 41	95	186	ADEVA	89 B	L3	$m_{\widetilde{\gamma}}$ < 20 GeV; $\widetilde{e}^+\widetilde{e}^-$
> 32	90	187	ALBAJAR	89	UA1	$p\overline{p} \rightarrow W^{\pm}X$
						$(W^{\pm} \rightarrow \widetilde{e}_{L}\widetilde{\nu})$
		100				$(\widetilde{e}_L ightarrow e \widetilde{\gamma})^{-}$
> 14	90	100	ALBAJAR	89	UA1	$Z \rightarrow \widetilde{e}^+\widetilde{e}^-$
> 53	95 189	,190	HEARTY	89	ASP	$m_{\widetilde{\gamma}}=0; \ \gamma \widetilde{\gamma} \widetilde{\gamma}$
> 50	95		HEARTY	89	ASP	$m_{\widetilde{\gamma}}^{'}<$ 5 GeV; $\gamma\widetilde{\gamma}\widetilde{\gamma}$
> 35	95		HEARTY	89	ASP	$m_{\widetilde{\gamma}}$ <10 GeV; $\gamma \widetilde{\gamma} \widetilde{\gamma}$
> 51.5	90 191	,192	BEHREND	88B	CELL	$m_{\widetilde{\gamma}}^{'}=0$ GeV; $\gamma\widetilde{\gamma}\widetilde{\gamma}$
> 48	90		BEHREND	88 B	CELL	$m_{\widetilde{\gamma}}^{'} < 5 \; GeV; \gamma \widetilde{\gamma} \widetilde{\gamma}$

- ¹⁵⁸ ABREU 99C looked for acoplanar dielectron $+\cancel{E}$ final states at \sqrt{s} = 130–172 GeV. The limit assumes μ =-200 GeV and $\tan\beta$ =1.5 in the calculation of the production cross section, and B($\tilde{e} \rightarrow e \tilde{\chi}_1^0$)=100%. See Fig. 8a for limits on the $(m_{\widetilde{e}_R}, m_{\widetilde{\chi}_1^0})$ plane and for different $\tan\beta$ values. These results include and update limits from ABREU 960.
- 159 ACCIARRI 98F looked for acoplanar dielectron+ $\not\!\!E_T$ final states at \sqrt{s} =130–172 GeV. The limit assumes μ =-200 GeV, and zero efficiecny for decays other than $\tilde{e}_R \to e \tilde{\chi}_1^0$. See their Fig. 6 for the dependence of the limit on $\Delta(m)$.
- ¹⁶⁰ ACKERSTAFF 98K looked for dielectron+ $\not\!\!E$ final states at \sqrt{s} =130–172 GeV. The limit assumes $\mu < -100$ GeV, $\tan \beta$ =35, and zero efficiency for decays other than $\widetilde{e}_R \to e\,\widetilde{\chi}_1^0$. The limit improves to 66.5 GeV for $\tan \beta$ =1.5.
- ¹⁶¹ BARATE 98K looked for acoplanar dielectron $+ \not\!\! E$ final states at $\sqrt{s} = 161$ –184 GeV. The limit assumes $\mu = -200$ GeV and $\tan\beta = 2$ in the calculation of the production cross section, and B($\tilde{e} \rightarrow e \tilde{\chi}_1^0$)=100%. See Fig. 3 for limits on the $(m_{\widetilde{e}_R}, m_{\widetilde{\chi}_1^0})$ plane and for the effect of cascade decays.
- ¹⁶²BARATE 99E looked for \widetilde{e}_R pairs with decay $\widetilde{e}_R \to e \widetilde{\chi}_1^0$, where $\widetilde{\chi}_1^0$ further decays via R-violating coupling $LQ\overline{D}$. The limit assumes gaugino-like $\widetilde{\chi}_1^0$. The limit is 52 GeV for the case of \widetilde{e}_L pair production with $\widetilde{e}_L \to jj$ decay. Data collected at \sqrt{s} =130–172 GeV.
- ¹⁶³ BARATE 98K looked for $e^+e^-\gamma\gamma+\cancel{E}$ final states at $\sqrt{s}=$ 161–184 GeV. The limit assumes $\mu=-200$ GeV and $\tan\beta=2$ for the evaluation of the production cross section. See Fig. 4 for limits on the $(m_{\widetilde{e}_R},m_{\widetilde{\chi}_1^0})$ plane and for the effect of cascade decays.
- ¹⁶⁴ BARATE 98K combines the search for acoplanar dielectrons, electrons with large impact parameters, kinks, and stable heavy charged tracks at \sqrt{s} = 161–184 GeV. The limit assumes no *t*-channel neutralino exchange diagram which can make the bound weaker. See Fig. 5 for limits as a function of the lifetime $\tau(\tilde{e}_R)$.
- ¹⁶⁵BARATE 98K combines the search for acoplanar dileptons and single electrons with universal scalar mass assumption at the GUT scale. The limit holds for all $\Delta(m)$, and assumes μ =-200 GeV and tan β =2 for the evaluation of the \tilde{e} production cross section.

- ¹⁶⁶ BARATE 98S looked for \widetilde{e}_R pairs with decay $\widetilde{e}_R \to e \widetilde{\chi}_1^0$, where $\widetilde{\chi}_1^0$ further decays to $\ell^+\ell^-\nu$ via R-violating coupling LLE. The limit assumes $\tan\beta=2$ and gaugino-like $\widetilde{\chi}_1^0$. Data collected at $\sqrt{s}=130-172$ GeV.
- ¹⁶⁷ BREITWEG 98 used electron+jet events with missing energy and momentum to look for $eq \to \widetilde{e}\widetilde{q}$ via gaugino-like neutralino exchange with decays into $(e\widetilde{\chi}_1^0)(q\widetilde{\chi}_1^0)$. See paper for dependences in $m(\widetilde{q})$, $m(\widetilde{\chi}_1^0)$.
- 168 ACKERSTAFF 97H searched for acoplanar $e^+\,e^-$, assuming the MSSM with universal scalar mass and $\tan\beta{=}1.5$ but conservatively did not take the possible \widetilde{e}_L production into account. The limit improves to 68 GeV for the lightest allowed $\widetilde{\chi}_1^0$, while it disappears for $\Delta(m) < 3$ GeV. The study includes data from $e^+\,e^-$ collisions at $\sqrt{s}{=}161$ GeV, as well as 130–136 GeV (ALEXANDER 97B).
- ¹⁶⁹ BARATE 97N uses e^+e^- data collected at \sqrt{s} =161 and 172 GeV. The limit is for $\tan\beta$ =2. It improves to 75 GeV if $\Delta(m)$ >35 GeV.
- $^{170}\, \rm BARATE$ 97N limit from ALCARAZ 96 limit on Z invisible-decay width and N $_{\nu}=$ 3, independent of decay mode. Limit improves to 41 GeV for degenerate right-handed sleptons.
- 171 ACCIARRI 96F searched for acoplanar electron pairs. The limit is on $m_{\widetilde{e}_R}$, under the assumption of a universal scalar mass in the range 0 < m < 100 GeV. It assumes 0 < M < 200 GeV, $-200 < \mu < 0$ GeV, $\tan\beta = 1.5$. The corresponding limit for for $m_{\widetilde{e}_L}$ is 64 GeV. The bound on $m_{\widetilde{e}_R}$ $(m_{\widetilde{e}_L})$ improves to 58 GeV (70 GeV) for $m_{\widetilde{\chi}_1^0} = 0$. Data taken at $\sqrt{s} = 130-136$ GeV.
- AID 96C used electron+jet events with missing energy and momentum to look for $eq \to \widetilde{e}\,\widetilde{q}$ via neutralino exchange with decays into $(e\,\widetilde{\chi}^0_1)(q\,\widetilde{\chi}^0_1)$. See the paper for dependences on $m_{\widetilde{q}}$, $m_{\widetilde{\chi}^0_1}$.
- 173 BUSKULIC 96K searched for acoplanar electron pairs. The bound disappears for $\Delta(m)$ <10 GeV, while it improves to 59 GeV for $m_{\widetilde{\chi}_1^0}$ =0. If μ is small and the LSP higgsino-dominated, no bound beyond $m_Z/2$ exists. Data taken at \sqrt{s} = 130–136 GeV.
- ¹⁷⁴ SUGIMOTO 96 looked for single photon production from e^+e^- annihilation at \sqrt{s} = 57.8 GeV. The lower bound improves to 65.5 GeV for a massless photino.
- ¹⁷⁵ SUGIMOTO 96 combined FORD 86, BEHREND 88B, HEARTY 89, HOSODA 94, ABE 95A, and SUGIMOTO 96 results. The lower bound improves to 79.3 GeV for a massless photino.
- ¹⁷⁶ ABE 95A looked for single photon production from e^+e^- annihilation at $\sqrt{s}=58$ GeV. The lower bound improves to 47.2 GeV for a massless photino.
- ¹⁷⁷ BUSKULIC 95E looked for $Z \to \widetilde{e}_R^+ \widetilde{e}_R^-$ where $\widetilde{e}_R \to e \chi_1^0$ and χ_1^0 decays via R-parity violating interactions into two leptons and a neutrino.
- 178 ADRIANI 93M used acolinear di-lepton events.
- 179 DECAMP 92 limit improves for equal masses. They looked for acoplanar electrons.
- 180 AKESSON 90B assume $m_{\widetilde{\gamma}}=$ 0. Very similar limits hold for $m_{\widetilde{\gamma}}~\lesssim~$ 20 GeV.
- 181 AKRAWY 90D look for acoplanar electrons. For $m_{\widetilde{e}_L} \gg m_{\widetilde{e}_R}$, limit is 41.5 GeV, for $m_{\widetilde{\gamma}} <$ 30 GeV.
- 182 BAER 90 limit from $\Delta\Gamma(Z)$ (nonhadronic) < 53 MeV. Independent of decay modes. Mininal supersymmetry and $\tan\beta > 1$ assumed.
- 183 DECAMP 90C look for acoplanar electrons. For $m_{\widetilde{e}_L} \gg m_{\widetilde{e}_R}$ limit is 42 GeV, for $m_{\widetilde{\gamma}} <$ 33 GeV.
- 184 ZHUKOVSKII 90 set limit by saying the luminosity of a magnetized neutron star due to massless photino emission by electrons be small compared with its neutrino luminosity.
- ¹⁸⁵ ADACHI 89 assume only photon and photino exchange and $m_{\widetilde{e}_L}=m_{\widetilde{e}_R}$. The limit for the nondegenerate case is 26 GeV.

- ¹⁸⁶ ADEVA 89B look for acoplanar electrons.
- ¹⁸⁷ ALBAJAR 89 limit applies for \widetilde{e}_L when $m_{\widetilde{e}_L}=m_{\widetilde{\nu}_L}$ and $m_{\widetilde{\gamma}}=0$. See their Fig. 55 for the 90% CL excluded region in the $m_{\widetilde{e}_L}-m_{\widetilde{\nu}_L}$ plane. For $m_{\widetilde{\nu}}=m_{\widetilde{\gamma}}=0$, limit is 50 GeV
- GeV. 188 ALBAJAR 89 assume $m_{\widetilde{\gamma}}=$ 0.
- ¹⁸⁹ HEARTY 89 assume $m_{\widetilde{\gamma}}=0$. The limit is very sensitive to $m_{\widetilde{\gamma}}$; no limit can be placed for $m_{\widetilde{\gamma}}\gtrsim 13$ GeV.
- ¹⁹⁰ The limit is reduced to 43 GeV if only one \tilde{e} state is produced (\tilde{e}_L or \tilde{e}_R very heavy).
- 191 BEHREND 88B limits assume pure photino eigenstate and $m_{\widetilde{e}_L} = m_{\widetilde{e}_R}$.
- 192 The 95% CL limit for BEHREND 88B is 47.5 GeV for $m_{\widetilde{\gamma}}=$ 0. The limit for $m_{\widetilde{e}_L}\gg m_{\widetilde{e}_R}$ is 40 GeV at 90% CL.

$\widetilde{\mu}$ (Smuon) MASS LIMIT

Limits assume $m_{\widetilde{\mu}_L} = m_{\widetilde{\mu}_R}$ unless otherwise stated.

In the Listings below, we use $\Delta(m)=m_{\widetilde{\mu}}-m_{\widetilde{\chi}_1^0}$. When limits on $m_{\widetilde{\mu}_R}$ are quoted, it is understood that limits on $m_{\widetilde{\mu}_I}$ are usually at least as strong.

For decays with final state gravitinos (\widetilde{G}) , $m_{\widetilde{G}}$ is assumed to be negligible relative to all other masses.

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
none 45-58.6	95	¹⁹³ ABREU	99c DLPH	$\Delta(m) > 5$ GeV, $\widetilde{\mu}_R^+ \widetilde{\mu}_R^-$
>55	95	¹⁹⁴ ACCIARRI	98F L3	$\Delta(m) > 5$ GeV, $\widetilde{\mu}_R^+ \widetilde{\mu}_R^-$
>55.6	95	¹⁹⁵ ACKERSTAFF	98K OPAL	$\Delta(m) > 4$ GeV, $\widetilde{\mu}_R^+ \widetilde{\mu}_R^-$
>71	95	¹⁹⁶ BARATE	98K ALEP	$\Delta(m) > 5$ GeV, $\widetilde{\mu}_R^+ \widetilde{\mu}_R^-$
ullet $ullet$ We do not	use the	following data for a	verages, fits,	limits, etc. • •
>45	95	¹⁹⁷ BARATE	99E ALEP	<i>R</i> -parity violation, $\Delta(m)>10$
>77	95	¹⁹⁸ BARATE		GeV Any $\Delta(m)$, $\widetilde{\mu}_R^+\widetilde{\mu}_R^-$, $\widetilde{\mu}_R^- o$
>71	95	¹⁹⁹ BARATE	98K ALEP	$\mu\gamma\widetilde{G}$ $\widetilde{\mu}_R^+\widetilde{\mu}_R^-,\widetilde{\mu}_R o\mu\gamma\widetilde{G}$, any $ au(\widetilde{\mu}_R)$
>62	95	²⁰⁰ BARATE	98s ALEP	
>51	95	²⁰¹ ACKERSTAFF	97H OPAL	$\Delta(m) >$ 5 GeV, $\widetilde{\mu}_R^+ \widetilde{\mu}_R^-$
>59	95	²⁰² BARATE	97N ALEP	$\Delta(m) > 10$ GeV, $\widetilde{\mu}_R^+ \widetilde{\mu}_R^-$
>35	95	²⁰³ BARATE	97N RVUE	$\widetilde{\mu}_{R}$, $\Gamma^{inv}(Z)$
>45.6	95	²⁰⁴ BUSKULIC	95E ALEP	$\widetilde{\mu} \to \mu \nu \ell \overline{\ell}'$
>45	95	ADRIANI	93M L3	$m_{\widetilde{\chi}_1^0}$ <40 GeV, $\widetilde{\mu}_R^+\widetilde{\mu}_R^-$

>45	95	DECAMP	92 ALEP	$m_{\widetilde{\chi}_1^0}$ <41 GeV, $\widetilde{\mu}_R^+ \widetilde{\mu}_R^-$
>36	95	ABREU	90G DLPH	$m_{\widetilde{\gamma}}^{-1}$ < 33 GeV; $\widetilde{\mu}^{+}\widetilde{\mu}^{-}$
>43	95	²⁰⁵ AKRAWY	90D OPAL	$m_{\widetilde{\gamma}}$ < 30 GeV; $\widetilde{\mu}^+\widetilde{\mu}^-$
>38.1	90	²⁰⁶ BAER	90 RVUE	$\widetilde{\mu}_L$; $\Gamma(Z)$; $ aneta > 1$
>42.6	95	²⁰⁷ DECAMP		$m_{\widetilde{\gamma}}$ < 34 GeV; $\widetilde{\mu}^+\widetilde{\mu}^-$
>27	95	SAKAI	90 AMY	$m_{\widetilde{\gamma}}^{'} <$ 18 GeV; $\widetilde{\mu}^{+}\widetilde{\mu}^{-}$
>24.5	95	TAKETANI	90 VNS	$m_{\widetilde{\gamma}}^{'} < 15$ GeV; $\widetilde{\mu}^{+}\widetilde{\mu}^{-}$
>24.5	95	²⁰⁸ ADACHI	89 TOPZ	$m_{\widetilde{\gamma}} \lesssim 0.8 m_{\widetilde{\mu}}; \ \widetilde{\mu}^+ \widetilde{\mu}^-$
>41	95	²⁰⁹ ADEVA	89B L3	$m_{\widetilde{\gamma}}$ < 20 GeV; $\widetilde{\mu}^+\widetilde{\mu}^-$

