$$B^0$$

$$I(J^P) = \frac{1}{2}(0^-)$$

Quantum numbers not measured. Values shown are quark-model predictions.

See also the B^\pm/B^0 ADMIXTURE and $B^\pm/B^0/B_s^0/b$ -baryon ADMIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " $B^0-\overline{B}^0$ Mixing and CP Violation in B Decay" near the end of the B^0 Particle Listings.

B⁰ MASS

The fit uses m_{B^+} , $(m_{B^0}-m_{B^+})$, and m_{B^0} to determine m_{B^+} , m_{B^0} , and the mass difference.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
5279.4±0.5 OUR FIT				
5279.3±0.7 OUR AVE	RAGE			
$5279.1 \pm 0.7 \pm 0.3$	135	¹ CSORNA 00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5281.3 \pm 2.2 \pm 1.4$	51	ABE 96	CDF	$p\overline{p}$ at 1.8 TeV
• • • We do not use th	e followin	g data for averages, fit	s, limits,	etc. • • •
$5279.2 \pm 0.54 \pm 2.0$	340	ALAM 94	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
$5278.0 \pm 0.4 \pm 2.0$		BORTOLETTO92	CLEO	$e^+e^- ightarrow~ \varUpsilon(4S)$
$5279.6 \pm 0.7 \pm 2.0$	40	² ALBRECHT 90J	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5278.2 \pm 1.0 \pm 3.0$	40	ALBRECHT 870	ARG	$e^+e^- o ~ \varUpsilon$ (4S)
$5279.5 \pm 1.6 \pm 3.0$	7	³ ALBRECHT 870	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5280.6 \pm 0.8 \pm 2.0$		BEBEK 87	CLEO	$e^+e^- ightarrow \ \varUpsilon(4S)$

¹ CSORNA 00 uses fully reconstructed 135 $B^0 \to J/\psi^{(')} K_S^0$ events and invariant masses without beam constraint.

$m_{B^0} - m_{B^+}$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT		
0.33±0.28 OUR FIT Error	includes scale factor of 1	.1.			
0.34 ± 0.32 OUR AVERAGE	Error includes scale fact	or of 1.2.			
$0.41\!\pm\!0.25\!\pm\!0.19$	ALAM 94	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$-0.4\ \pm0.6\ \pm0.5$	BORTOLETTO92	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$-0.9\ \pm 1.2\ \pm 0.5$	ALBRECHT 90.	JARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$2.0\ \pm 1.1\ \pm 0.3$	⁴ BEBEK 87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
⁴ BEBEK 87 actually measure the difference between half of $E_{\rm cm}$ and the B^{\pm} or B^0 mass, so the $m_{B^0}-m_{B^{\pm}}$ is more accurate. Assume $m_{\gamma(4S)}=10580$ MeV.					

without beam constraint. 2 ALBRECHT 90J assumes 10580 for $\varUpsilon(4S)$ mass. Supersedes ALBRECHT 87C and ALBRECHT 87D.

³ Found using fully reconstructed decays with J/ψ . ALBRECHT 87D assume $m_{\Upsilon(4S)} = 10577$ MeV.

$m_{B_H^0} - m_{B_L^0}$

See the B^0 - \overline{B}^0 MIXING PARAMETERS section near the end of these B^0 Listings.

B⁰ MEAN LIFE

See $B^\pm/B^0/B_s^0/b$ -baryon ADMIXTURE section for data on *B*-hadron mean life averaged over species of bottom particles.

"OUR EVALUATION" is an average of the data listed below performed by the LEP B Lifetimes Working Group as described in our review "Production and Decay of b-flavored Hadrons" in the B^\pm Section of the Listings. The averaging procedure takes into account correlations between the measurements and asymmetric lifetime errors.

$VALUE (10^{-12} \text{ s})$	EVTS	DOCUMENT ID	TECN	COMMENT
1.548±0.032 OUR EVA				
Average is meaningless.	[(1.55	$3 \pm 0.032) \times 10^{-3}$	¹² s OUR 19	98 AVERAGE]
$1.523\!\pm\!0.057\!\pm\!0.053$		⁵ ABBIENDI	99J OPAL	$e^+e^- ightarrow Z$
$1.58 \pm 0.09 \pm 0.02$		⁶ ABE	98B CDF	$p\overline{p}$ at 1.8 TeV
$1.474\!\pm\!0.039\!+\!0.052\\-0.051$		⁷ ABE	98Q CDF	$p\overline{p}$ at 1.8 TeV
$1.52 \pm 0.06 \pm 0.04$		⁵ ACCIARRI	98s L3	
$1.64 \pm 0.08 \pm 0.08$		⁵ ABE	97J SLD	$e^+e^- ightarrow~Z$
$1.532 \pm 0.041 \pm 0.040$		⁸ ABREU	97F DLPH	
$1.61 \pm 0.07 \pm 0.04$		⁷ BUSKULIC	96J ALEP	$e^+e^- o Z$
$1.25 \ ^{+0.15}_{-0.13} \ \pm 0.05$	121	⁶ BUSKULIC	96J ALEP	$e^+e^- \rightarrow Z$
$1.49 \begin{array}{l} +0.17 & +0.08 \\ -0.15 & -0.06 \end{array}$		⁹ BUSKULIC	96J ALEP	$e^+e^- o Z$
$1.61 ^{ +0.14}_{ -0.13} \pm 0.08$	7	,10 ABREU	95Q DLPH	$e^+e^- o Z$
$1.63 \pm 0.14 \pm 0.13$		¹¹ ADAM	95 DLPH	$e^+e^- ightarrow Z$
$1.53 \ \pm 0.12 \ \pm 0.08$	7	^{,12} AKERS	95T OPAL	$e^+e^- ightarrow Z$
• • • We do not use the	e followin	g data for average	s, fits, limits,	etc. • • •
$1.54 \pm 0.08 \pm 0.06$		⁷ ABE	96c CDF	Repl. by ABE 98Q
$1.55 \pm 0.06 \pm 0.03$		¹³ BUSKULIC	96J ALEP	$e^+e^- \rightarrow Z$
1.62 ± 0.12		¹⁴ ADAM	95 DLPH	$e^+e^- ightarrow~Z$
$1.57 \pm 0.18 \pm 0.08$	121	⁶ ABE	94D CDF	Repl. by ABE 98B
$1.17 \ ^{+0.29}_{-0.23} \ \pm 0.16$	96	⁷ ABREU	93D DLPH	Sup. by ABREU 95Q
$1.55 \ \pm 0.25 \ \pm 0.18$	76	¹¹ ABREU	93G DLPH	Sup. by ADAM 95
$1.51 \begin{array}{c} +0.24 & +0.12 \\ -0.23 & -0.14 \end{array}$	78	⁷ ACTON	93C OPAL	Sup. by AKERS 95T
$1.52 \begin{array}{l} +0.20 \\ -0.18 \end{array} \begin{array}{l} +0.07 \\ -0.13 \end{array}$	77	⁷ BUSKULIC	93D ALEP	Sup. by BUSKULIC 96J
$1.20 \begin{array}{l} +0.52 \\ -0.36 \end{array} \begin{array}{l} +0.16 \\ -0.14 \end{array}$	15	¹⁵ WAGNER	90 MRK2	$E_{cm}^{ee} = 29 \; GeV$
$0.82 \ ^{+0.57}_{-0.37} \ \pm 0.27$		¹⁶ AVERILL	89 HRS	E ^{ee} _{cm} = 29 GeV
_				

 $^{^{5}\,\}mathrm{Data}$ analyzed using charge of secondary vertex.

⁶ Measured mean life using fully reconstructed decays.

⁷ Data analyzed using $D/D^*\ell X$ event vertices.

MEAN LIFE RATIO au_{B^+}/ au_{B^0}

au_{B^+}/ au_{B^0} (average of direct and inferred)

VALUE _______ DOCUMENT ID

1.060 ± 0.029 OUR AVERAGE Includes data from the 2 datablocks that follow this one.

τ_{B^+}/τ_{B^0} (direct measurements)

"OUR EVALUATION" is an average of the data listed below performed by the LEP B Lifetimes Working Group as described in our review "Production and Decay of b-flavored Hadrons" in the B^{\pm} Section of the Listings. The averaging procedure takes into account correlations between the measurements and asymmetric lifetime errors.

<u>VALUE __EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

The data in this block is included in the average printed for a previous datablock.

1.062 ± 0.029 OUR EVALUATION

Average is meaningless.	[1.03 \pm 0.04 OUR 1998	AVERAGE]	
$1.079\!\pm\!0.064\!\pm\!0.041$	¹⁷ ABBIENDI	99」OPAL	$e^+e^- ightarrow Z$
$1.06 \pm 0.07 \pm 0.02$	¹⁸ ABE	98B CDF	$p\overline{p}$ at 1.8 TeV
$1.110 \pm 0.056 ^{+0.033}_{-0.030}$	¹⁹ ABE	98Q CDF	$p\overline{p}$ at 1.8 TeV
$1.09 \pm 0.07 \pm 0.03$	¹⁷ ACCIARRI	98s L3	$e^+e^- ightarrow Z$
$1.01 \pm 0.07 \pm 0.06$	¹⁷ ABE	97J SLD	$e^+e^- o Z$
$0.98 \pm 0.08 \pm 0.03$	¹⁹ BUSKULIC	96J ALEP	$e^+e^- ightarrow Z$
$1.27 \begin{array}{c} +0.23 & +0.03 \\ -0.19 & -0.02 \end{array}$	¹⁸ BUSKULIC	96J ALEP	$e^+e^- ightarrow Z$
$1.00 \ ^{+0.17}_{-0.15} \ \pm 0.10$	19,20 ABREU	95Q DLPH	$e^+e^- ightarrow Z$
$1.06 \ ^{+ 0.13}_{- 0.10} \ \pm 0.10$	²¹ ADAM	95 DLPH	$e^+e^- ightarrow Z$
$0.99\ \pm0.14\ ^{+0.05}_{-0.04}$	^{19,22} AKERS	95T OPAL	$e^+e^- ightarrow Z$

⁸ Data analyzed using inclusive $D/D^*\ell X$.

 $^{^{9}}$ Measured mean life using partially reconstructed $D^{*-}\pi^{+}X$ vertices.

¹⁰ ABREU 95Q assumes B($B^0 \to D^{**-} \ell^+ \nu_{\ell}$) = 3.2 ± 1.7%.

 $^{^{11}}$ Data analyzed using vertex-charge technique to tag $\it B$ charge.

¹² AKERS 95T assumes B($B^0 \to D_S^{(*)}D^{0(*)}$) = 5.0 ± 0.9% to find B^+/B^0 yield.

¹³ Combined result of $D/D^*\ell x$ analysis, fully reconstructed B analysis, and partially reconstruced $D^{*-}\pi^+ X$ analysis.

¹⁴ Combined ABREU 95Q and ADAM 95 result.

¹⁵ WAGNER 90 tagged B^0 mesons by their decays into $D^{*-}e^+\nu$ and $D^{*-}\mu^+\nu$ where the D^{*-} is tagged by its decay into $\pi^-\overline{D}^0$.

¹⁶ AVERILL 89 is an estimate of the B^0 mean lifetime assuming that $B^0 \to D^{*+} + X$ always.

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.01	$\pm0.11\ \pm0.02$		¹⁹ ABE	96c CDF	Repl. by ABE 98Q
1.03	$\pm 0.08\ \pm 0.02$		²³ BUSKULIC	96J ALEP	$e^+e^- \rightarrow Z$
1.02	$\pm 0.16 \ \pm 0.05$	269	¹⁸ ABE	94D CDF	Repl. by ABE 98B
1.11	$^{+0.51}_{-0.39}$ ± 0.11	188	¹⁹ ABREU	93D DLPH	Sup. by ABREU 95Q
1.01	$^{+0.29}_{-0.22}$ ± 0.12	253	²¹ ABREU	93G DLPH	Sup. by ADAM 95
1.0	$^{+0.33}_{-0.25}$ ± 0.08	130	ACTON	93C OPAL	Sup. by AKERS 95T
0.96	+0.19 +0.18 -0.15 -0.12	154	¹⁹ BUSKULIC	93D ALEP	Sup. by BUSKULIC 96J

¹⁷ Data analyzed using charge of secondary vertex.

au_{B^+}/ au_{B^0} (inferred from branching fractions)

These measurements are inferred from the branching fractions for semileptonic decay or other spectator-dominated decays by assuming that the rates for such decays are equal for B^0 and B^+ . We do not use measurements which assume equal production of B^0 and B^+ because of the large uncertainty in the production ratio.

<u>VALUE</u> <u>CL% EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

The data in this block is included in the average printed for a previous datablock.

$0.95^{+0.117}_{-0.080} \pm 0.091$ 24 ARTUSO 97 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$1.15 \pm 0.17 \pm 0.06$		²⁵ JESSOP	97 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.93\!\pm\!0.18\ \pm\!0.12$		²⁶ ATHANAS	94 CLE2	Sup. by AR-
				TUSO 97
$0.91 \pm 0.27 \ \pm 0.21$		²⁷ ALBRECHT	92c ARG	$e^+e^- ightarrow \Upsilon(4S)$
1.0 ± 0.4		29 ^{27,28} ALBRECHT	92G ARG	$e^+e^- ightarrow \Upsilon(4S)$
$0.89 \pm 0.19 \ \pm 0.13$		²⁷ FULTON	91 CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
$1.00\pm0.23\ \pm0.14$		²⁷ ALBRECHT	89L ARG	$e^+e^- \rightarrow \Upsilon(4S)$
0.49 to 2.3	90	²⁹ BEAN	87B CLEO	$e^+e^- \rightarrow \Upsilon(4S)$

²⁴ ARTUSO 97 uses partial reconstruction of $B\to D^*\ell\nu_\ell$ and independent of B^0 and B^+ production fraction.

¹⁸ Measured using fully reconstructed decays.

¹⁹ Data analyzed using $D/D^*\ell X$ vertices.

²⁰ ABREU 95Q assumes B($B^0 \to D^{**-} \ell^+ \nu_{\ell}$) = 3.2 ± 1.7%.

 $^{^{21}}$ Data analyzed using vertex-charge technique to tag ${\it B}$ charge.

²² AKERS 95T assumes B($B^0 \to D_s^{(*)} D^{0(*)}$) = 5.0 ± 0.9% to find B^+/B^0 yield.

²³ Combined result of $D/D^*\ell X$ analysis and fully reconstructed B analysis.

 $^{^{25}}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{26}}$ ATHANAS 94 uses events tagged by fully reconstructed B^- decays and partially or fully reconstructed B^0 decays.

²⁷ Assumes equal production of B^0 and B^+ .

²⁸ ALBRECHT 92G data analyzed using $B \to D_s \overline{D}$, $D_s \overline{D}^*$, $D_s^* \overline{D}$, $D_s^* \overline{D}^*$ events.

 $^{^{29}}$ BEAN 87B assume the fraction of $B^0\overline{B}{}^0$ events at the $\Upsilon(4S)$ is 0.41.

B⁰ DECAY MODES

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

	Mode	F	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁ Γ ₂ Γ ₃ Γ ₄	$\ell^+ u_\ell$ anything $D^-\ell^+ u_\ell$ $D^*(2010)^-\ell^+ u_\ell$ $ ho^-\ell^+ u_\ell$ $\pi^-\ell^+ u_\ell$	[<i>a</i>]	$(10.5 \pm 0.8) \%$ $(2.10\pm 0.19) \%$ $(4.60\pm 0.27) \%$ $(2.6 \stackrel{+0.6}{-0.7}) \times 10$ $(1.8 \pm 0.6) \times 10$	
	$\begin{array}{c} \text{Inclusive} \\ \pi^- \mu^+ \nu_\mu \\ K^+ \text{anything} \end{array}$	mode	(78 ±8)%	
Γ ₉ Γ ₁₀ Γ ₁₁ Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₅ Γ ₁₆ Γ ₁₇ Γ ₁₈ Γ ₁₉	D , D^* , or D^* , or D^* , or D^* , or D^* , D^* , or D^* , D^* , D^* , or D^* ,		codes $ (3.0 \pm 0.4) \times 10 $ $ (7.9 \pm 1.4) \times 10 $ $ < 1.6 \times 10 $ $ (2.76\pm 0.21) \times 10 $ $ (8.0 \pm 2.5) \times 10 $ $ (3.9 \pm 1.9) \times 10 $ $ (1.1 \pm 1.0) \times 10 $ $ (6.0 \pm 3.3) \times 10 $ $ (1.5 \pm 0.5) \% $ $ (6.8 \pm 3.4) \times 10 $ $ (7.6 \pm 1.8) \times 10 $ $ (7.6 \pm 1.8) \times 10 $ $ (0.0 \pm 2.5) \times 10 $ $ (5.7 \pm 3.2) \times 10 $ $ (1.30\pm 0.27) \% $,-3 ,-3 ,-3 ,-3 ,-3 ,-3 ,-3 ,-3 ,-3 ,-3
Γ ₂₂	$\frac{D^{*}(2010)^{-} \pi^{+} \pi^{+} \pi^{-} \pi^{0}}{\overline{D}_{2}^{*}(2460)^{-} \pi^{+}}$		$(3.5 \pm 1.8)\%$ $<2.2 \times 10$	o-3 CL=90%

Page 5

Γ_{24}	$\overline{D}_{2}^{*}(2460)^{-} ho^{+}$	< 4.9	$\times 10^{-3}$	CL=90%
	D^-D^+	< 1.2	$\times 10^{-3}$	CL=90%
Γ ₂₆	$D^-D_s^+$	(8.0 ± 3.0	$) \times 10^{-3}$	
Γ ₂₇	$D^*(2010)^- D_s^+$	(9.6 ± 3.4	$) \times 10^{-3}$	
Γ ₂₈	$D^-D_s^{*+}$	($1.0~\pm0.5$) %	
Γ ₂₉	$D^*(2010)^- D_s^{*+}$	($2.0~\pm0.7$) %	
Γ ₃₀	$D_s^+\pi^-$	< 2.8	$\times 10^{-4}$	CL=90%
Γ ₃₁	$D_{\varepsilon}^{3+}\pi^{-}$	< 5	$\times 10^{-4}$	CL=90%
Γ ₃₂	$D_{\epsilon}^{+}\rho^{-}$	< 7	$\times 10^{-4}$	CL=90%
Γ ₃₃	$D_{s}^{*+}\pi^{-}$ $D_{s}^{+}\rho^{-}$ $D_{s}^{*+}\rho^{-}$	< 8	$\times10^{-4}$	CL=90%
Γ ₃₄	$D_s^+ a_1(1260)^-$	< 2.6	$\times10^{-3}$	CL=90%
Γ ₃₅	$D_s^{3+} a_1(1260)^-$	< 2.2	$\times 10^{-3}$	CL=90%
Γ ₃₆	$D_s^{\stackrel{\circ}{=}}K^{\stackrel{\circ}{+}}$	< 2.4	$\times10^{-4}$	CL=90%
Γ ₃₇	$D_s^{s-}K^+$	< 1.7	$\times 10^{-4}$	CL=90%
Γ ₃₈	$D_{s}^{s}K^{*}(892)^{+}$	< 9.9	$\times 10^{-4}$	CL=90%
Γ ₃₉	$D_s^{s-} K^*(892)^+$	< 1.1	$\times 10^{-3}$	CL=90%
Γ ₄₀	$D_s^s \pi^+ \dot{\kappa}^0$	< 5	$\times 10^{-3}$	CL=90%
Γ ₄₁	$D_s^{s-}\pi^+K^0$	< 3.1	$\times 10^{-3}$	CL=90%
Γ ₄₂	$D_s^s \pi^+ K^*(892)^0$	< 4	$\times10^{-3}$	CL=90%
Γ ₄₃	$D^{*-}_{-}\pi^{+}K^{*}(892)^{0}$	< 2.0	$\times 10^{-3}$	CL=90%
Γ ₄₄	$\frac{D_{s}^{*-}\pi^{+}K^{*}(892)^{0}}{D^{0}\pi^{0}}$	< 1.2	$\times 10^{-4}$	CL=90%
Γ ₄₅	$\overline{D}{}^0 \rho^0$	< 3.9	$\times 10^{-4}$	CL=90%
Γ ₄₆	$\overline{D}{}^0\eta$	< 1.3	$\times 10^{-4}$	CL=90%
Γ ₄₇	$\overline{D}{}^0\eta'$	< 9.4	$\times10^{-4}$	CL=90%
Γ ₄₈	$\overline{D}{}^0\omega$	< 5.1	$\times 10^{-4}$	CL=90%
Γ ₄₉	$\overline{D}^*(2007)^0_0 \pi^0_0$	< 4.4	$\times 10^{-4}$	CL=90%
Γ ₅₀	$\overline{D}^*(2007)^0_{\hat{0}} \rho^0$	< 5.6	$\times 10^{-4}$	CL=90%
Γ_{51}	$\overline{D}^*(2007)^0_{\hat{\alpha}}\eta$	< 2.6	\times 10 ⁻⁴	CL=90%
	$\overline{\underline{D}}^*(2007)^0_{\hat{\alpha}}\eta'$	< 1.4	$\times 10^{-3}$	CL=90%
Γ ₅₃	$\overline{D}^*(2007)^0 \omega$	< 7.4	$\times 10^{-4}$	CL=90%
Γ ₅₄	$D^*(2010)^+ D^*(2010)^-$	$(6.2 \begin{array}{c} +4.1 \\ -3.1 \end{array}$	$) \times 10^{-4}$	
Γ_{55}	$D^*(2010)^+D^-$	< 1.8		CL=90%
Γ ₅₆	$D^{(*)0} \overline{D}^{(*)0}$	< 2.7	%	CL=90%
Г	Charmonium I $J/\psi(1S)K^0$	modes (8.9 ± 1.2) × 10-4	
' 5 <i>1</i>	$J/\psi(1S)K^+\pi^-$	(1.2 ± 0.6)		
' 58 F-2	$I/2/(15)K^*(802)^0$	(1.50 ± 0.17)		
1 59 Fan	$J/\psi(1S) K^*(892)^0$ $J/\psi(1S) \pi^0$	< 5.8		CL=90%
' 60 Faa	$I/\psi(1S)n$	< 1.2	^ 10 √ 10−3	CL=90%
' 61 Гаа	$J/\psi(1S)\eta$ $J/\psi(1S)\rho^0$	< 1.2	\times 10 $^{\circ}$ \times 10 $^{-4}$	CL=90% CL=90%
' 62	$J/\psi(1J)\rho$	< 2.3	× 10	CL=90%

