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13. QUARK MODEL

Revised April 2000 by C. Amsler (Univ. of Zürich) and C.G. Wohl
(LBNL).

13.1. Quantum numbers of the quarks

Each quark has spin 1/2 and baryon number 1/3. Table 13.1 gives
the additive quantum numbers (other than baryon number) of the
three generations of quarks. Our convention is that the flavor of a
quark (Iz , S, C, B, or T) has the same sign as its charge. With this
convention, any flavor carried by a charged meson has the same sign
as its charge; e.g., the strangeness of the K+ is +1, the bottomness of
the B+ is +1, and the charm and strangeness of the D−s are each −1.

By convention, each quark is assigned positive parity. Then each
antiquark has negative parity.

Table 13.1: Additive quantum numbers of the quarks.

Property

∖
Quark d u s c b t

Q – electric charge − 1
3

+ 2
3

− 1
3

+ 2
3

− 1
3

+ 2
3

Iz – isospin z-component − 1
2

+ 1
2

0 0 0 0

S – strangeness 0 0 −1 0 0 0

C – charm 0 0 0 +1 0 0

B – bottomness 0 0 0 0 −1 0

T – topness 0 0 0 0 0 +1

13.2. Mesons: qq states

Nearly all known mesons are bound states of a quark q and an
antiquark q ′ (the flavors of q and q′ may be different). If the orbital
angular momentum of the qq ′ state is L, then the parity P is (−1)L+1.
A state qq of a quark and its own antiquark is also an eigenstate of
charge conjugation, with C = (−1)L+S, where the spin S is 0 or 1.
The L = 0 states are the pseudoscalars, JP = 0−, and the vectors,
JP = 1−. Assignments for many of the known mesons are given in
Table 13.2. States in the “normal” spin-parity series, P = (−1)J ,
must, according to the above, have S = 1 and hence CP = +1. Thus
mesons with normal spin-parity and CP = −1 are forbidden in the
qq ′ model. The JPC = 0−− state is forbidden as well. Mesons with
such JPC may exist, but would lie outside the qq ′ model.

The nine possible qq ′ combinations containing u, d, and s quarks
group themselves into an octet and a singlet:

3⊗ 3 = 8⊕ 1 (13.1)

States with the same IJP and additive quantum numbers can mix.
(If they are eigenstates of charge conjugation, they must also have
the same value of C.) Thus the I = 0 member of the ground-state
pseudoscalar octet mixes with the corresponding pseudoscalar singlet
to produce the η and η′. These appear as members of a nonet, which is
shown as the middle plane in Fig. 13.1(a). Similarly, the ground-state
vector nonet appears as the middle plane in Fig. 13.1(b).

A fourth quark such as charm can be included in this scheme by
extending the symmetry to SU(4), as shown in Fig. 13.1. Bottom
extends the symmetry to SU(5); to draw the multiplets would require
four dimensions.

For the pseudoscalar mesons, the Gell-Mann-Okubo formula is

m2
η =

1
3
(4m2

K −m2
π) , (13.2)

assuming no octet-singlet mixing. However, the octet η8 and singlet
η1 mix because of SU(3) breaking. In general, the mixing angle is

mass dependent and becomes complex for resonances of finite width.
Neglecting this, the physical states η and η′ are given in terms of a
mixing angle θP by

η = η8 cos θP − η1 sin θP (13.3a)
η′ = η8 sin θP + η1 cos θP . (13.3b)
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Figure 13.1: SU(4) 16-plets for the (a) pseudoscalar and
(b) vector mesons made of u, d, s, and c quarks. The nonets of
light mesons occupy the central planes, to which the cc states
have been added. The neutral mesons at the centers of these
planes are mixtures of uu, dd, ss, and cc states.