- ¹⁹³ ABREU 99C looked for acoplanar dimuon +E final states at $\sqrt{s}=130$ –172 GeV. The limit assumes B($\widetilde{\mu} \to \mu \widetilde{\chi}_1^0$)=100%. See Fig. 8b for limits on the $(m_{\widetilde{\mu}_R}, m_{\widetilde{\chi}_1^0})$ plane. These results include and update limits from ABREU 960.
- ¹⁹⁴ ACCIARRI 98F looked for dimuon+ \rlap/E_T final states at \sqrt{s} =130–172 GeV. The limit assumes μ =-200 GeV, and zero efficiecny for decays other than $\widetilde{\mu}_R \to \mu \widetilde{\chi}_1^0$. See their Fig. 6 for the dependence of the limit on $\Delta(m)$.
- ¹⁹⁵ ACKERSTAFF 98K looked for dimuon+ $\not\!\!E_T$ final states at \sqrt{s} =130–172 GeV. The limit assumes $\mu < -100$ GeV, $\tan\beta$ =1.5, and zero efficiency for decays other than $\widetilde{\mu}_R \to \mu \widetilde{\chi}_1^0$. The limit improves to 62.7 GeV for B($\widetilde{\mu}_R \to \mu \widetilde{\chi}_1^0$)=1.
- ¹⁹⁶ BARATE 98K looked for acoplanar dimuon $+ \not \!\! E$ final states at $\sqrt{s} = 161$ –184 GeV. The limit assumes B($\widetilde{\mu}_R \to \mu \widetilde{\chi}_1^0$)=1. See Fig. 3 for limits on the $(m_{\widetilde{\mu}_R}, m_{\widetilde{\chi}_1^0})$ plane and for the effect of cascade decays.
- 197 BARATE 99E looked for $\widetilde{\mu}_R$ pairs with decay $\widetilde{\mu}_R \to \mu \widetilde{\chi}^0_1$, where $\widetilde{\chi}^0_1$ further decays via R-violating coupling $L\,Q\,\overline{D}$. The limit is 52 GeV for the case of $\widetilde{\mu}_L$ pair production with $\widetilde{\mu}_L \to jj$ decay. Data collected at $\sqrt{s}{=}130{-}172$ GeV.
- 198 BARATE 98K looked for $\mu^+\mu^-\gamma\gamma+\cancel{E}$ final states at $\sqrt{s}=$ 161–184 GeV. See Fig. 4 for limits on the $(m_{\widetilde{\mu}_R},m_{\widetilde{\chi}_1^0})$ plane and for the effect of cascade decays.
- ¹⁹⁹BARATE 98K combines the search for acoplanar dimuons, muons with large impact parameters, kinks, and stable heavy charged tracks at \sqrt{s} = 161–184 GeV. See Fig. 5 for limits as a function of the lifetime $\tau(\widetilde{\mu}_R)$.
- ²⁰⁰ BARATE 98S looked for $\widetilde{\mu}_R$ pairs with decay $\widetilde{\mu}_R \to \mu \widetilde{\chi}_1^0$, where $\widetilde{\chi}_1^0$ further decays to $\ell^+\ell^-\nu$ via R-violating coupling LLE. The limit assumes $\tan\beta$ =2, Data collected at \sqrt{s} =130–172 GeV.
- $\sqrt{s}{=}130{-}172$ GeV. 201 ACKERSTAFF 97H limit is for $m_{\widetilde{\chi}_1^0} > \!\!12$ GeV allowed by their chargino, neutralino search, and for $\tan\!\beta \geq 1.5$ and $|\mu| > 200$ GeV. The study includes data from $e^+\,e^-$ collisions at $\sqrt{s}{=}161$ GeV, as well as at 130–136 GeV (ALEXANDER 97B).
- ²⁰² BARATE 97N uses e^+e^- data collected at \sqrt{s} =161 and 172 GeV. The limit assumes B($\widetilde{\mu} \to \mu \widetilde{\chi}_1^0$) = 1.
- ²⁰³ BARATE 97N limit from ALCARAZ 96 limit on Z invisible-decay width and N_{ν} =3, independent of decay mode. Limit improves to 41 GeV for degenerate right-handed sleptons.
- ²⁰⁴ BUSKULIC 95E looked for $Z \to \widetilde{\mu}_R^+ \widetilde{\mu}_R^-$, where $\widetilde{\mu}_R \to \mu \chi_1^0$ and χ_1^0 decays via R-parity violating interactions into two leptons and a neutrino.
- $^{205}\, \rm AKRAWY~90D$ look for acoplanar muons. For $m_{\widetilde{\mu}_L} \gg m_{\widetilde{\mu}_R}$, limit is 41.0 GeV, for $m_{\widetilde{\gamma}} < 30$ GeV.
- 206 BAER 90 limit from $\Delta\Gamma(Z)$ (nonhadronic) < 53 MeV. Independent of decay modes. Mininal supersymmetry and $an\!eta > 1$ assumed.

$\widetilde{\tau}$ (Stau) MASS LIMIT

Limits assume $m_{\widetilde{ au}_L} = m_{\widetilde{ au}_R}$ unless otherwise stated.

In the Listings below, we use $\Delta(m)=m_{\widetilde{\tau}}-m_{\widetilde{\chi}_1^0}$. The limits depend on the potentially large mixing angle of the lightest mass eigenstate $\widetilde{\tau}_1=\widetilde{\tau}_R \sin\theta_{\tau}+\widetilde{\tau}_L \cos\theta_{\tau}$. The coupling to the Z vanishes for $\theta_{\tau}=0.82$.

For decays with final state gravitinos (\widetilde{G}) , $m_{\widetilde{G}}$ is assumed to be negligible relative to all other masses.

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
none 45–55	95	²¹⁰ ABREU	99c DLPH	$m_{\widetilde{\chi}_1^0} <$ 34 GeV, $\theta_{ au} = \pi/2$
none 45–52	95	²¹⁰ ABREU	99c DLPH	
>65	95	²¹¹ BARATE	98ĸ ALEP	1
>62	95	²¹¹ BARATE	98K ALEP	$\Delta(m) > 10$ GeV, $ heta_{ au} = 0.82$
• • • We do not	use the	e following data for a	iverages, fits,	limits, etc. • • •
>55	95	²¹² ABREU	99c DLPH	$\widetilde{ au}_{R}^{+}\widetilde{ au}_{R}^{-}$, $\widetilde{ au}_{R} ightarrow \ au\widetilde{ ilde{G}}$, any $ au(\widetilde{ au}_{R})$
>68.5	95	²¹³ ABREU	99F DLPH	$\widetilde{\tau}_R^+\widetilde{\tau}_R^-$, $\widetilde{\tau}_R o \ \tau \widetilde{G}$, any $\tau(\widetilde{\tau}_R)$
>45	95	²¹⁴ BARATE		R-parity violation, $\Delta(m) > 10$
>52	95	²¹⁵ BARATE	98ĸ ALEP	Any $\Delta(m)$, $\theta_{\tau} = \pi/2$, $\widetilde{\tau}_{R} \rightarrow$
		216		au $ au$ $ au$ $ au$
>57	95	²¹⁶ BARATE	98K ALEP	$\widetilde{ au}_R^+\widetilde{\widetilde{ au}_R},\widetilde{ au}_R o\widetilde{ au}_R$, any $ au(\widetilde{ au}_R)$
>56	95	217 BARATE	98s ALEP	R-parity violation
>53	95	²¹⁸ BARATE	97N ALEP	$\Delta(m) >$ 30 GeV, $ heta_{ au}{=}\pi/2$
>47	95	²¹⁸ BARATE	97N ALEP	$\Delta(m)$ $>$ 30 GeV, $\theta_{ au}$ =0.82
>35	95	²¹⁹ BARATE	97N RVUE	$\widetilde{ au}_{R}$, $\Gamma^{inv}(Z)$
>45.6	95	²²⁰ BUSKULIC	95E ALEP	$\widetilde{ au} ightarrow au u \ell \overline{\ell}'$
>44	95	²²¹ ADRIANI	93M L3	$m_{\widetilde{\chi}_1^0}$ <38 GeV, $\widetilde{\tau}^+\widetilde{\tau}^-$
>45	95	²²² DECAMP	92 ALEP	$m_{\widetilde{\chi}_1^0}$ <38 GeV, $\widetilde{\tau}^+\widetilde{\tau}^-$
>35	95	ABREU	90G DLPH	$m_{\widetilde{\gamma}}^{-1} < 25 \text{ GeV}; \ \widetilde{\tau}^{+} \widetilde{\tau}^{-}$
>43.0	95	²²³ AKRAWY	90D OPAL	$m_{\widetilde{\gamma}} <$ 23 GeV; $\widetilde{\tau}^+ \widetilde{\tau}^-$
>38.1	90	²²⁴ BAER	90 RVUE	$\widetilde{ au}_L$; $\Gamma(Z)$; $ aneta > 1$
>40.4	95	²²⁵ DECAMP	90c ALEP	$m_{\widetilde{\gamma}} < 15 \text{ GeV}; \ \widetilde{\tau}^+ \widetilde{\tau}^-$
>25	95	SAKAI	90 AMY	$m_{\widetilde{\gamma}}^{'} <$ 10 GeV; $\widetilde{ au}^{+}\widetilde{ au}^{-}$
>25.5	95	TAKETANI	90 VNS	$m_{\widetilde{\gamma}}^{'} < 15 \text{ GeV}; \ \widetilde{\tau}^{+} \widetilde{\tau}^{-}$
>21.7	95	²²⁶ ADACHI	89 TOPZ	,

²¹⁰ ABREU 99C looked for acoplanar ditaus $+\cancel{E}$ final states at \sqrt{s} = 130–172 GeV. The limit assumes B($\widetilde{\tau}_R \to \tau \widetilde{\chi}_1^0$)=1. See Figs. 4c and 4d for limits on the $(m_{\widetilde{\tau}_R}, m_{\widetilde{\chi}_1^0})$ plane and and as a function of the mixing angle.

 $^{^{207}}$ DECAMP 90C look for acoplanar muons. For $m_{\widetilde{\mu}_L}\gg m_{\widetilde{\mu}_R}$ limit is 40 GeV, for $m_{\widetilde{\gamma}}<30$ GeV.

 $^{^{30}}$ GeV. ADACHI 89 assume only photon exchange, which gives a conservative limit. $m_{\widetilde{\mu}_L}=m_{\widetilde{\mu}_R}$ assumed. The limit for nondegenerate case is 22 GeV.

²⁰⁹ ADEVA 89B look for acoplanar muons.

- ²¹¹ BARATE 98K looked for acoplanar ditaus $+ \cancel{E}$ at $\sqrt{s} = 161$ –184 GeV. The limit assumes zero efficiency for decays other than $\widetilde{\tau}_R \to \tau \widetilde{\chi}_1^0$. See Fig. 3 for limits on the $(m_{\widetilde{\tau}}, m_{\widetilde{\chi}_1^0})$ plane and for the effect of cascade decays.
- ²¹² ABREU 99C combines the search for acoplanar ditaus, taus with large impact parameters, kinks, and stable heavy-charged tracks at \sqrt{s} = 130–172 GeV. See Fig. 11 for limits under different lifetime hypothesis.
- ABREU 99F combines the search for acoplanar ditaus, taus with large impact parameters, kinks, and stable heavy-charged tracks at \sqrt{s} =130–183 GeV. See Fig. 13 for limits under various lifetime scenarios.
- ²¹⁴ BARATE 99E looked for $\widetilde{\tau}_R$ pairs with decay $\widetilde{\tau}_R \to \tau \widetilde{\chi}_1^0$, where $\widetilde{\chi}_1^0$ further decays via R-violating coupling $LQ\overline{D}$. Data collected at \sqrt{s} =130–172 GeV.
- 215 BARATE 98K looked for $\tau^+\tau^-\gamma\gamma+\cancel{E}$ final states at $\sqrt{s}=$ 161–184 GeV. See Fig. 4 for limits on the $(m_{\widetilde{\tau}_R},m_{\widetilde{\chi}_1^0})$ plane and for the effect of cascade decays.
- ²¹⁶ BARATE 98K combines the search for acoplanar ditaus, taus with large impact parameters, kinks, and stable heavy charged tracks at \sqrt{s} = 161–184 GeV. See Fig. 5 for limits as a function of the lifetime $\tau(\tilde{\tau}_R)$.
- ²¹⁷BARATE 98S looked for $\widetilde{\tau}_R$ pairs with decay $\widetilde{\tau}_R \to \tau \widetilde{\chi}_1^0$, where $\widetilde{\chi}_1^0$ further decays to $\ell^+\ell^-\nu$ via R-violating coupling LLE. The limit assumes $\tan\beta=2$, Data collected at $\sqrt{s}=130-172$ GeV.
- 218 BARATE 97N uses e^+e^- data collected at \sqrt{s} =161 and 172 GeV.
- $^{219}\, \rm BARATE$ 97N limit from ALCARAZ 96 limit on Z invisible-decay width and $N_{\nu}{=}3,$ independent of decay mode. Limit improves to 41 GeV for degenerate right-handed sleptons.
- ²²⁰ BUSKULIC 95E looked for $Z \to \widetilde{\tau}_R^+ \widetilde{\tau}_R^-$, where $\widetilde{\tau}_R \to \tau \chi_1^0$ and χ_1^0 decays via R-parity violating interactions into two leptons and a neutrino.
- ²²¹ ADRIANI 93M limit is for $m_{\widetilde{\tau}_L} \gg m_{\widetilde{\tau}_R}$.
- ²²² DECAMP 92 limit is for $m_{\widetilde{\tau}_L}^{\sim} \gg m_{\widetilde{\tau}_R}^{\sim}$; for equal masses the limit would improve. They looked for acoplanar particles.
- ²²³ AKRAWY 90D look for acoplanar particles. For $m_{\widetilde{\tau}_L}\gg m_{\widetilde{\tau}_R}$, limit is 41.0 GeV, for $m_{\widetilde{\gamma}}<$ 23 GeV.
- ²²⁴ BAER 90 limit from $\Delta\Gamma(Z)$ (nonhadronic) < 53 MeV. Independent of decay modes. Mininal supersymmetry and $\tan\beta > 1$ assumed.
- ²²⁵ DECAMP 90C look for acoplanar charged particle pairs. Limit is for $m_{\widetilde{\tau}_L} = m_{\widetilde{\tau}_R}$. For $m_{\widetilde{\gamma}} \leq 24$ GeV, the limit is 37 GeV. For $m_{\widetilde{\tau}_L} \gg m_{\widetilde{\tau}_R}$ and $m_{\widetilde{\gamma}} < 15$ GeV, the limit is 33 GeV.
- 226 ADACHI 89 assume only photon exchange, which gives a conservative limit. $m_{\widetilde{\tau}_L}=m_{\widetilde{\tau}_R}$ assumed.

Long-lived $\widetilde{\ell}$ (Slepton) MASS LIMIT

Limits on scalar leptons which leave detector before decaying. Limits from Z decays are independent of lepton flavor. Limits from continuum e^+e^- annihilation are also independent of flavor for smuons and staus. However, selectron limits from continuum e^+e^- annihilation depend on flavor because there is an additional contribution from neutralino exchange that in general yields stronger limits. All limits assume $m_{\widetilde{\ell}_L} = m_{\widetilde{\ell}_R}$ unless otherwise stated.

HTTP://PDG.LBL.GOV

Page 26

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

>65			ABREU	97 D	DLPH	$\widetilde{\mu}_{R}$, $\widetilde{\tau}_{R}$
>67	95	231	BARATE	97K	ALEP	$\widetilde{\mu}_{R}$, $\widetilde{\tau}_{R}$
>40	95		ABREU	90 G	DLPH	
>26.3	95		ADACHI	90 C	TOPZ	$\widetilde{\mu}$, $\widetilde{ au}$
>38.8	95			900	OPAL	$\widetilde{\ell}_R$
>27.1	95	232	SAKAI	90	AMY	
>32.6	95		SODERSTROM	190	MRK2	
>24.5	95	233	ADACHI	89	TOPZ	

- ABREU 98P searches for production of pairs of heavy, charged particles in e⁺ e⁻ annihilation at \sqrt{s} =130–183 GeV. The upper bound improves to 81 GeV for $\widetilde{\mu}_L, \widetilde{\tau}_L$. These limits include and update the results of ABREU 97D.
- ²²⁸ ACKERSTAFF 98P bound improves to 83.5 GeV for $\widetilde{\mu}_L$, $\widetilde{\tau}_L$. Data collected at $\sqrt{s}=130-183$ GeV.
- The BARATE 98K mass limit improves to 82 GeV for $\widetilde{\mu}_L$, $\widetilde{\tau}_L$. Data collected at \sqrt{s} =161–184 GeV.
- ²³⁰ ABREU 97D bound applies only to masses above 45 GeV. The mass limit improves to 68 GeV for $\widetilde{\mu}_I$, $\widetilde{\tau}_I$. Data collected in e^+e^- collisions at \sqrt{s} =130–172 GeV.
- ²³¹ BARATE 97K uses e^+e^- data collected at $\sqrt{s}=$ 130–172 GeV. The mass limit improves to 69 GeV for $\widetilde{\mu}_L$ and $\widetilde{\tau}_L$.
- 232 SAKAI 90 limit improves to 30.1 GeV for \widetilde{e} if $m_{\widetilde{\gamma}} \approx m_{\widetilde{e}}$.
- ²³³ ADACHI 89 assume only photon (and photino for \widetilde{e}) exchange. The limit for \widetilde{e} improves to 26 GeV for $m_{\widetilde{\gamma}} \approx m_{\widetilde{e}}$.

\tilde{q} (Squark) MASS LIMIT

For $m_{\widetilde{q}} >$ 60–70 GeV, it is expected that squarks would undergo a cascade decay via a number of neutralinos and/or charginos rather than undergo a direct decay to photinos as assumed by some papers. Limits obtained when direct decay is assumed are usually higher than limits when cascade decays are included. The limits from Z decay do not assume GUT relations and are more model independent.