Γ ₆₃	$J/\psi(1S)\omega$	<	2.7	$\times 10^{-4}$	CL=90%
Γ ₆₄	$\psi(2S) K^0$	<	8	$\times 10^{-4}$	CL=90%
Γ ₆₅	ψ (2S) K $^+\pi^-$	<	1	$\times 10^{-3}$	CL=90%
Γ ₆₆	$\psi(2S)K^*(892)^0$	($9.3\ \pm2.3$	$) \times 10^{-4}$	
	$\chi_{c1}(1P) K^0$	<	2.7	$\times 10^{-3}$	CL=90%
Γ ₆₈	$\chi_{c1}(1P) K^*(892)^0$	<	2.1	$\times 10^{-3}$	CL=90%

K or K* modes

		71 O. 71		
Γ ₆₉	$\mathcal{K}^+\pi^-$	(1.5	$^{+0.5}_{-0.4}$) \times 10 ⁻⁵	
Γ ₇₀	$\mathcal{K}^0\pi^0$	< 4.1	× 10 ⁻⁵	CL=90%
Γ ₇₁	$\eta' K^0$	(4.7	$^{+2.8}_{-2.2}$) \times 10 ⁻⁵	
Γ ₇₂	$\eta' K^* (892)^0$	< 3.9	$\times 10^{-5}$	CL=90%
	$\eta K^*(892)^0$		× 10 ⁻⁵	CL=90%
Γ ₇₃	ηK^0		\times 10 \times 10 ⁻⁵	CL=90% CL=90%
Γ ₇₄	ωK^0	< 3.3		
Γ ₇₅		< 5.7	$\times 10^{-5}$	CL=90%
Γ ₇₆	$\omega K^*(892)^0$	< 2.3	× 10 ⁻⁵	CL=90%
Γ ₇₇	K^+K^-	< 4.3	× 10 ⁻⁶	CL=90%
Γ ₇₈	$K^0\overline{K}^0$	< 1.7	× 10 ⁻⁵	CL=90%
Γ ₇₉	$K^+\rho^-$	< 3.5	× 10 ⁻⁵	CL=90%
Γ ₈₀	$K^0\pi^+\pi^-$		_	
Γ ₈₁	K_{ρ}^{0}	< 3.9	$\times 10^{-5}$	CL=90%
Γ ₈₂	$K^0 f_0(980)$	< 3.6	$\times 10^{-4}$	CL=90%
Γ ₈₃	$K^*(892)^+\pi^-$	< 7.2	$\times 10^{-5}$	CL=90%
Γ ₈₄	$K^*(892)^0\pi^0$	< 2.8	$\times10^{-5}$	CL=90%
Γ ₈₅	$K_2^*(1430)^+\pi^-$	< 2.6	$\times10^{-3}$	CL=90%
Γ ₈₆	$K^0 \overline{K^+} K^-$	< 1.3	$\times10^{-3}$	CL=90%
Γ ₈₇	$\mathcal{K}^{0} \phi$	< 3.1	$\times10^{-5}$	CL=90%
Γ ₈₈	$K^{-}\pi^{+}\pi^{+}\pi^{-}$	[b] < 2.3	$\times10^{-4}$	CL=90%
Γ ₈₉	$K^*(892)^0\pi^+\pi^-$	< 1.4	$\times10^{-3}$	CL=90%
Γ ₉₀	$K^*(892)^0 \rho^0$	< 4.6	$\times10^{-4}$	CL=90%
Γ ₉₁	$K^*(892)^0 f_0(980)$	< 1.7	$\times10^{-4}$	CL=90%
Γ ₉₂	$K_1(1400)^+\pi^-$	< 1.1	$\times 10^{-3}$	CL=90%
Γ ₉₃	$K^- a_1 (1260)^+$	[b] < 2.3	$\times10^{-4}$	CL=90%
Γ ₉₄	$K^*(892)^0 K^+ K^-$	< 6.1	$\times10^{-4}$	CL=90%
Γ ₉₅	$K^*(892)^0 \phi$	< 2.1	$\times10^{-5}$	CL=90%
Γ ₉₆	$K_1(1400)^0 \rho^0$	< 3.0	× 10 ⁻³	CL=90%
Γ ₉₇	$K_1(1400)^0 \phi$	< 5.0	× 10 ⁻³	CL=90%
Γ ₉₈	$K_2^*(1430)^0 \rho^0$	< 1.1	× 10 ⁻³	CL=90%
Γ ₉₉	$K_2(1430)^0 \phi$	< 1.4	× 10 ⁻³	CL=90%
	$\kappa_2(1430) \varphi$			CL=90%
Γ ₁₀₀	$K^*(892)^0 \gamma$	(4.0	$\pm 1.9) \times 10^{-5}$	

Γ_{101}	$K_1(1270)^0_0 \gamma$	<	7.0	$\times 10^{-3}$	CL=90%
Γ_{102}	$K_1(1400)^0 \gamma$	<	4.3	$\times 10^{-3}$	CL=90%
Γ_{103}	$K_2^*(1430)^{0}\gamma$	<	4.0	$\times10^{-4}$	CL=90%
Γ ₁₀₄	$K^*(1680)^0 \gamma$	<	2.0	$\times 10^{-3}$	CL=90%
Γ_{105}	$K_3^*(1780)^0 \gamma$	<		%	CL=90%
Γ ₁₀₆	$K_4^*(2045)^0 \gamma$	<		$\times 10^{-3}$	CL=90%
100					
_	Light unflavored			F	
Γ ₁₀₇	$\pi^+\pi^-$		1.5	$\times 10^{-5}$	CL=90%
Γ ₁₀₈	$\pi^{0}\pi^{0}$	<		$\times 10^{-6}$	CL=90%
Γ_{109}	$\eta \pi^0$	<	8	$\times 10^{-6}$	CL=90%
Γ_{110}	$\eta \eta$	<	1.8	$\times 10^{-5}$	CL=90%
Γ_{111}	$\eta'\pi^0$	<	1.1	$\times 10^{-5}$	CL=90%
	$\eta'_{.}\eta'_{.}$	<		$\times 10^{-5}$	CL=90%
Γ_{113}	$\eta'\eta$	<	2.7	$\times 10^{-5}$	CL=90%
Γ_{114}	$\eta' \rho^0$	<	2.3	$\times 10^{-5}$	CL=90%
Γ_{115}	$\eta ho^{f 0}$	<	1.3	$\times 10^{-5}$	CL=90%
Γ_{116}	$\omega\eta$	<	1.2	$\times 10^{-5}$	CL=90%
Γ_{117}	$\omega \eta'$	<	6.0	$\times 10^{-5}$	CL=90%
Γ_{118}	$\omega \rho^0$	<	1.1	$\times 10^{-5}$	CL=90%
Γ_{119}	$\omega\omega$	<	1.9	$\times 10^{-5}$	CL=90%
Γ_{120}	$\phi\pi^0$	<	5	$\times 10^{-6}$	CL=90%
Γ_{121}	$\phi\eta$	<	9	$\times 10^{-6}$	CL=90%
Γ_{122}	$\phi \eta'_{\perp}$	<	3.1	$\times 10^{-5}$	CL=90%
Γ_{123}	ϕho^0	<	1.3	$\times 10^{-5}$	CL=90%
Γ_{124}	$\phi \omega$	<	2.1	$\times 10^{-5}$	CL=90%
Γ_{125}	$\phi\phi$	<	1.2	$\times 10^{-5}$	CL=90%
Γ_{126}	$\pi^{+}\pi^{-}\pi^{0}$	<	7.2	$\times 10^{-4}$	CL=90%
Γ_{127}	$ ho^0\pi^0$	<	2.4	$\times 10^{-5}$	CL=90%
Γ_{128}	$ ho^{\mp}\pi^{\pm}$	[c] <	8.8	$\times 10^{-5}$	CL=90%
Γ_{129}	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	<	2.3	$\times 10^{-4}$	CL=90%
	$ ho^0 ho^0$	<	2.8	$\times 10^{-4}$	CL=90%
Γ_{131}	$a_1(1260)^{\mp}\pi^{\pm}$	[c] <	4.9	$\times 10^{-4}$	CL=90%
Γ_{132}	$a_2(1320)^{\mp}\pi^{\pm}$	[c] <	3.0	$\times 10^{-4}$	CL=90%
Γ ₁₃₃	$\pi^+\pi^-\pi^0\pi^0$	<	3.1	$\times 10^{-3}$	CL=90%
Γ_{134}	$\rho^+ \rho^-$	<	2.2	\times 10 ⁻³	CL=90%
Γ_{135}	$a_1(1260)^0 \pi^0$	<	1.1	$\times 10^{-3}$	CL=90%
Γ136	$\omega \pi^0$	<	1.4	$\times 10^{-5}$	CL=90%
Γ_{137}	$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	<	9.0	$\times 10^{-3}$	CL=90%
Γ_{138}	$a_1(1260)^+ \rho^-$	<	3.4	$\times 10^{-3}$	CL=90%
Γ_{139}	$a_1(1260)^0 \rho^0$	<	2.4	$\times 10^{-3}$	CL=90%
Γ_{140}	$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$	<	3.0	$\times 10^{-3}$	CL=90%
Γ_{141}	$a_1(1260)^+ a_1(1260)^-$	<	2.8	$\times 10^{-3}$	CL=90%
Γ_{142}	$\pi + \pi + \pi + \pi - \pi - \pi^{-} \pi - \pi^{0}$	<	1.1	%	CL=90%

Baryon modes

Γ ₁₄₃ μ	p p	<	7.0	$\times10^{-6}$	CL=90%
Γ ₁₄₄ μ	$ ho \overline{ ho} \pi^+ \pi^-$	<	2.5	$\times10^{-4}$	CL=90%
Γ ₁₄₅ μ	$p\overline{\Lambda}\pi^-$	<	1.3	$\times 10^{-5}$	CL=90%
Γ_{146}	$\overline{\Lambda}\Lambda$	<	3.9	$\times 10^{-6}$	$CL{=}90\%$
Γ ₁₄₇ Δ	$\Delta^0 \overline{\Delta}{}^0$	<	1.5	$\times 10^{-3}$	$CL{=}90\%$
Γ ₁₄₈ Δ	$\Delta^{++}\Delta^{}$	<	1.1	\times 10 ⁻⁴	CL=90%
Γ_{149}	$\overline{\Sigma}_c^{}\Delta^{++}$	<	1.0	$\times 10^{-3}$	CL=90%
Γ_{150}	$\overline{\Lambda}_c^- \rho \pi^+ \pi^-$	(1.3 ± 0.6)	$\times 10^{-3}$	
Γ ₁₅₁ /	$\overline{\Lambda}_c^- p$	<	2.1	$\times 10^{-4}$	CL=90%
Γ_{152}	$\overline{\Lambda}_c^- p \pi^0$	<	5.9	$\times 10^{-4}$	CL=90%
Γ_{153}	$\overline{\Lambda}_c^- p \pi^+ \pi^- \pi^0$	<	5.07	$\times 10^{-3}$	CL=90%
Γ ₁₅₄ 7	$\overline{\Lambda}_c^- p \pi^+ \pi^- \pi^+ \pi^-$	<	2.74	$\times 10^{-3}$	CL=90%

Lepton Family number (LF) violating modes, or $\Delta B = 1$ weak neutral current (B1) modes

				• •		
Γ_{155}	$\gamma \gamma$		<	3.9	$\times 10^{-5}$	CL=90%
Γ_{156}	e^+e^-	B1	<	5.9	$\times 10^{-6}$	CL=90%
Γ_{157}	$\mu^+\mu^-$	B1	<	6.8	\times 10 ⁻⁷	CL=90%
Γ_{158}	$K^0e^+e^-$	B1	<	3.0	\times 10 ⁻⁴	CL=90%
Γ_{159}	$\mathcal{K}^0\mu^+\mu^-$	B1	<	3.6	\times 10 ⁻⁴	CL=90%
Γ_{160}	$K^*(892)^0 e^+ e^-$	B1	<	2.9	\times 10 ⁻⁴	CL=90%
	$K^*(892)^0 \mu^+ \mu^-$	B1	<	4.0	$\times 10^{-6}$	CL=90%
Γ_{162}	$K^*(892)^0 \nu \overline{\nu}$	B1	<	1.0	$\times 10^{-3}$	CL=90%
Γ_{163}	$e^{\pm}\mu^{\mp}$	LF	[c]	3.5	\times 10 ⁻⁶	CL=90%
	$e^{\pm} au^{\mp}$	LF	[c]	5.3	$\times 10^{-4}$	CL=90%
	$\mu^{\pm} au^{\mp}$	LF	[c]	8.3	$\times 10^{-4}$	CL=90%

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] B^0 and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.

B⁰ BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^\pm section.

$\Gamma(\ell^+ u_\ell$ anything)/ $\Gamma_{ ext{total}}$

VALUE	DOCUMENT ID		ILCIV	COMMENT
0.105 ±0.008 OUR AVERAGE	-			
$0.1078 \pm 0.0060 \pm 0.0069$	³⁰ ARTUSO	97	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.093\ \pm0.011\ \pm0.015$	ALBRECHT	94	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.099 \pm 0.030 \pm 0.009$	HENDERSON	92	CLFO	$e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

 $0.109 \pm 0.007 \pm 0.011$

ATHANAS

94 CLE2 Sup. by ARTUSO 97

 30 ARTUSO 97 uses partial reconstruction of $B\to D^*\ell\nu_\ell$ and inclusive semileptonic branching ratio from BARISH 96B (0.1049 \pm 0.0017 \pm 0.0043).

$\Gamma(D^-\ell^+\nu_\ell)/\Gamma_{\text{total}}$

 Γ_2/Γ

 ℓ denotes e or μ , not the sum.

VALUE	DOCUMENT ID		TECN	COMMENT
0.0210 ± 0.0019 OUR AVERAGE				
$0.0209\!\pm\!0.0013\!\pm\!0.0018$	³¹ BARTELT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.0235 \pm 0.0020 \pm 0.0044$		97	ALEP	$e^+e^- \rightarrow Z$
$0.018 \pm 0.006 \pm 0.003$	³³ FULTON			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.020\ \pm0.007\ \pm0.006$	³⁴ ALBRECHT	89J	ARG	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	g data for averages	, fits	, limits,	etc. • • •
$0.0187\!\pm\!0.0015\!\pm\!0.0032$	³⁵ ATHANAS	97	CLE2	Repl. by BARTELT 99

 $^{^{31}}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³⁵ ATHANAS 97 uses missing energy and missing momentum to reconstruct neutrino.

$\Gamma(D^*(2010)^-\ell^+ u_\ell)/\Gamma_{to}$	tal	Γ ₃ /Γ
	EVTS	DOCUMENT ID TECN COMMENT
0.0460 ± 0.0027 OUR AVERA	AGE	
$0.0508 \pm 0.0021 \pm 0.0066$		36 ACKERSTAFF 97G OPAL $e^+e^- ightarrow Z$
$0.0553 \pm 0.0026 \pm 0.0052$		37 BUSKULIC 97 ALEP $e^+e^- \rightarrow Z$
$0.0552\!\pm\!0.0017\!\pm\!0.0068$		38 ABREU 96P DLPH $e^+e^- \rightarrow Z$
$0.0449\!\pm\!0.0032\!\pm\!0.0039$	376	³⁹ BARISH 95 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
$0.045\ \pm0.003\ \pm0.004$		⁴⁰ ALBRECHT 94 ARG $e^+e^- ightarrow \gamma(4S)$
$0.047 \pm 0.005 \pm 0.005$	235	41 ALBRECHT 93 ARG $e^+e^- ightarrow \varUpsilon(4S)$
$0.040\ \pm0.004\ \pm0.006$		42 BORTOLETTO89B CLEO $e^+e^- ightarrow \varUpsilon(4S)$
ullet $ullet$ We do not use the following	owing d	lata for averages, fits, limits, etc. • • •
$0.0518 \pm 0.0030 \pm 0.0062$	410	⁴³ BUSKULIC 95N ALEP Sup. by
	200	BUSKULIC 97 44 SANGHERA 93 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
seen	398	
$0.070 \pm 0.018 \pm 0.014$		⁴⁵ ANTREASYAN 90B CBAL $e^+e^- \rightarrow \Upsilon(4S)$
		⁴⁶ ALBRECHT 89C ARG $e^+e^- \rightarrow \Upsilon(4S)$
$0.060\ \pm0.010\ \pm0.014$		⁴⁷ ALBRECHT 89J ARG $e^+e^- \rightarrow \Upsilon(4S)$
$0.070\ \pm0.012\ \pm0.019$	47	⁴⁸ ALBRECHT 87J ARG $e^+e^- \rightarrow \Upsilon(4S)$
36 ACKERSTAFE 976 assum	nes fract	(8^{+}) - fraction (8^{0}) - $(37.8 + 2.2)\%$ and PDG 96

³⁶ ACKERSTAFF 97G assumes fraction (B^+) = fraction (B^0) = $(37.8 \pm 2.2)\%$ and PDG 96 values for B lifetime and branching ratio of D^* and D decays.

³² BUSKULIC 97 assumes fraction (B^+) = fraction (B^0) = $(37.8 \pm 2.2)\%$ and PDG 96 values for B lifetime and branching ratio of D^* and D decays.

³³ FULTON 91 assumes assuming equal production of B^0 and B^+ at the $\Upsilon(4S)$ and uses Mark III D and D^* branching ratios.

³⁴ ALBRECHT 89J reports $0.018 \pm 0.006 \pm 0.005$. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0 \rightarrow K^-\pi^+$).

³⁷ BUSKULIC 97 assumes fraction (B^+) = fraction (B^0) = $(37.8 \pm 2.2)\%$ and PDG 96 values for B lifetime and D^* and D branching fractions.

 $^{^{38}}$ ABREU 96P result is the average of two methods using exclusive and partial D^* reconstruction

³⁹ BARISH 95 use B($D^0 \rightarrow K^- \pi^+$) = (3.91 \pm 0.08 \pm 0.17)% and B($D^{*+} \rightarrow D^0 \pi^+$) = (68.1 \pm 1.0 \pm 1.3)%.

- ⁴⁰ ALBRECHT 94 assumes B($D^{*+} \rightarrow D^0 \pi^+$) = 68.1 \pm 1.0 \pm 1.3%. Uses partial reconstruction of D^{*+} and is independent of D^0 branching ratios.
- ⁴¹ ALBRECHT 93 reports $0.052\pm0.005\pm0.006$. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0\to K^-\pi^+$). We have taken their average e and μ value. They also obtain $\alpha=2*\Gamma^0/(\Gamma^-+\Gamma^+)-1=1.1\pm0.4\pm0.2$, $A_{AF}=3/4*(\Gamma^--\Gamma^+)/\Gamma=0.2\pm0.08\pm0.06$ and a value of $|V_{cb}|=0.036$ –0.045 depending on model assumptions.
- ⁴²We have taken average of the BORTOLETTO 89B values for electrons and muons, $0.046 \pm 0.005 \pm 0.007$. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0 \rightarrow K^-\pi^+$). The measurement suggests a D^* polarization parameter value $\alpha = 0.65 \pm 0.66 \pm 0.25$.
- 43 BUSKULIC 95N assumes fraction (B^+) = fraction (B^0) = 38.2 \pm 1.3 \pm 2.2% and τ_{B^0} = 1.58 \pm 0.06 ps. $\Gamma(D^{*-}\ell^+\nu_\ell)/{\rm total}$ = [5.18 0.13(fraction(B^0)- 38.2)- 1.56)]%.
- ⁴⁴ Combining $\overline{D}^{*0}\ell^+\nu_\ell$ and $\overline{D}^{*-}\ell^+\nu_\ell$ SANGHERA 93 test V-A structure and fit the decay angular distributions to obtain $A_{FB}=3/4*(\Gamma^--\Gamma^+)/\Gamma=0.14\pm0.06\pm0.03$. Assuming a value of V_{cb} , they measure V, A_1 , and A_2 , the three form factors for the $D^*\ell\nu_\ell$ decay, where results are slightly dependent on model assumptions.
- 45 ANTREASYAN 90B is average over B and $\overline{D}^*(2010)$ charge states.
- 46 The measurement of ALBRECHT 89C suggests a D^* polarization γ_L/γ_T of 0.85 \pm 0.45. or $\alpha=$ 0.7 \pm 0.9.
- ⁴⁷ ALBRECHT 89J is ALBRECHT 87J value rescaled using B($D^*(2010)^- \rightarrow D^0\pi^-$) = 0.57 \pm 0.04 \pm 0.04. Superseded by ALBRECHT 93.
- ⁴⁸ ALBRECHT 87J assume *μ*-e universality, the B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = 0.45, the B($D^0 \to K^- \pi^+$) = (0.042 ± 0.004 ± 0.004), and the B($D^*(2010)^- \to D^0 \pi^-$) = 0.49 ± 0.08. Superseded by ALBRECHT 89J.

$\Gamma \big(\rho^- \ell^+ \nu_\ell \big) / \Gamma_{\rm total}$

 Γ_4/Γ

 $\ell = e$ or μ , not sum over e and μ modes.