These combinations diagonalize the mass-squared matrix

M2 =
(

M2
11 M2

18

M2
18 M2

88

)
, (13.4)

where M2
88 =

1
3
(4m2

K −m2
π). It follows that

tan2 θP =
M2

88 −m2
η

m2
η′ −M2

88

. (13.5)

The sign of θP is meaningful in the quark model. If

η1 = (uu + dd + ss)/
√

3 (13.6a)

η8 = (uu + dd− 2ss)/
√

6 , (13.6b)

then the matrix element M2
18, which is due mostly to the strange

quark mass, is negative. From the relation

tan θP =
M2

88 −m2
η

M2
18

, (13.7)

we find that θP < 0. However, caution is suggested in the use of the
η-η′ mixing-angle formulas, as they are extremely sensitive to SU(3)
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Table 13.2: Suggested qq quark-model assignments for most of the known mesons. Some assignments, especially for the 0++ multiplet
and for some of the higher multiplets, are controversial. Mesons in bold face are included in the Meson Summary Table. Of the light mesons
in the Summary Table, the f0(1500), f1(1510), f2(1950), f2(2300), f2(2340), and one of the two peaks in the η(1440) entry are not in this
table. Within the qq model, it is especially hard to find a place for the first two of these f mesons and for one of the η(1440) peaks. See the
“Note on Non-qq Mesons” at the end of the Meson Listings.

ud, uu, dd uu, dd, ss cc bb su, sd cu, cd cs bu, bd bs bc

N 2S+1LJ JPC I = 1 I = 0 I = 0 I = 0 I = 1/2 I = 1/2 I = 0 I = 1/2 I = 0 I = 0

1 1S0 0−+ π η, η′ ηc K D Ds B Bs Bc

1 3S1 1−− ρ ω, φ J/ψ(1S) Υ (1S) K∗(892) D∗(2010) D∗s B∗ B∗s

1 1P1 1+− b1(1235) h1(1170), h1(1380) hc(1P ) K1B
† D1(2420) Ds1(2536)

1 3P0 0++ a0(1450)∗ f0(1370)∗, f0(1710)∗ χc0(1P ) χb0(1P ) K∗0(1430)

1 3P1 1++ a1(1260) f1(1285), f1(1420) χc1(1P ) χb1(1P ) K1A
†

1 3P2 2++ a2(1320) f2(1270), f ′2(1525) χc2(1P ) χb2(1P ) K∗2(1430) D∗2(2460)

1 1D2 2−+ π2(1670) η2(1645), η2(1870) K2(1770)

1 3D1 1−− ρ(1700) ω(1650) ψ(3770) K∗(1680)‡

1 3D2 2−− K2(1820)

1 3D3 3−− ρ3(1690) ω3(1670), φ3(1850) K∗3(1780)

1 3F4 4++ a4(2040) f4(2050), f4(2220) K∗4(2045)

2 1S0 0−+ π(1300) η(1295), η(1440) ηc(2S) K(1460)

2 3S1 1−− ρ(1450) ω(1420), φ(1680) ψ(2S) Υ (2S) K∗(1410)‡

2 3P2 2++ f2(1810), f2(2010) χb2(2P ) K∗2(1980)

3 1S0 0−+ π(1800) η(1760) K(1830)

∗ See our scalar minireview in the Particle Listings. The candidates for the I = 1 states are
a0(980) and a0(1450), while for I = 0 they are: f0(400–1200), f0(980), f0(1370), and f0(1710).
The light scalars are problematic, since there may be two poles for one qq state and
a0(980), f0(980) may be KK bound states.

† The K1A and K1B are nearly equal (45◦) mixes of the K1(1270) and K1(1400).

‡The K∗(1410) could be replaced by the K∗(1680) as the 2 3S1 state.

If we allow M2
88 = 1

3
(4m2

K − m2
π) (1 + ∆), the mixing angle is

determined by
tan2 θP = 0.0319(1 + 17∆) (13.8)

θP = −10.1◦(1 + 8.5∆) (13.9)

to first order in ∆. A small breaking of the Gell-Mann-Okubo relation
can produce a major modification of θP .

