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27. PROBABILITY

Revised May 1996 by D.E. Groom (LBNL) and F. James (CERN).
Updated September 1999 by R. Cousins (UCLA).

27.1. General [1–6]

Let x be a possible outcome of an observation. The probability of x is the relative
frequency with which that outcome occurs out of a (possibly hypothetical) large set of
similar observations. If x can take any value from a continuous range, we write f(x; θ) dx
as the probability of observing x between x and x + dx. The function f(x; θ) is the
probability density function (p.d.f.) for the random variable x, which may depend upon
one or more parameters θ. If x can take on only discrete values (e.g., the non-negative
integers), then f(x; θ) is itself a probability, but we shall still call it a p.d.f. The p.d.f. is
always normalized to unit area (unit sum, if discrete). Both x and θ may have multiple
components and are then often written as column vectors. If θ is unknown and we wish
to estimate its value from a given set of data measuring x, we may use statistics (see
Sec. 28).

The cumulative distribution function F (a) is the probability that x ≤ a:

F (a) =
∫ a

−∞
f(x) dx . (27.1)

Here and below, if x is discrete-valued, the integral is replaced by a sum. The endpoint a
is expressly included in the integral or sum. Then 0 ≤ F (x) ≤ 1, F (x) is nondecreasing,
and Prob(a < x ≤ b) = F (b)− F (a). If x is discrete, F (x) is flat except at allowed values
of x, where it has discontinuous jumps equal to f(x).

Any function of random variables is itself a random variable, with (in general) a
different p.d.f. The expectation value of any function u(x) is

E [u(x)] =
∫ ∞
−∞

u(x) f(x) dx , (27.2)

assuming the integral is finite. For u(x) and v(x) any two functions of x, E(u + v) =
E(u) + E(v). For c and k constants, E(cu + k) = cE(u) + k.

The nth moment of a distribution is

αn ≡ E(xn) =
∫ ∞
−∞

xnf(x)dx , (27.3a)

and the nth moment about the mean of x, α1, is

mn ≡ E[(x− α1)n] =
∫ ∞
−∞

(x− α1)nf(x)dx . (27.3b)

The most commonly used moments are the mean µ and variance σ2:

µ ≡ α1 (27.4a)
σ2 ≡ Var(x) ≡m2 = α2 − µ2 . (27.4b)
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2 27. Probability

The mean is the location of the “center of mass” of the probability density function, and
the variance is a measure of the square of its width. Note that Var(cx + k) = c2Var(x).

Any odd moment about the mean is a measure of the skewness of the p.d.f. The
simplest of these is the dimensionless coefficient of skewness γ1 ≡ m3/σ3.

Besides the mean, another useful indicator of the “middle” of the probability
distribution is the median xmed, defined by F (xmed) = 1/2; i.e., half the probability lies
above and half lies below xmed. For a given sample of events, xmed is the value such that
half the events have larger x and half have smaller x (not counting any that have the
same x as the median). If the sample median lies between two observed x values, it is set
by convention halfway between them. If the p.d.f. for x has the form f(x − µ) and µ is
both mean and median, then for a large number of events N , the variance of the median
approaches 1/[4Nf2(0)], provided f(0) > 0.

Let x and y be two random variables with a joint p.d.f. f(x, y). The marginal p.d.f. of
x (the distribution of x with y unobserved) is

f1(x) =
∫ ∞
−∞

f(x, y)dy , (27.5)

and similarly for the marginal p.d.f. f2(y). We define f3(y|x), the conditional p.d.f. of y
given fixed x, by

f3(y|x) f1(x) = f(x, y) . (27.6a)

Similarly, f4(x|y), the conditional p.d.f. of x given fixed y, is

f4(x|y) f2(y) = f(x, y) . (27.6b)

From these definitions we immediately obtain Bayes’ theorem [2]:

f4(x|y) =
f3(y|x) f1(x)

f2(y)
=

f3(y|x) f1(x)∫
f3(y|x) f1(x)dx

. (27.7)

The mean of x is

µx =
∫ ∞
−∞

∫ ∞
−∞

x f(x, y) dx dy =
∫ ∞
−∞

x f1(x) dx , (27.8)

and similarly for y. The correlation between x and y is

ρxy = E
[
(x− µx)(y − µy)

]
/σx σy = Cov(x, y)/σx σy , (27.9)

where σx and σy are defined in analogy with Eq. (27.4b). It can be shown that
−1 ≤ ρxy ≤ 1. Here “Cov” is the covariance of x and y, a 2-dimensional generalization of
the variance.