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
> 87	95		BARATE	98N	ALEP	$e^+e^- ightarrow~\widetilde{q}\overline{\widetilde{q}}$
> 224	95	235	ABE	96 D	CDF	$m_{\widetilde{g}_{\perp}} \leq m_{\widetilde{q}}$; with cascade
> 176	95	236	АВАСНІ	95 C	D0	decays Any $m_{\widetilde{g}} < 300$ GeV; with cascade decays
> 212	95	236	ABACHI	95 C	D0	$m_{\widetilde{g}} \leq m_{\widetilde{q}}$; with cascade decays
\bullet \bullet We do not	use the	follo	wing data for a	verag	es, fits,	limits, etc. • •
> 240	95	237	ABBOTT	99	D0	$\widetilde{q} ightarrow \ \widetilde{\chi}_2^0 X ightarrow \ \widetilde{\chi}_1^0 \gamma X, \ \emph{m}_{\widetilde{\chi}_2^0} - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
						$m_{\widetilde{\chi}^0_1} > 20 \text{ GeV}$
> 320	95	237	ABBOTT	99	D0	$\widetilde{q} \to \widetilde{\chi}_1^0 X \to \widetilde{G} \gamma X$
> 140	95	238	ACCIARRI	98J	L3	$e^+e^-\stackrel{ au}{ ightarrow} q\overline{q}$, <i>R</i> -parity viola-
> 140	95	238	ACKERSTAFF	98∨	OPAL	tion, λ =0.3 $e^+e^- o q\overline{q}$, R -parity violation, λ =0.3

> 77		239 BREITWEG	98		$m_{\widetilde{q}} = m_{\widetilde{e}}, \ m(\widetilde{\chi}_1^0) = 40 \text{ GeV}$
		²⁴⁰ DATTA	97	THEO	$\widetilde{\nu}$'s lighter than $\widetilde{\chi}_1^{\pm}$, $\widetilde{\chi}_2^0$
> 216		²⁴¹ DERRICK	97	ZEUS	$e p ightarrow \widetilde{q}, \widetilde{q} ightarrow \mu j { m or} \overline{\tau} j, R$ - parity violation
none 130-573		²⁴² HEWETT	97	THEO	
none 190-650	95 ²	²⁴³ TEREKHOV	97	THEO	$qg o \widetilde{q}\widetilde{g}, \widetilde{q} o q\widetilde{g}, \text{ with a}$ light gluino
> 215		²⁴⁴ AID	96	H1	$ep \to \widetilde{q},R$ -parity violation, $\lambda = 0.3$
> 150		²⁴⁴ AID	96	H1	$ep \to \widetilde{q}, R$ -parity violation, $\lambda = 0.1$
> 63	95 ²	²⁴⁵ AID	96 C	H1	$m_{\widetilde{q}} = m_{\widetilde{e}}, m_{\widetilde{\chi}_1^0} = 35 \text{ GeV}$
none 330-400		²⁴⁶ TEREKHOV	96	THEO	±
		²⁴⁷ ABE	95T	CDF	$\widetilde{q} \rightarrow \widetilde{\chi}_2^0 \rightarrow \widetilde{\chi}_1^0 \gamma$
> 45.3	95 2	²⁴⁸ BUSKULIC	95E	ALEP	$\widetilde{q} \rightarrow q \nu \ell \overline{\ell}'$
> 239	95 ²	²⁴⁹ AHMED	94 B	H1	$ep \rightarrow \widetilde{q}$; R-parity violation,
> 135	95 2	²⁴⁹ AHMED	94 B	H1	λ =0.30 $e p \rightarrow \widetilde{q}$; <i>R</i> -parity violation,
> 35.3	95	²⁵⁰ ADRIANI	93м	L3	$Z \stackrel{\lambda=0.\underline{1}}{ ightarrow \widetilde{u}\widetilde{u}}, \Gamma(Z)$
> 36.8		²⁵⁰ ADRIANI		L3	$Z \rightarrow \widetilde{d} \overline{\widetilde{d}}, \Gamma(Z)$
> 90	90 2	²⁵¹ ABE		CDF	Any $m_{\widetilde{g}}$ <410 GeV; with cas-
,					cade decay
> 218		²⁵² ABE	92L	CDF	$m_{\widetilde{g}} = m_{\widetilde{q}}$; with cascade decay
> 180		²⁵¹ ABE	92L	CDF	$m_{\widetilde{g}} < m_{\widetilde{q}}$; with cascade decay
> 100	2	²⁵³ ROY	92	RVUE	$p\overline{p} \rightarrow \widetilde{q}\widetilde{q}$; <i>R</i> -parity violating
	2	²⁵⁴ NOJIRI	91	COSM	
> 45	95 ²	²⁵⁵ ABREU	90F	DLPH	$Z \rightarrow \widetilde{q}\overline{\widetilde{q}},$
					$m_{\widetilde{\gamma}} \stackrel{<}{<} 20 \; { m GeV}$
> 43	95 2	²⁵⁶ ABREU	90F	DLPH	$Z \rightarrow \widetilde{d}\widetilde{d},$
		057 400511		5.5	$m_{\widetilde{\gamma}} < 20 \text{ GeV}$
> 42	95 4	²⁵⁷ ABREU	90F	DLPH	$Z ightarrow \widetilde{u} \overline{\widetilde{u}}, \ m_{\widetilde{\gamma}} < 20 \mathrm{GeV}$
> 27.0	95	ADACHI	000	TOD7	Stable \widetilde{u} , \widetilde{u}
> 27.0 > 74		258 ALITTI			Any $m_{\widetilde{q}}$;
/ 14	90	ALITII	90	UAZ	$B(\widetilde{q} o q \widetilde{g} or q \widetilde{\gamma}) = 1$
> 106	90 2	²⁵⁸ ALITTI		UA2	$m_{\widetilde{q}} = m_{\widetilde{g}};$
> 39.2	90 2	²⁵⁹ BAER	90	R\/IIE	$B(\widetilde{q} \rightarrow q\widetilde{\gamma}) = 1$ $\widetilde{d}_L; \Gamma(Z)$
	os 260,2	261 BARKLOW	90		$Z \rightarrow \widetilde{q} \overline{\widetilde{q}}$
	os 260 2	262 BARKLOW			
> 40	or 260 2	²⁶³ BARKLOW	90		$Z \rightarrow \widetilde{d}\widetilde{d}$ $Z \rightarrow \widetilde{u}\overline{\widetilde{u}}$
> 39	95 -00,2	GRIFOLS			
>1100					$m_{\widetilde{\gamma}} < 1 \text{ MeV}$
> 24	95	SAKAI		AMY	$e^{+}e^{-} ightarrow \widetilde{d} \overline{\widetilde{d}} ightarrow d \overline{d} \widetilde{\gamma} \widetilde{\gamma}; \ m_{\widetilde{\gamma}} < 10 \text{GeV}$
> 26	95	SAKAI	90	AMY	$e^+e^- \rightarrow \widetilde{u}\overline{\widetilde{u}} \rightarrow u\overline{u}\widetilde{\gamma}\widetilde{\gamma};$ $m_{\widetilde{\gamma}} < 10 \text{ GeV}$

>	26.3	95	264 ADACHI			$e^+e^- \rightarrow \widetilde{q}\overline{\widetilde{q}} \rightarrow q\overline{q}\widetilde{\gamma}\widetilde{\gamma}$
			²⁶⁵ NATH	88	THEO	au(p ightarrow u(K) in supergravity
			266			GUT
>	45	90	²⁶⁶ ALBAJAR	87D	UA1	Any $m_{\widetilde{g}} > m_{\widetilde{a}}$
>	75	90	²⁶⁶ ALBAJAR	87 D	UA1	$m_{\widetilde{g}} = m_{\widetilde{a}}$

- 234 BARATE 98N assumes five degenerate flavors $\widetilde{u}_{L,R}$, $\widetilde{d}_{L,R}$, $\widetilde{c}_{L,R}$, $\widetilde{s}_{L,R}$, $\widetilde{b}_{L,R}$, and their direct decay $\widetilde{q} \to q \widetilde{\chi}_1^0$. The bound applies for $\Delta(m) > 5$ GeV. See Fig. 5 for limits in the $(m_{\widetilde{q}}, m_{\widetilde{\chi}_0})$ plane. Data collected at $\sqrt{s} = 181 184$ GeV.
- ABE 96D searched for production of gluinos and five degenerate squarks in final states containing a pair of leptons, two jets, and missing E_T . The two leptons arise from the semileptonic decays of charginos produced in the cascade decays. The limit is derived for fixed $\tan\beta=4.0,~\mu=-400$ GeV, and $m_{H^+}=500$ GeV, and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity scenario
- 236 ABACHI 95C assume five degenerate squark flavors with $m_{\widetilde{q}_L}=m_{\widetilde{q}_R}$. Sleptons are assumed to be heavier than squarks. The limits are derived for fixed $\tan\beta=2.0~\mu=-250~{\rm GeV}$, and $m_{H^+}{=}500~{\rm GeV}$, and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity scenario. The bounds are weakly sensitive to the three fixed parameters for a large fraction of parameter space. No limit is given for $m_{\rm gluino}>$ 547 GeV.
- ²³⁷ ABBOTT 99 searched for $\gamma \not\!\! E_T + \geq 2$ jet final states, and set limits on $\sigma(p \overline{p} \to \widetilde{q} + X) \cdot B(\widetilde{q} \to \gamma \not\!\! E_T X)$. The quoted limits correspond to $m_{\widetilde{g}} \geq m_{\widetilde{q}}$, with $B(\widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 \gamma) = 1$ and $B(\widetilde{\chi}_1^0 \to \widetilde{G} \gamma) = 1$, respectively. They improve to 310 GeV (360 GeV in the case of $\gamma \in \widetilde{G}$ decay) for $m_{\widetilde{g}} = m_{\widetilde{q}}$.
- ²³⁸ ACKERSTAFF 98V and ACCIARRI 98J studied the interference of t-channel squark (\widetilde{d}_R) exchange via R-parity violating $\lambda'_{1jk}L_1Q_jd_k$ coupling in $e^+e^-\to q\overline{q}$. The limit is for $\lambda'_{1jk}=0.3$. See paper for related limits on \widetilde{u}_L exchange. Data collected at $\sqrt{s}=130-172$ GeV.
- BREITWEG 98 used electron+jet events with missing energy and momentum to look for $eq \to \widetilde{e}\widetilde{q}$ via gaugino-like neutralino exchange with decays into $(e\widetilde{\chi}_1^0)(q\widetilde{\chi}_1^0)$. See paper for dependences in $m_{\widetilde{e}}$, $m_{\widetilde{\chi}_1^0}$.
- ²⁴⁰ DATTA 97 argues that the squark mass bound by ABACHI 95C can be weakened by 10–20 GeV if one relaxes the assumption of the universal scalar mass at the GUT-scale so that the $\widetilde{\chi}_1^{\pm}$, $\widetilde{\chi}_2^0$ in the squark cascade decays have dominant and invisible decays to $\widetilde{\nu}$.
- DERRICK 97 looked for lepton-number violating final states via *R*-parity violating couplings $\lambda'_{ijk}L_iQ_jd_k$. When $\lambda'_{11k}\lambda'_{ijk}\neq 0$, the process $eu\to \widetilde{d}_k^*\to \ell_iu_j$ is possible. When $\lambda'_{1j1}\lambda'_{ijk}\neq 0$, the process $e\overline{d}\to \widetilde{u}_j^*\to \ell_i\overline{d}_k$ is possible. 100% branching fraction $\widetilde{q}\to\ell j$ is assumed. The limit quoted here corresponds to $\widetilde{t}\to\tau q$ decay, with $\lambda'=0.3$. For different channels, limits are slightly better. See Table 6 in their paper.
- ²⁴²HEWETT 97 reanalyzed the limits on possilbe resonances in di-jet mode $(\tilde{q} \rightarrow q\tilde{g})$ from ALITTI 93 quoted in "Limits for Excited q (q^*) from Single Production," ABE 96 in "SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$," and unpublished CDF, DØ bounds. The bound applies to the gluino mass of 5 GeV, and improves for lighter gluino. The analysis has gluinos in parton distribution function.
- ²⁴³ TEREKHOV 97 improved the analysis of TEREKHOV 96 by including di-jet angular distributions in the analysis.

- ²⁴⁴ AID 96 looked for first-generation squarks as s-channel resonances singly produced in ep collision via the R-parity violating coupling in the superpotential $W=\lambda L_1 Q_1 d_1$. The degeneracy of squarks \widetilde{Q}_1 and \widetilde{d}_1 is assumed. Eight different channels of possible squark decays are considered.
- ²⁴⁵ AID 96C used electron+jet events with missing energy and momentum to look for $eq \to \widetilde{e}\widetilde{q}$ via neutralino exchange with decays into $(e\widetilde{\chi}_1^0)(q\widetilde{\chi}_1^0)$. See the paper for dependences on $m_{\widetilde{e}}$, $m_{\widetilde{\chi}_1^0}$.
- ²⁴⁶ TEREKHOV 96 reanalyzed the limits on possible resonances in di-jet mode $(\widetilde{u} \rightarrow u\widetilde{g})$ from ABE 95N quoted in "MASS LIMITS for g_A (axigluon)." The bound applies only to the case with a light gluino.
- 247 ABE 95T looked for a cascade decay of five degenerate squarks into $\widetilde{\chi}^0_2$ which further decays into $\widetilde{\chi}^0_1$ and a photon. No signal is observed. Limits vary widely depending on the choice of parameters. For $\mu=-40$ GeV, $\tan\beta=1.5$, and heavy gluinos, the range $50{<}m_{\widetilde{a}}$ (GeV)<110 is excluded at 90% CL. See the paper for details.
- ²⁴⁸ BUSKULIC 95E looked for $Z \to \widetilde{q}\overline{\widetilde{q}}$, where $\widetilde{q} \to q \chi_1^0$ and χ_1^0 decays via *R*-parity violating interactions into two leptons and a neutrino.
- AHMED 94B looked for squarks as s-channel resonance in ep collision via R-parity violating coupling in the superpotential $W=\lambda L_1 \ Q_1 \ d_1$. The degeneracy of all squarks Q_1 and d_1 is assumed. The squarks decay dominantly via the same R-violating coupling into eq or νq if $\lambda \gtrsim 0.2$. For smaller λ , decay into photino is assumed which subsequently decays into $eq \overline{q}$, and the bound depends on $m_{\widetilde{\gamma}}$. See paper for excluded region on $(m_{\widetilde{\alpha}}, \lambda)$ plane.
- $^{250}\,\mathrm{ADRIANI}$ 93M limit from $\Delta\Gamma(Z){<}$ 35.1 MeV and assumes $m_{\widetilde{q}_L}\gg m_{\widetilde{q}_R}$
- 251 ABE 92L assume five degenerate squark flavors and $m_{\widetilde{q}_L}=m_{\widetilde{q}_R}.$ ABE 92L includes the effect of cascade decay, for a particular choice of parameters, $\mu=-250$ GeV, $\tan\beta=2.$ Results are weakly sensitive to these parameters over much of parameter space. No limit for $m_{\widetilde{q}} \leq 50$ GeV (but other experiments rule out that region). Limits are 10–20 GeV higher if $\mathrm{B}(\widetilde{q} \to q \, \widetilde{\gamma}) = 1.$ Limit assumes GUT relations between gaugino masses and the gauge coupling; in particular that for $|\mu|$ not small, $m_{\widetilde{\chi}_1^0} \approx m_{\widetilde{g}}/6.$ This last
 - relation implies that as $m_{\widetilde{g}}$ increases, the mass of $\widetilde{\chi}_1^0$ will eventually exceed $m_{\widetilde{q}}$ so that no decay is possible. Even before that occurs, the signal will disappear; in particular no bounds can be obtained for $m_{\widetilde{g}} >$ 410 GeV. $m_{H^+} =$ 500 GeV.
- $^{252}\,\mathrm{ABE}$ 92L bounds are based on similar assumptions as ABACHI 95C. No limits for m_{aluino} >410 GeV.
- ROY 92 reanalyzed CDF limits on di-lepton events to obtain limits on squark production in *R*-parity violating models. The 100% decay $\widetilde{q} \to q \widetilde{\chi}$ where $\widetilde{\chi}$ is the LSP, and the LSP decays either into $\ell q \overline{d}$ or $\ell \ell \overline{e}$ is assumed.
- ²⁵⁴ NOJIRI 91 argues that a heavy squark should be nearly degenerate with the gluino in minimal supergravity not to overclose the universe.
- 255 ABREU 90F assume six degenerate squarks and $m_{\widetilde{q}_L} = m_{\widetilde{q}_R}.~m_{\widetilde{q}} <$ 41 GeV is excluded at 95% CL for $m_{\rm LSP}~< m_{\widetilde{q}}$ 2 GeV.
- $^{256}\, {\rm ABREU}$ 90F exclude $m_{\widetilde{d}}$ < 38 GeV at 95% for $m_{{\rm LSP}}$ < $m_{\widetilde{d}}$ $^{-}$ 2 GeV.
- 257 ABREU 90F exclude $m_{\widetilde{u}}^{-} <$ 36 GeV at 95% for $m_{\mbox{LSP}}^{-} < m_{\widetilde{u}}^{-}$ 2 GeV.
- 258 ALITTI 90 searched for events having ≥ 2 jets with $E_T^1 > 25$ GeV, $E_T^2 > 15$ GeV, $|\eta| < 0.85$, and $\Delta \phi < 160^\circ$, with a missing momentum > 40 GeV and no electrons. They assume $\widetilde{q} \to q \widetilde{\gamma}$ (if $m_{\widetilde{q}} < m_{\widetilde{g}}$) or $\widetilde{q} \to q \widetilde{g}$ (if $m_{\widetilde{q}} > m_{\widetilde{g}}$) decay and $m_{\widetilde{\gamma}} \lesssim 20$ GeV. Five degenerate squark flavors and $m_{\widetilde{q}_L} = m_{\widetilde{q}_R}$ are assumed. Masses below 50 GeV are not excluded by the analysis.

- ²⁵⁹ BAER 90 limit from $\Delta\Gamma(Z)$ < 120 MeV, assuming $m_{\widetilde{d}_L}=m_{\widetilde{u}_L}=m_{\widetilde{e}_L}=m_{\widetilde{\nu}}$. Independent of decay modes. Minimal supergravity assumed.
- ²⁶⁰BARKLOW 90 assume 100% $\widetilde{q} \rightarrow q \widetilde{\gamma}$.
- ²⁶¹ BARKLOW 90 assume five degenerate squarks (left- and right-handed). Valid up to $m_{\widetilde{\chi}_1^0} \lesssim [m_{\widetilde{q}} 4 \text{ GeV}].$
- ²⁶² BARKLOW 90 result valid up to $m_{\widetilde{\chi}_1^0} \lesssim [m_{\widetilde{d}} 5 \text{ GeV}].$
- ²⁶³ BARKLOW 90 result valid up to $m_{\widetilde{\chi}_1^0} \lesssim [m_{\widetilde{u}} 6 \text{ GeV}].$
- ²⁶⁴ ADACHI 89 assume only photon exchange, which gives a a conservative limit. The limit is only for one flavor of charge 2/3 \widetilde{q} . $m_{\widetilde{q}_L} = m_{\widetilde{q}_R}$ and $m_{\widetilde{\gamma}} = 0$ assumed. The limit decreases to 26.1 GeV for $m_{\widetilde{\gamma}} = 15$ GeV. The limit for nondegenerate case is 24.4 GeV.
- NATH 88 uses Kamioka limit of $\tau(p \to \overline{\nu} K^+) > 7 \times 10^{31}$ yrs to constrain squark mass $m_{\widetilde{q}} > 1000$ GeV by assuming that the proton decay proceeds via an exchange of a color-triplet Higgsino of mass $< 10^{16}$ GeV in the supersymmetric SU(5) GUT. The limit applies for $m_{\widetilde{\gamma}} \equiv (8/3) \sin^2\!\theta_W \widetilde{m}_2 > 10$ GeV (\widetilde{m}_2 is the SU(2) gaugino mass) and for a very conservative value of the three-quark proton wave function, barring cancellation between second and third generations. Lower squark mass is allowed if $m_{\widetilde{\gamma}}$ as defined above is smaller
- 266 The limits of ALBAJAR 87D are from $p\overline{p} \to \widetilde{q}\,\overline{\widetilde{q}}\,X\,(\widetilde{q} \to q\,\widetilde{\gamma})$ and assume 5 flavors of degenerate mass squarks each with $m_{\widetilde{q}_L} = m_{\widetilde{q}_R}$. They also assume $m_{\widetilde{g}} > m_{\widetilde{q}}$. These limits apply for $m_{\widetilde{\gamma}} \lesssim 20$ GeV.

