NOTES

- [a] See the "Note on $\pi^{\pm} \to \ell^{\pm} \nu \gamma$ and $K^{\pm} \to \ell^{\pm} \nu \gamma$ Form Factors" in the π^{\pm} Particle Listings for definitions and details.
- [b] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include low-energy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\rm total} = 100\%$.
- [c] See the π^{\pm} Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.
- [d] Derived from an analysis of neutrino-oscillation experiments.
- [e] Astrophysical and cosmological arguments give limits of order 10^{-13} ; see the π^0 Particle Listings.
- [f] See the "Note on the Decay Width $\Gamma(\eta \to \gamma \gamma)$ " in our 1994 edition, Phys. Rev. **D50**, 1 August 1994, Part I, p. 1451.
- [g] C parity forbids this to occur as a single-photon process.
- [h] See the "Note on scalar mesons" in the $f_0(1370)$ Particle Listings . The interpretation of this entry as a particle is controversial.
- [i] See the "Note on $\rho(770)$ " in the $\rho(770)$ Particle Listings .
- [j] The e^+e^- branching fraction is from $e^+e^- \to \pi^+\pi^-$ experiments only. The $\omega \, \rho$ interference is then due to $\omega \, \rho$ mixing only, and is expected to be small. If $e \, \mu$ universality holds, $\Gamma(\rho^0 \to \mu^+\mu^-) = \Gamma(\rho^0 \to e^+e^-) \times 0.99785$.
- [\emph{k}] See the "Note on scalar mesons" in the $\emph{f}_{0}(1370)$ Particle Listings .
- [/] See the "Note on $a_1(1260)$ " in the $a_1(1260)$ Particle Listings .
- [m] This is only an educated guess; the error given is larger than the error on the average of the published values. See the Particle Listings for details.
- [n] See the "Note on the $f_1(1420)$ " in the $\eta(1440)$ Particle Listings.
- [o] See also the $\omega(1650)$ Particle Listings.
- [p] See the "Note on the $\eta(1440)$ " in the $\eta(1440)$ Particle Listings.
- [q] See the "Note on the $\rho(1450)$ and the $\rho(1700)$ " in the $\rho(1700)$ Particle Listings.
- [r] See the "Note on non- $q\overline{q}$ mesons" in the Particle Listings (see the index for the page number).
- [s] See also the $\omega(1420)$ Particle Listings.
- [t] See the "Note on $f_0(1710)$ " in the $f_0(1710)$ Particle Listings .
- [u] See the note in the K^{\pm} Particle Listings.

Created: 7/18/2000 13:39

[v] The definition of the slope parameter g of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [w] For more details and definitions of parameters see the Particle Listings.
- [x] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [y] See the K^{\pm} Particle Listings for the energy limits used in this measurement.
- [z] Direct-emission branching fraction.
- [aa] Structure-dependent part.
- [bb] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [cc] The CP-violation parameters are defined as follows (see also "Note on CP Violation in $K_S \to 3\pi$ " and "Note on CP Violation in K_L^0 Decay" in the Particle Listings):

$$\begin{split} \eta_{+-} &= \left| \eta_{+-} \right| \mathrm{e}^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon + \epsilon' \\ \eta_{00} &= \left| \eta_{00} \right| \mathrm{e}^{i\phi_{00}} = \frac{A(K_L^0 \to \pi^0 \pi^0)}{A(K_S^0 \to \pi^0 \pi^0)} = \epsilon - 2\epsilon' \\ \delta &= \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} \;, \\ \mathrm{Im}(\eta_{+-0})^2 &= \frac{\Gamma(K_S^0 \to \pi^+ \pi^- \pi^0)^{CP \text{ viol.}}}{\Gamma(K_L^0 \to \pi^+ \pi^- \pi^0)} \;, \\ \mathrm{Im}(\eta_{000})^2 &= \frac{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^0 \pi^0 \pi^0)} \;. \end{split}$$

where for the last two relations *CPT* is assumed valid, *i.e.*, $Re(\eta_{+-0}) \simeq 0$ and $Re(\eta_{000}) \simeq 0$.

- [dd] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [ee] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [ff] ϵ'/ϵ is derived from $\left|\eta_{00}/\eta_{+-}\right|$ measurements using theoretical input on phases.

Created: 7/18/2000 13:39

- [gg] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [hh] Allowed by higher-order electroweak interactions.
- [ii] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.
- [jj] See the "Note on $f_0(1370)$ " in the $f_0(1370)$ Particle Listings and in the 1994 edition.
- [kk] See the note in the L(1770) Particle Listings in Reviews of Modern Physics **56** No. 2 Pt. II (1984), p. S200. See also the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [//] See the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [mm] This result applies to $Z^0 \to c \overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
- [nn] This is a weighted average of D^{\pm} (44%) and D^0 (56%) branching fractions. See " D^+ and $D^0 \rightarrow (\eta \text{ anything}) / (\text{total } D^+ \text{ and } D^0)$ " under " D^+ Branching Ratios" in the Particle Listings.
- [oo] This value averages the e^+ and μ^+ branching fractions, after making a small phase-space adjustment to the μ^+ fraction to be able to use it as an e^+ fraction; hence our ℓ^+ here is really an e^+ .
- [pp] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [qq] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [rr] The two experiments measuring this fraction are in serious disagreement. See the Particle Listings.
- [ss] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.
- [tt] This D_1^0 - D_2^0 limit is inferred from the D^0 - $\overline{D}{}^0$ mixing ratio $\Gamma(K^+\pi^-)$ (via $\overline{D}{}^0$)) / $\Gamma(K^-\pi^+)$ near the end of the D^0 Listings.
- [uu] The experiments on the division of this charge mode amongst its submodes disagree, and the submode branching fractions here add up to considerably more than the charged-mode fraction.
- [vv] However, these upper limits are in serious disagreement with values obtained in another experiment.
- [ww] For now, we average together measurements of the $Xe^+\nu_e$ and $X\mu^+\nu_\mu$ branching fractions. This is the average, not the sum.
- [xx] This branching fraction includes all the decay modes of the final-state resonance.

Created: 7/18/2000 13:39

- [yy] This value includes only K^+K^- decays of the $f_0(1710)$, because branching fractions of this resonance are not known.
- [zz] This value includes only $\pi^+\pi^-$ decays of the $f_0(1500)$, because branching fractions of this resonance are not known.
- [aaa] B^0 and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [bbb] These values are model dependent. See 'Note on Semileptonic Decays' in the B^+ Particle Listings.
- [ccc] D^{**} stands for the sum of the $D(1\,{}^{1}\!P_{1})$, $D(1\,{}^{3}\!P_{0})$, $D(1\,{}^{3}\!P_{1})$, $D(1\,{}^{3}\!P_{2})$, $D(2\,{}^{1}\!S_{0})$, and $D(2\,{}^{1}\!S_{1})$ resonances.
- [ddd] $D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [eee] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [fff] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [ggg] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [hhh] Not a pure branching ratio, it is the fraction $(\Gamma_i/\Gamma) \times B(\overline{b} \to B_c)$.
 - [iii] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
 - [jjj] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.
- [kkk] Spectroscopic labeling for these states is theoretical, pending experimental information.