Two random variables are independent if and only if

f(x, y) = f1(x) f2(y) . (27.10)
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27. Probability 3

If x and y are independent then ρxy = 0; the converse is not necessarily true
except for Gaussian-distributed x and y. If x and y are independent, E[u(x) v(y)]
= E[u(x)] E[v(y)], and Var(x + y) = Var(x)+Var(y); otherwise, Var(x + y) =
Var(x)+Var(y)+ 2Cov(x, y), and E(u v) does not factor.

In a change of continuous random variables from x ≡ (x1, . . . , xn), with p.d.f.
f(x) = f(x1, . . . , xn), to y ≡ (y1, . . . , yn), a one-to-one function of the xi’s, the
p.d.f. g(y) = g(y1, . . . , yn) is found by substitution for (x1, . . . , xn) in f followed by
multiplication by the absolute value of the Jacobian of the transformation; that is,

g(y) = f [w1(y), . . . , wn(y)] |J | . (27.11)

The functions wi express the inverse transformation, xi = wi(y) for i = 1, . . . , n, and
|J | is the absolute value of the determinant of the square matrix Jij = ∂xi/∂yj . If the
transformation from x to y is not one-to-one, the situation is more complex and a
unique solution may not exist. For example, if the change is to m < n variables, then
a given y may correspond to more than one x, leading to multiple integrals over the
contributions [1].

To change variables for discrete random variables simply substitute; no Jacobian is
necessary because now f is a probability rather than a probability density.

If f depends upon a parameter set α, a change to a different parameter set φi = φi(α)
is made by simple substitution; no Jacobian is used.

27.2. Characteristic functions

The characteristic function φ(u) associated with the p.d.f. f(x) is essentially its
(inverse) Fourier transform, or the expectation value of exp(iux):

φ(u) = E(eiux) =
∫ ∞
−∞

eiuxf(x)dx . (27.12)

It is often useful, and several of its properties follow [1].
It follows from Eqs. (27.3a) and (27.12) that the nth moment of the distribution f(x)

is given by

i−n
dnφ

dun

∣∣∣∣
u=0

=
∫ ∞
−∞

xnf(x)dx = αn . (27.13)

Thus it is often easy to calculate all the moments of a distribution defined by φ(u), even
when f(x) is difficult to obtain.

If f1(x) and f2(y) have characteristic functions φ1(u) and φ2(u), then the characteristic
function of the weighted sum ax + by is φ1(au)φ2(bu). The addition rules for common
distributions (e.g., that the sum of two numbers from Gaussian distributions also has a
Gaussian distribution) easily follow from this observation.

Let the (partial) characteristic function corresponding to the conditional p.d.f. f2(x|z)
be φ2(u|z), and the p.d.f. of z be f1(z). The characteristic function after integration over
the conditional value is

φ(u) =
∫

φ2(u|z) f1(z)dz . (27.14)
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4 27. Probability

Suppose we can write φ2 in the form

φ2(u|z) = A(u)eig(u)z . (27.15)

Then
φ(u) = A(u)φ1(g(u)) . (27.16)

The semi-invariants κn are defined by

φ(u) = exp

( ∞∑
1

κn
n!

(iu)n
)

= exp
(
iκ1u− 1

2
κ2u2 + . . .

)
. (27.17)

The κn’s are related to the moments αn and mn. The first few relations are

κ1 = α1 (= µ, the mean)
κ2 = m2 = α2 − α2

1 (= σ2, the variance)
κ3 = m3 = α3 − 3α1α2 + 2α2

1 . (27.18)

27.3. Some probability distributions

Table 27.1 gives a number of common probability density functions and corresponding
characteristic functions, means, and variances. Further information may be found in
Refs. 1–7; Ref. 7 has particularly detailed tables. Monte Carlo techniques for generating
each of them may be found in our Sec. 29.4. We comment below on all except the trivial
uniform distribution.