Long-lived \tilde{q} (Squark) MASS LIMIT

The following are bounds on long-lived scalar quarks, assumed to hadronise into hadrons with lifetime long enough to escape the detector prior to a possible decay. Limits may depend on the mixing angle of mass eigenstates: $\widetilde{q}_1 = \widetilde{q}_L \cos\theta_q + \widetilde{q}_R \sin\theta_q$.

The coupling to the Z^0 boson vanishes for up-type squarks when θ_u =0.98, and for down type squarks when θ_d =1.17.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
\bullet \bullet We do not use	the followi	ng data for average	s, fits, limits,	etc. • • •
none 2–85	95	²⁶⁷ ABREU	98P DLPH	\widetilde{u}_I
none 2–81	95	²⁶⁷ ABREU	98P DLPH	\tilde{u}_R
none 2–80	95	²⁶⁷ ABREU	98P DLPH	$\widetilde{u}, \theta_{\mu} = 0.98$
none 2–83	95	²⁶⁷ ABREU	98P DLPH	\tilde{d}_L
none 5–40	95	²⁶⁷ ABREU	98P DLPH	\widetilde{d}_R^-
none 5-38	95	²⁶⁷ ABREU	98P DLPH	$\widetilde{d}, \theta_d = 1.17$

 $^{^{267}}$ ABREU 98P assumes that 40% of the squarks will hadronise into a charged hadron, and 60% into a neutral hadron which deposits most of its energy in hadron calorimeter. Data collected at $\sqrt{s}{=}130{-}183$ GeV.

\widetilde{b} (Sbottom) MASS LIMIT

Limits in e^+e^- depend on the mixing angle of the mass eigenstate $\widetilde{b}_1=\widetilde{b}_L\cos\theta_b+\widetilde{b}_R\sin\theta_b$. Coupling to the Z vanishes for $\theta_b\sim 1.17$. In the Listings below, we use $\Delta m=m_{\widetilde{b}_1}-m_{\widetilde{\chi}_1^0}$.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do	o not us	se the following data	for averages	, fits, limits, etc. • • •
>73	95	²⁶⁸ ABREU	99c DLPH	$\widetilde{b} ightarrow b\widetilde{\chi}_1^0$, $ heta_b = 0$, $\Delta(m) > 10$ GeV
>44	95	²⁶⁸ ABREU		$\tilde{b} \rightarrow b \tilde{\chi}_{1}^{\bar{0}}, \theta_{b} = \pi/2, \Delta(m) > 10$
>80.0	95	²⁶⁹ ACCIARRI	99C L3	GeV $\widetilde{b} \rightarrow b\widetilde{\chi}_{1}^{0}, \ \theta_{b}=0, \ \Delta(m) > 20 \text{ GeV}$
>57	95	²⁶⁹ ACCIARRI	99C L3	$\widetilde{b} \rightarrow b\widetilde{\chi}_{1}^{0}, \theta_{b}=1.17, \Delta(m) > 35$
>82.7	95	²⁷⁰ ACKERSTAFF	99 OPAL	$\widetilde{b} \rightarrow b\widetilde{\chi}_{1}^{0}, \ \theta_{b}=0, \ \Delta(m) > 7 \text{ GeV}$
>54.4	95	²⁷⁰ ACKERSTAFF	99 OPAL	$\widetilde{b} \rightarrow b\widetilde{\chi}_{1}^{0}, \ \theta_{b}=1.17, \ \Delta(m) > 7 \text{ GeV}$
>54	95	²⁷¹ BARATE	99E ALEP	<i>R</i> -parity violation, $\theta_b = 0$
>73	95	²⁷² BARATE	98N ALEP	$\widetilde{b} \rightarrow b\widetilde{\chi}_1^0$, θ_b =0, $\widetilde{\Delta}(m) > 6$ GeV
>58	95	²⁷³ BARATE	98s ALEP	<i>R</i> -parity violation, $\theta_b = 0$
>69.7	95	²⁷⁴ ACKERSTAFF	97Q OPAL	$\widetilde{b} \rightarrow b\widetilde{\chi}_{1}^{0}$, θ_{b} =0, $\Delta(m) > 8$ GeV
>73	95	²⁷⁵ BARATE	97Q ALEP	$\widetilde{b} ightarrow \ b\widetilde{\chi}_{1}^{0}, \ heta_{b}^{-} = 0, \ \Delta(m) > 10 \ GeV$

- ²⁶⁸ ABREU 99C looked for \widetilde{b} pair production at \sqrt{s} = 130–172 GeV. See Fig. 4 for other choices of $\Delta(m)$. These results include and update limits from ABREU 960.
- ²⁶⁹ ACCIARRI 99C looked for \widetilde{b} pair production at \sqrt{s} =161–183 GeV. See Figs. 4–5 for other choices of θ_b and $\Delta(m)$.
- ²⁷⁰ ACKERSTAFF 99 looked for \widetilde{b} pair production at \sqrt{s} =130–183 GeV. The analysis includes and updates the results of ACKERSTAFF 97Q. See Table 11 and Fig. 12 for other choices of θ_b and $\Delta(m)$.
- 271 BARATE 99E looked for \widetilde{b}_L pairs with decay $\widetilde{b}_L \to b\widetilde{\chi}_1^0$, where $\widetilde{\chi}_1^0$ further decays via R-violating coupling $LQ\overline{D}$. $m_{\widetilde{\chi}_1^0} >$ 30 GeV. The limit is 73 GeV for the case of \widetilde{b}_L pair production with $\widetilde{b}_L \to j\nu$ decay. The limits for \widetilde{b}_R pairs with $\widetilde{b}_R \to b\nu, j\tau$ are much weaker. Data collected at \sqrt{s} =130–172 GeV.
- 272 BARATE 98N data taken at $\sqrt{s}{=}181{-}184$ GeV. The limit is significantly reduced for $\theta_{h}\approx 1.17.$
- ²⁷³ BARATE 98S looked for \widetilde{b}_L pairs with decay $\widetilde{b}_L \to b\widetilde{\chi}_1^0$, where $\widetilde{\chi}_1^0$ further decays to $\ell^+\ell^-\nu$ via *R*-violating coupling *LLE*. The limit assumes $\tan\beta$ =2, Data collected at \sqrt{s} =130–172 GeV
- 274 ACKERSTAFF 97Q data taken at $\sqrt{s}{=}130{-}172$ GeV. See paper for dependence on $\theta_b.$ No limit for $\theta_b\approx 1.17.$ These result update ACKERSTAFF 96.
- 275 BARATE 97Q uses data at $\sqrt{s}{=}161,~170,~\text{and}~172$ GeV. The limit disappears when $\theta_{b}\approx 1.17.$

\widetilde{t} (Stop) MASS LIMIT

Limit depends on decay mode. In e^+e^- collisions they also depend on the mixing angle of the mass eigenstate $\widetilde{t}_1=\widetilde{t}_L\cos\theta_t+\widetilde{t}_R\sin\theta_t$. Coupling to Z vanishes when $\theta_t=0.98$. In the Listings below, we use $\Delta m\equiv m_{\widetilde{t}_1}-m_{\widetilde{\chi}_1^0}$ or $\Delta m\equiv m_{\widetilde{t}_1}-m_{\widetilde{\nu}}$, depending on relevant decay mode. See also bounds in " \widetilde{q} (Squark) MASS LIMIT."

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
> 72	95	²⁷⁶ ABREU	99C DLPH	$\widetilde{t} \rightarrow c \widetilde{\chi}_1^0, \theta_t = 0, \Delta(m) > 10$
> 63	95	²⁷⁶ ABREU		$\widetilde{t} \rightarrow c\widetilde{\chi}_1^0$, θ_t =0.98, $\Delta(m) >$
> 81.5	95		99C L3	10 GeV $\widetilde{t} \rightarrow c\widetilde{\chi}_{1}^{0}, \ \theta_{t}=0, \ \Delta(m) > 10$
> 72.5	95	²⁷⁷ ACCIARRI	99C L3	GeV $\widetilde{t} \rightarrow c \widetilde{\chi}_{1}^{0}, \ \theta_{t} = 0.98, \ \Delta(m) >$
> 81.2	95	²⁷⁸ ACKERSTAFF	99 OPAL	$\widetilde{t} ightarrow c \widetilde{\chi}_{1}^{0}, \ \theta_{t} = 0, \ \Delta(m) > 5$
> 75.8	95	²⁷⁸ ACKERSTAFF	99 OPAL	GeV $\widetilde{t} \rightarrow c \widetilde{\chi}_{1}^{0}, \ \theta_{t} = 0.98, \ \Delta(m) > 5$
> 83.6	95	²⁷⁸ ACKERSTAFF	99 OPAL	GeV $\widetilde{t} \rightarrow b\ell\widetilde{\nu}, \ \theta_t=0, \ \Delta(m) > 10$
> 79.2	95	²⁷⁸ ACKERSTAFF	99 OPAL	GeV $\widetilde{t} \rightarrow b\ell\widetilde{\nu}, \theta_t = 0.98, \Delta(m) > 0.98$
> 80.0	95	²⁷⁸ ACKERSTAFF	99 OPAL	$\widetilde{t} o b au \widetilde{ u}_{ au}, heta_t = 0, \Delta(m) > 10$ GeV
> 75.0	95	²⁷⁸ ACKERSTAFF	99 OPAL	$\widetilde{t} \rightarrow b \tau \widetilde{\nu}_{\tau}, \ \theta_{t} = 0.98, \ \Delta(m) > 0.98$
> 75	95	²⁷⁹ BARATE	98N ALEP	$ \begin{array}{ccc} 10 \text{ GeV} \\ \widetilde{t} \to c \widetilde{\chi}_1^0, \ \theta_t = 0, \ \Delta(m) > 5 \end{array} $
> 65	95	²⁷⁹ BARATE	98N ALEP	GeV $\widetilde{t} \rightarrow c \widetilde{\chi}_{1}^{0}, \ \theta_{t} = 0.98, \ \Delta(m) > 5$
> 82	95	²⁷⁹ BARATE	98N ALEP	GeV $\widetilde{t} \to b\ell\widetilde{\nu}$, any θ_{t} , $\Delta(m) > 10$
• • • We do not	use the	following data for av	erages, fits,	limits, etc. • • •
> 48	95	²⁸⁰ BARATE	99E ALEP	<i>R</i> -parity violation, θ_t =0
> 60	95	²⁸¹ BARATE	98s ALEP	
> 44	95	²⁸¹ BARATE	98s ALEP	
> 73.3	95	²⁸² ACKERSTAFF	97Q OPAL	$\widetilde{t} \rightarrow c \widetilde{\chi}_1^0, \ \theta_t = 0, \ \Delta(m) > 10$
> 65.0	95	²⁸² ACKERSTAFF	97Q OPAL	$\widetilde{t} \rightarrow c \widetilde{\chi}_1^0$, θ_t =0.98, $\Delta(m) >$
> 67.9	95	²⁸² ACKERSTAFF	97Q OPAL	10 GeV $\widetilde{t} \rightarrow b\ell\widetilde{\nu}, \theta_t = 0, \Delta(m) > 10$
> 56.2	95	²⁸² ACKERSTAFF	97Q OPAL	GeV $\tilde{t} \rightarrow b\ell\tilde{\nu}, \ \theta_t = 0.98, \ \Delta(m) >$
> 66.3	95	²⁸² ACKERSTAFF	97Q OPAL	10 GeV $\tilde{t} \rightarrow b\tau \tilde{\nu}_{\tau}, \theta_{t} = 0, \Delta(m) > 10$
> 54.4	95	²⁸² ACKERSTAFF	97Q OPAL	GeV $\widetilde{t} \to b\tau \widetilde{\nu}_{\tau}, \ \theta_t = 0.98, \ \Delta(m) > 10.6 \text{ eV}$
> 67	95		97Q ALEP	10 GeV $\widetilde{t} \to c\widetilde{\chi}_1^0$, any θ_t , $\Delta(m) > 10$
> 70	95	²⁸³ BARATE	97Q ALEP	$\widetilde{t} o b\ell \widetilde{ u}$, any $ heta_t$, $\Delta(m) > 10$
> 64	95	²⁸³ BARATE	97Q ALEP	$\widetilde{t} o b au \widetilde{ u}_{\mathcal{T}}$, any $ heta_{m{t}}$, $\Delta(m) > 10~{ m GeV}$

none 61–91	95	²⁸⁴ ABACHI	96B D0	$\widetilde{t} ightarrow c \widetilde{\chi}_1^0$, $m_{\widetilde{\chi}_1^0} < 30 \; {\sf GeV}$
none 9-24.4	95	²⁸⁵ AID	96 H1	$ep \rightarrow \widetilde{t}\widetilde{t}$, R-parity violating
>138	95	²⁸⁶ AID	96 H1	decays $ep ightarrow $
> 48	95	²⁸⁷ BUSKULIC	96K ALEP	
> 57	95	²⁸⁷ BUSKULIC	96K ALEP	GeV $t \rightarrow c \tilde{\chi}_1^0, \ \theta_t = \pi/2, \ \Delta(m) > 14$
> 45		²⁸⁸ CHO	96 RVUE	B^0 and ϵ , $\theta_t = 0.98$,
none 11-41	95	²⁸⁹ BUSKULIC	95E ALEP	$ aneta<2 \ heta_t=0.98, \ \widetilde{t} ightarrow \ c u \ell \overline{\ell}'$
none 6.0-41.2	95	AKERS		$\widetilde{t} \rightarrow c \widetilde{\chi}_1^0, \theta_t = 0, \Delta(m) > 2$
none 5.0-46.0	95	AKERS	94K OPAL	GeV $\tilde{t} \rightarrow c \tilde{\chi}_{1}^{0}, \ \theta_{t} = 0, \ \Delta(m) > 5$
none 11.2–25.5	95	AKERS	94K OPAL	GeV $\widetilde{t} \rightarrow c\widetilde{\chi}_{1}^{0}, \ \theta_{t}=0.98, \ \Delta(m) > 2$
none 7.9-41.2	95	AKERS	94K OPAL	GeV $\widetilde{t} \rightarrow c\widetilde{\chi}_{1}^{0}, \ \theta_{t}=0.98, \ \Delta(m) > 5$
none 7.6–28.0	95	²⁹⁰ SHIRAI	94 VNS	$\widetilde{t} ightarrow c \widetilde{\chi}_1^0$, any $ heta_t$, $\Delta(m) > 10$
none 10-20	95	²⁹⁰ SHIRAI	94 VNS	$\widetilde{t} ightarrow c \widetilde{\chi}_1^0$, any $ heta_t$, $\Delta(m) > 2.5$
276				GeV

- ²⁷⁶ ABREU 99C looked for \widetilde{t} pair production at \sqrt{s} = 130–172 GeV. See Fig. 4 for other choices of $\Delta(m)$. These results include and update limits from ABREU 960.
- ²⁷⁷ ACCIARRI 99C looked for \widetilde{t} pair production at \sqrt{s} =161–183 GeV. See Figs. 4–5 for other choices of θ_t and $\Delta(m)$. These results update ACCIARRI 96F.
- ²⁷⁸ ACKERSTAFF 99 looked for \widetilde{t} pair production. The analysis considers data taken at \sqrt{s} =130–183 GeV, and includes the results of ACKERSTAFF 97Q. Unless the ℓ = τ decay mode is explicitly indicated, the same branching fractions to ℓ =e, μ , and τ are assumed for $b\ell\widetilde{\nu}$ modes. See Table 10 and Figs. 9–11 for other choices of θ_t and $\Delta(m)$.
- ²⁷⁹ BARATE 98N assumes the lepton universality for the case of $\widetilde{t} \to b\ell\widetilde{\nu}$ and the lower bound on $m_{\widetilde{\nu}}$ from Z decay is used. See Figs. 2 and 3 for limits as a function of $\Delta(m)$. Data collected at \sqrt{s} =181–184 GeV.
- ²⁸⁰ BARATE 99E looked for \widetilde{t}_L pairs with decay $\widetilde{t}_L \to c \, \widetilde{\chi}_1^0$, where $\widetilde{\chi}_1^0$ further decays via R-violating coupling $L \, Q \, \overline{D}$. $m_{\widetilde{\chi}_1^0} > 30$ GeV. The limit is 62 GeV for the case of \widetilde{t}_L pair production with $\widetilde{t}_L \to q \, \tau$ decays. Data collected at \sqrt{s} =130–172 GeV.
- ²⁸¹ BARATE 98S looked for \widetilde{t} pairs with decay $\widetilde{t} \to c \widetilde{\chi}^0_1$, where $\widetilde{\chi}^0_1$ further decays to $\ell^+ \ell^- \nu$ via R-violating coupling LLE. The limit assumes $\tan \beta = 2$, Data collected at $\sqrt{s} = 130 172$ GeV.
- ²⁸² ACKERSTAFF 97Q looked for \widetilde{t} pair production. Data taken at \sqrt{s} =130, 136, 161, 170, and 172 GeV. Unless the ℓ = τ decay mode is explicitly indicated, the same branching fractions to ℓ =e, μ , and τ are assumed for $b\ell\widetilde{\nu}_{\ell}$ modes. See Table 7 and Figs. 8–10 for other choices of θ_t , $\Delta(m)$, and leptonic branching ratios. These result update ACKERSTAFF 96.
- ²⁸³ BARATE 97Q uses e^+e^- data at $\sqrt{s}{=}161$, 170, and 172 GeV. Unless the $\ell{=}\tau$ decay mode is explicitly indicated, the same branching fractions to $\ell{=}e$, μ , and τ are assumed for $b\ell\tilde{\nu}_\ell$ modes. See their Figs. 4 and 5 for other choices of θ_t , $\Delta(m)$, and leptonic branching ratios.
- ²⁸⁴ ABACHI 96B searches for final states with 2 jets and missing E_T . Limits on $m_{\widetilde{t}}$ are given as a function of $m_{\widetilde{\chi}_1^0}$. See Fig. 4 for details.