VALUE (units 10⁻⁴) CL% DOCUMENT ID TECN COMMENT

2.6 $^{+0.6}_{-0.7}$ OUR AVERAGE

$$2.57 \pm 0.29 ^{+0.53}_{-0.62}$$

⁴⁹ BEHRENS

00 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

Created: 12/18/2000 15:33

• • • We do not use the following data for averages, fits, limits, etc. • •

$$2.5~\pm0.4~^{+0.7}_{-0.9}$$
 50 ALEXANDER 96T CLE2 Repl. by BEHRENS 00 <4.1 90 51 BEAN 93B CLE2 $e^+e^-
ightarrow \varUpsilon(4S)$

- 49 BEHRENS 00 reports systematic errors $^{+0.33}_{-0.46}\pm0.41$, where the second error is theoretical model dependence. We combine these in quadrature.
- retical model dependence. We combine these in quadrature. 50 ALEXANDER 96T gives systematic errors $^{+0.5}_{-0.7}\pm0.5$ where the second error reflects the estimated model dependence. We combine these in quadrature. Assumes isospin symmetry: $\Gamma(B^0\to\rho^-\ell^+\nu_\ell)=2\times\Gamma(B^+\to\rho^0\ell^+\nu_\ell)\sim2\times\Gamma(B^+\to\omega\ell^+\nu_\ell)$.
- 51 BEAN 93B limit set using ISGW Model. Using isospin and the quark model to combine $\Gamma(\rho^0\ell^+\nu_\ell)$ and $\Gamma(\omega\ell^+\nu_\ell)$ with this result, they obtain a limit $<\!(1.6\text{--}2.7)\times10^{-4}$ at 90% CL for $B^+\to(\omega\,\mathrm{or}\,\,\rho^0)\ell^+\nu_\ell$. The range corresponds to the ISGW, WSB, and KS models. An upper limit on $|V_{ub}/V_{cb}|<0.08\text{--}0.13$ at 90% CL is derived as well.

$\Gamma(\pi^-\ell^+ u_\ell)/\Gamma_{ m total}$				Г_ /Г
VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT	Γ ₅ /Γ
1.8±0.4±0.4	52 ALEXANDER	06T CLE2	COMMENT 2	(45)
⁵² ALEXANDER 96T gives syst				` '
the estimated model depende	ence. We combine	these in qua	drature. Assum	ies isospin
symmetry: $\Gamma(B^0 o \pi^- \ell^+ \iota$	$\gamma_{\ell}) = 2 \times \Gamma(B^+ \to 0)$	$\pi^0 \ell^+ \nu_\ell$).		
$\Gamma(\pi^-\mu^+ u_\mu)/\Gamma_{ m total}$				Γ_6/Γ
VALUE	DOCUMENT ID			
• • • We do not use the following	-		etc. ● ●	
seen	⁵³ ALBRECHT			
⁵³ In ALBRECHT 91C, one ever transition.	nt is fully reconstru	cted providing	g evidence for th	$b \rightarrow u$
$\Gamma(K^+$ anything)/ Γ_{total}				Γ_7/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
0.78±0.08 OUR AVERAGE 0.78±0.08	⁵⁴ ALBRECHT	06D ARC	o+ o- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(5)
54 Average multiplicity.	ALBINECITI	90D ANG	e·e → 1(4	.5)
$\Gamma(D^-\pi^+)/\Gamma_{ ext{total}}$				Γ_8/Γ
<u>VALUE</u> <u>EVTS</u> 0.0030±0.0004 OUR AVERAGE	<u>DOCUMENT</u>	ID TEC	N <u>COMMENT</u>	
$0.0039 \pm 0.0004 \pm 0.0002$	L 55 ALAM	94 CLE	e^+e^-	$\Upsilon(4S)$
$0.0027 \pm 0.0006 \pm 0.0005$			$e^+e^- \rightarrow$	
$0.0048 \pm 0.0011 \pm 0.0011$ 22	2 ⁵⁷ ALBRECH	T 90J AR	$\hat{G} = e^+e^- o$	$\Upsilon(4S)$
$0.0051^{+0.0028}_{-0.0025}^{+0.0013}_{-0.0012}$	⁵⁸ ВЕВЕК	87 CLE	EO $e^+e^- o$	$\Upsilon(4S)$
• • We do not use the following	g data for averages	s, fits, limits,	etc. • • •	
$0.0031 \pm 0.0013 \pm 0.0010$	7 57 ALBRECH	T 88K AR	\hat{s} $e^+e^- ightarrow$	$\Upsilon(4S)$
55 ALAM 94 reports [B(B^0 —	$D^-\pi^+) \times B($	$D^+ \rightarrow \kappa^-$	$(\pi^+\pi^+)$] = 0.0	000265 ±
0.000032 ± 0.000023 . We				
$(9.0\pm0.6) imes10^{-2}$. Our fi				
is the systematic error from u	sing our best value	. Assumes eq	ual production o	of B^+ and
B^0 at the $\Upsilon(4S)$. 56 BORTOLETTO 92 assumes	equal production of	of R^+ and R	$0_{at the \Upsilon(AS)}$	and uses
Mark III branching fractions for		or D and D	at the 7 (43)	and uses
57 ALBRECHT 88K assumes B^0		ction ratio is	45:55. Supersed	ed by AL-
BRECHT 90J which assumes 58 BEBEK 87 value has been u	50:50. Ipdated in BERKEI	LMAN 91 to	use same assum	nptions as
noted for BORTOLETTO 92				
$\Gamma(D^-\rho^+)/\Gamma_{\text{total}}$	S DOCUMENT	ID TEC	N <u>COMMENT</u>	Г9/Г
<u>VALUE</u> <u>EVT.</u> 0.0079±0.0014 OUR AVERAGE	<u>DOCOMENT</u>	ID IEC	COMMENT	_
$0.0078 \pm 0.0013 \pm 0.0005$ 79			$e^+e^- \rightarrow$	
$0.009 \pm 0.005 \pm 0.003$			$G = e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following				
$0.022 \pm 0.012 \pm 0.009$	5 60 ALBRECH	T 88K ARG	$\hat{G} = e^+ e^- o$	$\Upsilon(4S)$

HTTP://PDG.LBL.GOV

Page 12 Created: 12/18/2000 15:33

- ⁵⁹ ALAM 94 reports $[B(B^0 \to D^- \rho^+) \times B(D^+ \to K^- \pi^+ \pi^+)] = 0.000704 \pm 0.000096 \pm 0.000070$. We divide by our best value $B(D^+ \to K^- \pi^+ \pi^+) = (9.0 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- 60 ALBRECHT 88 K assumes $B^0\overline{B}^0$: B^+B^- production ratio is 45:55. Superseded by ALBRECHT 90J which assumes 50:50.

$\Gamma(\overline{D}{}^{0}\pi^{+}\pi^{-})/\Gamma_{\text{total}}$

 Γ_{10}/Γ

<i>VALUE</i>	<u> </u>	<i>√TS</i>	<u>DOCUMENT ID</u>		TECN	<u>COMMENT</u>	
<0.0016	90		⁶¹ ALAM	94	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do no	t use the fo	ollowir	ng data for average	s, fits	, limits,	etc. • • •	
< 0.007	90		62 BORTOLETT	O92	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
< 0.034	90					$e^+e^- \rightarrow$	
0.07 ± 0.05		5	⁶⁴ BEHRENDS	83	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$

- ⁶¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- ⁶²BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D. The product branching fraction into $D_0^*(2340)\,\pi$ followed by $D_0^*(2340)\to D^0\,\pi$ is < 0.0001 at 90% CL and into $D_2^*(2460)$ followed by $D_2^*(2460)\to D^0\,\pi$ is < 0.0004 at 90% CL.
- 63 BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}{}^0$. We rescale to 50%. B($D^0\to K^-\pi^+$) = (4.2 \pm 0.4 \pm 0.4)% and B($D^0\to K^-\pi^+\pi^+\pi^-$) = (9.1 \pm 0.8 \pm 0.8)% were used.
- 64 Corrected by us using assumptions: $B(D^0 \to K^-\pi^+) = (0.042 \pm 0.006)$ and $B(\Upsilon(4S) \to B^0\overline{B}^0) = 50\%$. The product branching ratio is $B(B^0 \to \overline{D}^0\pi^+\pi^-)B(\overline{D}^0 \to K^+\pi^-) = (0.39 \pm 0.26) \times 10^{-2}$.

$\Gamma(D^*(2010)^-\pi^+)/\Gamma_{\text{total}}$

 Γ_{11}/Γ

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.00276±0.00021 OUR AVE	RAGE			
$0.00281 \pm 0.00024 \pm 0.00005$		⁶⁵ BRANDENB 9		
$0.0026 \pm 0.0003 \pm 0.0004$	82	⁶⁶ ALAM 9	4 CLE2	$e^+e^- ightarrow~ \varUpsilon(4S)$
$0.00337\!\pm\!0.00096\!\pm\!0.00002$		⁶⁷ BORTOLETTO9	2 CLEO	$e^+e^- ightarrow \Upsilon(4S)$
$0.00236 \pm 0.00088 \pm 0.00002$	12	⁶⁸ ALBRECHT 9	0J ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.00236 ^{+ 0.00150}_{- 0.00110} \pm 0.00002$	5	⁶⁹ BEBEK 8	7 CLEO	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

```
<sup>70</sup> AKERS
                                       8
                                                                     94J OPAL e^+e^- \rightarrow Z
0.010 \pm 0.004 \pm 0.001
                                              <sup>71</sup> ALBRECHT
                                                                     87C ARG e^+e^- \rightarrow \Upsilon(4S)
0.0027 \pm 0.0014 \pm 0.0010
                                              <sup>72</sup> ALBRECHT
                                                                     86F ARG e^+e^- \rightarrow \Upsilon(4S)
0.0035 \pm 0.002
                    \pm 0.002
                                              <sup>73</sup> GILES
                                      41
                                                                     84 CLEO e^+e^- \rightarrow \Upsilon(4S)
0.017 \pm 0.005
                      \pm 0.005
```

- ⁶⁵ BRANDENBURG 98 assume equal production of B^+ and B^0 at $\Upsilon(4S)$ and use the D^* reconstruction technique. The first error is their experiment's error and the second error is the systematic error from the PDG 96 value of $B(D^* \to D\pi)$.
- ⁶⁶ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \to D^0\pi^+)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.
- ⁶⁷ BORTOLETTO 92 reports $0.0040 \pm 0.0010 \pm 0.0007$ for B($D^*(2010)^+ \rightarrow D^0 \pi^+$) = 0.57 ± 0.06 . We rescale to our best value B($D^*(2010)^+ \rightarrow D^0 \pi^+$) = $(67.7 \pm 0.5) \times$

- 10^{-2} . Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁶⁸ ALBRECHT 90J reports $0.0028 \pm 0.0009 \pm 0.0006$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- and uses Mark III branching fractions for the D.

 69 BEBEK 87 reports $0.0028^{+0.0015}_{-0.0012}^{+0.0010}_{-0.0006}$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92 and ALBRECHT 90J.
- 70 Assumes B($Z \rightarrow b\overline{b}$) = 0.217 and 38% B_d production fraction.
- ⁷¹ ALBRECHT 87C use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \to B^+ B^-) = 55\%$ and $B(\Upsilon(4S) \to B^0 \overline{B}{}^0) = 45\%$. Superseded by ALBRECHT 90J.
- 72 ALBRECHT 86F uses pseudomass that is independent of D^0 and D^+ branching ratios. 73 Assumes B($D^*(2010)^+ \rightarrow D^0 \pi^+$) = 0.60 $^{+0.08}_{-0.15}$. Assumes B($T(4S) \rightarrow B^0 \overline{B}^0$) = 0.40 \pm 0.02 Does not depend on D branching ratios.

$$\frac{\Gamma(D^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}}{\text{0.0080}\pm 0.0021\pm 0.0014} \qquad \frac{DOCUMENT\ ID}{74\ \text{BORTOLETTO92}} \qquad \frac{TECN}{\text{CLEO}} \qquad \frac{COMMENT}{e^+e^- \rightarrow} \qquad \Upsilon(4S)$$

 74 BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$ and uses Mark III branching fractions for the D.

$$\Gamma((D^-\pi^+\pi^+\pi^-) \text{ nonresonant})/\Gamma_{\text{total}}$$
 $\Gamma_{13}/\Gamma_{\text{VALUE}}$
 $\Gamma_{13}/\Gamma_{\text{DOCUMENT ID}}$
 $\Gamma_{13}/\Gamma_{\text{D$

⁷⁵BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$$\Gamma(D^-\pi^+\rho^0)/\Gamma_{ ext{total}}$$
 $VALUE$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$

⁷⁶ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$$\Gamma(D^-a_1(1260)^+)/\Gamma_{total}$$
 $VALUE$
 $O.0060\pm0.0022\pm0.0024$
 $O.0060\pm0.0022\pm0.0024$

⁷⁷ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

```
\Gamma(D^*(2010)^-\pi^+\pi^0)/\Gamma_{\text{total}}
                                                                                                  \Gamma_{16}/\Gamma
                                            <sup>78</sup> ALBRECHT
0.0152 \pm 0.0052 \pm 0.0001
                                    51
• • We do not use the following data for averages, fits, limits, etc.
                                            <sup>79</sup> ALBRECHT
0.015 \pm 0.008 \pm 0.008
                                                                  87C ARG
 <sup>78</sup> ALBRECHT 90J reports 0.018 \pm 0.004 \pm 0.005 for B(D^*(2010)^+ \rightarrow D^0 \pi^+) = 0.57 \pm
    0.06. We rescale to our best value B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}. Our first error is their experiment's error and our second error is the systematic error
    from using our best value. Assumes equal production of B^+ and B^0 at the \Upsilon(4S) and
    uses Mark III branching fractions for the D.
 ^{79} ALBRECHT 87C use PDG 86 branching ratios for D and D^*(2010) and assume
    B(\Upsilon(4S) \rightarrow B^+B^-) = 55\% and B(\Upsilon(4S) \rightarrow B^0\overline{B}^0) = 45\%. Superseded by AL-
    BRECHT 90J.
\Gamma(D^*(2010)^-\rho^+)/\Gamma_{\text{total}}
                                                                                                  \Gamma_{17}/\Gamma
0.0068 \pm 0.0034 OUR AVERAGE
                                            <sup>80</sup> BORTOLETTO92 CLEO e^+e^- \rightarrow \Upsilon(4S)
0.0160 \pm 0.0113 \pm 0.0001
                                            <sup>81</sup> ALBRECHT
0.00589 \pm 0.00352 \pm 0.00004
                                                                  90J ARG
                                    19
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                    76 82,83 ALAM
0.0074 \pm 0.0010 \pm 0.0014
                                                                  94 CLE2 Sup. by JESSOP 97
                     +0.059 \\ -0.024
                                            84 CHEN
                                                                       CLEO e^+e^- \rightarrow \Upsilon(4S)
0.081 \pm 0.029
                                    19
                                                                  85
 <sup>80</sup> BORTOLETTO 92 reports 0.019 \pm 0.008 \pm 0.011 for B(D^*(2010)^+ \rightarrow D^0 \pi^+) =
    0.57 \pm 0.06. We rescale to our best value B(D^*(2010)^+ \rightarrow D^0 \pi^+) = (67.7 ± 0.5) ×
    10^{-2}. Our first error is their experiment's error and our second error is the systematic
    error from using our best value. Assumes equal production of B^+ and B^0 at the \Upsilon(4S)
    and uses Mark III branching fractions for the D.
 <sup>81</sup> ALBRECHT 90J reports 0.007 \pm 0.003 \pm 0.003 for B(D^*(2010)^+ \rightarrow D^0 \pi^+) = 0.57 \pm 0.003
    0.06. We rescale to our best value B(D^*(2010)^+ \rightarrow D^0 \pi^+) = (67.7 \pm 0.5) \times 10<sup>-2</sup>.
    Our first error is their experiment's error and our second error is the systematic error
    from using our best value. Assumes equal production of B^+ and B^0 at the \Upsilon(4S) and
    uses Mark III branching fractions for the D.
 <sup>82</sup> ALAM 94 assume equal production of B^+ and B^0 at the \Upsilon(4S) and use the CLEO II
    B(D^*(2010)^+ \to D^0\pi^+) and absolute B(D^0 \to K^-\pi^+) and the PDG 1992 B(D^0 \to K^-\pi^+)
    K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+) and B(D^0\to K^-\pi^+\pi^+\pi^-)/B(D^0\to K^-\pi^+).
 <sup>83</sup> This decay is nearly completely longitudinally polarized, \Gamma_L/\Gamma=(93\pm5\pm5)\%, as
    expected from the factorization hypothesis (ROSNER 90). The nonresonant \pi^+\pi^0
    contribution under the \rho^+ is less than 9% at 90% CL.
 84 Uses B(D^* \rightarrow D^0 \pi^+) = 0.6 ± 0.15 and B(\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0) = 0.4. Does not depend
    on D branching ratios.
\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                  \Gamma_{18}/\Gamma
                                                      DOCUMENT ID
                                                                              TECN COMMENT
                                           Error includes scale factor of 1.4. See the ideogram
  0.0076±0.0018 OUR AVERAGE
```

```
below.
                                        49 85,86 ALAM
0.0063 \pm 0.0010 \pm 0.0011
                                                                       94 CLE2
                                                                                          \Upsilon(4S)
                                                <sup>87</sup> BORTOLETTO92 CLEO
                                                                                      e^+e^- -
0.0134 \pm 0.0036 \pm 0.0001
                                                                                          \Upsilon(4S)
                                                <sup>88</sup> ALBRECHT
                                        26
                                                                       90J ARG
0.0101 \pm 0.0041 \pm 0.0001
                                                                                          \Upsilon(4S)
```

• • We do not use the following data for averages, fits, limits, etc. • •

0.033
$$\pm$$
0.009 \pm 0.016 27 89 ALBRECHT 87C ARG $e^+e^- \rightarrow \Upsilon(4S)$ <0.042 90 90 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

- ⁸⁵ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \to D^0\pi^+)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.
- ⁸⁶ The three pion mass is required to be between 1.0 and 1.6 GeV consistent with an a_1 meson. (If this channel is dominated by a_1^+ , the branching ratio for $\overline{D}^{*-}a_1^+$ is twice that for $\overline{D}^{*-}\pi^+\pi^+\pi^-$.)
- 87 BORTOLETTO 92 reports $0.0159 \pm 0.0028 \pm 0.0037$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁸⁸ ALBRECHT 90J reports $0.012 \pm 0.003 \pm 0.004$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁸⁹ ALBRECHT 87C use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \to B^+ B^-) = 55\%$ and $B(\Upsilon(4S) \to B^0 \overline{B}{}^0) = 45\%$. Superseded by ALBRECHT 90J.
- 90 BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92.

$$\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$$

 $\Gamma((D^*(2010)^-\pi^+\pi^+\pi^-)$ nonresonant)/ Γ_{total}

 Γ_{19}/Γ

 $0.0000 \pm 0.0019 \pm 0.0016$

 $\frac{DOCUMENT\ ID}{91}$ BORTOLETTO92 CLEO $\mathrm{e^+\,e^-}
ightarrow \varUpsilon(4S)$

⁹¹ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.

 $\Gamma(D^*(2010)^-\pi^+\rho^0)/\Gamma_{\text{total}}$

 Γ_{20}/Γ

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

 0.0057 ± 0.0032 OUR AVERAGE

0.00573 \pm 0.00317 \pm 0.00004 92 BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

⁹² BORTOLETTO 92 reports $0.0068 \pm 0.0032 \pm 0.0021$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$\Gamma(D^*(2010)^- a_1(1260)^+)/\Gamma_{\text{total}}$

 Γ_{21}/Γ

 0.0130±0.0027 OUR AVERAGE

 $0.0126\pm0.0020\pm0.0022$ 93,94 ALAM
 94 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
 $0.0152\pm0.0070\pm0.0001$ 95 BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

⁹³ALAM 94 value is twice their $\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$ value based on their observation that the three pions are dominantly in the $a_1(1260)$ mass range 1.0 to 1.6 GeV.

94 ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \to D^0\pi^+)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.

95 BORTOLETTO 92 reports $0.018 \pm 0.006 \pm 0.006$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

 $\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{22}/Γ

VALUE EVTS DOCUMENT ID TECN COMMENT

 0.035 ± 0.018 OUR AVERAGE

0.0345\pm0.0181\pm0.0003 28 ⁹⁶ ALBRECHT 90J ARG e^+e^- \rightarrow \Upsilon(4S)

⁹⁶ ALBRECHT 90J reports $0.041 \pm 0.015 \pm 0.016$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$$\Gamma(\overline{D}_2^*(2460)^-\pi^+)/\Gamma_{\text{total}}$$

 Γ_{23}/Γ

Created: 12/18/2000 15:33

VALUE CL% DOCUMENT ID TECN COMMENT
$$97$$
 ALAM 94 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

⁹⁷ ALAM 94 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0 \to K^-\pi^+$) and B($D_2^*(2460)^+ \to D^0\pi^+$) = 30%.

$\Gamma(\overline{D}_2^*(2460)^-\rho^+)/\Gamma$	total					Γ_{24}/Γ
<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT	
<0.0049	90	98 ALAM	94	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

⁹⁸ ALAM 94 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0 \to K^-\pi^+$) and B($D_2^*(2460)^+ \to D^0\pi^+$) = 30%.