27.3.1. Binomial distribution: A random process with exactly two possible
outcomes is called a Bernoulli process. If the probability of obtaining a certain outcome
(a “success”) in each trial is p, then the probability of obtaining exactly r successes
(r = 0, 1, 2, . . . , n) in n trials, without regard to the order of the successes and failures,
is given by the binomial distribution f(r;n, p) in Table 27.1. If r successes are observed
in nr trials with probability p of a success, and if s successes are observed in ns similar
trials, then t = r + s is also binomial with nt = nr + ns.

27.3.2. Poisson distribution: The Poisson distribution f(r;µ) gives the probability
of finding exactly r events in a given interval of x (e.g., space and time) when the events
occur independently of one another and of x at an average rate of µ per the given interval.
The variance σ2 equals µ. It is the limiting case p→ 0, n→∞, np = µ of the binomial
distribution. The Poisson distribution approaches the Gaussian distribution for large µ.

Two or more Poisson processes (e.g., signal + background, with parameters µs and µb)
that independently contribute amounts ns and nb to a given measurement will produce
an observed number n = ns + nb, which is distributed according to a new Poisson
distribution with parameter µ = µs + µb.
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27. Probability 5

27.3.3. Normal or Gaussian distribution: The normal (or Gaussian) probability
density function f(x;µ, σ2) given in Table 27.1 has mean x = µ and variance σ2.
Comparison of the characteristic function φ(u) given in Table 27.1 with Eq. (27.17) shows
that all semi-invariants κn beyond κ2 vanish; this is a unique property of the Gaussian
distribution. Some properties of the distribution are:

rms deviation = σ

probability x in the range µ± σ = 0.6827
probability x in the range µ± 0.6745σ = 0.5
expection value of |x− µ|, E(|x− µ|) = (2/π)1/2σ = 0.7979σ

half-width at half maximum = (2 ln 2)1/2σ = 1.177σ

The cumulative distribution, Eq. (27.1), for a Gaussian with µ = 0 and σ2 = 1 is
related to the error function erf(y) by

F (x; 0, 1) = 1
2

[
1 + erf(x/

√
2)
]

. (27.19)

The error function is tabulated in Ref. 7 and is available in computer math libraries and
personel computer spreadsheets. For a mean µ and variance σ2, replace x by (x− µ)/σ.
The probability of x in a given range can be calculated with Eq. (28.36).

For x and y independent and normally distributed, z = ax + by obeys f(z; aµx +
bµy, a2σ2

x + b2σ2
y); that is, the weighted means and variances add.

The Gaussian gets its importance in large part from the central limit theorem: If a
continuous random variable x is distributed according to any p.d.f. with finite mean
and variance, then the sample mean, xn, of n observations of x will have a p.d.f. that
approaches a Gaussian as n increases. Therefore the end result

∑n xi ≡ nxn of a large
number of small fluctuations xi will be distributed as a Gaussian, even if the xi themselves
are not.

(Note that the product of a large number of random variables is not Gaussian, but its
logarithm is. The p.d.f. of the product is lognormal. See Ref. 6 for details.)

For a set of n Gaussian random variables x with means µ and corresponding Fourier
variables u, the characteristic function for a one-dimensional Gaussian is generalized to

φ(x;µ, S) = exp
[
iµ · u− 1

2u
TSu

]
. (27.20)

From Eq. (27.13), the covariance about the mean is

E
[
(xj − µj)(xk − µk)

]
= Sjk . (27.21)

If the x are independent, then Sjk = δjkσ
2
j , and Eq. (27.20) is the product of the c.f.’s of

n Gaussians.
The covariance matrix S can be related to the correlation matrix defined by Eq. (27.9)

(a sort of normalized covariance matrix). With the definition σ2
k ≡ Skk, we have

ρjk = Sjk/σjσk.
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6 27. Probability

The characteristic function may be inverted to find the corresponding p.d.f.

f(x;µ, S) =
1

(2π)n/2
√
|S|

exp
[
− 1

2
(x− µ)T S−1(x− µ)

]
, (27.22)

where the determinant |S| must be greater than 0. For diagonal S (independent
variables), f(x;µ, S) is the product of the p.d.f.’s of n Gaussian distributions.