 287 Data taken at $\sqrt{s}=$ 130–136 GeV.

²⁸⁹ BUSKULIC 95E looked for $Z \to \widetilde{t}\overline{\widetilde{t}}$, where $\widetilde{t} \to c\chi_1^0$ and χ_1^0 decays via R-parity violating interactions into two leptons and a neutrino.

 $^{290}\,\mathrm{SHIRAI}$ 94 bound assumes the cross section without the s-channel Z-exchange and the QCD correction, underestimating the cross section up to 20% and 30%, respectively. They assume $m_{_{C}}{=}1.5~\mathrm{GeV}.$

Heavy \tilde{g} (Gluino) MASS LIMIT

For $m_{\widetilde{g}} > 60-70$ GeV, it is expected that gluinos would undergo a cascade decay via a number of neutralinos and/or charginos rather than undergo a direct decay to photinos as assumed by some papers. Limits obtained when direct decay is assumed are usually higher than limits when cascade decays are included.

·	•		•	
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>173	95	²⁹¹ ABE	97к CDF	Any $m_{\widetilde{a}}$; with cascade decays
>216	95	²⁹¹ ABE	97к CDF	$m_{\widetilde{q}} = m_{\widetilde{g}}$; with cascade decays
>224	95	²⁹² ABE	96D CDF	$m_{\widetilde{q}} = m_{\widetilde{g}}$; with cascade decays
>154	95	²⁹² ABE	96D CDF	$m_{\widetilde{g}} < m_{\widetilde{q}}$; with cascade decays
>212	95	²⁹³ АВАСНІ	95C D0	$m_{\widetilde{g}} \geq m_{\widetilde{q}}$; with cascade decays
>144	95	²⁹³ ABACHI	95C D0	Any $m_{\widetilde{a}}$; with cascade decays
• • • We do not	use the	following data for a	verages, fits,	7
>240	95	²⁹⁴ ABBOTT	99 D0	$\widetilde{g} \rightarrow \widetilde{\chi}_{0}^{0} X \rightarrow \widetilde{\chi}_{0}^{0} \gamma X, m_{\sim 0}$

>240	95	²⁹⁴ ABBOTT	99 D0	$\widetilde{g} ightarrow \ \widetilde{\chi}_2^0 X ightarrow \ \widetilde{\chi}_1^0 \gamma X$, $m_{\widetilde{\chi}_2^0} - 1$
				$m_{\widetilde{\chi}_1^0} > 20 \text{ GeV}$
>320	95	²⁹⁴ АВВОТТ	99 D0	$\widetilde{g} \rightarrow \widetilde{\chi}_1^0 X \rightarrow \widetilde{G} \gamma X$
		²⁹⁵ ABE	95T CDF	$\widetilde{g} \rightarrow \widetilde{\chi}_{2}^{0} \rightarrow \widetilde{\chi}_{1}^{0} \gamma$
		²⁹⁶ HEBBEKER	93 RVUE	e^+e^- jet analyses
>218	90	²⁹⁷ ABE	92L CDF	$m_{\widetilde{q}} \leq m_{\widetilde{g}}$; with cascade
				decay
>100	90	²⁹⁷ ABE	92L CDF	Any $m_{\widetilde{a}}$; with cascade decay
>100		²⁹⁸ ROY	92 RVUE	$p\overline{p} \rightarrow \widetilde{g}\widetilde{g}$; R-parity violating
>132	90	²⁹⁹ HIDAKA	91 RVUE	

²⁸⁵ AID 96 considers photoproduction of $\widetilde{t}\widetilde{t}$ pairs, with 100% *R*-parity violating decays of \widetilde{t} to eq, with q=d, s, or b quarks.

²⁸⁶ AID 96 considers production and decay of \tilde{t} via the *R*-parity violating coupling in the superpotential $W=\lambda L_1 Q_3 d_1$.

²⁸⁸ CHO 96 studied the consistency among the $B^0 - \overline{B}{}^0$ mixing, ϵ in $K^0 - \overline{K}{}^0$ mixing, and the measurements of V_{cb} , V_{ub}/V_{cb} . For the range 25.5 GeV< $m_{\widetilde t_1} < m_Z/2$ left by AKERS 94K for $\theta_t = 0.98$, and within the allowed range in M_2 - μ parameter space from chargino, neutralino searches by ACCIARRI 95E, they found the scalar top contribution to $B^0 - \overline{B}{}^0$ mixing and ϵ to be too large if $\tan \beta < 2$. For more on their assumptions, see the paper and their reference 10.

		300 NOJIRI	91 COSM	
> 79	90	³⁰¹ ALITTI	90 UA2	Any $m_{\widetilde{g}}$;
		201		$B(\widetilde{g} o q \overline{q} \widetilde{\gamma}) = 1$
>106	90	³⁰¹ ALITTI	90 UA2	$m_{\widetilde{q}}=m_{\widetilde{g}};$
		202		$B(\widetilde{g} o q \overline{q} \widetilde{\gamma}) = 1$
		302 NAKAMURA	89 SPEC	R - Δ^{++}
none 4–53	90	³⁰³ ALBAJAR	87D UA1	Any $m_{\widetilde{q}} > m_{\widetilde{g}}$
none 4-75	90	³⁰³ ALBAJAR	87D UA1	$m_{\widetilde{q}} = m_{\widetilde{g}}$
none 16-58	90	³⁰⁴ ANSARI	87D UA2	$m_{\widetilde{q}}^{7} \lesssim 100 \; { m GeV}$
				4

- ABE 97K searched for production of gluinos and five degenerate squarks in events with three or more jets but no electrons or muons and missing transverse energy $E_T > 60$ GeV. The limit for any $m_{\widetilde{q}}$ is for $\mu = -200$ GeV and $\tan \beta = 2$, and that for $m_{\widetilde{q}} = m_{\widetilde{g}}$ is for $\mu = -400$ GeV and $\tan \beta = 4$. Different choices for $\tan \beta$ and μ lead to changes of the order of ± 10 GeV in the limits. See Footnote [16] of the paper for more details on the assumptions.
- ABE 96D searched for production of gluinos and five degenerate squarks in final states containing a pair of leptons, two jets, and missing E_T . The two leptons arise from the semileptonic decays of charginos produced in the cascade decays. The limits are derived for fixed $\tan\beta=4.0$, $\mu=-400$ GeV, and $m_{H^+}=500$ GeV, and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity scenario. The bounds are weakly sensitive to the values of the three fixed parameters for a large fraction of parameter space. See Fig. 2 for the limits corresponding to different parameter choices.
- ABACHI 95C assume five degenerate squark flavors with with $m_{\widetilde{q}_L} = m_{\widetilde{q}_R}$. Sleptons are assumed to be heavier than squarks. The limits are derived for fixed $\tan\beta = 2.0~\mu = -250~\text{GeV}$, and $m_{H^+} = 500~\text{GeV}$, and with the cascade decays of the squarks and gluinos calculated within the framework of the Minimal Supergravity scenario. The bounds are weakly sensitive to the three fixed parameters for a large fraction of parameter space.
- ²⁹⁴ ABBOTT 99 searched for $\gamma \not\!\! E_T + \geq 2$ jet final states, and set limits on $\sigma(p \overline{p} \to \widetilde{g} + X) \cdot B(\widetilde{g} \to \gamma \not\!\! E_T X)$. The quoted limits correspond to $m_{\widetilde{q}} \geq m_{\widetilde{g}}$, with $B(\widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 \gamma) = 1$ and $B(\widetilde{\chi}_1^0 \to \widetilde{G} \gamma) = 1$, respectively. They improve to 310 GeV (360 GeV in the case of $\gamma \not\!\! G$ decay) for $m_{\widetilde{g}} = m_{\widetilde{q}}$.
- ABE 95T looked for a cascade decay of gluino into $\widetilde{\chi}^0_2$ which further decays into $\widetilde{\chi}^0_1$ and a photon. No signal is observed. Limits vary widely depending on the choice of parameters. For $\mu=-40$ GeV, $\tan\beta=1.5$, and heavy squarks, the range $50 < m_{\widetilde{g}}$ (GeV)<140 is excluded at 90% CL. See the paper for details.
- 296 HEBBEKER 93 combined jet analyses at various $e^+\,e^-$ colliders. The 4-jet analyses at TRISTAN/LEP and the measured $\alpha_{\it S}$ at PEP/PETRA/TRISTAN/LEP are used. A constraint on effective number of quarks $\it N=6.3\pm1.1$ is obtained, which is compared to that with a light gluino, $\it N=8.$
- 297 ABE 92L bounds are based on similar assumptions as ABACHI 95C. Not sensitive to $m_{\rm gluino}$ <40 GeV (but other experiments rule out that region).
- ROY 92 reanalyzed CDF limits on di-lepton events to obtain limits on gluino production in R-parity violating models. The 100% decay $\widetilde{g} \to q \overline{q} \widetilde{\chi}$ where $\widetilde{\chi}$ is the LSP, and the LSP decays either into $\ell q \overline{d}$ or $\ell \ell \overline{e}$ is assumed.
- 299 HIDAKA 91 limit obtained from LEP and preliminary CDF results within minimal supersymmetry with gaugino-mass unification condition. HIDAKA 91 limit extracted from BAER 91 analysis.
- 300 NOJIRI 91 argues that a heavy gluino should be nearly degenerate with squarks in minimal supergravity not to overclose the universe.

- $^{301}\,\mathrm{ALITTI}$ 90 searched for events having ≥ 2 jets with $E_T^1 >$ 25 GeV, $E_T^2 >$ 15 GeV, $|\eta| < 0.85$, and $\Delta\phi < 160^\circ$, with a missing momentum > 40 GeV and no electrons. They assume $\tilde{g} \to q \overline{q} \tilde{\gamma}$ decay and $m_{\widetilde{\gamma}} \lesssim 20$ GeV. Masses below 50 GeV are not excluded by the analysis.
- 302 NAKAMURA 89 searched for a long-lived ($\tau\gtrsim 10^{-7}$ s) charge-(±2) particle with mass $\lesssim 1.6$ GeV in proton-Pt interactions at 12 GeV and found that the yield is less than 10^{-8} times that of the pion. This excludes $R\text{-}\Delta^{++}$ (a $\tilde{g}\,u\,u\,u$ state) lighter than 1.6 GeV.
- 303 The limits of ALBAJAR 87D are from $p\overline{p} \to \widetilde{g}\widetilde{g}X$ ($\widetilde{g} \to q\overline{q}\widetilde{\gamma}$) and assume $m_{\widetilde{q}} > m_{\widetilde{g}}$. These limits apply for $m_{\widetilde{\gamma}} \lesssim 20$ GeV and $\tau(\widetilde{g}) < 10^{-10}$ s.
- $^{304}\, {\rm The}$ limit of ANSARI 87D assumes $m_{\widetilde q} > m_{\widetilde g}$ and $m_{\widetilde \gamma} \approx ~0.$

A REVIEW GOES HERE - Check our WWW List of Reviews

Long-lived/light \widetilde{g} (Gluino) MASS LIMIT

Limits on light gluinos ($m_{\widetilde{g}}$ < 5 GeV), or gluinos which leave the detector before decaying.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
\bullet \bullet We do not	use the	following data for a	verag	ges, fits,	limits, etc. • • •
		³⁰⁵ ACKERSTAFF	98V	OPAL	$e^+e^- \rightarrow \widetilde{\chi}_1^+\widetilde{\chi}_1^-$
		³⁰⁶ ADAMS	97 B	KTEV	$pN \rightarrow R^0 \stackrel{1}{\rightarrow} \rho^0 \widetilde{\gamma}$
		³⁰⁷ ALBUQUERQ.	97	E761	$R^+(uud\widetilde{g}) \rightarrow S^0(uds\widetilde{g})\pi^+, X^-(ssd\widetilde{g}) \rightarrow S^0\pi^-$
>6.3	95	³⁰⁸ BARATE	97L	ALEP	Color factors
>5	99	309 CSIKOR	97		β function, $Z \rightarrow \text{jets}$
>1.5	90	310 DEGOUVEA	97		$Z \rightarrow jjjj$
		³¹¹ FARRAR	96		$R^0 \rightarrow \pi^0 \widetilde{\gamma}$
none 1.9–13.6	95	³¹² AKERS	95 R		Z decay into a long-lived $(\tilde{g} q \bar{q})^{\pm}$
< 0.7		313 CLAVELLI	95	RVHF	(8 4 4) quarkonia
none 1.5–3.5		314 CAKIR			$\Upsilon(1S) ightarrow \gamma + gluinonium$
not 3–5		315 LOPEZ	930	RVUE	
≈ 4		316 CLAVELLI	92		α_{s} running
•		317 ANTONIADIS	91	RVUE	α_{-} running
>1		318 ANTONIADIS	91	RVUE	$pN \rightarrow \text{missing energy}$
>3.8	90	³¹⁹ ARNOLD	87	EMUL	π^- (350 GeV). $\sigma \simeq A^1$
>3.2	90	319 ARNOLD	87		π^{-} (350 GeV). $\sigma \simeq A^{0.72}$
none 0.6-2.2	90	³²⁰ TUTS			
none 1 -4.5	90	³²¹ ALBRECHT	86C	ARG	$\Upsilon(1S) ightarrow \gamma + { m gluinonium}$ $1 imes 10^{-11} \lesssim au \lesssim 1 imes 10^{-9} { m s}$
none 1–4	90	³²² BADIER	86	BDMP	$1 \times 10^{-10} < \tau < 1 \times 10^{-7} s$
none 3–5		³²³ BARNETT	86	RVUE	$p\overline{p} \rightarrow \text{gluino gluon}$
none		³²⁴ VOLOSHIN	86	RVUE	If (quasi) stable; $\widetilde{g} u u d$
none 0.5-2		³²⁵ COOPER	85 B	BDMP	For $m_{\widetilde{a}}$ =300 GeV
none 0.5–4		³²⁵ COOPER	85 B	BDMP	For $m_{\widetilde{q}}^{\gamma}$ <65 GeV

none 0.5–3		³²⁵ COOPER	85 B	BDMP	For $m_{\widetilde{a}} = 150 \text{ GeV}$
none 2–4		³²⁶ DAWSON			$ au > 10^{-7} \text{ s}$
none 1-2.5		³²⁶ DAWSON	85	RVUE	For $m_{\widetilde{a}} = 100 \text{ GeV}$
none 0.5-4.1	90	³²⁷ FARRAR	85		FNAL beam dump
>1		³²⁸ GOLDMAN	85	RVUE	Gluononium
>1-2		³²⁹ HABER	85	RVUE	
		330 BALL	84	CALO	
		³³¹ BRICK	84	RVUE	
		³³² FARRAR	84	RVUE	
>2		³³³ BERGSMA	83C	RVUE	For $m_{\widetilde{a}} < 100 \text{ GeV}$
		334 CHANOWITZ	83	RVUE	$\widetilde{g}u\overline{d}, \widetilde{\widetilde{g}}uud$
>2-3		³³⁵ KANE	82	RVUE	Beam dump
>1.5-2		FARRAR	78	RVUE	R-hadron

- 305 ACKERSTAFF 98V excludes the light gluino with universal gaugino mass where charginos,
- neutralinos decay as $\widetilde{\chi}_1^{\pm}$, $\widetilde{\chi}_2^0 \to q \overline{q} \widetilde{g}$ from total hadronic cross sections at \sqrt{s} =130–172 GeV. See paper for the case of nonuniversal gaugino mass. 306 ADAMS 97B looked for $\rho^0 \to \pi^+\pi^-$ as a signature of $R^0 = (\widetilde{g} g)$ bound states. The experiment is sensitive to an R^0 mass range of 1.2–4.5 GeV and to a lifetime range of 10^{-10} - 10^{-3} sec. Precise limits depend on the assumed value of $m_{R^0}/m_{\widetilde{\gamma}}$. See Fig. 7 for the excluded mass and lifetime region.
- 307 ALBUQUERQUE 97 looked for weakly decaying baryon-like states which contain a light gluino, following the suggestions in FARRAR 96. See their Table 1 for limits on the production fraction. These limits exclude gluino masses in the range 100-600 MeV for the predicted lifetimes (FARRAR 96) and production rates, which are assumed to be comparable to those of strange or charmed baryons.
- $^{308}\,\mathrm{BARATE}$ 97L studied the QCD color factors from four-jet angular correlations and the differential two-jet rate in Z decay. Llmit obtained from the determination of $n_f =$ 4.24 \pm 0.29 \pm 1.15, assuming T_F/C_F =3/8 and C_A/C_F =9/4.
- 309 CSIKOR 97 combined the $\alpha_{\rm S}$ from $\sigma(e^+\,e^-\to\,$ hadron), τ decay, and jet analysis in Z decay. They exclude a light gluino below 5 GeV at more than 99.7%CL.
- $^{310}\,\mathrm{DEGOUVEA}$ 97 reaanalyzed AKERS 95A data on Z decay into four jets to place constraints on a light stable gluino. The mass limit corresponds to the pole mass of 2.8 GeV. The analysis, however, is limited to the leading-order QCD calculation.
- ³¹¹ FARRAR 96 studied the possible $R^0 = (\widetilde{g}\,g)$ component in Fermilab E799 experiment and used its bound B($K_L^0 \to \pi^0 \, \nu \overline{\nu}$) $\leq 5.8 \times 10^{-5}$ to place constraints on the combination of R^0 production cross section and its lifetime.
- 312 AKERS 95R looked for Z decay into $q\overline{q}\widetilde{g}\widetilde{g}$, by searching for charged particles with dE/dxconsistent with \widetilde{g} fragmentation into a state $(\widetilde{g} \, q \, \overline{q})^{\pm}$ with lifetime $\tau > 10^{-7}$ sec. The fragmentation probability into a charged state is assumed to be 25%.
- 313 CLAVELLI 95 updates the analysis of CLAVELLI 93, based on a comparison of the hadronic widths of charmonium and bottomonium S-wave states. The analysis includes a parametrization of relativisitic corrections. Claims that the presence of a light gluino improves agreement with the data by slowing down the running of α_s .
- 314 CAKIR 94 reanalyzed TUTS 87 and later unpublished data from CUSB to exclude pseudo-scalar gluinonium $\eta_{\widetilde{g}}(\widetilde{g}\,\widetilde{g})$ of mass below 7 GeV. it was argued, however, that the perturbative QCD calculation of the branching fraction $\varUpsilon o \eta_{\widetilde{g}} \, \gamma$ is unreliable for $m_{\eta_{\widetilde{g}}} <$ 3 GeV. The gluino mass is defined by $m_{\widetilde{g}} = (m_{\eta_{\widetilde{q}}})/2$. The limit holds for any gluino lifetime.
- $^{
 m 315}$ LOPEZ 93C uses combined restraint from the radiative symmetry breaking scenario within the minimal supergravity model, and the LEP bounds on the (M_2,μ) plane. Claims that the light gluino window is strongly disfavored.