 $\Gamma(D^-D^+)/\Gamma_{\text{total}}$ Γ_{25}/Γ Γ_{25

 $\Gamma(D^-D_s^+)/\Gamma_{\text{total}}$ Γ_{26}/Γ

0.0084 \pm 0.0030 $^{+0.0020}_{-0.0021}$ 99 GIBAUT 96 CLE2 $e^{+}e^{-} \rightarrow \Upsilon(4S)$ 0.013 \pm 0.011 \pm 0.003 100 ALBRECHT 92G ARG $e^{+}e^{-} \rightarrow \Upsilon(4S)$ 101 BORTOLETTO92 CLEO $e^{+}e^{-} \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.012 ± 0.007 3 102 BORTOLETTO90 CLEO $e^+e^-
ightarrow \varUpsilon(4S)$

⁹⁹ GIBAUT 96 reports $0.0087 \pm 0.0024 \pm 0.0020$ for B($D_s^+ \to \phi \pi^+$) = 0.035. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = (3.6 \pm 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

- ¹⁰⁰ ALBRECHT 92G reports $0.017 \pm 0.013 \pm 0.006$ for $B(D_s^+ \to \phi \pi^+) = 0.027$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ branching ratios, e.g., $B(D^+ \to K^- \pi^+ \pi^+) = 7.7 \pm 1.0\%$.
- 101 BORTOLETTO 92 reports $0.0080 \pm 0.0045 \pm 0.0030$ for $B(D_s^+ \to \phi \pi^+) = 0.030 \pm 0.011$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- 102 BORTOLETTO 90 assume B($D_s \rightarrow \phi \pi^+$) = 2%. Superseded by BORTOLETTO 92.

<u>TECN</u> <u>COMMENT</u>

Created: 12/18/2000 15:33

$\Gamma(D^*(2010)^-D_s^+)/\Gamma_{\text{total}}$

 Γ_{27}/Γ

0.0096±0.0034 OUR AVERAG	iE				
$0.0090 \pm 0.0027 \pm 0.0022$	¹⁰³ GIBAUT		$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$0.010\ \pm0.008\ \pm0.003$			$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$0.013\ \pm0.008\ \pm0.003$	¹⁰⁵ BORTOLETT	O92 CLEO	$e^+e^- ightarrow \Upsilon(4S)$		
• • • We do not use the following data for averages, fits, limits, etc. • •					
0.004 0.014	106 505501 575	000 0150	± - m(46)		

0.024 \pm 0.014 3 100 BORTOLETTO90 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

 103 GIBAUT 96 reports $0.0093 \pm 0.0023 \pm 0.0016$ for B($D_s^+ \to \phi \pi^+$) = 0.035. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = (3.6 \pm 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹⁰⁴ ALBRECHT 92G reports $0.014\pm0.010\pm0.003$ for $B(D_s^+\to\phi\pi^+)=0.027$. We rescale to our best value $B(D_s^+\to\phi\pi^+)=(3.6\pm0.9)\times10^{-2}$. Our first error is their

experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ and $D^*(2010)^+$ branching ratios, e.g., B($D^0 \rightarrow K^-\pi^+$) = 3.71 \pm 0.25%, B($D^+ \rightarrow K^-\pi^+\pi^+$) = 7.1 \pm 1.0%, and B($D^*(2010)^+ \rightarrow D^0\pi^+$) = 55 \pm 4%.

¹⁰⁵ BORTOLETTO 92 reports $0.016 \pm 0.009 \pm 0.006$ for $B(D_s^+ \to \phi \pi^+) = 0.030 \pm 0.011$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.

106 BORTOLETTO 90 assume B($D_s \rightarrow \phi \pi^+$) = 2%. Superseded by BORTOLETTO 92.

$\Gamma(D^-D_s^{*+})/\Gamma_{\text{total}}$

 Γ_{28}/Γ

VALUE	DOCUMENT ID	TLCIV	COMMENT
0.010 ± 0.005 OUR AVERAGE			
$0.010\!\pm\!0.004\!\pm\!0.002$	¹⁰⁷ GIBAUT	96 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.020 \pm 0.014 \pm 0.005$	¹⁰⁸ ALBRECHT	92G ARG	$e^+e^- \rightarrow \gamma(4S)$

107 GIBAUT 96 reports $0.0100 \pm 0.0035 \pm 0.0022$ for B($D_s^+ \to \phi \pi^+$) = 0.035. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = (3.6 \pm 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹⁰⁸ ALBRECHT 92G reports $0.027 \pm 0.017 \pm 0.009$ for $B(D_s^+ \to \phi \pi^+) = 0.027$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ branching ratios, e.g., $B(D^+ \to K^- \pi^+ \pi^+) = 7.7 \pm 1.0\%$.

$\left[\Gamma(D^*(2010)^-D_s^+) + \Gamma(D^*(2010)^-D_s^{*+})\right]/\Gamma_{\text{total}}$

 $(\Gamma_{27}+\Gamma_{29})/\Gamma$

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT	
$4.15\pm1.11^{+0.99}_{-1.02}$	22	109 BORTOLETTO90	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 109 BORTOLETTO 90 reports 7.5 \pm 2.0 for B(Ds^+ $\rightarrow \phi \pi^+) =$ 0.02. We rescale to our best value B(Ds^+ $\rightarrow \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D^*(2010)^-D_s^{*+})/\Gamma_{\text{total}}$

 Γ_{29}/Γ

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.020±0.007 OUR AVERAGE				
$0.020 \pm 0.006 \pm 0.005$	¹¹⁰ GIBAUT	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.019 \pm 0.011 \pm 0.005$	¹¹¹ AI BRECHT	92G	ARG	$e^+e^- ightarrow \gamma(4S)$

- 110 GIBAUT 96 reports $0.0203\pm0.0050\pm0.0036$ for B($D_s^+\to\phi\pi^+$) = 0.035. We rescale to our best value B($D_s^+\to\phi\pi^+$) = (3.6 \pm 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ¹¹¹ ALBRECHT 92G reports $0.026\pm0.014\pm0.006$ for $B(D_s^+\to\phi\pi^+)=0.027$. We rescale to our best value $B(D_s^+\to\phi\pi^+)=(3.6\pm0.9)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ and $D^*(2010)^+$ branching ratios, e.g., $B(D^0\to K^-\pi^+)=3.71\pm0.25\%$, $B(D^+\to K^-\pi^+\pi^+)=7.1\pm1.0\%$, and $B(D^*(2010)^+\to D^0\pi^+)=55\pm4\%$.

 $\Gamma(D_{\epsilon}^{+}\pi^{-})/\Gamma_{\text{total}}$ Γ_{30}/Γ $\frac{\textit{DOCUMENT ID}}{112}$ $\frac{\textit{TECN}}{\textit{ALEXANDER}}$ 93B CLE2 $e^+e^-
ightarrow \varUpsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • 90 ¹¹³ BORTOLETTO90 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 112 ALEXANDER 93B reports < 2.7 imes 10 $^{-4}$ for B($D_S^+ o ~\phi \pi^+$) = 0.037. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036. ¹¹³BORTOLETTO 90 assume B($D_s \rightarrow \phi \pi^+$) = 2%. $\Gamma(D_s^{*+}\pi^-)/\Gamma_{\mathsf{total}}$

 Γ_{31}/Γ total $\frac{CL\%}{90}$ $\frac{DOCUMENT~ID}{114}$ $\frac{TECN}{200}$ $\frac{COMMENT}{200}$ $\frac{COMMENT}{200}$ $\frac{COMMENT}{200}$

 114 ALEXANDER 93B reports < 4.4 imes 10 $^{-4}$ for B($D_S^+ o ~\phi \pi^+$) = 0.037. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 $\frac{\left[\Gamma(D_s^+\pi^-) + \Gamma(D_s^-K^+)\right]/\Gamma_{\text{total}}}{\text{<0.0013}} \frac{CL\%}{90} \frac{DOCUMENT ID}{115 \text{ ALBRECHT}} \frac{TECN}{93E \text{ ARG}} \frac{COMMENT}{e^+e^- \rightarrow \Upsilon(4S)}$

 115 ALBRECHT 93E reports $< 1.7 \times 10^{-3}$ for B($D_{s}^{+}
ightarrow \phi \pi^{+}$) = 0.027. We rescale to our best value B($D_c^+ \rightarrow \phi \pi^+$) = 0.036.

 $\frac{\left[\Gamma\left(D_{\boldsymbol{s}}^{*+}\pi^{-}\right) + \Gamma\left(D_{\boldsymbol{s}}^{*-}K^{+}\right)\right]/\Gamma_{\mathsf{total}}}{CL\%} \qquad \frac{(\Gamma_{31}+\Gamma_{37})/\Gamma}{ALBRECHT} \qquad \frac{TECN}{990} \qquad \frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$

 116 ALBRECHT 93E reports $< 1.2 \times 10^{-3}$ for B($D_s^+
ightarrow \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 $\Gamma\big(D_{s}^{+}\rho^{-}\big)/\Gamma_{\rm total}$ Γ_{32}/Γ

 $\frac{\textit{CL}\%}{90}$ $\frac{\textit{DOCUMENT ID}}{117}$ $\frac{\textit{TECN}}{\textit{ALEXANDER}}$ $\frac{\textit{COMMENT}}{93}$ $\frac{\textit{COMMENT}}{\textit{CLE2}}$ $e^+e^- o au(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹¹⁸ ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$ 90

 117 ALEXANDER 93B reports $<6.6 imes10^{-4}$ for B($D_s^+
ightarrow~\phi\pi^+$) = 0.037. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 118 ALBRECHT 93E reports $< 2.2 \times 10^{-3}$ for B($D_s^+
ightarrow \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

$\Gamma(D_s^+ a_1(1260)^-)/\Gamma_{\text{total}}$

 Γ_{34}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<0.0026	90	121 ALBRECHT	93E ARG	$e^+e^- ightarrow \gamma(4S)$

¹²¹ ALBRECHT 93E reports $< 3.5 \times 10^{-3}$ for B($D_s^+ \to \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = 0.036.

$\Gamma(D_s^{*+}a_1(1260)^-)/\Gamma_{\text{total}}$

 Γ_{35}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<0.0022	90	122 ALBRECHT	93E ARG	$e^+e^- ightarrow \gamma(4S)$

¹²² ALBRECHT 93E reports $< 2.9 \times 10^{-3}$ for B($D_s^+ \to \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = 0.036.

$\Gamma(D_s^-K^+)/\Gamma_{\text{total}}$

 Γ_{36}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<0.00024	90	123 ALEXANDER	93B CLE2	$e^+e^- ightarrow \gamma(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

<0.0013 90 124 BORTOLETTO90 CLEO $e^+e^-
ightarrow \varUpsilon(4S)$

$\Gamma(D_s^{*-}K^+)/\Gamma_{\text{total}}$

 Γ_{37}/Γ

<u>VALUE</u>	CL%	<u>DOCUMENT ID</u>	TECN	COMMENT
<0.00017	90	125 ALEXANDER	93B CLE2	$e^+e^- ightarrow \gamma(4S)$

¹²⁵ ALEXANDER 93B reports < 1.7 \times 10⁻⁴ for B($D_s^+ \to \phi \pi^+$) = 0.037. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = 0.036.

¹²³ ALEXANDER 93B reports < 2.3 \times 10⁻⁴ for B($D_s^+ \to \phi \pi^+$) = 0.037. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = 0.036.

¹²⁴BORTOLETTO 90 assume B($D_s \rightarrow \phi \pi^+$) = 2%.

$\Gamma(D_s^-K^*(892)^+)/\Gamma_{to}$	otal	Γ ₃₈ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID TECN COMMENT
		126 ALEXANDER 93B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ng data for averages, fits, limits, etc. • • •
< 0.0034	90	127 ALBRECHT 93E ARG $e^+e^- ightarrow \varUpsilon(4S)$
		$< 9.7 imes 10^{-4}$ for B($D_{\rm S}^+ o \phi \pi^+$) = 0.037. We rescale to
		5
our best value $B(D_s^+)$		
best value $B(D_s^+ \rightarrow$		$6.6 imes 10^{-3}$ for B $(D_s^+ o \phi \pi^+) = 0.027$. We rescale to our $= 0.036$.
		Γ ₃₉ /Γ
$\Gamma(D_s^{*-}K^*(892)^+)/\Gamma$		DOCUMENT ID TECN COMMENT
<u>∨ALUE</u> <0.0011	90	$\frac{DOCOMENT TD}{128} \frac{1}{\text{ALEXANDER}} 938 \text{ CLE2} \qquad e^+e^- \rightarrow \Upsilon(4S)$
		ng data for averages, fits, limits, etc. • •
< 0.004	90	129 ALBRECHT 93E ARG $e^+e^- ightarrow \varUpsilon(4S)$
¹²⁸ ALEXANDER 93B re	ports <	$(11.0 imes 10^{-4} ext{ for B}(D_s^+ o \phi \pi^+) = 0.037.$ We rescale to
our best value B(D_s^+		3
		$5.8 imes 10^{-3}$ for B $(D_{ m s}^+ ightarrow \phi \pi^+) =$ 0.027. We rescale to ou
best value $B(D_s^+ \rightarrow$		•
$\Gamma(D_s^-\pi^+K^0)/\Gamma_{\text{total}}$		Γ ₄₀ /Γ
VALUE	CI %	DOCUMENT ID TECN COMMENT
<0.005	90	130 ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$
		$7.3 imes 10^{-3}$ for B($D_{s}^{+} ightarrow \phi\pi^{+}$) = 0.027. We rescale to ou
best value $B(D_s^+ \rightarrow$		5
5		
$\Gamma(D_s^{*-}\pi^+K^0)/\Gamma_{\text{total}}$		Γ ₄₁ /Γ
<i>∨ALUE</i> <0.0031	<u>CL%</u> 90	131 ALBRECHT 93E ARG $e^+e^- ightarrow \gamma(4S)$
		$0.2 imes 10^{-3}$ for B $(D_s^+ o \phi \pi^+) = 0.027$. We rescale to our
best value $B(D_{m{s}}^+ o$	$\phi\pi$ ')	= 0.036.
$\Gamma(D_s^-\pi^+K^*(892)^0)$	/Γ _{total}	Γ ₄₂ /Γ
VALUE	CL%	
<0.004	90	132 ALBRECHT 93E ARG $e^+e^- ightarrow \varUpsilon(4S)$
		$5.0 imes 10^{-3}$ for B $(D_{f s}^+ ightarrow \phi \pi^+) = 0.027.$ We rescale to ou
best value B($D_s^+ ightarrow$		•
$\Gamma(D_s^{*-}\pi^+K^*(892)^0)$	/Γ _{tota}	Γ ₄₃ /Γ
<0.0020	90	133 ALBRECHT 93E ARG $e^+e^- ightarrow \varUpsilon(4S)$
		$2.7 imes 10^{-3}$ for B($D_{ m s}^+ ightarrow \phi \pi^+$) = 0.027. We rescale to ou
best value $B(D_s^+ \rightarrow$		5
` 5	, ,	