For n = 2, f(x;µ, S) is

f(x1, x2; µ1, µ2, σ1, σ2, ρ) =
1

2πσ1σ2

√
1− ρ2

× exp
{

−1
2(1− ρ2)

[
(x1 − µ1)2

σ2
1

− 2ρ(x1 − µ1)(x2 − µ2)
σ1σ2

+
(x2 − µ2)2

σ2
2

]}
. (27.23)
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Figure 27.1: The significance level versus χ2 for n degrees of freedom, as defined
in Eq. (27.24). The curve for a given n gives the probability that a value at least
as large as χ2 will be obtained in an experiment; e.g., for n = 10, a value χ2 & 18
will occur in 5% of a large number of experiments. For a fit, the SL is a measure
of goodness-of-fit, in that a good fit to a correct model is expected to yield a low
χ2 (see Sec. 28.5.0). For a confidence interval, ε measures the probability that the
interval does not cover the true value of the quantity being estimated (see Sec. 28.6).
The dashed curve for n = 20 is calculated using the approximation of Eq. (27.25).
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27. Probability 7

The marginal distribution of any xi is a Gaussian with mean µi and variance Sii. S is
n × n, symmetric, and positive definite. Therefore for any vector XXXX, the quadratic form
XXXXT S−1 XXXX = C , where C is any positive number, traces an n-dimensional ellipsoid as XXXX
varies. If Xi = (xi − µi)/σi, then C is a random variable obeying the χ2(n) distribution,
discussed in the following section. The probability that XXXX corresponding to a set of
Gaussian random variables xi lies outside the ellipsoid characterized by a given value
of C (= χ2) is given by Eq. (27.24) and may be read from Fig. 27.1. For example, the
“s-standard-deviation ellipsoid” occurs at C = s2. For the two-variable case (n = 2),
the point XXXX lies outside the one-standard-deviation ellipsoid with 61% probability. (This
assumes that µi and σi are correct.) For Xi = xi/σi, the ellipsoids of constant χ2 have
the same size and orientation but are centered at µ. The use of these ellipsoids as
indicators of probable error is described in Sec. 28.6.2.

27.3.4. χ2 distribution: If x1, . . . , xn are independent Gaussian distributed random
variables, the sum z =

∑n(xi − µi)2/σ2
i is distributed as a χ2 with n degrees of freedom,

χ2(n). Under a linear transformation to n dependent Gaussian variables x′i, the χ2 at
each transformed point retains its value; then z = XXXX ′T V −1XXXX ′ as in the previous section.
For a set of zi, each of which is χ2(ni),

∑
zi is a new random variable which is χ2 (

∑
ni).

Fig. 27.1 shows the signficance level (SL) obtained by integrating the tail of f(z;n):

SL(χ2) =
∫ ∞
χ2

f(z; n) dz . (27.24)

This is shown for a special case in Fig. 27.2, and is equal to 1.0 minus the cumulative
distribution function F (z = χ2; n). It is useful in evaluating the consistency of data with
a model (see Sec. 28): The SL is the probability that a random repeat of the given
experiment would observe a greater χ2, assuming the model is correct. It is also useful
for confidence intervals for statistical estimators (see Sec. 28.6), in which case one is
interested in the unshaded area of Fig. 27.2.

Since the mean of the χ2 distribution is equal to n, one expects in a “reasonable”
experiment to obtain χ2 ≈ n. Hence the “reduced χ2” ≡ χ2/n is sometimes reported.
Since the p.d.f. of χ2/n depends on n, one must report n as well in order to make a
meaningful statement. Figure 27.3 shows χ2/n for useful SL’s as a function of n.

For large n, the SL is approximately given by [1,8]

SL(χ2) ≈ 1√
2π

∫ ∞
y

e−x
2/2 dx , (27.25)

where y =
√

2χ2 −
√

2n− 1. This approximation was used to draw the dashed curves
in Fig. 27.1 (for n = 20) and Fig. 27.3 (for SL = 5%). Since all the functions and
their inverses are now readily available in standard mathematical libraries (such as
IMSL, used to generate these figures, and personal computer spreadsheets, such as
MicrosoftrExcel [9]), the approximation (and even figures and tables) are seldom
needed.
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Figure 27.3: Significance levels as a function of the “reduced χ2” ≡ χ2/n and
the number of degrees of freedom n. Curves are labeled by the probability that a
measurement will give a value of χ2/n greater than that given on the y axis; e.g.,
for n = 10, a value χ2/n& 1.8 can be expected 5% of the time.
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Figure 27.2: Illustration of the significance level integral given in Eq. (27.24). This
particlar example is for n = 10, where the area above 15.99 is 0.1.
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27.3.5. Student’s t distribution: Suppose that x and x1, . . . , xn are independent and
Gaussian distributed with mean 0 and variance 1. We then define

z =
n∑
1

x2
i , and t =

x√
z/n

. (27.26)

The variable z thus belongs to a χ2(n) distribution. Then t is distributed according to a
Student’s t distribution with n degrees of freedom, f(t;n), given in Table 27.1.