For the vector mesons, π → ρ, K → K∗, η → φ, and η′ → ω, so
that

φ = ω8 cos θV − ω1 sin θV (13.10)

ω = ω8 sin θV + ω1 cos θV . (13.11)

For “ideal” mixing, φ = ss, so tan θV = 1/
√

2 and θV = 35.3◦.
Experimentally, θV is near 35◦, the sign being determined by a
formula like that for tan θP . Following this procedure we find the
mixing angles given in Table 13.3.

Table 13.3: Singlet-octet mixing angles for several nonets,
neglecting possible mass dependence and imaginary parts. The
sign conventions are given in the text. The values of θquad are
obtained from the equations in the text, while those for θlin
are obtained by replacing m2 by m throughout. Of the two
isosinglets in a nonet, the mostly octet one is listed first.

JPC Nonet members θquad θlin

0−+ π, K, η, η′ −10◦ −23◦

1−− ρ, K∗(892), φ, ω 39◦ 36◦

2++ a2(1320), K∗2(1430), f ′2(1525), f2(1270) 28◦ 26◦

3−− ρ3(1690), K∗3(1780), φ3(1850), ω3(1670) 29◦ 28◦
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In the quark model, the coupling of neutral mesons to two photons
is proportional to

∑
iQ

2
i , where Qi is the charge of the i-th quark.

This provides an alternative characterization of mixing. For example,
defining

Amp [P → γ(k1) γ(k2)] = Mεµναβ ε∗1µ k1ν ε∗2α k2β , (13.12)

where εiλ is the λ component of the polarization vector of the ith

photon, one finds

M(η → γγ)
M(π0 → γγ)

=
1√
3
(cos θP − 2

√
2 sin θP )

=
1.73± 0.18√

3
(13.13a)

M(η′ → γγ)
M(π0 → γγ)

= 2
√

2/3
(

cos θP +
sin θP

2
√

2

)
= 2
√

2/3 (0.78± 0.04) , (13.13b)

where the numbers with errors are experimental. These data favor
θP ≈ −20◦, which is compatible with the quadratic mass mixing
formula with about 12% SU(3) breaking in M2

88.

13.3. Baryons: qqq states

All the established baryons are apparently 3-quark (qqq) states, and
each such state is an SU(3) color singlet, a completely antisymmetric
state of the three possible colors. Since the quarks are fermions,
the state function for any baryon must be antisymmetric under
interchange of any two equal-mass quarks (up and down quarks in the
limit of isospin symmetry). Thus the state function may be written as

| qqq 〉A = | color 〉A × | space, spin, flavor 〉S , (13.14)

where the subscripts S and A indicate symmetry or antisymmetry
under interchange of any two of the equal-mass quarks. Note the
contrast with the state function for the three nucleons in 3H or 3He:

|NNN 〉A = | space, spin, isospin 〉A . (13.15)

This difference has major implications for internal structure, magnetic
moments, etc. (For a nice discussion, see Ref. 1.)

The “ordinary” baryons are made up of u, d, and s quarks. The
three flavors imply an approximate flavor SU(3), which requires that
baryons made of these quarks belong to the multiplets on the right
side of

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A (13.16)

(see Sec. 33, on “SU(n) Multiplets and Young Diagrams”). Here the
subscripts indicate symmetric, mixed-symmetry, or antisymmetric
states under interchange of any two quarks. The 1 is a uds state
(Λ1) and the octet contains a similar state (Λ8). If these have the
same spin and parity they can mix. An example is the mainly octet
D03 Λ(1690) and mainly singlet D03 Λ(1520). In the ground state
multiplet, the SU(3) flavor singlet Λ is forbidden by Fermi statistics.
The mixing formalism is the same as for η-η′ or φ-ω (see above),
except that for baryons the mass M instead of M2 is used. Section 32,
on “SU(3) Isoscalar Factors and Representation Matrices”, shows how
relative decay rates in, say, 10→ 8⊗ 8 decays may be calculated. A
summary of results of fits to the observed baryon masses and decay
rates for the best-known SU(3) multiplets is given in Appendix II of
our 1982 edition [2].