- 316 CLAVELLI 92 claims that a light gluino mass around 4 GeV should exist to explain the discrepancy between $\alpha_{\rm S}$ at LEP and at quarkonia (Υ), since a light gluino slows the running of the QCD coupling.
- ³¹⁷ ANTONIADIS 91 argue that possible light gluinos (< 5 GeV) contradict the observed running of α_s between 5 GeV and m_Z . The significance is less than 2 s.d.
- ³¹⁸ ANTONIADIS 91 intrepret the search for missing energy events in 450 GeV/c pN collisions, AKESSON 91, in terms of light gluinos.
- 319 The limits assume $m_{\widetilde{q}}=$ 100 GeV. See their figure 3 for limits vs. $m_{\widetilde{q}}.$
- \widetilde{g} The gluino mass is defined by half the bound $\widetilde{g}\widetilde{g}$ mass. If zero gluino mass gives a $\widetilde{g}\widetilde{g}$ of mass about 1 GeV as suggested by various glueball mass estimates, then the low-mass bound can be replaced by zero. The high-mass bound is obtained by comparing the data with nonrelativistic potential-model estimates.
- 321 ALBRECHT 86C search for secondary decay vertices from $\chi_{b1}(1P) \to \widetilde{g}\,\widetilde{g}\,g$ where \widetilde{g} 's make long-lived hadrons. See their figure 4 for excluded region in the $m_{\widetilde{g}}-m_{\widetilde{g}}$ and $m_{\widetilde{g}}-m_{\widetilde{q}}$ plane. The lower $m_{\widetilde{g}}$ region below ~ 2 GeV may be sensitive to fragmentation effects. Remark that the \widetilde{g} -hadron mass is expected to be ~ 1 GeV (glueball mass) in the zero \widetilde{g} mass limit.
- 322 BADIER 86 looked for secondary decay vertices from long-lived \widetilde{g} -hadrons produced at 300 GeV π^- beam dump. The quoted bound assumes \widetilde{g} -hadron nucleon total cross section of 10μ b. See their figure 7 for excluded region in the $m_{\widetilde{g}}-m_{\widetilde{q}}$ plane for several assumed total cross-section values.
- BARNETT 86 rule out light gluinos (m=3-5 GeV) by calculating the monojet rate from gluino gluino gluino events (and from gluino gluino events) and by using UA1 data from $p\bar{p}$ collisions at CERN.
- ³²⁴ VOLOSHIN 86 rules out stable gluino based on the cosmological argument that predicts too much hydrogen consisting of the charged stable hadron $\widetilde{g}\,uu\,d$. Quasi-stable ($\tau > 1.\times 10^{-7}$ s) light gluino of $m_{\widetilde{g}} < 3$ GeV is also ruled out by nonobservation of the stable charged particles, $\widetilde{g}\,uu\,d$, in high energy hadron collisions.
- 325 COOPER-SARKAR 85B is BEBC beam-dump. Gluinos decaying in dump would yield $\widetilde{\gamma}$'s in the detector giving neutral-current-like interactions. For $m_{\widetilde{q}} > \!\! 330$ GeV, no limit is set.
- 326 DAWSON 85 first limit from neutral particle search. Second limit based on FNAL beam dump experiment.
- 327 FARRAR 85 points out that BALL 84 analysis applies only if the \widetilde{g} 's decay before interacting, i.e. $m_{\widetilde{q}}~<\!80 m_{\widetilde{g}}^{-1.5}$. FARRAR 85 finds $m_{\widetilde{g}}~<\!0.5$ not excluded for $m_{\widetilde{q}}=30\text{--}1000$ GeV and $m_{\widetilde{g}}~<\!1.0$ not excluded for $m_{\widetilde{q}}=100\text{--}500$ GeV by BALL 84 experiment.
- ³²⁸ GOLDMAN 85 use nonobservation of a pseudoscalar \widetilde{g} - \widetilde{g} bound state in radiative ψ decay.
- 329 HABER 85 is based on survey of all previous searches sensitive to low mass \tilde{g} 's. Limit makes assumptions regarding the lifetime and electric charge of the lightest supersymmetric particle.
- 330 BALL 84 is FNAL beam dump experiment. Observed no interactions of $\widetilde{\gamma}$ in the calorimeter, where $\widetilde{\gamma}$'s are expected to come from pair-produced \widetilde{g} 's. Search for long-lived $\widetilde{\gamma}$ interacting in calorimeter 56m from target. Limit is for $m_{\widetilde{q}}=40$ GeV and production cross section proportional to $^{0.72}$. BALL 84 find no \widetilde{g} allowed below 4.1 GeV at CL = 90%. Their figure 1 shows dependence on $m_{\widetilde{q}}$ and A. See also KANE 82.
- ³³¹ BRICK 84 reanalyzed FNAL 147 GeV HBC data for R- Δ (1232)⁺⁺ with $\tau > 10^{-9}$ s and $p_{\text{lab}} > 2$ GeV. Set CL = 90% upper limits 6.1, 4.4, and 29 microbarns in pp, π^+p , K^+p collisions respectively. R- Δ^{++} is defined as being \widetilde{g} and 3 up quarks. If mass = 1.2–1.5 GeV, then limits may be lower than theory predictions.
- 332 FARRAR 84 argues that $m_{\widetilde{g}}~<100$ MeV is not ruled out if the lightest R-hadrons are long-lived. A long lifetime would occur if R-hadrons are lighter than $\widetilde{\gamma}$'s or if $m_{\widetilde{q}}~>100$ GeV.

- 333 BERGSMA 83C is reanalysis of CERN-SPS beam-dump data. See their figure 1.
- ³³⁴CHANOWITZ 83 find in bag-model that charged *s*-hadron exists which is stable against strong decay if $m_{\widetilde{g}}$ <1 GeV. This is important since tracks from decay of neutral shadron cannot be reconstructed to primary vertex because of missed $\tilde{\gamma}$. Charged s-hadron leaves track from vertex.
- 335 KANE 82 inferred above \tilde{g} mass limit from retroactive analysis of hadronic collision and beam dump experiments. Limits valid if \tilde{g} decays inside detector.

\widetilde{G} (Gravitino) MASS LIMIT

The following are bounds on light ($\ll 1\,\mathrm{eV}$) gravitino indirectly inferred from its coupling to matter suppressed by the gravitino decay constant.

Unless otherwise stated, all limits assume that other supersymmetric particles besides the gravitino are too heavy to be produced. The gravitino is assumed to be undetected and to give rise to a missing energy (\cancel{E}) signature.

VALUE (eV)	CL%	DOCUMENT ID	TECN	COMMENT	
• • • We do not use th	e follow	ing data for averages	, fits, limits,	etc. • • •	
$>7.9 \times 10^{-6}$	95			$e^+e^- \rightarrow \widetilde{G}\widetilde{G}\gamma$	
$> 8.3 \times 10^{-6}$	95		98J ALEP	$e^+e^- ightarrow \ \widetilde{G} \widetilde{G} \gamma$	
336 Searches for γE final states at \sqrt{s} =183 GeV.					

Supersymmetry Miscellaneous Results

Results that do not appear under other headings or that make nonminimal assumptions.

VALUE	<u>DOCUMENT ID</u>		TECN	COMMENT	
ullet $ullet$ We do not use the follow	ving data for averages	, fits	, limits,	etc. • • •	
	_	97	D0	$\gamma \gamma X$	
	³³⁸ BARBER	84 B	RVUE		
	³³⁹ HOFFMAN	83	CNTR	$\pi p \rightarrow n(e^+e^-)$	

- 337 ABACHI 97 searched for $p\overline{p} \to \gamma \gamma \not\!\! E_T + X$ as supersymmetry signature. It can be caused by selectron, sneutrino, or neutralino production with a radiative decay of their decay products. They placed limits on cross sections.
- ³³⁸ BARBER 84B consider that $\widetilde{\mu}$ and \widetilde{e} may mix leading to $\mu \to e \widetilde{\gamma} \widetilde{\gamma}$. They discuss massmixing limits from decay dist asym in LBL-TRIUMF data and e^+ polarization in SIN
- 339 HOFFMAN 83 set CL = 90% limit $d\sigma/dt \ B(e^+e^-) < 3.5 \times 10^{-32} \ cm^2/GeV^2$ for spin-1 partner of Goldstone fermions with 140 < m <160 MeV decaying $\rightarrow e^+e^-$ pair.

REFERENCES FOR Supersymmetric Particle Searches

ABBIENDI	99	EPJ C6 1	$G.\ Abbiendi +$	(OPAL Collab.)
ABBIENDI	99F	EPJ C8 23	$G.\ Abbiendi +$	(OPAL Collab.)
ABBIENDI	99G	EPJ C8 255	G. Abbiendi $+$	(OPAL Collab.)
ABBOTT	99	PRL 82 29	B. Abbott+	(D0 Collab.)
ABREU	99C	EPJ C6 385	P. Abreu+	(DELPHI Collab.)
ABREU	99D	EPJ C6 371	P. Abreu+	(DLEPHI Collab.)
				(DELFIII COIIAD.)
ABREU	99E	PL B446 75	P. Abreu+	(DELPHI Collab.)
ABREU	99F	EPJ C7 595	P. Abreu+	(DELPHI Collab.)
ACCIARRI	99C	PL B445 428	M. Acciarri+	(L3 Collab.)
ACKERSTAFF	99	EPJ C6 225	K. Ackerstaff+	(OPAL Collab.)
				(ALEDII Callab.)
BARATE	99E	EPJ C7 383	R. Barate+	(ALEPH Collab.)
LEP	99	CERN-EP/99-15	(ALEPH, DELPHI, L3, O	PAL, LEP EWWG, SLD)
ABBOTT	98	PRL 80 442	B. Abbott+	(D0 Collab.)
ABBOTT	98C	PRL 80 1591	B. Abbott+	(D0 Collab.)
ABE	98J	PRL 80 5275	F. Abe+	(CDF Collab.)
				\
ABE	98L	PRL 81 1791	F. Abe+	(CDF Collab.)
ABREU	98	EPJ C1 1	P. Abreu+	(DELPHI Collab.)
ABREU	98P	PL B444 491	P. Abreu+	(DELPHI Collab.)
ACCIARRI	98F	EPJ C4 207	M. Acciarri+	` (L3 Collab.)
ACCIARRI	98J	PL B433 163	M. Acciarri+	(L3 Collab.)
ACCIARRI	98V	PL B444 503	M. Acciarri+	(L3 Collab.)
ACKERSTAFF	98J	EPJ C2 607	$K.\ Ackerstaff +$	(OPAL Collab.)
ACKERSTAFF	98K	EPJ C4 47	K. Ackerstaff+	(OPAL Collab.)
ACKERSTAFF	98L	EPJ C2 213	K. Ackerstaff+	(OPAL Collab.)
ACKERSTAFF	98P	PL B433 195	K. Ackerstaff+	(OPAL Collab.)
				\
ACKERSTAFF	98V	EPJ C2 441	K. Ackerstaff+	(OPAL Collab.)
BARATE	98H	PL B420 127	R. Barate $+$	(ALEPH Collab.)
BARATE	98J	PL B429 201	R. Barate $+$	(ALEPH Collab.)
BARATE	98K	PL B433 176	R. Barate+	(ALEPH Collab.)
BARATE	98N	PL B434 189	R. Barate+	(ALEPH Collab.)
BARATE		EPJ C4 433	R. Barate+	
	98S			(ALEPH Collab.)
BARATE	98X	EPJ C2 417	R. Barate+	(ALEPH Collab.)
BREITWEG	98	PL B434 214	J. Breitweg+	(ZEUS Collab.)
ELLIS	98	PR D58 095002	J. Ellis+	
ABACHI	97	PRL 78 2070	S. Abachi+	(D0 Collab.)
ABE	97K	PR D56 R1357	F. Abe+	(CDF Collab.)
ABREU	97D	PL B396 315	P. Abreu+	(DELPHI Collab.)
ABREU	97 J	ZPHY C74 577	P. Abreu+	(DELPHI Collab.)
ACCIARRI	97U	PL B414 373	M. Acciarri+	(L3 Collab.)
ACCIARRI	97V	PL B415 299	M. Acciarri+	(L3 Collab.)
ACKERSTAFF	97H	PL B396 301	K. Ackerstaff+	(OPAL Collab.)
ACKERSTAFF	97Q	ZPHY C75 409	K. Ackerstaff+	(OPAL Collab.)
	•			
ADAMS	97B	PRL 79 4083	J. Adams+	(KTeV Collab.)
ALBUQUERQ	. 97	PRL 78 3252	I.F. Albuquerque+	(FNAL E761 Collab.)
ALEXANDER	97B	ZPHY C73 201	$G.\ Alexander +$	(OPAL Collab.)
BARATE	97K	PL B405 379	R. Barate+	(ÀLEPH Collab.)
BARATE	97L	ZPHY C76 1	R. Barate+	(ALEPH Collab.)
		PL B407 377		
BARATE	97N		R. Barate+	(ALEPH Collab.)
BARATE	97Q	PL B413 431	R. Barate+	(ALEPH Collab.)
BOTTINO	97	PL B402 113	+ (TORI, LAPP, GENO,	ROMA, ROMA2, INFN)
CARENA	97	PL B390 234	M. Carena, G.F. Giudice, C.E.M.	Wagner
CSIKOR	97	PRL 78 4335	F. Csikor, Z. Fodor	(EOTV, CERN)
DATTA	97	PL B395 54	A. Datta, M. Guchait, N. Parua	(ICTP, TATA)
				(ICTT, TATA)
DEGOUVEA	97	PL B400 117	A. de Gouvea, H. Murayama	(==
DERRICK	97	ZPHY C73 613	M. Derrick+	(ZEUS Collab.)
ELLIS	97	PL B394 354	J. Ellis, J.L. Lopez, D.V. Nanopo	ulos
ELLIS	97C	PL B413 355	J. Ellis, Falk, Olive, Schmitt	
HEWETT	97	PR D56 5703	J.L. Hewett, T.G. Rizzo, M.A. Do	oncheski
				SHEHESKI
KALINOWSKI	97	PL B400 112	J. Kalinowski, P. Zerwas	(41.47)
TEREKHOV	97	PL B412 86	I. Terekhov	(ALAT)
ABACHI	96	PRL 76 2228	+Abbott, Abolins, Acharya $+$	(D0 Collab.)
ABACHI	96B	PRL 76 2222	+Abbott, Abolins, Acharya+	(D0 Collab.)
ABE	96	PRL 77 438	+Akimoto, Akopian, Albrow+	(CDF Collab.)
ABE	96D	PRL 76 2006	+Akimoto, Akopian, Albrow+	(CDF Collab.)
				` - · · · · · · · · · · · · · · · · · ·
ABE	96K	PRL 76 4307	+Akimoto, Akopian, Albrow+	(CDF Collab.)
ABREU	96L	PL B382 323	+Adam, Adye, Agasi $+$	(DELPHI Collab.)
ABREU	960	PL B387 651	+Adam, Adye, Agasi $+$	(DELPHI Collab.)
ACCIARRI	96F	PL B377 289	+Adam, Adriani, Aguilar-Benitez+	` (L3 Collab.)
ACKERSTAFF	96	PL B389 197	+Alexander, Allison, Altekamp+	(OPAL Collab.)
			,	