The Student’s t distribution resembles a Gaussian distribution with wide tails. As
n→∞, the distribution approaches a Gaussian. If n = 1, the distribution is a Cauchy or
Breit-Wigner distribution. The mean is finite only for n > 1 and the variance is finite
only for n > 2, so for n = 1 or n = 2, the central limit theorem is not applicable to t.

As an example, consider the sample mean x =
∑

xi/n and the sample variance
s2 =

∑
(xi − x)2/(n − 1) for normally distributed random variables xi with unknown

mean µ and variance σ2. The sample mean has a Gaussian distribution with a variance
σ2/n, so the variable (x− µ)/

√
σ2/n is normal with mean 0 and variance 1. Similarly,

(n − 1) s2/σ2 is independent of this and is χ2 distributed with n − 1 degrees of freedom.
The ratio

t =
(x− µ)/

√
σ2/n√

(n− 1) s2/σ2 (n− 1)
=

x− µ√
s2/n

(27.27)

is distributed as f(t; n− 1). The unknown true variance σ2 cancels, and t can be used to
test the probability that the true mean is some particular value µ.

In Table 27.1, n in f(t;n) is not required to be an integer. A Student’s t distribution
with nonintegral n > 0 is useful in certain applications.

27.3.6. Gamma distribution: For a process that generates events as a function of
x (e.g., space or time) according to a Poisson distribution, the distance in x from an
arbitrary starting point (which may be some particular event) to the kth event belongs to
a gamma distribution, f(x; λ, k). The Poisson parameter µ is λ per unit x. The special
case k = 1 (i.e., f(x;λ, 1) = λe−λx) is called the exponential distribution. A sum of k′

exponential random variables xi is distributed as f(
∑

xi; λ, k′).
The parameter k is not required to be an integer. For λ = 1/2 and k = n/2, the

gamma distribution reduces to the χ2(n) distribution.
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Table 27.1. Some common probability density functions, with corresponding characteristic functions and
means and variances. In the Table, Γ(k) is the gamma function, equal to (k − 1)! when k is an integer.

Probability density function Characteristic
Distribution f (variable; parameters) function φ(u) Mean V

Uniform f(x; a, b) =

{
1/(b− a) a ≤ x ≤ b

0 otherwise

eibu − eiau

(b− a)iu
x =

a + b

2

Binomial f(r;n, p) =
n!

r!(n − r)!
prqn−r (q + peiu)n r = np

r = 0, 1, 2, . . . , n ; 0 ≤ p ≤ 1 ; q = 1− p

Poisson f(r;µ) =
µre−µ

r!
; r = 0, 1, 2, . . . ; µ > 0 exp[µ(eiu − 1)] r = µ

Normal
(Gaussian)

f(x;µ, σ2) =
1

σ
√

2π
exp(−(x− µ)2/2σ2) exp(iµu− 1

2σ2u2) x = µ

−∞ < x <∞ ; −∞ < µ <∞ ; σ > 0

Multivariate
Gaussian

f(x;µ, S) =
1

(2π)n/2
√
|S|

exp
[
iµ · u− 1

2u
TSu

]
µ

× exp
[
−1

2(x− µ)T S−1(x− µ)
]

−∞ < xj < ∞; −∞ < µj < ∞; detS > 0

χ2 f(z;n) =
zn/2−1e−z/2

2n/2Γ(n/2)
; z ≥ 0 (1 − 2iu)−n/2 z = n

Student’s t f(t;n) =
1√
nπ

Γ[(n + 1)/2]
Γ(n/2)

(
1 +

t2

n

)−(n+1)/2

— t = 0
for n ≥ 2

−∞ < t <∞ ; n not required to be integer

Gamma f(x;λ, k) =
xk−1λke−λx

Γ(k)
; 0 < x <∞ ; (1 − iu/λ)−k x = k/λ

k not required to be integer
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