The addition of the c quark to the light quarks extends the flavor
symmetry to SU(4). Figures 13.2(a) and 13.2(b) show the (badly
broken) SU(4) baryon multiplets that have as their bottom levels
an SU(3) octet, such as the octet that includes the nucleon, or an
SU(3) decuplet, such as the decuplet that includes the ∆(1232). All
the particles in a given SU(4) multiplet have the same spin and
parity. The charmed baryons are discussed in more detail in the “Note
on Charmed Baryons” in the Particle Listings. The addition of a
b quark extends the flavor symmetry to SU(5); it would require four
dimensions to draw the multiplets.
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Figure 13.2: SU(4) multiplets of baryons made of u, d, s, and
c quarks. (a) The 20-plet with an SU(3) octet. (b) The 20-plet
with an SU(3) decuplet.

For the “ordinary” baryons (no c or b quark), flavor and spin may
be combined in an approximate flavor-spin SU(6) in which the six
basic states are d ↑, d ↓, · · ·, s ↓ (↑, ↓ = spin up, down). Then the
baryons belong to the multiplets on the right side of

6⊗ 6⊗ 6 = 56S ⊕ 70M ⊕ 70M ⊕ 20A . (13.17)

These SU(6) multiplets decompose into flavor SU(3) multiplets as
follows:

56 = 410⊕ 28 (13.18a)

70 = 210⊕ 48⊕ 28⊕ 21 (13.18b)

20 = 28⊕ 41 , (13.18c)

where the superscript (2S + 1) gives the net spin S of the quarks
for each particle in the SU(3) multiplet. The JP = 1/2+ octet
containing the nucleon and the JP = 3/2+ decuplet containing the
∆(1232) together make up the “ground-state” 56-plet in which the
orbital angular momenta between the quark pairs are zero (so that
the spatial part of the state function is trivially symmetric). The
70 and 20 require some excitation of the spatial part of the state
function in order to make the overall state function symmetric. States
with nonzero orbital angular momenta are classified in SU(6)⊗O(3)
supermultiplets. Physical baryons with the same quantum numbers
do not belong to a single supermultiplet, since SU(6) is broken
by spin-dependent interactions, differences in quark masses, etc.
Nevertheless, the SU(6)⊗O(3) basis provides a suitable framework for
describing baryon state functions.

It is useful to classify the baryons into bands that have the same
number N of quanta of excitation. Each band consists of a number of
supermultiplets, specified by (D,LPN ), where D is the dimensionality
of the SU(6) representation, L is the total quark orbital angular
momentum, and P is the total parity. Supermultiplets contained
in bands up to N = 12 are given in Ref. 3. The N = 0 band,
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which contains the nucleon and ∆(1232), consists only of the (56,0+
0 )

supermultiplet. The N = 1 band consists only of the (70,1−1 ) multiplet
and contains the negative-parity baryons with masses below about 1.9
GeV. The N = 2 band contains five supermultiplets: (56,0+

2 ), (70,0+
2 ),

(56,2+
2 ), (70,2+

2 ), and (20,1+
2 ). Baryons belonging to the (20,1+

2 )
supermultiplet are not ever likely to be observed, since a coupling from
the ground-state baryons requires a two-quark excitation. Selection
rules are similarly responsible for the fact that many other baryon
resonances have not been observed [4].

In Table 13.4, quark-model assignments are given for many of the
established baryons whose SU(6)⊗O(3) compositions are relatively
unmixed. We note that the unestablished resonances Σ(1480),
Σ(1560), Σ(1580), Σ(1770), and Ξ(1620) in our Baryon Particle
Listings are too low in mass to be accommodated in most quark
models [4,5].