ACKERSTAFF	96C	PL B389 616	+Alexander, Allison, Altekamp+ (OPAL Collab.)
AID	96	ZPHY C71 211	+Andreev, Andrieu, Appuhn+ (H1 Collab.)
AID	96C	PL B380 461	+Andreev, Andrieu, Appuhn+ (H1 Collab.)
ALCARAZ The ALEPI	96 H. DE	CERN-PPE/96-183 LPHI, L3, OPAL, and	J. Alcaraz+ SLD Collaborations and the LEP Electroweak Working Group
ALEXANDER	96J	PL B377 181	+Allison, Altekamp, Ametewee+ (OPAL Collab.)
ALEXANDER	96L	PL B377 273	+Allison, Altekamp, Ametewee+ (OPAL Collab.)
BUSKULIC	96A	ZPHY C72 549	D. Buskulic+ (ALEPH Collab.)
BUSKULIC BUSKULIC	96K 96U	PL B373 246 PL B384 461	+De Bonis, Decamp, Ghez+ (ALEPH Collab.) +De Bonis, Decamp, Ghez+ (ALEPH Collab.)
CHO	96	PL B372 101	+Kizukuri, Oshimo (TOKAH, OCH)
ELLIS	96B	PL B388 97	+Falk, Olive, Schmitt (CERN, MINN)
FARRAR	96	PRL 76 4111	G.R. Farrar (RUTG)
SUGIMOTO TEREKHOV	96 96	PL B369 86 PL B385 139	+Abe, Fujii, Igarashi+ (AMY Collab.) I. Terkhov, L. Clavelli (ALAT)
ABACHI	95C	PRL 75 618	+Abbott, Abolins, Acharya+ (D0 Collab.)
ABE	95A	PL B361 199	+Fujii, Sugiyama, Fujimoto+ (TOPAZ Collab.)
ABE	95N	PRL 74 3538	+Albrow, Amendolia, Amidei, Antos+ (CDF Collab.)
ABE ACCIARRI	95T 95E	PRL 75 613 PL B350 109	+Albrow, Amidei, Anway-Wiese+ (CDF Collab.) +Adam, Adraiani, Aguilar-Benitez+ (L3 Collab.)
AKERS	95A	ZPHY C65 367	R. Akers+ (OPAL Collab.)
AKERS	95R	ZPHY C67 203	+Alexander, Allison, Ametewee, Anderson+ (OPAL Collab.)
BUSKULIC	95E	PL B349 238	+Casper, DeBonis, Decamp+ (ALEPH Collab.)
CLAVELLI FALK	95 95	PR D51 1117 PL B354 99	+Coulter (ALAT) +Olive, Srednicki (MINN, UCSB)
LOSECCO	95	PL B342 392	(NDAM)
AHMED	94B	ZPHY C64 545	+Aid, Andreev, Andrieu, Appuhn, Arpagaus+ (H1 Collab.)
AKERS	94K	PL B337 207	+Alexander, Allison, Anderson+ (OPAL Collab.)
BECK CAKIR	94 94	PL B336 141 PR D50 3268	+Bensch, Bockholt+ (MPIH, KIAE, SASSO) M.B. Cakir, G.R. Farrar (RUTG)
FALK	94	PL B339 248	M.B. Cakir, G.R. Farrar (RUTG) +Olive, Srednicki (UCSB, MINN)
FRANKE	94	PL B336 415	+Fraas, Bartl (WURZ, WIEN)
HOSODA	94	PL B331 211	+Abe, Amako, Arai+ (VENUS Collab.)
SHIRAI	94	PRL 72 3313	+Ohmoto, Abe, Amako+ (VENUS Collab.)
ACTON ADRIANI	93G 93M	PL B313 333 PRPL 236 1	+Akers, Alexander, Allison, Anderson+ (OPAL Collab.) +Aguilar-Benitez, Ahlen, Alcaraz, Aloisio+ (L3 Collab.)
ALITTI	93	NP B400 3	+Ambrosini, Ansari, Autiero, Bareyre+ (UA2 Collab.)
CLAVELLI	93	PR D47 1973	+Coulter, Yuan (ALAT)
DREES	93	PR D47 376	+Nojiri (DESY, SLAC)
FALK HEBBEKER	93 93	PL B318 354 ZPHY C60 63	+Madden, Olive, Srednicki (UCB, UCSB, MINN) (CERN)
KELLEY	93	PR D47 2461	+Lopez, Nanopoulos, Pois, Yuan (TAMU, ALAH)
LAU	93	PR D47 1087	(HOUS)
LOPEZ	93C	PL B313 241	+Nanopoulos, Wang (TAMU, HARC, CERN)
MIZUTA MORI	93 93	PL B298 120 PR D48 5505	+Yamaguchi (TOHO) +(KEK, NIIG, TOKY, TOKA, KOBE, OSAK, TINT, GIFU)
ABE	92L	PRL 69 3439	+Amidei, Anway-Wiese, Apollinari, Atac+ (CDF Collab.)
BOTTINO	92	MPL A7 733	+DeAlfaro, Fornengo, Morales, Puimedon+ (TORI, ZARA)
Also	91	PL B265 57	Bottino, de Alfaro, Fornengo, Mignola+ (TORI, INFN)
CLAVELLI DECAMP	92 92	PR D46 2112 PRPL 216 253	+Deschizeaux, Goy, Lees, Minard+ (ALEPH Collab.)
ELLIS	92F	PL B283 252	+Roszkowski (CERN)
KAWASAKI	92	PR D46 1634	+Mizuta (OSU, TOHO)
LOPEZ	92	NP B370 445	+Nanopoulos, Yuan (TAMU)
MCDONALD ROY	92 92	PL B283 80 PL B283 270	+Olive, Srednicki (LISB, MINN, UCSB)
ABREU	91F	NP B367 511	+Adam, Adami, Adye, Akesson+ (DELPHI Collab.)
AKESSON	91	ZPHY C52 219	+Almehed, Angelis, Atherton, Aubry+ (HELIOS Collab.)
ALEXANDER	91F	ZPHY C52 175	+Allison, Allport, Anderson, Arcelli+ (OPAL Collab.)
ANTONIADIS BAER	91 91	PL B262 109	+Ellis, Nanopoulos (EPOL, CERN, TAMU, HARC) +Tata, Woodside (FSU, HAWA, ISU)
BOTTINO	91	PR D44 207 PL B265 57	+Tata, Woodside (FSU, HAWA, ISU) +de Alfaro, Fornengo, Mignola+ (TORI, INFN)
GELMINI	91	NP B351 623	+Gondolo, Roulet (UCLA, TRST)
HIDAKA	91	PR D44 927	(TGAK)
KAMIONKOW.		PR D44 3021	Kamionkowski (CHIC, FNAL)
MORI NOJIRI	91B 91	PL B270 89 PL B261 76	+Nojiri, Oyama, Suzuki+ (Kamiokande Collab.) (KEK)
OLIVE	91	NP B355 208	+Srednicki (MINN, UCSB)
ROSZKOWSKI	91	PL B262 59	` (CERN)