HTTP://PDG.LBL.GOV Page 22

$\Gamma(\overline{D}{}^0\pi^0)/\Gamma_{to}$	tal						Γ44/Γ
VALUE	<u> </u>	<u>.L%_</u>	<u>DOCUMEN</u>	T ID	TECN	COMMENT	
< 0.00012			¹³⁴ NEMATI				$\Upsilon(4S)$
• • • We do no	ot use the fo	ollowi		erages, fit	s, limits,	etc. • • •	
< 0.00048	9	0	¹³⁵ ALAM	94	CLE2	Repl. by N	IEMATI 98
¹³⁴ NEMATI 98	assumes ed	qual p	roduction of B	$^+$ and B^0	at the '	$\varUpsilon(4S)$ and $\mathfrak u$	se the PDG 9
¹³⁵ ALAM 94 a: absolute B(<i>l</i>	ssume equa $D^0 o K^- \pi$	ol proo $\pi^+)$ a	nd ω branching duction of B^+ and the PDG $19^)/$ B($D^0 o D$	and <i>B</i> ⁰ 92 B(<i>D</i> ⁰	at the γ	$\Gamma(4S)$ and u $\pi^+\pi^0)/{\sf B}(D)$	se the CLEO I $0^0 ightarrow K^- \pi^+$
$\Gamma(\overline{D}{}^0 ho^0)/\Gamma_{ m to}$							Γ ₄₅ /Γ
•		VTC	DOCUMEN	T ID	TECN	COMMENT	
VALUE		<u>V13</u>					
<0.00039 • • • We do no							1 (45)
	90		137 ALAM			Repl. by N	IENAATI OO
<0.00055 <0.0006			138 BORTOL				
<0.0000 <0.0027	90	1	139 ALBRECH	⊑1109∠ JT 00₁	∠ ADC	$e^+e^- \rightarrow$	7 (43) Y(45)
<0.0027 ^{L36} NEMATI 98							` '
and B(<i>D</i> ⁰ – 38 BORTOLET	$\rightarrow K^-\pi^+\pi$	$\pi^+\pi^-$	$^-$)/B($D^0 \rightarrow I$	$K^-\pi^+$).		$\pi^+ \pi^0)/{\sf B}({\it L}_{ m S})$	
138 BORTOLET Mark III brai 139 ALBRECHT We rescale t	$\rightarrow K^-\pi^+\pi^-$ TO 92 associately fractions of 88K reports 50%.	$\pi^+\pi^-$ sumes	$^-)/B(D^0 \rightarrow D^0)$ equal product for the D .	$(K^-\pi^+)$.	$^+$ and $\it E$	3^0 at the γ	(4S) and use
¹³⁸ BORTOLET Mark III brai 139 ALBRECHT We rescale t Γ(D ⁰ η)/Γ _{tota}	\rightarrow $K^-\pi^+\pi^+\pi^-$ TTO 92 associately fraction of $^{\circ}$ 88K reports 50%.	$\pi^+\pi^-$ sumestions ts <	$^-)/B(D^0 \rightarrow D^0)$ equal product for the D .	$(K^-\pi^+)$. Sion of B^0	$^+$ and $^-$	$ ho^0$ at the γ	$\Gamma(4S)$ and use ratio is $45:55$
138 BORTOLET Mark III brai 139 ALBRECHT We rescale t Γ(D ⁰ η)/Γ _{tota}	$ ightarrow K^- \pi^+ \pi^-$ TO 92 associating fraction 88K reports 50%.	$\pi^+\pi^-$ sumestions ts <	$(D^0)/B(D^0) \rightarrow (D^0)/B$ equal product for the $(D^0)/B$ for the $(D^0)/B$ assuming	$(K^-\pi^+)$. ion of B^0	+ and <i>E</i> : <i>B</i> + <i>B</i> -	$ ho^0$ at the γ	$\Gamma(4S)$ and use ratio is $45:55$
I38 BORTOLET Mark III brai I39 ALBRECHT We rescale t (D ⁰ η)/Γ _{total} VALUE <0.00013	$K^-\pi^+\pi^+\pi^-$ TO 92 associating fraction 88K reports 50%.	$\pi + \pi^{-}$ sumes tions to $<$ $\frac{CL\%}{D}$	$(D^0)/B(D^0) \rightarrow D^0$ sequal product for the D sequence	$(K - \pi^+)$. Sion of B^0 of	$^+$ and E B $^+$ $^ ^ ^ ^ ^ ^ ^ ^-$	80 at the $^{\gamma}$ production COMMENT $_{e^{+}e^{-}}$ \rightarrow etc. \bullet \bullet	$\Gamma(4S)$ and use ratio is $45:55$ Γ_{46}/Γ $\Gamma(4S)$
I38 BORTOLET Mark III brai I39 ALBRECHT We rescale t (D0η)/Γtota VALUE <0.00013 • • • We do no	$K^-\pi^+\pi^+\pi^-\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	$\pi + \pi^{-}$ sumes tions to $<$ $\frac{CL\%}{D}$	$(D^0)/B(D^0) \rightarrow D^0$ sequal product for the D . $(D^0)/D^0$ assuming $(D^0)/D^0$ $(D^0)/$	$(K - \pi^+)$. Sion of B^0 of	$^+$ and E B $^+$ $^ ^ ^ ^ ^ ^ ^ ^-$	80 at the $^{\gamma}$ production COMMENT $_{e^{+}e^{-}}$ \rightarrow etc. \bullet \bullet	$\Gamma(4S)$ and use ratio is $45:55$ Γ_{46}/Γ $\Gamma(4S)$
138 BORTOLET Mark III brai 139 ALBRECHT We rescale t Γ(D0η)/Γtota VALUE <0.00013 • • • We do no <0.00068 140 NEMATI 98	$K^-\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	$\pi + \pi^{-}$ sumes tions to $<$ $\frac{CL\%}{D}$ Dollowing to $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	$(D^0)/B$ ($D^0 \rightarrow D^0$) sequal product for the D . 0.003 assuming $\frac{DOCUMEN}{140}$ NEMATION data for average 141 ALAM production of B^0	$(K^-\pi^+)$. cion of B^0 \overline{B}^0 $$	+ and E B+B- TECN CLE2 s, limits, CLE2 at the	8^0 at the γ production $\frac{COMMENT}{e^+e^-} \rightarrow$ etc. • • • Repl. by N	$\Gamma(4S)$ and useratio is $45:55$ Γ_{46}/Γ $T(4S)$ JEMATI 98
138 BORTOLET Mark III brai 139 ALBRECHT We rescale t Γ(D ⁰ η)/Γtota VALUE <0.00013 • • • We do not <0.00068 140 NEMATI 98 values for D 141 ALAM 94 at absolute B(I	$K^-\pi^+\pi^-\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	$\pi^+\pi^-$ sumes tions to $<$ $\frac{6L\%}{100}$ following $\frac{6L\%}{1000}$ $\frac{6L\%}{1000}$ $\frac{6L\%}{1000}$ $\frac{6L\%}{1000}$ $\frac{6L\%}{1000}$ $\frac{6L\%}{1000}$	$(D^0)/B$ ($D^0 \rightarrow D^0$) is equal product for the D . 0.003 assuming $DOCUMEN$ DOC	$(K^-\pi^+)$. Sion of B^0 is $B^0 \overline{B}^0$ is	$^+$ and E B $^+$ B $^ ^C$ C C C C C C C	g^0 at the γ production $\frac{COMMENT}{e^+e^-} \rightarrow \text{etc.} \bullet \bullet \bullet$ Repl. by N $\gamma(4S)$ and u	$\Gamma(4S)$ and use ratio is $45:55$ Γ_{46}/Γ $\Gamma(4S)$ IEMATI 98 ase the PDG 90 see the CLEO I
138 BORTOLET Mark III brai 139 ALBRECHT We rescale t Γ(D ⁰ η)/Γtota VALUE <0.00013 • • • We do not <0.00068 140 NEMATI 98 values for D 141 ALAM 94 at absolute B(D and B(D ⁰ -	$K^-\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	$\pi^+\pi^-$ sumes tions to $<$ $\frac{6L\%}{100}$ following $\frac{6L\%}{1000}$ $\frac{6L\%}{1000}$ $\frac{6L\%}{1000}$ $\frac{6L\%}{1000}$ $\frac{6L\%}{1000}$ $\frac{6L\%}{1000}$	$(D^0)/B$ ($D^0 \rightarrow D^0$) sequal product for the D . $(D^0)/B$ (D^0) assuming $(D^0)/B$ (D^0) $(D^$	$(K^-\pi^+)$. Sion of B^0 is $B^0 \overline{B}^0$. The series B^0 is $B^0 \overline{B}^0$ is $B^0 \overline{B}^0$ is $B^0 \overline{B}^0$ in B^0 is B^0 in	$^+$ and E B $^+$ B $^ ^C$ C C C C C C C	g^0 at the γ production $\frac{COMMENT}{e^+e^-} \rightarrow \text{etc.} \bullet \bullet \bullet$ Repl. by N $\gamma(4S)$ and u	$\Gamma(4S)$ and use ratio is 45:55 $\Gamma_{46}/\Gamma_{46}/\Gamma_{45}$ IEMATI 98 use the PDG 90 see the CLEO $\Gamma_{00} \rightarrow \kappa^- \pi^+$
138 BORTOLET Mark III brai 139 ALBRECHT We rescale t Γ(D ⁰ η)/Γtota VALUE <0.00013 • • • We do not <0.00068 140 NEMATI 98 values for D 141 ALAM 94 at absolute B(D and B(D ⁰ -	$K^-\pi^+\pi^+\pi^-\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	$\pi^+\pi^-$ sumes tions to $<$ $\frac{CL\%}{D}$ $\frac{D}{D}$ \frac{D}	$(D^0)/B(D^0) \rightarrow (D^0)/B(D^0)$ sequal product for the D . 0.003 assuming $DOCUMEN$ 140 NEMATING data for average $DOCUMEN$ 141 ALAM production of $DOCUMEN$ and $DOCUMEN$ branching duction of $DOCUMEN$ and the PDG 19 $DOCUMEN$ $DOCUMEN$ $DOCUMEN$	$K^-\pi^+$). Sion of B^0 sion of B^0 B^0 B^0 B^0 B^0 B^0 B^0 B^0 B^0 erages, fit B^0 B	$^+$ and $^ ^ ^ ^ ^ ^ ^-$ and $^ ^ ^ ^ ^ ^ ^ ^-$	production $\frac{COMMENT}{e^+e^-} \rightarrow \text{etc.} \bullet \bullet \bullet$ Repl. by N $\Upsilon(4S) \text{ and u}$ $\Gamma(4S) \text{ and u}$ $\Gamma(4S) \text{ and u}$	$\Gamma(4S)$ and use ratio is $45:55$ Γ_{46}/Γ $\Gamma(4S)$ IEMATI 98 Is the PDG 90 See the CLEO $\Gamma_{00} \to K^- \pi^+$
138 BORTOLET Mark III brai 139 ALBRECHT We rescale t (D ⁰ η)/Γtota VALUE <0.00013 • • We do not <0.00068 140 NEMATI 98 values for D 141 ALAM 94 at absolute B(I and B(D ⁰ - (D ⁰ η')/Γtota VALUE <0.00094	$K^-\pi^+\pi^+\pi^-\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	$\pi^+\pi^-$ sumes tions to $<$ $\frac{CL\%}{D}$ 0 0 0 0 0 0 0 0 0 0	$^-$)/B($D^0 \rightarrow D$) sequal product for the D . 0.003 assumin $\frac{DOCUMEN}{140}$ NEMATI ng data for averaged $^+$ 141 ALAM production of $^+$ 142 nd the PDG 19 $^-$ 142 NEMATI	$(K - \pi^+)$. Sion of B^0 sion of B^0	+ and E $B^{+}B^{-}$ $CLE2$ s, limits, $CLE2$ at the Ω K^{-} $TECN$ $TECN$ $CLE2$	production $\frac{COMMENT}{e^{+}e^{-}} \rightarrow \text{etc.} \bullet \bullet \bullet$ Repl. by N $\Upsilon(4S) \text{ and u}$ $\pi^{+}\pi^{0})/B(D$ $\frac{COMMENT}{e^{+}e^{-}} \rightarrow \Phi$	$\Gamma(4S)$ and use ratio is $45:55$ $\Gamma 46/\Gamma$ $\Gamma(4S)$ IEMATI 98 ISE the PDG 9 $\Gamma(4S)$ See the CLEO $\Gamma(1S)$ $\Gamma(1S)$ $\Gamma(1S)$ $\Gamma(1S)$
I38 BORTOLET Mark III brai I39 ALBRECHT We rescale t (D ⁰ η)/Γtota VALUE <0.00013 • • We do not <0.00068 I40 NEMATI 98 values for D I41 ALAM 94 at absolute B(D and B(D ⁰ - T(D ⁰ η')/Γtot VALUE <0.00094 • • We do not	$K^-\pi^+\pi^+\pi^-\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	$\pi^+\pi^-$ sumes tions to $<$ $\frac{CL\%}{D}$ 0 0 0 0 0 0 0 0 0 0	$(D^0)/B(D^0) \rightarrow D^0$ sequal product for the D . 0.003 assuming $DOCUMEN$ 140 NEMATION and $DOCUMEN$ 141 ALAM production of D^0 and the PDG 19 $DOCUMEN$ 142 NEMATION and the rower of $DOCUMEN$ 143 NEMATION and the rower of $DOCUMEN$ 1442 NEMATION and the rower of $DOCUMEN$ 1442 NEMATION and the rower of $DOCUMEN$ 1443 NEMATION and the rower of $DOCUMEN$ 1444 NEMATION and the rower of $DOCUMEN$ 1445 NEMATION and the rower of $DOCUMEN$ 1446 NEMATION and the rower of $DOCUMEN$ 1447 NEMATION and the rower of $DOCUMEN$ 1448 NEMATION and the rower of $DOCUMEN$ 1449 NEMA	$K = \pi^{+}$). Sion of B^{0} and B^{0} are specified as B^{0} and B^{0} and B^{0} are specified as B^{0} and B^{0} and B^{0} are specified as B^{0} and	+ and E B^+B^- CLE2 s, limits, CLE2 at the γ $\rightarrow K^-\gamma$ CLE2 s, limits,	production $ \frac{COMMENT}{e^+e^-} \rightarrow \text{etc.} \bullet \bullet \bullet $ Repl. by N $ \Upsilon(4S) \text{ and u} $ $ \pi^+\pi^0)/B(E) $ $ \frac{COMMENT}{e^+e^-} \rightarrow \text{etc.} \bullet \bullet \bullet $	ratio is 45:55
138 BORTOLET Mark III brai 139 ALBRECHT We rescale t Γ(D0η)/Γtota VALUE <0.00013 • • • We do not <0.00068 140 NEMATI 98 values for D 141 ALAM 94 at absolute B(I	$K^-\pi^+\pi^+\pi^-\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	$\pi^+\pi^-$ sumes tions to $<$ $\frac{CL\%}{D}$ 0 0 0 0 0 0 0 0 0 0	$^-$)/B($D^0 \rightarrow B$) equal product for the D . 0.003 assumin $\frac{DOCUMEN}{140}$ NEMATI ng data for average $^{-}$ 141 ALAM production of B^+ 142 nd the PDG 19 $^-$ 17 NEMATI ng data for average $^{-}$ 142 NEMATI ng data for average $^{-}$ 143 ALAM	$(K - \pi^+)$. Sion of B^0 g $B^0 \overline{B}^0$ g $B^0 \overline{B}^0$ g fractions and B^0 g fractions $(K - \pi^+)$. $(K - \pi^+)$ g erages, fit $(K - \pi^+)$ g $(K - \pi^+)$	+ and E B^+B^- CLE2 s, limits, CLE2 at the T K^- $TECN$ CLE2 s, limits, CLE2 s, limits,	production $\frac{COMMENT}{e^+e^-} \rightarrow \text{etc.} \bullet \bullet \bullet$ Repl. by Normal Production $T(4S) \text{ and } u$	$\Gamma(4S)$ and use ratio is 45:55 Γ_{46}/Γ Γ_{46}/Γ Γ_{45}/Γ USEMATI 98 use the CLEO ISO Γ_{47}/Γ Γ_{47}/Γ Γ_{45}/Γ USEMATI 98

Page 23 Created: 12/18/2000 15:33

HTTP://PDG.LBL.GOV

$\Gamma(\overline{D}{}^0\omega)/\Gamma_{ m total}$					Γ ₄₈ /
VALUE		DOCUMENT ID			
<0.00051	90				$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • We do not use th	ne follow		es, fits	, limits,	etc. • • •
< 0.00063	90	¹⁴⁵ ALAM	94	CLE2	Repl. by NEMATI 98
values for D^0 , D^{*0}	, η , η' , and η' , and η'	and ω branching franduction of B^+ and and the PDG 1992 I	ctions I B ⁰ a B(D ⁰	at the γ	$\Upsilon(4S)$ and use the PDG $\Upsilon(4S)$ and use the CLEO $\pi^+\pi^0)/{ m B}(D^0 o\kappa^-\pi^-)$
$\Gamma(\overline{D}^*(2007)^0\pi^0)/\Gamma_0$,, (,		Γ ₄₉ /
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	
<0.00044	90	¹⁴⁶ NEMATI	98	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • We do not use th	ne follow				
< 0.00097	90	¹⁴⁷ ALAM	94	CLE2	Repl. by NEMATI 98
values for D^0 , D^{*0} ⁴⁷ ALAM 94 assume 6 B $(D^*(2007)^0 \rightarrow D$, η , η' , and η' and η' and η'	and ω branching franduction of B^+ and absolute B(D^0 -	ctions. I B ⁰ a → K ⁻	at the γ $^-\pi^+$) an	$\Upsilon(4S)$ and use the PDG $\Upsilon(4S)$ and use the CLEO and the PDG 1992 B(D^0 T^-)/B($D^0 \to K^-\pi^+$).
- <i>(T</i>)*(2007\0 ₂ 0\ /F					Γ ₅₀ /
•					• 50/
ALUE	<u>CL%</u>			<u>TECN</u>	<u>COMMENT</u>
<u>√ALUE</u> <0.00056	<u>CL%</u> 90	140 NEMATI	98	CLE2	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow \Upsilon(4S)}$
ALUE <0.00056 • • We do not use the	<u>CL%</u> 90 ne follow	ring data for average	98 es, fits	CLE2 , limits,	$\begin{array}{c} \underline{\textit{COMMENT}} \\ e^{+}e^{-} \rightarrow & \varUpsilon(4S) \\ \text{etc.} \bullet \bullet \bullet \end{array}$
$(\overline{D}^*(2007)^0 \rho^0)/\Gamma_0$ (90 ne follow	ing data for average 149 ALAM	98 es, fits 94	CLE2 s, limits, CLE2	$\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ etc. • • • Repl. by NEMATI 98
<	$\frac{CL\%}{90}$ ne follow 90 es equal properties η, η, η', z equal properties $\frac{D^0}{\pi}$	ring data for average $149~{\rm ALAM}$ production of B^+ and ω branching fraction of B^+ and absolute ${\rm B}(D^0$ -	98 es, fits 94 and B^0 ctions $H B^0 = K^-$	CLE2 is, limits, CLE2 at the γ at the γ	$\begin{array}{c} \underline{\textit{COMMENT}} \\ e^{+}e^{-} \rightarrow & \varUpsilon(4S) \\ \text{etc.} \bullet \bullet \bullet \end{array}$
$ \sqrt{ALUE} $ <0.00056 • • We do not use the <0.00117 .48 NEMATI 98 assumed values for D^0 , D^{*0} .49 ALAM 94 assumed B(D^* (2007) 0 → D^* (D^* (2007) 0 → D^* (D^* (2007) 0 D^* (D^* (2007) D^* (D^* (D^* (2007) D^* ($\frac{CL\%}{90}$ ne follow 90 es equal points $\frac{1}{2}, \eta, \eta', a$ equal pro $\frac{1}{2} \frac{1}{2} \frac{1}$	ring data for average $149~{\rm ALAM}$ production of B^+ and ω branching fraction of B^+ and absolute ${\rm B}(D^0-\pi^+)$ and ${\rm B}(D^0-\pi^+)$ and ${\rm B}(D^0-\pi^+)$	98 es, fits 94 and B^0 ctions. $HB^0 = K^-$ $K^-\pi$	CLE2 c, limits, CLE2 at the τ at the τ τ τ^+) and τ τ^+	$\frac{COMMENT}{e^+e^- \to \Upsilon(4S)}$ etc. $\bullet \bullet \bullet$ Repl. by NEMATI 98 $\Upsilon(4S) \text{ and use the PDG}$ $\Upsilon(4S) \text{ and use the CLEO}$ and the PDG 1992 B(D^0 $\Phi(D^0 \to K^-\pi^+)$.
$ALUE$ <0.00056 • • We do not use the <0.00117 48 NEMATI 98 assumed values for D^0 , D^{*0} 49 ALAM 94 assumed B(D^* (2007) 0 → D^* $K^-\pi^+\pi^0$)/B(D^0 49 (2007) 0 η)/ 0 (2007) 0 γ)/ 0 γ)/ 0 (2007) 0 γ) (2007) (2007) 0 γ)/ 0 (2007) (2007) (2007) (2007) (2007) (2007) (20	$\frac{CL\%}{90}$ ne follow 90 es equal points $\frac{1}{2}, \eta, \eta', a$ equal pro $\frac{1}{2} \frac{1}{2} \frac{1}$	ring data for average $149~{\rm ALAM}$ production of B^+ and ω branching fraction of B^+ and absolute ${\rm B}(D^0-\pi^+)$ and ${\rm B}(D^0-\pi^+)$ and ${\rm B}(D^0-\pi^+)$	98 es, fits 94 and B^0 ctions. $HB^0 = K^-$ $K^-\pi$	CLE2 c, limits, CLE2 at the τ at the τ τ τ^+) and τ τ^+	$\frac{COMMENT}{e^+e^- \to \Upsilon(4S)}$ etc. $\bullet \bullet \bullet$ Repl. by NEMATI 98 $\Upsilon(4S) \text{ and use the PDG}$ $\Upsilon(4S) \text{ and use the CLEO}$ and the PDG 1992 B(D^0 $\Phi(D^0 \to K^-\pi^+)$.
ALUE <0.00056 • • We do not use the condition of th	$ \begin{array}{c} \underline{CL\%}\\ 90\\ 90\\ \text{ne follow}\\ 90\\ \text{es equal product}\\ 00\\ \pi^0) \text{ at}\\ \rightarrow K^{-1}\\ \underline{CL\%}\\ 90\\ \end{array} $	production of B^+ and ω branching fraction of B^+ and addition of B^+ and absolute $B(D^0 - \pi^+)$ and $B(D^0 - D^0)$	98 es, fits 94 nd B^0 ctions. $H_0 B^0 = K^ K^- \pi$	CLE2 a, limits, CLE2 at the γ at the γ π^+ and π^+ π^+ π^- CLE2	$\frac{COMMENT}{e^+e^- \to \Upsilon(4S)}$ etc. $\bullet \bullet \bullet$ Repl. by NEMATI 98 $\Upsilon(4S) \text{ and use the PDG}$ $\Upsilon(4S) \text{ and use the CLEO}$ and the PDG 1992 B(D^0) $\frac{\Gamma(4S)}{\Gamma(4S)} = \frac{\Gamma(4S)}{\Gamma(4S)}$ $\frac{\Gamma(4S)}{\Gamma(4S)} = \frac{\Gamma(4S)}{\Gamma(4S)}$
ALUE <0.00056 • • We do not use the <0.00117 $AB = AB =$	$\begin{array}{c} \underline{CL\%} \\ 90 \\ \text{ne follow} \\ 90 \\ \text{se equal product} \\ po \pi^0, \pi^0, \pi^0 \\ \rightarrow K^{-1} \\ \hline \underline{CL\%} \\ 90 \\ \text{ne follow} \\ \end{array}$	production of B^+ and ω branching fraction of B^+ and absolute $B(D^0 - \pi^+)$ and $B(D^0 - \pi^+)$	98 es, fits 94 ctions. I B^0 a $K^ K^ \pi$ 98 es, fits	CLE2 s, limits, CLE2 at the γ at the γ $+\pi$ at $+\pi$ $+\pi$ CLE2 s, limits,	COMMENT $e^+e^- \rightarrow \Upsilon(4S)$ etc. • • • Repl. by NEMATI 98 $\Upsilon(4S)$ and use the PDG Φ and the PDG 1992 B(Φ
	$\frac{CL\%}{90}$ 90 The follow 90 The sequal properties $0^0 \pi^0$ and $0^0 \pi^0$ and $0^0 \pi^0$ are follow $0^0 \pi^0$ as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follow $0^0 \pi^0$ as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follow $0^0 \pi^0$ as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follow $0^0 \pi^0$ and $0^0 \pi^0$ and $0^0 \pi^0$ are follow $0^0 \pi^0$ and $0^0 \pi^0$ and $0^0 \pi^0$ are follows as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follows as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follows as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follows as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follows as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follows as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follows as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follows as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follows as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follows as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follows as equal properties $0^0 \pi^0$ and $0^0 \pi^0$ are follows are follows.	production of B^+ and absolute $B(D^0 \rightarrow D^0)$ and $B(D^0 \rightarrow D^0)$ NEMATI ring data for average $B(D^0 \rightarrow D^0)$ NEMATI ring data for average $B(D^0 \rightarrow D^0)$ ALAM production of B^+ and $B(D^0 \rightarrow D^0)$ and $B(D^0 \rightarrow D^0)$ NEMATI ring data for average $B(D^0 \rightarrow D^0)$ ALAM production of B^+ and $B(D^0 \rightarrow D^0)$	98 es, fits 94 nd B^0 ctions. I B^0 ϵ $K^ \pi$ 98 es, fits 94 nd B^0	CLE2 at the γ at the γ	$\frac{COMMENT}{e^+e^- \to \Upsilon(4S)}$ etc. $\bullet \bullet \bullet$ Repl. by NEMATI 98 $\Upsilon(4S) \text{ and use the PDG}$ $\Upsilon(4S) \text{ and use the CLEO}$ and the PDG 1992 B(D^0) $\frac{\Gamma(4S)}{\Gamma(4S)} = \frac{\Gamma(4S)}{\Gamma(4S)}$ $\frac{\Gamma(4S)}{\Gamma(4S)} = \frac{\Gamma(4S)}{\Gamma(4S)}$