Table 13.4: Quark-model assignments for many of the known
baryons in terms of a flavor-spin SU(6) basis. Only the dominant
representation is listed. Assignments for some states, especially
for the Λ(1810), Λ(2350), Ξ(1820), and Ξ(2030), are merely
educated guesses. For assignments of the charmed baryons, see
the “Note on Charmed Baryons” in the Particle Listings.

JP (D,LPN ) S Octet members Singlets

1/2+ (56,0+
0 ) 1/2 N(939) Λ(1116) Σ(1193) Ξ(1318)

1/2+ (56,0+
2 ) 1/2 N(1440) Λ(1600) Σ(1660) Ξ(?)

1/2− (70,1−1 ) 1/2 N(1535) Λ(1670) Σ(1620) Ξ(?) Λ(1405)
3/2− (70,1−1 ) 1/2 N(1520) Λ(1690) Σ(1670) Ξ(1820) Λ(1520)
1/2− (70,1−1 ) 3/2 N(1650) Λ(1800) Σ(1750) Ξ(?)
3/2− (70,1−1 ) 3/2 N(1700) Λ(?) Σ(?) Ξ(?)
5/2− (70,1−1 ) 3/2 N(1675) Λ(1830) Σ(1775) Ξ(?)
1/2+ (70,0+

2 ) 1/2 N(1710) Λ(1810) Σ(1880) Ξ(?) Λ(?)
3/2+ (56,2+

2 ) 1/2 N(1720) Λ(1890) Σ(?) Ξ(?)
5/2+ (56,2+

2 ) 1/2 N(1680) Λ(1820) Σ(1915) Ξ(2030)
7/2− (70,3−3 ) 1/2 N(2190) Λ(?) Σ(?) Ξ(?) Λ(2100)
9/2− (70,3−3 ) 3/2 N(2250) Λ(?) Σ(?) Ξ(?)
9/2+ (56,4+

4 ) 1/2 N(2220) Λ(2350) Σ(?) Ξ(?)

Decuplet members

3/2+ (56,0+
0 ) 3/2 ∆(1232) Σ(1385) Ξ(1530) Ω(1672)

1/2− (70,1−1 ) 1/2 ∆(1620) Σ(?) Ξ(?) Ω(?)
3/2− (70,1−1 ) 1/2 ∆(1700) Σ(?) Ξ(?) Ω(?)
5/2+ (56,2+

2 ) 3/2 ∆(1905) Σ(?) Ξ(?) Ω(?)
7/2+ (56,2+

2 ) 3/2 ∆(1950) Σ(2030) Ξ(?) Ω(?)
11/2+ (56,4+

4 ) 3/2 ∆(2420) Σ(?) Ξ(?) Ω(?)

The quark model for baryons is extensively reviewed in Ref. 6
and 7.

13.4. Dynamics

Many specific quark models exist, but most contain the same basic
set of dynamical ingredients. These include:

i) A confining interaction, which is generally spin-independent.
ii) A spin-dependent interaction, modeled after the effects of gluon

exchange in QCD. For example, in the S-wave states, there is a
spin-spin hyperfine interaction of the form

HHF = −αSM
∑
i>j

(−→σ λa)i(−→σ λa)j , (13.19)

where M is a constant with units of energy, λa (a = 1, · · · , 8, )
is the set of SU(3) unitary spin matrices, defined in Sec. 32,
on “SU(3) Isoscalar Factors and Representation Matrices,” and
the sum runs over constituent quarks or antiquarks. Spin-orbit
interactions, although allowed, seem to be small.

iii) A strange quark mass somewhat larger than the up and down
quark masses, in order to split the SU(3) multiplets.

iv) In the case of isoscalar mesons, an interaction for mixing qq
configurations of different flavors (e.g., uu ↔ dd ↔ ss), in a
manner which is generally chosen to be flavor independent.

These four ingredients provide the basic mechanisms that determine
the hadron spectrum.
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