SATO				
ABREU 90F PL B247 148	SATO	91	PR D44 2220	+Hirata, Kaiita, Kifune+ (Kamiokande Collab.)
ABREU 90C PL B247 157 ADACHI 90C PL B244 352 ADEVA 90I PL B249 381 AKESSON 90B PL B239 381 AKESSON 90B PL B238 442 AKRAWY 90D PL B240 261 AKRAWY 90D PL B240 261 AKRAWY 90D PL B242 211 AKRAWY 90C PL B252 290 AKRAWY 90C PL B252 390 AKRAWY 90C PL B253 636 AKRAWY 90C PL B254 391 AKRAWY 90C PL B236 86 PECAMP 90C PL B236 86 ABRELLIS 90 PR D41 3955 AKRAWS 90 PR D43 395 AKRAWS 90 PR B331 244 AKRAWS 90 PR B33 200 AKRAWLRA 90				
ADEMA 90 PL B244 352 ADEVA 90 PL B249 341 ARCHSON 90 PL B238 442 AKRAWY 90 PL B249 341 AKRAWY 90 PL B240 261 AKRAWY 90 PL B245 251 AKRAWY 90 PL B252 390 ALITTI 90 PL B252 390 ALITTI 90 PL B235 363 BAFR 90 PR D41 3414 BARKLOW 90 PRI, 64 2994 ABARKLOW 90 PRI, 64 2994 ARCHINGAR, ARCHIN	ABREU	90G		• • • • • • • • • • • • • • • • • • • •
ADEWA 901 PL 8249 341 +Adriani, Aguilar-Benitez, Akbari, Alcarez+ (L3 Collab.) AKESSON 908 PL 8240 261 +Alitti, Ansari, Ansorgea, Allson, Allporth, Anderson+ (OPAL Collab.) AKRAWY 900 PL 8252 290 +Alexander, Allison, Allporth, Anderson+ (OPAL Collab.) ALITTI 90 PL 8253 363 +Alexander, Allison, Allporth, Anderson+ (UQA2 Collab.) BARRALOW 90 PR 64 2984 +Alexander, Allison, Allporth, Anderson+ (UQA2 Collab.) BARRALOW 90 PR 64 2984 +Dress, Tata (FSU, CERN, HAWA) DECAMP 900 PL 8245 251 +Abrams, Adolphsen, Averill, Ballam+ (Mark II Collab.) DECAMP 90 PL 8244 541 +Dress. Tata (FSU, CERN, HAWA) ERIESTO 90 PR 64 999 +Basa 344 +Massoowski, Turner (UCB, CHLE, TAMU) SODERSTROM 90 PR 64 999 +Basa 499 +Massoowski, Turner (WCRUS, Collab.) 2HUKOVSKII 90 PR 64 999 +Massoowski, Turner (WCRUS, Collab.) ABE 89J ZPHY C45 175	ADACHI	90C		
AKESSON 90B PL B238 442 +Alittit, Ansari, Ansorge+ (UA2 Collab) AKRAWY 90D PL B240 261 +Alexander, Allison, Allport, Anderson+ (OPAL Collab) AKRAWY 90D PL B235 299 +Alexander, Allison, Allport, Anderson+ (OPAL Collab) AKRAWY 90 PL B235 363 +Ansari, Ansorge, Bagnaia, Bareyre+ (UA2 Collab) BARK 90 PD A1 3414 +Ansari, Ansorge, Bagnaia, Bareyre+ (UA2 Collab) DECAMP 90C PL B236 86 +Deschizeaux, Gov, Lees+ (Mark II Collab) DECAMP 90F PL B236 561 +Deschizeaux, Gov, Lees+ (ALEPH Collab) GRIEST 90 PL B245 251 +Samionkowski, Turner (CER) (CIB) GRIFOLS 90 PL B236 334 +Samionkowski, Turner (CEN, CIC, FNAL) GRIFOLS 90 PL B236 362 +Garain +Garain ZHUKOVSKII 90 PL B236 362 +Gurain +Gurain (VALE) ADEVA 89 PL B238 530 +Gurain +Gurain +Gurain (VAIC)	ADEVA	901		
AKRAWY	AKESSON	90B		
AKRAWY	AKRAWY	90D	PL B240 261	
AKRAWY 900 Pl. B252 290 +Alexander, Allison, Allport, Anderson+ (OPAL Collab.) BARR 90 PR D41 3414 +Dress, Tata (FSU, CERN, HAWA) DECAMP 900 Pl. B236 86 +Deschizeaux, Lees, Minard, Crespo+ (ALEPH Collab.) DECAMP 90K Pl. B236 86 +Deschizeaux, Lees, Minard, Crespo+ (ALEPH Collab.) ELLIS 90 Pl. B245 251 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ELLIS 90 Pl. B245 251 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Deschizeaux, Lees, Minard, Crespo+ (ALEPH Collab.) ERREST 90 PR D41 3865 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Masopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Masopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Masopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Masopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Masopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Masopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) ERREST 90 PR D41 3865 +Masopoulos, Roszkowski, Schramm, CERN, HARC, TAMU, CR		90N		
ALITTI	AKRAWY	900		
BARRIC 90	ALITTI	90	PL B235 363	
BARRLOW 90	BAER	90	PR D41 3414	
DECAMP 90K PL B236 86 + Deschizeaux, Les, Minard, Crespo+ (ALEPH Collab.) DECAMP 90K PL B244 541 + Deschizeaux, Gov, Les+ (ALEPH Collab.) ELLIS 90 PL B245 251 + Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) PL B216 251 + Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) PL B216 251 + Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) PL B234 202 + McKenna, Abrams, Adolphsen, Averill+ (Mark II Collab.) CAMEN 190 PL B234 524 + Gu, Low, Abe, Fujii+ (AMY Collab.) CAMEN 190 PL B234 524 + Heminov (MOSU) PAKE 191 1524 202 + Heminov (MINN, UCSB)	BARKLOW	90	PRL 64 2984	
DECAMP		90C		
ELLIS 90 PL B245 251 +Nanopoulos, Roszkowski, Schramm (CERN, HARC, TAMU) GRIEST 90 NP B331 244 +Masson (UCB, CHIC, FNAL) (RALOS) 90 PR E4 999 +Masson (UCB, CHIC, FNAL) SAKAI 90 PL B234 534 +Gu, Low, Abe, Fujii+ (AMY Collab.) SODERSTROM 90 PL B234 202 +Gukaka, Abe, Amako+ (VENUS Collab.) TAKETANI 90 PL B234 202 +Gukaka, Abe, Amako+ (VENUS Collab.) ABE 891 ZPHY C45 175 +Almako, Arai, Fukawa+ (VENUS Collab.) ADEVA 899 PL B233 530 +Adriani, Aguilar-Benitez, Akbari+ (US QUAN) ALBAJAR 97 PR 158 1711 +Barta, Dijkstra, Enomoto, Fujii+ (VENUS Collab.) ALBAJAR 97 PR 158 1751 +Albrow, Allkofer, Arnison, Astbury+ (LG CLO) Also 86 PR 158 6685 Ashania, Builar-Benitez, Akbari+ (LG CLO) Also 87 PR 158 6685 Bartha, Burke, Extermann+ (ASP Collab.) DLIVE 89 PL 8239 78 +Srednicki	DECAMP	90K		
RAPICOLS 90	ELLIS	90	PL B245 251	
KRAUSS 90 PRL 64 999 (YALE) SAKAI 90 PL B234 534 +Gu, Low, Abe, Fujii+ (AMY Collab.) SODERSTROM 90 PRL 64 2980 +McKenna, Abrams, Adolphsen, Averill+ (Mark II Collab.) ZHUKOVSKII 90 PL B234 202 +Odaka, Abe, Amako+ (VENUS Collab.) ABE 89 JP PP 52 931 +Fminov (MOSU) ADEVA 89 PL B218 105 +Ahihara, Dijkstra, Enomoto, Fujii+ (VENUS Collab.) ALBAJAR 89 PL B218 105 +Ahirani, Aguilar-Bentez, Akbari+ (L3 Collab.) ALBAJAR 89 PR D39 303 +Adriani, Aguilar-Bentez, Akbari+ (L3 Collab.) ALBAJAR 89 PR D39 30207 +Rothberg, Young, Johnson, Whitaker+ (ASP Collab.) Also 87 PRL 56 665 Bartha, Burke, Extermann+ (ASP Collab.) ALBAJAR 89 PR D39 1261 +Kobayashi, Konaka, Imai, Masaike+ (KYPT, TMTC OLIVE 89 PL B215 186 +Frednicki (ELLO Collab.) BEHREND 88 PL B215 186	GRIEST	90	PR D41 3565	+Kamionkowski, Turner (UCB, CHIC, FNAL)
KRAUSS 90	GRIFOLS	90	NP B331 244	` '(
SAKAI	KRAUSS	90	PRL 64 999	`~(
TAKETANI	SAKAI	90	PL B234 534	+Gu, Low, Abe, Fujii+ (AMY Collab.)
Heart	SODERSTROM	1 90	PRL 64 2980	+McKenna, Abrams, Adolphsen, Averill+ (Mark II Collab.)
Translated from YAF 52 1473	TAKETANI	90	PL B234 202	+Odaka, Abe, Amako+ (VENUS Collab.)
Translated from YAF 52 1473.	ZHUKOVSKII	90	SJNP 52 931	+Eminov (MOSU)
ADACH			Translated from YA	
ADEVA AB98	ABE	89J	ZPHY C45 175	+Amako, Arai, Fukawa+ (VENUS Collab.)
ALBAJAR	ADACHI	89	PL B218 105	+Aihara, Dijkstra, Enomoto, Fujii $+$ (TOPAZ Collab.)
HEARTY	ADEVA	89B	PL B233 530	+Adriani, Aguilar-Benitez, Akbari+ (L3 Collab.)
Also	ALBAJAR	89	ZPHY C44 15	+Albrow, Allkofer, Arnison, Astbury+ (UA1 Collab.)
Also	HEARTY	89	PR D39 3207	+Rothberg, Young, Johnson, Whitaker+ (ASP Collab.)
NAKAMURA 89 PR D39 1261 +Kobayashi, Konaka, Imai, Masaike+ (KÝOT, TMTC) OLIVE 89 PL B230 78 +Srednicki (MINN, UCSB) BEHREND 88B PL B215 186 +Criegee, Dainton, Field+ (CELLO Collab.) BLLIS 88B PL B215 404 +Olive, Sarkar, Sciama (CERN, MINN, RAL, CAMB) NATH 88 PR D33 1479 +Arnowitt (MEAS, TAMU) OLIVE 88 PL B205 553 +Srednicki (MINN, UCSB) SREDNICKI 88 PL B196 561 +Arnowitt (MINN, UCSB) ALBAJAR 87D PL B198 261 +Albrow, Allkofer+ (UA1 Collab.) ANSARI 87D PL B195 613 +Bagnaia, Banner+ (UA2 Collab.) ARNACI 87 PL B188 435 +Barth+ (BRUX, DUUC, LOUC, BARI, AICH, CERN+) BEHREND 87 PL B188 138 +Olive, Srednicki (MINN, UCSB) TUTS 87 PL B186 233 +Franzini, Youssef, Zhao+ (CELLO Collab.) ALBRECHT 86 ZPHY C31 21 +Bemporad, Boucrot, Callot+	Also	87	PRL 58 1711	Hearty, Rothberg, Young, Johnson+ (ASP Collab.)
OLIVE 89 PL B230 78 + Srednicki (MINN, UCSB) BEHREND 88B PL B215 186 + Criegee, Dainton, Field+ (CELLO Collab.) ELLIS 88B PL B215 186 + Criegee, Dainton, Field+ (CERN, MINN, RLA, CAMB) NATH 88 PR D38 1479 + Annowitt (NEAS, TAMU) OLIVE 88 PL B205 553 + Srednicki (MINN, UCSB) SREDNICKI 88 NP B310 693 + Watkins, Olive (MINN, UCSB) ALBAJAR 87D PL B198 261 + Albrow, Allkofer+ (UA1 Collab.) ANSARI 87D PL B198 261 + Albrow, Allkofer+ (UA2 Collab.) ARNOLD 87 PL B188 38 + Albrow, Allkofer+ (UA2 Collab.) BANDER 87 PL B188 138 + Olive, Srednicki (MINN, UCSB) TUTS 87D	Also	86	PRL 56 685	Bartha, Burke, Extermann+ (ASP Collab.)
BEHREND 88B PL B215 186 +Criegee, Dainton, Field+ (ČELLO Collab.) BLIS 88B PL B215 404 +Olive, Sarkar, Sciama (CERN, MINN, RAL, CAMB) NATH 88 PL B205 553 +Srednicki (MINN, UCSB) SREDNICKI 88 PL B205 553 +Srednicki (MINN, UCSB) SREDNICKI 88 PL B109 593 +Watkins, Olive (MINN, UCSB) ALBAJAR 87D PL B198 261 +Albrow, Allkofer+ (UA1 Collab.) ANSARI 87D PL B195 613 +Bagnaia, Banner+ (UA2 Collab.) ARNOLD 87 PL B186 455 +Barth+ (BRUX, DUUC, LOUC, BARI, AICH, CERN+) BEHREND 87 PL B188 138 +Barth+ (BRUX, DUUC, LOUC, BARI, AICH, CERN+) ALBRECHT 86 PL 1678 360 +Barth+ (BRUX, CILLOO, BARI, AICH, CERN+) (CUSE Collab.) BADIER	NAKAMURA	89	PR D39 1261	+Kobayashi, Konaka, Imai, Masaike+ (KYOT, TMTC)
ELLIS 88B PL B215 404 +Olive, Sarkar, Sciama (CERN, MINN, RAL, CAMB) NATH 88 PR D38 1479 +Arnowitt (NEAS, TAMU) OLIVE 88 PL B205 553 +Srednicki (MINN, UCSB) SREDNICKI 88 NP B310 693 +Watkins, Olive (MINN, UCSB) ALBAJAR 87D PL B198 261 +Albrow, Allkofer+ (UA1 Collab.) ANSARI 87D PL B198 261 +Albrow, Allkofer+ (UA2 Collab.) ARNOLD 87 PL B186 435 +Barth+ (B2CUL) CO2lab.) ARNOLD 87 PL B186 435 +Barth+ (BRUX, DUUC, LOUC, BARI, AICH, CERN+) BEHREND 87 PL B186 435 +Barth+ (BRUX, DUUC, LOUC, BARI, AICH, CERN+) BEHREND 86 PL 1678 360 +Birder, Harder+ (BACCUL) (CUSB Collab.) BANESER 86	OLIVE	89	PL B230 78	+Srednicki (MINN, UCSB)
NATH OLIVE 88 PL B205 553	BEHREND		PL B215 186	+Criegee, Dainton, Field $+$ (CELLO Collab.)
OLIVE 88 PL B205 553 +Srednicki (MINN, UCSB) SREDNICKI 88 NP B310 693 +Watkins, Olive (MINN, UCSB) ALBAJAR 87D PL B198 261 +Albrow, Allkofer+ (UA1 Collab.) ANSARI 87D PL B195 613 +Bagnaia, Banner+ (UA2 Collab.) ARNOLD 87 PL B186 435 +Barth+ (BRUX, DUUC, LOUC, BARI, AICH, CERN+) BEHREND 87 PL B188 138 +Olive, Srednicki (MINN, UCSB) TUTS 87 PL B186 233 +Franzini, Youssef, Zhao+ (CUSB Collab.) ALBRECHT 86 PL 1678 360 +Binder, Harder+ (ARGUS Collab.) ALBRECHT 86 PL 1678 360 +Binder, Harder+ (ARGUS Collab.) ALBROETT 86 PR D33 3472 +Qi, Read+ (MAC Collab.) GAISSER 86 PR D33 4320 +Steigman, T	ELLIS	88B		+Olive, Sarkar, Sciama (CERN, MINN, RAL, CAMB)
SREDNICKI 88 NP B310 693 +Watkins, Olive (MINN, UCSB) ALBAJAR 87D PL B198 261 +Albrow, Allkofer+ (UA1 Collab.) ANSARI 87D PL B195 613 +Bagnaia, Banner+ (UA2 Collab.) ARNOLD 87 PL B186 435 +Barth+ (BRUX, DUUC, LOUC, BARI, AICH, CERN+) BEHREND 87B ZPHY C35 181 +Barth+ (BRUX, DUUC, LOUC, BARI, AICH, CERN+) BEHREND 87B ZPHY C35 181 +Barth+ (BRUX, DUUC, LOUC, BARI, AICH, CERN+) BERNETT 87 PL B188 138 +Olive, Srednicki (MINN, UCSB) TUTS 87 PL B188 233 +Franzini, Youssef, Zhao+ (CUSB Collab.) ALBRECHT 86 PL 167B 360 +Binder, Harder+ (ARGUS Collab.) BADIER 86 ZPHY C31 21 +Bemporad, Boucrot, Callot+ (NA3 Collab.) BADIER 86 ZPHY C31 21 +Bemporad, Boucrot, Callot+ (NA3 Collab.) GAISSER 86 PR D34 2206 +Steigman, Tilav (LBL, UCSC, MICH) FORD 86 <td< td=""><td></td><td></td><td></td><td>,</td></td<>				,
ALBAJAR 87D PL B198 261 +Albrow, Allkofer+ (UAI Collab.) ANSARI 87D PL B195 613 +Bagnaia, Banner+ (UA2 Collab.) ARNOLD 87 PL B186 435 +Barth+ (BRUX, DUUC, LOUC, BARI, AICH, CERN+) BEHREND 87B ZPHY C35 181 +Buerger, Criegee, Dainton+ (CELLO Collab.) NG 87 PL B188 138 +Olive, Srednicki (MINN, UCSB) TUTS 87 PL B186 233 +Franzini, Youssef, Zhao+ (CUSB Collab.) ALBRECHT 86C PL 167B 360 +Binder, Harder+ (ARGUS Collab.) BADIER 86 ZPHY C31 21 +Bemporad, Boucrot, Callot+ (NA3 Collab.) BARNETT 86 NP B267 625 +Haber, Kane (LBL, UCSC, MICH) FORD 86 PR D33 3472 +Qi, Read+ (MAC Collab.) GAISSER 86 PR D34 2206 +Steigman, Tilav (BART, DELA) VOLOSHIN 86 SJNP 43 495 +Okun (ITEP) Translated from YAF 43 779. ADEVA 85 PL 152B 439 +Becker, Becker-Szendy+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 155B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) BEHREND 85 PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) FARRAR 85 PRPL 17 75 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1816 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1814 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARTEL 84B PL 139B 327 +Berker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Berker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) FARRAR 84 PRL 53 1029 (RUTG)	OLIVE			+Srednicki (MINN, UCSB)
ANSARI 87D PL B195 613 +Bagnaia, Banner+ (UA2 Collab.) ARNOLD 87 PL B186 435 +Barth+ (BRUX, DUUC, LOUC, BARI, AICH, CERN+) BEHREND 87B ZPHY C35 181 +Buerger, Criegee, Dainton+ (CELLO Collab.) NG 87 PL B188 138 +Olive, Srednicki (MINN, UCSB) TUTS 87 PL B186 233 +Franzini, Youssef, Zhao+ (CUSB Collab.) ALBRECHT 86C PL 167B 360 +Binder, Harder+ (ARGUS Collab.) BADIER 86 ZPHY C31 21 +Bemporad, Boucrot, Callot+ (NA3 Collab.) BARNETT 86 NP B267 625 +Haber, Kane (LBL, UCSC, MICH) FORD 86 PR D33 3472 +Qi, Read+ (MAC Collab.) GAISSER 86 PR D34 2206 +Steigman, Tilav (BART, DELA) VOLOSHIN 86 SJNP 43 495 +Okun (ITEP) Translated from YAF 43 779. ADEVA 85 PL 152B 439 +Becker, Becker-Szendy+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 155B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) BEHREND 85 PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) ADEVA 84B PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BARTEL 84B PL 139B 427 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1814 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) FLILLIS 84 NP B238 453 +Becker, Bowdery, Cords+ (JADE Collab.) FARRAR 84 PRL 53 1029 (RUTG)				`
ARNOLD 87 PL B186 435				` · · · · · · · · · · · · · · · · · · ·
BEHREND 87B ZPHY C35 181 +Buerger, Criegee, Dainton+ (CELLO Collab.) NG 87 PL B188 138 +Olive, Srednicki (MINN, UCSB) TUTS 87 PL B186 233 +Franzini, Youssef, Zhao+ (CUSB Collab.) ALBRECHT 86C PL 167B 360 +Binder, Harder+ (ARGUS Collab.) BADIER 86 ZPHY C31 21 +Bemporad, Boucrot, Callot+ (NA3 Collab.) BARNETT 86 NP B267 625 +Haber, Kane (LBL, UCSC, MICH) FORD 86 PR D34 2206 +Steigman, Tilav (BART, DELA) VOLOSHIN 86 PR D34 2206 +Steigman, Tilav (BART, DELA) VOLOSHIN 86 PR D34 495 +Okun (ITEP) Translated from YAF 43 779. Hecker, Becker-Szendy+ (Mark-J Collab.) ALSO 84C PRPL 109 131 Adeva, Barber, Becker+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BAHTEL 85L PL 161B 182 +Burger, Criegee, Fenner+ (- · · · · · · · · · · · · · · · · · · ·
NG 87 PL B188 138 +Olive, Srednicki (MINN, UCSB) TUTS 87 PL B186 233 +Franzini, Youssef, Zhao+ (CUSB Collab.) ALBRECHT 86C PL 167B 360 +Binder, Harder+ (ARGUS Collab.) BADIER 86 ZPHY C31 21 +Bemporad, Boucrot, Callot+ (NA3 Collab.) BARNETT 86 NP B267 625 +Haber, Kane (LBL, UCSC, MICH) FORD 86 PR D33 3472 +Qi, Read+ (MAC Collab.) GAISSER 86 PR D34 2206 +Steigman, Tilav (BART, DELA) VOLOSHIN 86 SJNP 43 495 +Okun (ITEP) Translated from YAF 43 779. ADEVA 85 PL 152B 439 +Becker, Becker-Szendy+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (Mark-J Collab.) BARTEL 85L PL 1515B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (W66 Collab.) DAWSON 85 PR D31 1581				
TUTS 87 PL B186 233 +Franzini, Youssef, Zhao+ (CUSB Collab.) ALBRECHT 86C PL 167B 360 +Binder, Harder+ (ARGUS Collab.) BADIER 86 ZPHY C31 21 +Bemporad, Boucrot, Callot+ (NA3 Collab.) BARNETT 86 NP B267 625 +Haber, Kane (LBL, UCSC, MICH) FORD 86 PR D33 3472 +Qi, Read+ (MAC Collab.) GAISSER 86 PR D34 2206 +Steigman, Tilav (BART, DELA) VOLOSHIN 86 SJNP 43 495 +Okun (ITEP) Translated from YAF 43 779. Translated from YAF 43 779. (Mark-J Collab.) ALSO 84C PRPL 109 131 Adeva, Barber, Becker-Szendy+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) DAWSON 85 PRL 55 895 (RUTG) <td></td> <td></td> <td></td> <td></td>				
ALBRECHT 86C PL 167B 360 +Binder, Harder+ (ARGUS Collab.) BADIER 86 ZPHY C31 21 +Bemporad, Boucrot, Callot+ (NA3 Collab.) BARNETT 86 NP B267 625 +Haber, Kane (LBL, UCSC, MICH) FORD 86 PR D33 3472 +Qi, Read+ (MAC Collab.) GAISSER 86 PR D34 2206 +Steigman, Tilav (BART, DELA) VOLOSHIN 86 SJNP 43 495 +Okun (ITEP) Translated from YAF 43 779. Adson 85 PL 152B 439 +Becker, Becker-Szendy+ (Mark-J Collab.) Also 84C PRPL 109 131 Adeva, Barber, Becker+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 158B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) COOPER 85B PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85				
BADIER 86 ZPHY C31 21 +Bemporad, Boucrot, Callot+ (NA3 Collab.) BARNETT 86 NP B267 625 +Haber, Kane (LBL, UCSC, MICH) FORD 86 PR D33 3472 +Qi, Read+ (MAC Collab.) GAISSER 86 PR D34 2206 +Steigman, Tilav (BART, DELA) VOLOSHIN 86 SJNP 43 495 +Okun (ITEP) Translated from YAF 43 779. (Mark-J Collab.) ADEVA 85 PL 152B 439 +Becker, Becker-Szendy+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 155B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) BEHREND 85 PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LANL, UCSC) HABER 85 PRPL 117 75 +Kane (UCSC, MICH)				
BARNETT 86 NP B267 625 + Haber, Kane (LBL, ÚCSC, MICH) FORD 86 PR D33 3472 + Qi, Read+ (MAC Collab.) GAISSER 86 PR D34 2206 + Steigman, Tilav (BART, DELA) VOLOSHIN 86 SJNP 43 495 + Okun (ITEP) Translated from YAF 43 779. (Mark-J Collab.) ADEVA 85 PL 152B 439 + Becker, Becker-Szendy+ (Mark-J Collab.) Also 84C PRPL 109 131 Adeva, Barber, Becker+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 + Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 1518 288 + Becker, Cords, Felst, Hagiwara+ (JADE Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) COOPER 85B PR D31 1581 + Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 PRPL 517 75 + Kane (LANL, UCSC) HABER 85 PRPL 53 13806	_			
FORD 86 PR D33 3472 +Qi, Read+ (MAC Collab.) GAISSER 86 PR D34 2206 +Steigman, Tilav (BART, DELA) VOLOSHIN 86 SJNP 43 495 +Okun (ITEP) Translated from YAF 43 779. (Mark-J Collab.) ADEVA 85 PL 152B 439 +Becker, Becker-Szendy+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 155B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) BEHREND 85 PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 PRPL 117 75 +Kane (LANL, UCSC) HABER 85 PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84				
GAISSER 86 PR D34 2206 +Steigman, Tilav (BART, DELA) VOLOSHIN 86 SJNP 43 495 +Okun (ITEP) Translated from YAF 43 779. (Mark-J Collab.) ADEVA 85 PL 152B 439 +Becker, Becker-Szendy+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 155B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) BEHREND 85 PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 Physica 15D 181 +Haber (LANL, UCSC) HABER 85 PRL 13 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC)				
VOLOSHIN 86 SJNP 43 495 Translated from YAF 43 779. +Okun 779. (ITEP) Translated from YAF 43 779. ADEVA 85 PL 152B 439 +Becker, Becker-Szendy+ (Mark-J Collab.) Also 84C PRPL 109 131 Adeva, Barber, Becker+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 155B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) BEHREND 85 PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 Physica 15D 181 +Haber (LANL, UCSC) HABER 85 PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARTEL 84B				
Translated from YAF 43 779.				()
ADEVA 85 PL 152B 439 +Becker, Becker-Szendy+ (Mark-J Collab.) Also 84C PRPL 109 131 Adeva, Barber, Becker+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 155B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) BEHREND 85 PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 Physica 15D 181 +Haber (LANL, UCSC) HABER 85 PRPL 117 75 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 327 +Shrock (STON) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (J	VOLOSHIN	80		
Also 84C PRPL 109 131 Adeva, Barber, Becker+ (Mark-J Collab.) AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 155B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) BEHREND 85 PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 Physica 15D 181 +Haber (LANL, UCSC) HABER 85 PRPL 117 75 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery,	ADEV/A	85		
AKERLOF 85 PL 156B 271 +Bonvicini, Chapman, Errede+ (HRS Collab.) BARTEL 85L PL 155B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) BEHREND 85 PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 PNysica 15D 181 +Haber (LANL, UCSC) HABER 85 PRPL 117 75 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 427 +Shrock (STON) BARTEL 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+				• • • • • • • • • • • • • • • • • • • •
BARTEL 85L PL 155B 288 +Becker, Cords, Felst, Hagiwara+ (JADE Collab.) BEHREND 85 PL 161B 182 +Burger, Criegee, Fenner+ (CELLO Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 Physica 15D 181 +Haber (LANL, UCSC) HABER 85 PRPL 117 75 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) FARRAR 84 PRL 53				
BEHREND 85 PL 161B 182 +Burger, Criegee, Fenner+ (ČELLO Collab.) COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 Physica 15D 181 +Haber (LANL, UCSC) HABER 85 PRPL 117 75 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 427 +Shrock (STON) BARTEL 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) ELLIS 84 NP B238 453 +Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				
COOPER 85B PL 160B 212 Cooper-Sarkar, Parker, Sarkar+ (WA66 Collab.) DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 Physica 15D 181 +Haber (LANL, UCSC) HABER 85 PRPL 117 75 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 427 +Shrock (STON) BARTEL 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 NP B238 453 +Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				
DAWSON 85 PR D31 1581 +Eichten, Quigg (LBL, FNAL) FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 Physica 15D 181 +Haber (LANL, UCSC) HABER 85 PRPL 117 75 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 427 +Shrock (STON) BARTEL 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) ELLIS 84 NP B238 453 +Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				
FARRAR 85 PRL 55 895 (RUTG) GOLDMAN 85 Physica 15D 181 +Haber (LANL, UCSC) HABER 85 PRPL 117 75 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 427 +Shrock (STON) BARTEL 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) ELLIS 84 NP B238 453 +Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)		_		• • • • • • • • • • • • • • • • • • • •
GOLDMAN 85 Physica 15D 181 +Haber (LANL, UCSC) HABER 85 PRPL 117 75 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 427 +Shrock (STON) BARTEL 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) ELLIS 84 NP B238 453 +Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				`
HABER 85 PRPL 117 75 +Kane (UCSC, MICH) ADEVA 84B PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 427 +Shrock (STON) BARTEL 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) ELLIS 84 NP B238 453 +Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				
ADEVA 84B PRL 53 1806 +Barber, Becker, Berdugo+ (Mark-J Collab.) BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 427 +Shrock (STON) BARTEL 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) ELLIS 84 NP B238 453 +Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				` ' /
BALL 84 PRL 53 1314 +Coffin, Gustafson+ (MICH, FIRZ, OSU, FNAL, WISC) BARBER 84B PL 139B 427 +Shrock (STON) BARTEL 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) ELLIS 84 NP B238 453 +Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				. `
BARBER 84B PL 139B 427 +Shrock (STON) BARTEL 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) ELLIS 84 NP B238 453 +Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				
BARTEL 84B PL 139B 327 +Becker, Bowdery, Cords+ (JADE Collab.) BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) ELLIS 84 NP B238 453 +Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				
BARTEL 84C PL 146B 126 +Becker, Bowdery, Cords+ (JADE Collab.) BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) ELLIS 84 NP B238 453 +Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				
BRICK 84 PR D30 1134 + (BROW, CAVE, IIT, IND, MIT, MONS, NIJM+) ELLIS 84 NP B238 453 + Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				
ELLIS 84 NP B238 453 + Hagelin, Nanopoulos, Olive, Srednicki (CERN) FARRAR 84 PRL 53 1029 (RUTG)				
FARRAR 84 PRL 53 1029 (RUTG)				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
	BEHREND	83	PL 123B 127	+Chen, Fenner, Gumpel+ (CELLO Collab.)

BERGSMA	83C	PL 121B 429	+Dorenbosch, Jonker $+$	(CHARM Collab.)
CHANOWITZ	83	PL 126B 225	+Sharpe	` (UCB, LBL)
GOLDBERG	83	PRL 50 1419		(NEAS)
HOFFMAN	83	PR D28 660	+Frank, Mischke, Moir, Schardt	(LANL, ARZS)
KRAUSS	83	NP B227 556		(HARV)
VYSOTSKII	83	SJNP 37 948		(ITEP)
		Translated from	YAF 37 1597.	, ,
KANE	82	PL 112B 227	+Leveille	(MICH)
CABIBBO	81	PL 105B 155	+Farrar, Maiani	(ROMA, RUTG)
FARRAR	78	PL 76B 575	+Fayet	` (CIT)
Also	78B	PL 79B 442	Farrar, Fayet	(CIT)
			•	, ,