$\Gamma(\overline{D}^*(2007)^0)$				Γ ₅₂ /Γ
VALUE		DOCUMENT ID		
<0.0014		BRANDENB		` ,
		ng data for averages,		
<0.0019	90	¹⁵² NEMATI ¹⁵³ ALAM		
<0.0027				Repl. by NEMATI 98
values for D^0 153 ALAM 94 as B $(D^*(2007)^0$	0 , D^{*0} , η , η^{\prime} , are ssume equal proc 0 $_{ ightarrow}$ 0 $_{ ightarrow}$ 0 0 0	nd ω branching fractifuction of B^+ and E d absolute B($D^0 ightarrow$	ons. 8^0 at the 7 $K^-\pi^+$) an	$\Upsilon(4S)$ and use the PDG 96 $\Upsilon(4S)$ and use the CLEO II and the PDG 1992 B($D^0 ightharpoonup (-1)/B(D^0 ightharpoonup (K^-\pi^+)$.
Γ(<u>D</u> *(2007) ⁰		, ,		Γ ₅₃ /Γ
VALUE		DOCUMENT ID	TECN	COMMENT
<0.00074				$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do no		ng data for averages,	fits, limits,	etc. • • •
< 0.0021	90	¹⁵⁵ ALAM	94 CLE2	Repl. by NEMATI 98
¹⁵⁴ NEMATI 98	assumes equal pr	roduction of ${\it B}^{+}$ and	B^0 at the	\varUpsilon (4 S) and use the PDG 96
$K^{-}\pi^{+}\pi^{0})/$	$B(D^{U} \rightarrow K^{-}\pi)$	$^+$) and B($D^0 ightarrow ~K$	${\pi}+_{\pi}+_{\pi}$	-1/B(DU , k+1
VALUE	<u>CL%</u>	T _{total}	<u>TECI</u>	Γ ₅₄ /Γ
VALUE	<u>CL%</u>	T _{total}	<u>TECI</u>	Γ ₅₄ /Γ
(6.2 ^{+4.0} _{-2.9} ±1.0	0) × 10 ⁻⁴	T _{total}	<u>TECI</u> 99 CLE	Γ_{54}/Γ N COMMENT $e^+e^- ightarrow \Upsilon(4S)$
$(6.2^{+4.0}_{-2.9}\pm 1.0$	$\begin{array}{c} CL\% \\ \text{O)} \times 10^{-4} \\ \text{t use the followir} \\ \times 10^{-3} 90 \end{array}$	Ttotal DOCUMENT ID 156 ARTUSO and data for averages, 157 BARATE	99 CLE fits, limits,	Γ_{54}/Γ N COMMENT $e^+e^- o au(4S)$ etc. • • •
(6.2+4.0 ±1.0 (6.2-2.9 ±1.0 • • • We do not < 6.1 < 2.2 156 ARTUSO 99 157 BARATE 98 which corres	t use the followin $ \begin{array}{c} \times 10^{-3} & 90 \\ \times 10^{-3} & 90 \end{array} $ Uses B($\Upsilon(4S)$ - Q (ALEPH) obserponds to a brance	Ttotal DOCUMENT ID 156 ARTUSO and data for averages, 157 BARATE 158 ASNER $B^0 \overline{B}^0$ = (48 \pm 4 erves 2 events with an thing ratio of (2.3 $^{+1}_{-1}$	$\frac{TECI}{99}$ CLE fits, limits, 98Q ALE 97 CLE)%. The expected $\frac{9}{2} \pm 0.4) > 0.4$	Γ_{54}/Γ N COMMENT $2 e^+e^- \rightarrow \Upsilon(4S)$ etc. • • • P $e^+e^- \rightarrow Z$ 2 Repl. by ARTUSO 99 background of 0.10 ± 0.03 $< 10^{-3}$.
(6.2+4.0 ± 1.0 • • • We do not < 6.1 < 2.2 156 ARTUSO 99 157 BARATE 98 which corres 158 ASNER 97 a	t use the followin $ \begin{array}{c} \text{CL\%} \\ \text{O)} \times 10^{-4} \\ \text{t use the followin} \\ \times 10^{-3} 90 \\ \times 10^{-3} 90 \end{array} $ Uses B($\Upsilon(4S)$ - Q (ALEPH) obserponds to a branch of CLEO observe	Ttotal DOCUMENT ID 156 ARTUSO and data for averages, 157 BARATE 158 ASNER $B^0 \overline{B}^0$ = (48 \pm 4 erves 2 events with an thing ratio of (2.3 $^{+1}_{-1}$	$\frac{TECI}{99}$ CLE fits, limits, 98Q ALE 97 CLE)%. n expected9 \pm 0.4) \Rightarrow expected bac	Γ_{54}/Γ N COMMENT $2 e^+e^- \rightarrow \Upsilon(4S)$ etc. • • • P $e^+e^- \rightarrow Z$ Repl. by ARTUSO 99 background of 0.10 ± 0.03 $< 10^{-3}$. kground of 0.022 ± 0.011
(6.2+4.0 ±1.0 (6.2-2.9 ±1.0 • • • We do not < 6.1 < 2.2 156 ARTUSO 99 157 BARATE 980 which corresponds This correcsponds T(D*(2010)+	t use the followin $ \begin{array}{c} 10 \times 10^{-4} \\ \times 10^{-3} 90 \\ \times 10^{-3} 90 \end{array} $ Uses B($\Upsilon(4S)$ - Q (ALEPH) observed to a branch of the CLEO observed points to a branch of the CLEO observed by the condition of the clean o	Ttotal DOCUMENT ID 156 ARTUSO Ing data for averages, 157 BARATE 158 ASNER $B^0 \overline{B}^0$ = (48 \pm 4 erves 2 events with an exching ratio of (2.3 $^{+1}_{-1}$) is 1 event with an exhing ratio of (5.3 $^{+7}_{-3}$)	$\frac{TECI}{99}$ CLE fits, limits, 98Q ALE 97 CLE $\frac{1}{2}$ CLE $\frac{1}{2}$ CLE $\frac{1}{2}$	Γ_{54}/Γ N COMMENT $e^+e^- o \Upsilon(4S)$ etc. • • • P $e^+e^- o Z$ Repl. by ARTUSO 99 background of 0.10 ± 0.03 $< 10^{-3}$. kground of 0.022 ± 0.011 $< 10^{-4}$.
(6.2+4.0 ±1.0 (6.2-2.9 ±1.0 • • • We do not < 6.1 < 2.2 156 ARTUSO 99 157 BARATE 98 which corres 158 ASNER 97 a This correcs Γ(D*(2010)+ VALUE	t use the followin $ \begin{array}{c} \times 10^{-3} & 90 \\ \times 10^{-3} & 90 \end{array} $ Uses B($\Upsilon(4S)$) Q (ALEPH) observed to a branch of CLEO observed to a branch of the condition o	Ttotal DOCUMENT ID 156 ARTUSO and data for averages, 157 BARATE 158 ASNER $B^0 \overline{B}^0$ = (48 \pm 4 erves 2 events with an exching ratio of (2.3 $^{+1}_{-1}$) is 1 event with an exhing ratio of (5.3 $^{+7}_{-3}$)	$\frac{TECN}{99}$ CLE fits, limits, 98Q ALE 97 CLE $\frac{97}{100}$ CLE $\frac{9}{100}$ CLE $\frac{9}{100}$ CLE $\frac{9}{100}$ CLE $\frac{1}{100}$ CLE $\frac{9}{100}$ C	Γ_{54}/Γ N COMMENT $2 e^+e^- \rightarrow \Upsilon(4S)$ etc. • • • P $e^+e^- \rightarrow Z$ Repl. by ARTUSO 99 background of 0.10 ± 0.03 $< 10^{-3}$. kground of 0.022 ± 0.011 $< 10^{-4}$. Γ_{55}/Γ
(6.2+4.0 ±1.0 (6.2+4.0 ±1.0 • • • We do not < 6.1 < 2.2 156 ARTUSO 99 157 BARATE 98 which corresponds This correcsponds Γ(D*(2010)+ VALUE <1.8 × 10-3	t use the followin $ \begin{array}{c} \times 10^{-3} & 90 \\ \times 10^{-3} & 90 \\ \times 10^{-3} & 90 \end{array} $ Uses B($\Upsilon(4S)$ - Q(ALEPH) observed to a branch to a branc	Ttotal DOCUMENT ID 156 ARTUSO and data for averages, 157 BARATE 158 ASNER $B^0 \overline{B}^0$ = (48 \pm 4 erves 2 events with an exhing ratio of (2.3 $^{+1}_{-1}$) is 1 event with an exhing ratio of (5.3 $^{+7}_{-3}$) DOCUMENT ID ASNER	$\frac{TECN}{99}$ CLE fits, limits, $98Q$ ALE 97 CLE $0.9 \pm 0.4 \rightarrow 0.4 \rightarrow 0.1$ $0.1 \pm 0.4 \rightarrow 0.4 \rightarrow 0.4$ 0.1 ± 0	Γ_{54}/Γ N COMMENT $2 e^+e^- \rightarrow \Upsilon(4S)$ etc. • • • P $e^+e^- \rightarrow Z$ 2 Repl. by ARTUSO 99 background of 0.10 ± 0.03 $< 10^{-3}$. kground of 0.022 ± 0.011 $< 10^{-4}$. Γ_{55}/Γ $COMMENT$ $e^+e^- \rightarrow \Upsilon(4S)$
(6.2+4.0 ±1.0 (6.2+4.0 ±1.0 • • • We do not < 6.1 < 2.2 156 ARTUSO 99 157 BARATE 98 which corress 158 ASNER 97 a This correcss Γ(D*(2010)+ VALUE <1.8 × 10-3	t use the followin $ \begin{array}{c} \times 10^{-3} & 90 \\ \times 10^{-3} & 90 \\ \times 10^{-3} & 90 \end{array} $ Uses B($\Upsilon(4S)$ - Q(ALEPH) observed to a branch to a branc	Ttotal DOCUMENT ID 156 ARTUSO and data for averages, 157 BARATE 158 ASNER $B^0 \overline{B}^0$ = (48 \pm 4 erves 2 events with an exching ratio of (2.3 $^{+1}_{-1}$) is 1 event with an exhing ratio of (5.3 $^{+7}_{-3}$) DOCUMENT ID ASNER and data for averages,	$\frac{TECN}{99}$ CLE fits, limits, $\frac{98Q}{97}$ CLE $\frac{98Q}{97}$ CLE $\frac{99}{97}$ CLE2 fits, limits,	Γ_{54}/Γ N COMMENT $2 e^+e^- \rightarrow \Upsilon(4S)$ etc. • • • P $e^+e^- \rightarrow Z$ 2 Repl. by ARTUSO 99 background of 0.10 ± 0.03 $< 10^{-3}$. kground of 0.022 ± 0.011 $< 10^{-4}$. Γ_{55}/Γ $COMMENT$ $e^+e^- \rightarrow \Upsilon(4S)$
(6.2+4.0 ±1.0 (6.2+4.0 ±1.0 • • • We do not < 6.1 < 2.2 156 ARTUSO 99 157 BARATE 98 which correspond which correspond This corrects Γ(D*(2010)+ VALUE <1.8 × 10 ⁻³ • • • We do not <5.6 × 10 ⁻³ Γ(D(*) ⁰ D(*) ⁰	t use the followin $ \begin{array}{c} \times 10^{-3} & 90 \\ \times 10^{-3} & 90 \\ \times 10^{-3} & 90 \end{array} $ Uses B($\Upsilon(4S)$ - Q (ALEPH) observed to a brance of CLEO observed to a brance of CLEO observed to the following $\Gamma(4S)$ and $\Gamma(4S)$ and $\Gamma(4S)$ and $\Gamma(4S)$ and $\Gamma(4S)$ and $\Gamma(4S)$ are the following $\Gamma(4S)$ are the following $\Gamma(4S)$ and $\Gamma(4S)$ are the following $\Gamma(4S)$ are the following $\Gamma(4S)$ are the following $\Gamma(4S)$ are the following $\Gamma(4S)$ and $\Gamma(4S)$ are the following $\Gamma(4S)$ are the following $\Gamma(4S)$ are the following $\Gamma(4S)$ and $\Gamma(4S)$ are the following $\Gamma(4S)$ are the following $\Gamma(4S)$ and $\Gamma(4S)$ are the following $\Gamma(4S)$ are the following $\Gamma(4S)$ and $\Gamma(4S)$ are the following $\Gamma(4S)$ and $\Gamma(4S)$ are the following $\Gamma(4S)$ are the following $\Gamma(4S)$ and $\Gamma(4S)$ are the following $\Gamma(4S)$ are the following $\Gamma(4S)$ and $\Gamma(4S)$ are the following Γ	Ttotal DOCUMENT ID 156 ARTUSO Ing data for averages, 157 BARATE 158 ASNER $B^0 \overline{B}^0$ = (48 ± 4) Environment of (2.3^{+1}_{-1}) It is 1 event with an expectation of (5.3^{+7}_{-3}) DOCUMENT ID ASNER Ing data for averages, BARATE	$TECN$ 99 CLE fits, limits, 98Q ALE 97 CLE)%. n expected9 \pm 0.4) > pected bac7 \pm 1.0) > $TECN$ 97 CLE2 fits, limits, 98Q ALEP	Γ_{54}/Γ V $COMMENT$ $2 e^+e^- o \Upsilon(4S)$ etc. • • • P $e^+e^- o Z$ 2 Repl. by ARTUSO 99 background of 0.10 ± 0.03 $< 10^{-3}$. kground of 0.022 ± 0.011 . $< 10^{-4}$. Γ_{55}/Γ $COMMENT$ $e^+e^- o \Upsilon(4S)$ etc. • • • $e^+e^- o Z$
• • • We do no < 6.1 < 2.2 156 ARTUSO 99 157 BARATE 98 which corres 158 ASNER 97 a This correcs \(\begin{align*} \begin{align*} \begin	t use the followin $ \begin{array}{c} $	Ttotal DOCUMENT ID 156 ARTUSO Ing data for averages, 157 BARATE 158 ASNER $B^0 \overline{B}^0$ = (48 ± 4) Prives 2 events with an exching ratio of (2.3^{+1}_{-1}) Is 1 event with an exching ratio of (5.3^{+7}_{-3}) DOCUMENT ID ASNER Ing data for averages, BARATE	$TECN$ 99 CLE fits, limits, 98Q ALE 97 CLE)%. n expected9 \pm 0.4) > pected bac1 \pm 1.0) > $TECN$ 97 CLE2 fits, limits, 98Q ALEP	Γ_{54}/Γ_{0} $COMMENT$ $e^+e^- o au(4S)$ etc. • • • P $e^+e^- o au(4S)$ background of 0.10 ± 0.03 0.10^{-3} kground of 0.022 ± 0.011 0.10^{-4} 0.10^{-4} 0.10^{-4} 0.10^{-4} 0.10^{-4} 0.10^{-4}

$\Gamma(J/\psi(1S)K^0)/\Gamma_{\text{total}}$

 Γ_{57}/Γ

VALUE (units 10 ⁻⁴)	CL% EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT	
8.9±1.2 OUR AVE	RAGE					_
$8.5^{+1.4}_{-1.2}\pm0.6$		¹⁵⁹ JESSOP	97	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$11.5 \pm 2.3 \pm 1.7$		¹⁶⁰ ABE	96н	CDF	$p\overline{p}$ at $1.8~{\sf TeV}$	
$7.0\!\pm\!4.1\!\pm\!0.1$		¹⁶¹ BORTOLETT	ΓΟ92	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$9.3\!\pm\!7.3\!\pm\!0.2$	2	¹⁶² ALBRECHT	90J	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
14/ 1			. 12 3			

• • We do not use the following data for averages, fits, limits, etc.

$7.5\!\pm\!2.4\!\pm\!0.8$		10	¹⁶¹ ALAM	94	CLE2	Sup. by JESSOP 97
< 50	90		ALAM	86	CLEO	$e^+e^- ightarrow~ \varUpsilon(4S)$

 $^{^{159}}$ Assumes equal production of B^+ and B^0 at the \varUpsilon (4S).

$\Gamma(J/\psi(1S)K^{+}\pi^{-})/\Gamma_{\text{total}}$

 Γ_{58}/Γ

VALUE	CL% EVTS	DOCUMENT ID	TECN	COMMENT
0.0012 ±0.0006 OUR	AVERAGE			
$0.00116 \pm 0.00056 \pm 0.000$	002	¹⁶³ BORTOLETTO92	CLEO	$e^+e^- \rightarrow \gamma(AS)$

• • We do not use the following data for averages, fits, limits, etc. • • •

< 0.0013	90		¹⁶⁴ ALBRECHT	87 D	ARG	$e^+e^- ightarrow \Upsilon(4S)$
< 0.0063	90	2	GILES	84	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$

¹⁶³ BORTOLETTO 92 reports $0.0010 \pm 0.0004 \pm 0.0003$ for $B(J/\psi(1S) \rightarrow e^+e^-) = 0.069 \pm 0.009$. We rescale to our best value $B(J/\psi(1S) \rightarrow e^+e^-) = (5.93 \pm 0.10) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 164 ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. $K\pi$ system is specifically selected as nonresonant.

$\Gamma(J/\psi(1S)K^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{59}/Γ

VALUE	<u>EVTS</u>	<u>DOCUMENT ID</u>	TECN	COMMENT
0.00150±0.00017 OUR AV	ERAGE			
$0.00174 \pm 0.00020 \pm 0.00018$	3	¹⁶⁵ ABE		<i>p</i> p 1.8 TeV
$0.00132 \pm 0.00017 \pm 0.00017$,			$e^+e^- ightarrow~ \varUpsilon(4S)$
$0.00128 \pm 0.00066 \pm 0.00002$	2			$e^+e^- ightarrow~ \varUpsilon(4S)$
$0.00128 \pm 0.00060 \pm 0.00002$	2 6			$e^+e^- ightarrow~ \varUpsilon(4S)$
$0.0041 \pm 0.0018 \pm 0.0001$	5	¹⁶⁹ BEBEK	87 CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹⁶⁰ ABE 96H assumes that B($B^+ \to J/\psi K^+$) = (1.02 ± 0.14) × 10⁻³.

¹⁶¹ BORTOLETTO 92 reports $6\pm 3\pm 2$ for B $(J/\psi(1S) \rightarrow e^+e^-)=0.069\pm 0.009$. We rescale to our best value B $(J/\psi(1S) \rightarrow e^+e^-)=(5.93\pm 0.10)\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹⁶² ALBRECHT 90J reports $8 \pm 6 \pm 2$ for B($J/\psi(1S) \rightarrow e^+e^-$) = 0.069 \pm 0.009. We rescale to our best value B($J/\psi(1S) \rightarrow e^+e^-$) = (5.93 \pm 0.10) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.00136 \pm 0.00027 \pm 0.00022$		¹⁷⁰ ABE	96н CDF	Sup. by ABE 980
$0.00169 \pm 0.00031 \pm 0.00018$	29	¹⁷¹ ALAM	94 CLE2	Sup. by JESSOP 97
		¹⁷² ALBRECHT	94G ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$
0.0040 ± 0.0030		¹⁷³ ALBAJAR	91E UA1	$E_{cm}^{ar{p}} = 630 \; GeV$
0.0033 ± 0.0018		¹⁷⁴ ALBRECHT	87D ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
0.0041 ± 0.0018	5	¹⁷⁵ ALAM	86 CLEO	Repl. by BEBEK 87

- ¹⁶⁵ ABE 980 reports $[B(B^0 \to J/\psi(1S)K^*(892)^0)]/[B(B^+ \to J/\psi(1S)K^+)] = 1.76 \pm 1.00$ 0.14 \pm 0.15. We multiply by our best value B($B^+ \rightarrow J/\psi(1S) \, K^+$)=(9.9 \pm 1.0) \times 10⁻⁴. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ¹⁶⁶ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- 167 BORTOLETTO 92 reports $0.0011 \pm 0.0005 \pm 0.0003$ for B $(J/\psi(1S) \to e^+e^-) =$ 0.069 ± 0.009 . We rescale to our best value B $(J/\psi(1S) \rightarrow e^+e^-) = (5.93 \pm 0.10) \times$ 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- ¹⁶⁸ ALBRECHT 90J reports $0.0011 \pm 0.0005 \pm 0.0002$ for B($J/\psi(1S) \rightarrow e^{+}e^{-}$) = 0.069 ± 0.0002 0.009. We rescale to our best value B $(J/\psi(1S) \rightarrow e^+e^-) = (5.93 \pm 0.10) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- ¹⁶⁹ BEBEK 87 reports $0.0035 \pm 0.0016 \pm 0.0003$ for $B(J/\psi(1S) \rightarrow e^+e^-) = 0.069 \pm 0.009$. We rescale to our best value B($J/\psi(1S) \rightarrow e^+e^-$) = (5.93 \pm 0.10) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Updated in BORTOLETTO 92 to use the same assumptions.
- ¹⁷⁰ ABE 96H assumes that B($B^+ \to J/\psi K^+$) = (1.02 ± 0.14) × 10⁻³.
- $171\,\mathrm{The}$ neutral and charged B events together are predominantly longitudinally polarized, Γ_L/Γ =0.080 \pm 0.08 \pm 0.05. This can be compared with a prediction using HQET, 0.73 (KRAMER 92). This polarization indicates that the $B \to \psi K^*$ decay is dominated by the CP = -1 CP eigenstate. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- 172 ALBRECHT 94G measures the polarization in the vector-vector decay to be predominantly longitudinal, $\Gamma_{\mathcal{T}}/\Gamma = 0.03 \pm 0.16 \pm 0.15$ making the neutral decay a \emph{CP} eigenstate when the K^{*0} decays through $K^0_{\varsigma} \pi^0$.
- 173 ALBAJAR 91E assumes B_d^0 production fraction of 36%.
- 174 ALBRECHT 87D assume $B^+B^-/B^0\,\overline{B}^0$ ratio is 55/45. Superseded by ALBRECHT 90J.
- 175 ALAM 86 assumes B^{\pm}/B^0 ratio is 60/40. The observation of the decay $B^+ \to$ $J/\psi K^*(892)^+$ (HAAS 85) has been retracted in this paper.

$\Gamma(J/\psi(1S)K^*(892)^0)/\Gamma(J/\psi(1S)K^0)$

 Γ_{EO}/Γ_{EZ}

. (5/ + (-5) (55-) // . (5	// * (==) · · /			- 39/ - 31
VALUE	DOCUMENT ID	TECN	COMMENT	
1.39±0.36±0.10	ABE	96Q CDF	p p	

$\Gamma(J/\psi(1S)\pi^{0})/\Gamma_{\text{total}}$

 Γ_{60}/Γ

Created: 12/18/2000 15:33

VALUE	CL% EVTS	DOCUMENT ID	TECN	COMMENT
<5.8 × 10 ⁻⁵	90	BISHAI 96	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
<sup>176</sup> ACCIARRI
< 3.2 \times 10^{-4}
                                                        97C L3
                                 177 ALEXANDER 95 CLE2 Sup. by BISHAI 96
< 6.9 \times 10^{-3}
```

 176 ACCIARRI 97C assumes B^0 production fraction (39.5 \pm 4.0%) and B_{s} (12.0 \pm 3.0%).

177 Assumes equal production of B^+B^- and $B^0\overline{B}^0$ on $\Upsilon(4S)$.

```
\Gamma(J/\psi(1S)\eta)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{61}/\Gamma
                                           <sup>178</sup> ACCIARRI
^{178} ACCIARRI 97C assumes B^0 production fraction (39.5 \pm 4.0%) and B_s (12.0 \pm 3.0%).
\Gamma(J/\psi(1S)\rho^{0})/\Gamma_{\text{total}}
                                                                                                               \Gamma_{62}/\Gamma
                                                                            TECN
 < 2.5 \times 10^{-4}
                                  90
                                                                      96 CLE2 e^+e^- \rightarrow \Upsilon(4S)
                                                 BISHAI
\Gamma(J/\psi(1S)\omega)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{63}/\Gamma
                                                                            TECN COMMENT
 < 2.7 \times 10^{-4}
                                                                      96 CLE2 e^+e^- \rightarrow \Upsilon(4S)
                                                 BISHAI
\Gamma(\psi(2S)K^0)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{64}/\Gamma
VALUE
                                                                            TECN
                                            <sup>179</sup> ALAM
                                  90
                                                                      94 CLE2
 < 0.0008
• • We do not use the following data for averages, fits, limits, etc.
                                           <sup>179</sup> BORTOLETTO92 CLEO
< 0.0015
                                            <sup>179</sup> ALBRECHT
                                  90
                                                                      90J ARG
< 0.0028
<sup>179</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\psi(2S)K^{+}\pi^{-})/\Gamma_{\text{total}}
                                                                                                               \Gamma_{65}/\Gamma
VALUE
                                           <sup>180</sup> ALBRECHT
                                  90
                                                                      90J ARG
 < 0.001
<sup>180</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\psi(2S)K^*(892)^0)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{66}/\Gamma
<u>VALUE</u>
                                                    DOCUMENT ID TECN COMMENT
                                         ) \times 10^{-4} OUR AVERAGE
               ±2.3
   (9.3
                                              <sup>181</sup> ABE
    0.00090 \pm 0.00022 \pm 0.00009
                                                                         980 CDF
    0.0014 \pm 0.0008 \pm 0.0004
                                              <sup>182</sup> BORTOLETTO92 CLEO e^+e^- \rightarrow \Upsilon(4S)
• • We do not use the following data for averages, fits, limits, etc. •
                                              <sup>182</sup> ALAM
                                                                         94 CLE2 e^+e^- \rightarrow \Upsilon(4S)
< 0.0019
                                              <sup>182</sup> ALBRECHT
                                                                         90J ARG
< 0.0023
                                     90
<sup>181</sup> ABE 980 reports [B(B^0 \rightarrow \psi(2S)K^*(892)^0)]/[B(B^+ \rightarrow J/\psi(1S)K^+)] = 0.908 \pm 1.00
     0.194\pm0.10. We multiply by our best value B(B^+ \to J/\psi(1S)\,K^+)=(9.9\pm1.0)\times10^{-4}. Our first error is their experiment's error and our second error is the systematic error from
     using our best value.
<sup>182</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\chi_{c1}(1P)K^0)/\Gamma_{total}
                                                                                                               \Gamma_{67}/\Gamma
VALUE
                                  90
                                                                      94 CLE2 e^+e^- \rightarrow \Upsilon(4S)
 < 0.0027
<sup>183</sup>BORTOLETTO 92 assumes equal production of B^+ and B^0 at the \Upsilon(4S).
```

$\Gamma(\chi_{c1}(1P)K^*(892)$) ^v)/F _{tot}	al	DOCUMENT ID		TECN	COMMENT	Γ ₆₈ /Γ
<u>VALUE</u> <0.0021	<u>CL%</u> 90	184	DOCUMENT ID ALAM			$e^+e^- \rightarrow$	Υ(4C)
184 BORTOLETTO 92							` ,
$\Gamma(K^+\pi^-)/\Gamma_{ ext{total}}$			·			,	΄ Γ ₆₉ /Γ
VALUE (units 10^{-5})	CL%		DOCUMENT ID		TECN	COMMENT	037
$1.5^{+0.5}_{-0.4}\pm0.14$			GODANG				Υ(4S)
• • We do not use t	he follow	ing d	lata for averages	s, fits	, limits,	etc. • • •	
$2.4^{+1.7}_{-1.1}\pm0.2$		185	ADAM	96 D	DLPH	$e^+e^- \rightarrow$	Z
< 1.7	90		ASNER	96	CLE2	Sup. by A	DAM 96D
< 3.0	90	186	BUSKULIC			$e^+e^- \rightarrow$	
< 9	90	187	ABREU	95N	DLPH	Sup. by A	DAM 96 D
< 8.1	90		AKERS			$e^+e^- \rightarrow$	
< 2.6	90	189	BATTLE			$e^+e^- \rightarrow$	
<18	90		ALBRECHT			$e^+e^- \rightarrow$	
< 9	90	190	AVERY			$e^+e^- \rightarrow$	
<32	90		AVERY	87	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
B_s decays cannot be rates for the two notes BUSKULIC 96V as: 187 Assumes a B^0 , B^- Contributions from	be separa eutral <i>B</i> sumes PI – produc i <i>B</i> ⁰ and	ited. meso DG 90 tion B_{s}^{0}	Limits are giver ns. 6 production fra fraction of 0.39 decays cannot	n for ction and be se	the weig s for B^0 a B_s p eparated	ghted averag 0 , B^+ , B_s , roduction fr $_{\cdot}$ Limits are	se of the decay b baryons. action of 0.12
B_{S} decays cannot be rates for the two notes as B^{0} , B^{-1} Assumes a B^{0} , B^{-1} Contributions from weighted average of B^{188} Assumes $B(Z \rightarrow D^{189})$ BATTLE 93 assumes the $T(4S^{-1})$	be separa eutral B sumes PE produc B^0 and of the decodes equal	nted. meso DG 96 tion B_s^0 cay ra 217 a	Limits are given ins. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of B_d^0 B_s^0 uction of B_s^0	otion and be se neutraction	the weights for B^0 a B_s purpose parated and B_s material	ghted average B_s , B_s , roduction from B_s . Limits are esons. (12%).	se of the decay b baryons. action of 0.12
B_s decays cannot be rates for the two notes as B^0 , B^{-1} Assumes a B^0 , B^{-1} Contributions from weighted average of B^{-1} Assumes $B(Z \rightarrow D^{-1})$ BATTLE 93 assumes the $T(AS^{-1})$ $T(K^0\pi^0)/\Gamma_{total}$	be separa eutral B sumes PE produc B^0 and of the december $B^0 = 0.2$ as equal $B^0 = 0.2$	nted. meso DG 96 tion B_s^0 cay ra 217 a	Limits are given ins. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of B_d^0 to B_s^0 .	ction and be se neutr action	the weights for B^0 a B_s perparated and B_s means 39.5% and B^+ B^-	ghted average B_s , B_s , roduction from B_s . Limits are esons. (12%).	ge of the decay b baryons. action of 0.12 e given for the
B_s decays cannot be rates for the two notes as B^0 , B^{-1} Assumes a B^0 , B^{-1} Contributions from weighted average of B^{-1} Assumes $B(Z \to I^{-1})$ BATTLE 93 assumes the $T(AS^{-1})$ $T(K^0\pi^0)/\Gamma_{total}$ walue	be separa eutral B sumes PE produc B^0 and of the decodes equal	nted. meso DG 96 tion B_s^0 cay ra 217 a	Limits are given as. 5 production fraction of 0.39 decays cannot ates for the two and B_d^0 (B_s^0) fraction of B_s^0 to B_s^0 .	ction and be se neutr action	the weight s for B^{0} a B_{s} purpose parated and B_{s} matrix B^{0} and B^{0} B^{0} B^{0}	ghted average (B, B^+, B_S) , (B^+, B_S) , roduction from (B^+, B^+) . Limits are esons. (B^+, B^+) . The area of (B^+, B^+) at (B^+, B^+) .	b baryons. action of 0.12 given for the
B_s decays cannot be rates for the two notes as BUSKULIC 96V as: L87 Assumes a B^0 , B^- Contributions from weighted average of L88 Assumes B($Z \rightarrow L^{189}$ BATTLE 93 assumes the $\Upsilon(4S)$ $\Gamma(K^0\pi^0)/\Gamma_{\text{total}}$ $VALUE$ $VALUE$	be separa eutral B sumes PE product B^0 and of the december B^0 decays B^0 decays B^0	meso DG 96 tion B ⁰ cay ra 217 a produ 43%	Limits are given ins. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of $B^0\overline{B}^0$. B_s^0 . B_s^0 .	ction and be se neutr action and	the weight show for B^{C} and B_{S} propagated and B_{S} means 39.5% and B^{+} B^{-} $TECN$ CLE2	ghted average (B, B^+, B_S) , (B^+, B_S) , roduction from (B^+, B^+) . Limits are esons. (B^+, B^+) . The architecture of (B^+, B^+) at (B^+, B^+) . The average of (B^+, B^+) and (B^+, B^+) and (B^+, B^+) are (B^+, B^+) and $(B^$	b baryons. action of 0.12 given for the
B_s decays cannot be rates for the two notes as B^0 , B^{-1} Assumes a B^0 , B^{-1} Contributions from weighted average of B^{-1} Assumes $B(Z \rightarrow D^{-1})$ Assumes $B(Z \rightarrow D^{-1})$ Assumes the $T(4S^{-1})$ Walue $T(4S^{-1})$ We do not use the $T(4S^{-1})$	be separa eutral B sumes PE product B^0 and of the december B^0 decays B^0 decays B^0	meso DG 90 tion B _S ay ra 217 a produ 43%	Limits are given as. 5 production fraction of 0.39 decays cannot ates for the two and B_d^0 (B_s^0) fraction of B_s^0 at B_s^0 . DOCUMENT ID GODANG lata for averages	ction and be se neutr action and and	the weight s for B^{0} a B_{s} perparated and B_{s} means 39.5% and $B^{+}B^{-}$ CLE2, limits,	ghted average B , B^+ , B_S , roduction from B . Limits are esons. (12%). The area of B at B (4 S). $\frac{COMMENT}{e^+e^-} \rightarrow B$ etc. \bullet \bullet	ge of the decay b baryons. For action of 0.12 b given for the b
B_s decays cannot be rates for the two notes as B^0 , B^{-1} Assumes a B^0 , B^{-1} Contributions from weighted average of B^{-1} Assumes $B(Z \rightarrow D^{-1})$ Assumes $B(Z \rightarrow D^{-1})$ Assumes the $T(4S^{-1})$ Assumes	be separa eutral B sumes PE product B^0 and of the december B^0 decays B^0 decays B^0	meso DG 90 tion B _S ay ra 217 a produ 43%	Limits are given ins. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of $B^0\overline{B}^0$. B_s^0 . B_s^0 .	ction and be se neutr action and and	the weight s for B^{0} a B_{s} perparated and B_{s} means 39.5% and $B^{+}B^{-}$ CLE2, limits,	ghted average (B, B^+, B_S) , (B^+, B_S) , roduction from (B^+, B^+) . Limits are esons. (B^+, B^+) . The architecture of (B^+, B^+) at (B^+, B^+) . The average of (B^+, B^+) and (B^+, B^+) and (B^+, B^+) are (B^+, B^+) and $(B^$	ge of the decay b baryons. For action of 0.12 b given for the b
B_s decays cannot be rates for the two notes as B^0 , B^{-1} Assumes a B^0 , B^{-1} Contributions from weighted average of B^{-1} Assumes $B(Z \rightarrow D^{-1})$ Assumes $B(Z \rightarrow D^{-1})$ Assumes the $T(4S^{-1})$ Walue $T(4S^{-1})$ We do not use the $T(4S^{-1})$ We do not use the $T(4S^{-1})$	be separa eutral B sumes PE product B^0 and of the december B^0 decays B^0 decays B^0	meso DG 90 tion B _S ay ra 217 a produ 43%	Limits are giveness. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of B_s^0 ito B_s^0 . DOCUMENT ID GODANG lata for averages ASNER	ction and be se neutr actior and 98 s, fits	the weights for $B^{\rm C}$ a $B_{\rm S}$ perparated and $B_{\rm C}$ matrix $B^{\rm C} + B^{\rm C}$ $D_{\rm C} + D_{\rm C}$ $D_{\rm C} + D_{\rm$	ghted average B , B^+ , B_S , roduction from B . Limits are esons. (12%). The second B at B	ge of the decay by baryons. From 0.12 action of 0.12 are given for the 0.12 are
B_s decays cannot be rates for the two notes as B_s decays cannot be rates for the two notes as B_s decays as B_s decays for the two notes as B_s decays for the two	be separa eutral B sumes PE product B^0 and of the december B^0 decays $\frac{CL\%}{90}$ he follow	meso DG 90 tion B _S ay ra 217 a produ 43%	Limits are giveness. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of $B^0\overline{B}^0$. $DOCUMENT\ ID$ GODANG lata for averages ASNER	ction and be se neutr action and and 98 s, fits	the weight s for B^{C} a B_{S} perparated and B_{S} means 39.5% and B^{+} B^{-} CLE2, limits, CLE2	ghted average B , B^+ , B_S , roduction from B . Limits are esons. (12%). The second B at B	ge of the decay by baryons. From 0.12 action of 0.12 are given for the 0.12 are
B_{S} decays cannot be rates for the two notes as B^{0} , B^{-1} Assumes a B^{0} , B^{-1} Contributions from weighted average of B^{188} Assumes $B(Z \rightarrow I^{189})$ BATTLE 93 assumes the $T(AS^{189})$ We do not use the $T(AS^{189})$ We do not use the $T(AS^{189})$ We do not use the $T(AS^{189})$ Assumes the $T(AS^{189})$	be separa eutral B sumes PE product B^0 and of the december B^0 decays $\frac{CL\%}{90}$ he follow	meso DG 90 tion B _S ay ra 217 a produ 43%	Limits are giveness. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of B_s^0 ito B_s^0 . DOCUMENT ID GODANG lata for averages ASNER	ction and be se neutr action and and 98 s, fits	the weight s for B^{C} a B_{S} perparated and B_{S} means 39.5% and B^{+} B^{-} CLE2, limits, CLE2	ghted average B , B^+ , B_S , roduction from B . Limits are esons. (12%). The second B at B	ge of the decay by baryons. From 0.12 action of 0.12 are given for the 0.12 are
B_s decays cannot be rates for the two notes as B_s decays cannot be rates for the two notes as B_s decays as B_s decays for the two notes as B_s decays decays as B_s decays decays decays as B_s decays dec	be separal eutral B sumes PE product B^0 and of the december B^0 decays B^0 decays B^0	meso DG 90 tion B _S ay ra 217 a produ 43%	Limits are giveness. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of $B^0\overline{B}^0$. $DOCUMENT\ ID$ GODANG lata for averages ASNER	ction and be se neutr action and and 98 s, fits	the weight s for B^{C} a B_{S} perparated and B_{S} means 39.5% and B^{+} B^{-} CLE2, limits, CLE2	ghted average B , B^+ , B_S , roduction from B . Limits are esons. (12%). The second B at B	ge of the decay by baryons. Section of 0.12 by given for the region of τ (45) ODANG 98 τ (45)
B_s decays cannot be rates for the two notes as B_s decays cannot be rates for the two notes as B_s decays cannot be rates for the two notes as B_s decays cannot be rates for the two notes as B_s decays cannot be represented as B_s decays as	be separal eutral B sumes PE product B^0 and of the december B^0 decays B^0 decays B^0	meso DG 90 tion B _S ay ra 217 a produ 43%	Limits are giveness. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of $B^0\overline{B}^0$. $DOCUMENT\ ID$ GODANG lata for averages ASNER	otion and be seeneutraction and 98 s, fits 96	the weight s for B ^C a B _S per parated and a 39.5% and a 39.5% CLE2 limits, CLE2 TECN CLE2 TECN CLE2	ghted average (B, B^+, B_S) , (B^+, B_S) , roduction from (B^+, B_S) . In the second (B^+, B_S) and (B^+, B_S) are (B^+, B_S) and (B^+, B_S) are (B^+, B_S) and (B^+, B_S) and (B^+, B_S) are (B^+, B_S) and (B^+, B_S) and (B^+, B_S) are (B^+, B_S) and $($	b baryons. action of 0.12 e given for the Γ_{70}/Γ $\Upsilon(4S)$ ODANG 98 Γ_{71}/Γ
B_s decays cannot be rates for the two not 186 BUSKULIC 96V as: 187 Assumes a B^0 , B^{-1} Contributions from weighted average of 188 Assumes B($Z \rightarrow I$ 189 BATTLE 93 assumes the $\Upsilon(4S)$ $\Gamma(K^0\pi^0)/\Gamma_{\text{total}}$ $VALUE$ $<4.1 \times 10^{-5}$ \bullet \bullet We do not use the (4.0×10^{-5}) $\Gamma(\eta'K^0)/\Gamma_{\text{total}}$ $VALUE$ $VALUE$ $(4.7^{+2.7}_{-2.0}\pm 0.9) \times 10^{-5}$ $\Gamma(\eta'K^0)/\Gamma_{\text{total}}$ $VALUE$ $(4.7^{+2.7}_{-2.0}\pm 0.9) \times 10^{-5}$	be separal eutral B sumes PE product B^0 and of the december B^0 decays B^0 decays B^0	meso DG 90 tion B _S ay ra 217 a produ 43%	Limits are giveness. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of $B^0\overline{B}^0$. DOCUMENT ID GODANG at a for averages ASNER	ction and be seneutraction and 98 s, fits 96	s for B ^C a B _S p eparated ral B me n 39.5% B+B- TECN CLE2 , limits, CLE2 TECN CLE2	ghted average B , B^+ , B_S , roduction from B . Limits are esons. (12%). The esons B and B are esons. (20%). The esons B and B are esons B and B are esons. (20%). The esons B are esons B and B are esons B and B are esons B are esons B and B are esons B and B are esons B are esons B and B are esons B are esons B and B are esons B and B are esons B and B are esons B are esons B and B are esons B are esons B are esons B and B are esons B and B are esons B are esons B are esons B are esons B and B are esons B are esons B and B are esons B are esons B are esons B and B are esons B are esons B and B are esons B are esons B and B are esons B and B are esons B and B are esons B are esons B and B are esons B are esons B are esons B and B are esons B are esons B and B are esons B are esons B and B are esons B and B are esons B and B are esons B are esons B and B are esons B and B are esons B and B are esons	ge of the decay by baryons. From 0.12 action of 0.12 by given for the 0.12 by
B_s decays cannot be rates for the two not 186 BUSKULIC 96V as: 187 Assumes a B^0 , B^- Contributions from weighted average of 188 Assumes B($Z \rightarrow I$) 189 BATTLE 93 assumes the $\Upsilon(4S)$ $\Gamma(K^0\pi^0)/\Gamma_{\text{total}}$ Assumes the $\Upsilon(4S)$ $\Gamma(K^0\pi^0)/\Gamma_{\text{total}}$ Assumes the (4.1×10^{-5}) • • • We do not use the (4.0×10^{-5}) $\Gamma(\eta'K^0)/\Gamma_{\text{total}}$	be separal eutral B sumes PE product B^0 and of the december B^0 decays B^0 decays B^0	meso DG 90 tion B _S ay ra 217 a produ 43%	Limits are giveness. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of B_s^0 ito B_s^0 . DOCUMENT ID BEHRENS	ction and be seneutraction and 98 s, fits 96	s for B ^C a B _S p eparated ral B me n 39.5% B+B- TECN CLE2 , limits, CLE2 TECN CLE2	ghted average B , B^+ , B_S , roduction from B . Limits are esons. (12%). The esons B and B are esons. (20%). The esons B and B are esons B and B are esons. (20%). The esons B are esons B and B are esons B and B are esons B are esons B and B are esons B and B are esons B are esons B and B are esons B are esons B and B are esons B and B are esons B and B are esons B are esons B and B are esons B are esons B are esons B and B are esons B and B are esons B are esons B are esons B are esons B and B are esons B are esons B and B are esons B are esons B are esons B and B are esons B are esons B and B are esons B are esons B and B are esons B and B are esons B and B are esons B are esons B and B are esons B are esons B are esons B and B are esons B are esons B and B are esons B are esons B and B are esons B and B are esons B and B are esons B are esons B and B are esons B and B are esons B and B are esons	ge of the decay by baryons. From 0.12 action of 0.12 by given for the 0.12 by
B_s decays cannot be rates for the two not 186 BUSKULIC 96V as: 187 Assumes a B^0 , B^- Contributions from weighted average of 188 Assumes B($Z \rightarrow I$) 189 BATTLE 93 assume 190 Assumes the $\Upsilon(4S)$ $\Gamma(K^0\pi^0)/\Gamma_{\text{total}}$ VALUE \sim 4.1 \times 10 ⁻⁵ \sim \sim We do not use the \sim 189 Weighted \sim 189 BATTLE 93 assume 190 Assumes the \sim 189 Ass	be separal eutral B sumes PE product B^0 and of the december B^0 decays B^0 decays B^0	meso DG 90 tion B _S ay ra 217 a produ 43%	Limits are giveness. 5 production fraction of 0.39 decays cannot ites for the two and B_d^0 (B_s^0) fraction of B_s^0 ito B_s^0 . DOCUMENT ID BEHRENS	otion and be seneutraction and and and seneutraction and seneutraction and seneutraction seneutraction and seneutraction seneutraction and seneutraction sen	the weight s for B s f	ghted average (a, B^+, B_S) , (a, B^+, B_S) , roduction from (a, B^+, B_S) . Limits are esons. (a, B^+, B_S) . COMMENT (a, B^+, B_S) .	ge of the decay by baryons. From 0.12 action of 0.12 by given for the 0.12 by

Page 29

HTTP://PDG.LBL.GOV

$\Gamma(\eta K^0)/\Gamma_{ m total}$						Γ ₇₄ /Γ
	<u>CL%</u>	DOCUMENT ID				
<3.3 × 10 ⁻⁵	90	BEHRENS	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(\omega K^0)/\Gamma_{ m total}$						Γ ₇₅ /Γ
* , ,	CL%	DOCUMENT ID		TECN		13/1
<5.7 × 10 ⁻⁵		¹ BERGFELD				
¹⁹¹ Assumes equal produ	iction of B^{-}	$^+$ and $B^{ m 0}$ at the	e Υ(4	4 <i>S</i>).		
$\Gamma(\omega K^*(892)^0)/\Gamma_{\text{tota}}$	I					Γ ₇₆ /Γ
<u>VALUE</u> <2.3 × 10 ^{−5}	<u>CL%</u>	DOCUMENT ID		TECN		
<2.3 × 10 ⁻⁵	90 19	² BERGFELD	98	CLE2		
192 Assumes equal produ	iction of B^{-}	$^+$ and B^0 at the	e γ(4	4 <i>S</i>).		
$[\Gamma(K^+\pi^-) + \Gamma(\pi^+\pi^-)]$	τ [−])]/Γ _{tot}	tal			1)	- 69+Γ ₁₀₇)/Γ
$\frac{VALUE}{(1.9\pm0.6)} \times 10^{-5}$			ID	TEC	V <u>COMMEI</u>	NT
$(1.9\pm0.6) \times 10^{-5}$	OUR AVE	RAGE				
$(2.8^{+1.5}_{-1.0}\pm 2.0) \times 10^{-5}$		¹⁹³ ADAM				
$(1.8^{+0.6}_{-0.5}^{+0.3}_{-0.4}) \times 10^{-5}$						$\rightarrow \Upsilon(4S)$
• • • We do not use the	following	data for average	s, fit	s, limits,	etc. • • •	
$(2.4^{+0.8}_{-0.7}\pm0.2)\times10^{-5}$		¹⁹⁴ BATTLE	9	93 CLE	2 e ⁺ e ⁻	$\rightarrow \Upsilon(4S)$
193 ADAM 96D assumes B_s decays cannot be rates for the two neu 194 BATTLE 93 assumes	separated. $B \text{ mes}$	Limits are give ons.	n for	the weig	ghted averag	s from B^0 and ge of the decay
$\Gamma(K^+K^-)/\Gamma_{ ext{total}}$						Γ ₇₇ /Γ
	CI %	DOCUMENT ID		TECN	COMMENT	1 77/1
<4.3 × 10 ⁻⁶					$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • We do not use the						. ()
$<4.6 \times 10^{-5}$	19	⁵ ADAM	960	DLPH	$e^+e^ \rightarrow$	Z
$< 0.4 \times 10^{-5}$	90	ASNER	96	CLE2	Repl. by C	ODANG 98
$<1.8 \times 10^{-5}$	90 19	⁶ BUSKULIC			$e^+e^ \rightarrow$	
$<1.2 \times 10^{-4}$		⁷ ABREU			Sup. by A	
$< 0.7 \times 10^{-5}$		⁸ BATTLE			$e^+e^- \rightarrow$	` /
¹⁹⁵ ADAM 96D assumes	$f_{B^0} = f_{B^0}$	$_{-}$ = 0.39 and f	$B_{\epsilon} =$	0.12.	Contribution	s from B^0 and
$B_{m s}$ decays cannot be	e separated.	Limits are give	n for	the weig	ghted averag	ge of the decay
rates for the two neu 196 BUSKULIC 96V assu	itral <i>B</i> mes	ons. Of production fr	action	ns for R) _R + _R	h harvons
197 Assumes a B^0 , B^-	production	fraction of 0.30	action and	la Rn	roduction fr	action of 0.12
Contributions from I	B^0 and B^0	decays cannot	be s	eparated	. Limits are	e given for the
weighted average of	the decay r	ates for the two	neut	ral B me	esons.	0
¹⁹⁸ BATTLE 93 assumes	s equal prod	duction of $B^0 \overline{B}^0$	0 and	I <i>B</i> + <i>B</i> -	at $\Upsilon(4S)$.	

$\Gamma(K^0\overline{K}^0)/\Gamma_{ m total}$						Г ₇₈ /Г
	<u>CL%</u>	DOCUMENT ID				
<1.7 × 10 ⁻⁵	90	GODANG	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(K^+ ho^-)/\Gamma_{ ext{total}}$						Γ ₇₉ /Γ
	CL%	DOCUMENT ID		TECN	COMMENT	
$< 3.5 \times 10^{-5}$	90	ASNER	96	CLE2	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$\Gamma(K^0\pi^+\pi^-)/\Gamma_{ m total}$						Γ ₈₀ /Γ
	·	DOCUMENT ID				
• • • We do not use the	following d	ata for averages	, fits	, limits,	etc. • • •	
$<4.4 \times 10^{-4}$	90	ALBRECHT	91E	ARG	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$\Gamma(K^0 ho^0)/\Gamma_{ m total}$						Γ ₈₁ /Γ
VALUE	CL%	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
$< 3.9 \times 10^{-5}$	90	ASNER	96	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
ullet $ullet$ We do not use the	following d	ata for averages	, fits	, limits,	etc. • • •	
$< 3.2 \times 10^{-4}$	90	ALBRECHT	91 B	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$< 5.0 \times 10^{-4}$	90 199	AVERY	89 B	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
< 0.064	90 200	AVERY	87	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
199 AVERY 89B reports	< 58 × 10	-4 assuming th	ne γ	(45) de	cavs 43% to	$_{0}$ $_{R}^{0}$ $_{We}^{0}$
rescale to 50%. AVERY 87 reports < 50%.						
3070.						
$\Gamma(K^0 f_0(980))/\Gamma_{\text{total}}$	6 1.07					Γ ₈₂ /Γ
$\Gamma(K^0 f_0(980))/\Gamma_{\text{total}}$						Γ ₈₂ /Γ
$\frac{\Gamma(K^0 f_0(980))/\Gamma_{\text{total}}}{<3.6\times10^{-4}}$	90 201	AVERY	89 B	CLEO	$e^+e^- \rightarrow$	Γ₈₂/Γ
$\Gamma(K^0 f_0(980))/\Gamma_{\text{total}}$	90 201	AVERY	89 B	CLEO	$e^+e^ \rightarrow$	Γ₈₂/Γ
$\Gamma(K^0 f_0(980))/\Gamma_{\text{total}}$ $VALUE$ $\sim 3.6 \times 10^{-4}$ $\sim 201 \text{ AVERY 89B reports}$	90 201 < 4.2 × 10	AVERY	89 B	CLEO	$e^+e^ \rightarrow$	Γ₈₂/Γ
$\Gamma(K^0 f_0(980))/\Gamma_{\text{total}}$ $VALUE$ $<3.6 \times 10^{-4}$ $VALUE$ $<3.6 \times 10^{-4}$ $VALUE$ VAL	90 201 $<4.2\times10$	AVERY	89в ne γ	CLEO (4 <i>S</i>) de	$e^+e^- ightarrow$ cays 43% to	r_{82}/Γ $r_{(4S)}$ o $B^0\overline{B}{}^0$. We
$\Gamma(K^0 f_0(980))/\Gamma_{\text{total}}$ $VALUE$ $<3.6 \times 10^{-4}$ 201 AVERY 89B reports rescale to 50%. $\Gamma(K^*(892)^+\pi^-)/\Gamma_{\text{total}}$	90 201 $<4.2\times10$	AVERY $^{-4}$ assuming th	89B	CLEO (4 <i>S</i>) de	$e^+e^- ightarrow$ cays 43% to	Γ_{82}/Γ r (4 S) o $B^0\overline{B}^0$. We Γ_{83}/Γ
$\Gamma(K^0 f_0(980))/\Gamma_{\text{total}}$ $VALUE$ $<3.6 \times 10^{-4}$ $VALUE$ $<3.6 \times 10^{-4}$ $VALUE$ $<3.6 \times 10^{-4}$ $VALUE$ $<3.6 \times 10^{-4}$ $VALUE$	90 201 < 4.2 × 10 tal $\frac{CL\%}{90}$	AVERY -4 assuming the description of the descripti	89Β ne <i>Υ</i>	CLEO (4 <i>S</i>) de <i>TECN</i> CLE2	$e^+e^- ightarrow$ cays 43% to	Γ_{82}/Γ $r_{(4S)}$ o $B^0\overline{B}^0$. We Γ_{83}/Γ $r_{(4S)}$
$\Gamma(K^0 f_0(980))/\Gamma_{\text{total}}$ $\frac{VALUE}{<3.6 \times 10^{-4}}$ $201 \text{ AVERY 89B reports rescale to 50%.}$ $\Gamma(K^*(892)^+\pi^-)/\Gamma_{\text{total}}$ $\frac{VALUE}{<7.2 \times 10^{-5}}$	90 201 $< 4.2 \times 10$ tal $\frac{CL\%}{90}$ 90 202	AVERY -4 assuming the description of the descripti	89Β ne <i>Υ</i> 96 89Β	CLEO (4S) de TECN CLE2 CLEO	$e^+e^- \rightarrow$ cays 43% to $\frac{COMMENT}{e^+e^- \rightarrow e^+e^- \rightarrow}$	Γ_{82}/Γ $r_{(4S)}$ o $B^0\overline{B}^0$. We Γ_{83}/Γ $r_{(4S)}$
$\Gamma(K^0 f_0(980))/\Gamma_{total}$ $VALUE$ <3.6 × 10 ⁻⁴ 201 AVERY 89B reports rescale to 50%. $\Gamma(K^*(892)^+\pi^-)/\Gamma_{tot}$ $VALUE$ <7.2 × 10 ⁻⁵ <3.8 × 10 ⁻⁴ • • • We do not use the	90 201 < 4.2 × 10 tal $\frac{CL\%}{90}$ 90 202 following d	AVERY -4 assuming the DOCUMENT ID ASNER AVERY ata for averages	89Β ne <i>Υ</i> 96 89Β , fits	CLEO (4S) de TECN CLE2 CLEO , limits,	$e^+e^- \rightarrow$ cays 43% to $\frac{COMMENT}{e^+e^- \rightarrow}$ $e^+e^- \rightarrow$ etc. • • •	Γ_{82}/Γ $r_{(4S)}$ o $B^0\overline{B}^0$. We Γ_{83}/Γ $r_{(4S)}$ $r_{(4S)}$
$\Gamma(K^0 f_0(980))/\Gamma_{\text{total}}$ $\frac{VALUE}{<3.6 \times 10^{-4}}$ $201 \text{ AVERY } 898 \text{ reports rescale to } 50\%.$ $\Gamma(K^*(892)^+\pi^-)/\Gamma_{\text{total}}$ $\frac{VALUE}{<7.2 \times 10^{-5}}$ $<3.8 \times 10^{-4}$	90 201 < 4.2 × 10 tal $\frac{CL\%}{90}$ 90 202 following d 90	AVERY -4 assuming the DOCUMENT ID ASNER AVERY ata for averages ALBRECHT	89B ne Υ 96 89B , fits 91B	CLEO (4S) de TECN CLE2 CLEO , limits, ARG	$e^+e^- \rightarrow$ cays 43% to $\frac{COMMENT}{e^+e^- \rightarrow}$ $e^+e^- \rightarrow$ etc. • • • $e^+e^- \rightarrow$	Γ_{82}/Γ $\tau_{(4S)}$ $\Rightarrow B^0 \overline{B}{}^0$. We Γ_{83}/Γ $\tau_{(4S)}$ $\tau_{(4S)}$
$\Gamma(K^0 f_0(980))/\Gamma_{total}$ $VALUE$ <3.6 × 10 ⁻⁴ 201 AVERY 89B reports rescale to 50%. $\Gamma(K^*(892)^+\pi^-)/\Gamma_{tot}$ $VALUE$ <7.2 × 10 ⁻⁵ <3.8 × 10 ⁻⁴ • • • We do not use the <6.2 × 10 ⁻⁴ <5.6 × 10 ⁻⁴	90 201 $< 4.2 \times 10$ tal $\frac{CL\%}{90}$ 90 202 following d 90 90 203	AVERY -4 assuming the DOCUMENT ID ASNER AVERY ata for averages ALBRECHT AVERY	89B ne Υ 96 89B , fits 91B 87	CLEO (4S) de TECN CLE2 CLEO , limits, ARG CLEO	$e^+e^- \rightarrow$ cays 43% to $\frac{COMMENT}{e^+e^- \rightarrow}$ $e^+e^- \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $e^+e^- \rightarrow$	Γ_{82}/Γ $T(4S)$ $\Rightarrow B^0 \overline{B}{}^0$. We Γ_{83}/Γ $T(4S)$ $T(4S)$ $T(4S)$ $T(4S)$
$\Gamma(K^0 f_0(980))/\Gamma_{total}$ $VALUE$ <3.6 × 10 ⁻⁴ 201 AVERY 89B reports rescale to 50%. $\Gamma(K^*(892)^+\pi^-)/\Gamma_{tot}$ $VALUE$ <7.2 × 10 ⁻⁵ <3.8 × 10 ⁻⁴ • • • We do not use the <6.2 × 10 ⁻⁴	90 201 $< 4.2 \times 10$ tal $\frac{CL\%}{90}$ 90 202 following d 90 90 203 $< 4.4 \times 10$	AVERY -4 assuming the DOCUMENT ID ASNER AVERY ata for averages ALBRECHT AVERY -4 assuming the	$89B$ ne Υ 96 $89B$, fits $91B$ 87 ne Υ	CLEO (4S) de TECN CLE2 CLEO , limits, ARG CLEO (4S) de	$e^+e^- \rightarrow$ cays 43% to $\frac{COMMENT}{e^+e^- \rightarrow}$ $e^+e^- \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $e^+e^- \rightarrow$ cays 43% to	Γ_{82}/Γ $T(4S)$ o $B^0\overline{B}^0$. We Γ_{83}/Γ $T(4S)$ $T(4S)$ $T(4S)$ $T(4S)$ o $B^0\overline{B}^0$. We
$\Gamma(K^0 f_0(980))/\Gamma_{total}$ $VALUE$ <3.6 × 10 ⁻⁴ 201 AVERY 89B reports rescale to 50%. $\Gamma(K^*(892)^+\pi^-)/\Gamma_{tot}$ $VALUE$ <7.2 × 10 ⁻⁵ <3.8 × 10 ⁻⁴ • • • We do not use the <6.2 × 10 ⁻⁴ <5.6 × 10 ⁻⁴ 202 AVERY 89B reports rescale to 50%. 203 AVERY 87 reports < to 50%.	90 201 $< 4.2 \times 10$ tal $\frac{CL\%}{90}$ 90 202 following d 90 203 $< 4.4 \times 10$ 7×10^{-4} a	AVERY -4 assuming the DOCUMENT ID ASNER AVERY ata for averages ALBRECHT AVERY -4 assuming the	$89B$ ne Υ 96 $89B$, fits $91B$ 87 ne Υ	CLEO (4S) de TECN CLE2 CLEO , limits, ARG CLEO (4S) de	$e^+e^- \rightarrow$ cays 43% to $\frac{COMMENT}{e^+e^- \rightarrow}$ $e^+e^- \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $e^+e^- \rightarrow$ cays 43% to	Γ_{82}/Γ $\tau_{(4S)}$ $\sigma_{B}^{0}B^{0}$. We Γ_{83}/Γ $\tau_{(4S)}$ $\tau_{(4S)}$ $\tau_{(4S)}$ $\tau_{(4S)}$ $\sigma_{B}^{0}B^{0}$. We $\tau_{B}^{0}B^{0}$. We
$\Gamma(K^0 f_0(980))/\Gamma_{total}$ $VALUE$ <3.6 × 10 ⁻⁴ 201 AVERY 89B reports rescale to 50%. $\Gamma(K^*(892)^+\pi^-)/\Gamma_{total}$ $VALUE$ <7.2 × 10 ⁻⁵ <3.8 × 10 ⁻⁴ • • • We do not use the <6.2 × 10 ⁻⁴ <5.6 × 10 ⁻⁴ 202 AVERY 89B reports rescale to 50%. 203 AVERY 87 reports < to 50%. $\Gamma(K^*(892)^0\pi^0)/\Gamma_{total}$	90 201 $< 4.2 \times 10$ tal $\frac{CL\%}{90}$ 90 202 following d 90 203 $< 4.4 \times 10$ 7×10^{-4} a	AVERY -4 assuming the DOCUMENT ID ASNER AVERY ata for averages ALBRECHT AVERY -4 assuming the	89B ne Υ 96 89B , fits 91B 87 ne Υ 45)	CLEO (4S) de TECN CLE2 CLEO , limits, ARG CLEO (4S) de decays 4	$e^+e^- \rightarrow$ cays 43% to $\frac{COMMENT}{e^+e^- \rightarrow}$ $e^+e^- \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $e^+e^- \rightarrow$ cays 43% to	Γ_{82}/Γ $T(4S)$ o $B^0\overline{B}^0$. We Γ_{83}/Γ $T(4S)$ $T(4S)$ $T(4S)$ $T(4S)$ o $B^0\overline{B}^0$. We

```
\Gamma(K_2^*(1430)^+\pi^-)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{85}/\Gamma
                                 90
                                                                    91B ARG
                                                ALBRECHT
\Gamma(K^0K^+K^-)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{86}/\Gamma
                                                DOCUMENT ID
                                                                          TECN
                                 90
                                                                    91E ARG
                                                ALBRECHT
\Gamma(K^0\phi)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{87}/\Gamma
                                               DOCUMENT ID TECN COMMENT
 <3.1 \times 10^{-5} \text{ (CL} = 90\%)
                                     [< 8.8 \times 10^{-5} \text{ (CL} = 90\%) \text{ OUR } 1998 \text{ BEST LIMIT}]
                                          <sup>204</sup> BERGFELD
 < 3.1 \times 10^{-5}
                                 90
                                                                    98 CLE2
• • We do not use the following data for averages, fits, limits, etc. •
< 8.8 \times 10^{-5}
                                                                    96 CLE2
                                 90
                                               ASNER
 < 7.2 \times 10^{-4}
                                                                    91B ARG
                                 90
                                               ALBRECHT
                                           <sup>205</sup> AVERY
<4.2 \times 10^{-4}
                                 90
                                                                    89B CLEO e^+e^- \rightarrow \Upsilon(4S)
                                          <sup>206</sup> AVERY
<1.0 \times 10^{-3}
                                 90
                                                                    87 CLEO e^+e^- \rightarrow \Upsilon(4S)
<sup>204</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
^{205} AVERY 89B reports < 4.9 \times 10^{-4} assuming the \Upsilon(4S) decays 43% to B^0 \, \overline{B}{}^0. We
^{206} AVERY 87 reports < 1.3 \times 10^{-3} assuming the \Upsilon(4S) decays 40% to B^0 \overline{B}{}^0. We rescale
     to 50%.
\Gamma(K^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{88}/\Gamma
 < 2.3 \times 10^{-4}
                                          <sup>207</sup> ADAM
                                                                    96D DLPH e^+e^-
                                 90
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                          <sup>208</sup> ABREU
< 2.1 \times 10^{-4}
                                 90
                                                                    95N DLPH Sup. by ADAM 96D
^{207} ADAM 96D assumes f_{B^0}=f_{B^-}=0.39 and f_{B_c}=0.12. Contributions from B^0 and
     B_s decays cannot be separated. Limits are given for the weighted average of the decay
rates for the two neutral B mesons. 208 Assumes a B^0, B^- production fraction of 0.39 and a B_s production fraction of 0.12.
     Contributions from B^0 and B^0_s decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons.
\Gamma(K^*(892)^0\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{89}/\Gamma
                                                                    91E ARG
                                                ALBRECHT
\Gamma(K^*(892)^0 \rho^0)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{90}/\Gamma
                                                                                              \rightarrow \Upsilon(4S)
 < 4.6 \times 10^{-4}
                                 90
                                                                    91B ARG
                                               ALBRECHT
• • We do not use the following data for averages, fits, limits, etc.
                                          <sup>209</sup> AVERY
< 5.8 \times 10^{-4}
                                 90
                                                                    89B CLEO e^+e^- \rightarrow \Upsilon(4S)
< 9.6 \times 10^{-4}
                                          <sup>210</sup> AVERY
                                                                    87 CLEO e^+e^- \rightarrow \Upsilon(4S)
                                 90
^{209} AVERY 89B reports < 6.7 \times 10^{-4} assuming the \Upsilon(4S) decays 43% to B^0 \, \overline{B}{}^0. We
<sup>210</sup> AVERY 87 reports < 1.2 \times 10^{-3} assuming the \Upsilon(4S) decays 40% to B^0 \overline{B}{}^0. We rescale
     to 50%.
                                                  Page 32
                                                                          Created: 12/18/2000 15:33
```

$\Gamma(K^*(892)^0 f_0(980))$	-		- 10	TECN	COMMENT	Γ ₉₁ /Γ
<u>√ALUE</u> <1.7 × 10^{—4}	<u>CL%</u> 90	DOCUMENT 211 AVERY				Υ(4S)
²¹¹ AVERY 89B repo						
rescale to 50%.	orts < 2.0	× 10 · assumii	ng the <i>I</i>	(43) de	ecays 45% t	o b b . vve
$(K_1(1400)^+\pi^-)$	$/\Gamma_{total}$					Γ_{92}/Γ
VALUE	. CL%	<u>DOCUMENT</u>	- ID	TECN	COMMENT	
<1.1 × 10 ⁻³	90	ALBRECH	T 91B	ARG	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$\Gamma(K^- a_1(1260)^+)$	$/\Gamma_{ ext{total}}$					Γ ₉₃ /Γ
VALUE	<u>CL%</u> 90	<u>DOCUMENT</u>				
						Z
• • We do not use			rages, fits	, limits,	etc. • • •	
$< 3.9 \times 10^{-4}$					Sup. by Al	
212 ADAM 96D assur $_s$ decays cannot	mes $f_{R0} =$	$f_{R^{-}} = 0.39$ an	$d f_{B_c} =$	0.12. C	Contributions	from B^0 and
B_s decays cannot	t be separa	ated. Limits are g	given for t	the weig	ghted averag	e of the decay
rates for the two 213 Assumes a 0 , 6	neutral <i>B</i> B produc	mesons.	hac 08 0	2 <i>B</i> n	roduction fr	action of 0.12
Contributions fro	$_{\rm m} R^{0}$	1 R ⁰ decays can	not he se	$a D_S p$	l imits are	given for the
Contributions fro weighted average	of the de	cav rates for the $\frac{1}{2}$	two neutr	al B me	esons.	given for the
		•		u. 2		
⁻ (<i>K</i> *(892) ⁰ <i>K</i> + <i>K</i>	[−])/Γ _{tota}	ıl				Г ₉₄ /Г
VALUE	<u>CL%</u>	<u>DOCUMENT</u>				
<6.1 × 10 ⁻⁴	90	ALBRECH	T 91E	ARG	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$\Gamma(K^*(892)^0\phi)/\Gamma_{\rm t}$	otal					Γ ₉₅ /Γ
VALUE		<u>DOCUMENT</u>				
$< 2.1 \times 10^{-5} (CL =$				OUR 1	998 BEST L	.IMIT]
[90	²¹⁴ BERGFELI	D 98	CLE2		
<2.1 × 10 ⁻⁵	50		1:4-	limits.	etc. • • •	
		ing data for aver	rages, fits	,		
• • We do not use $<4.3 \times 10^{-5}$	the follow	ASNER	96	CLE2	$e^+e^ \rightarrow$	
• • We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$	the follow 90 90	ASNER ALBRECH	96 T 918	CLE2	$e^+e^- \rightarrow e^+e^- \rightarrow$	$\Upsilon(45)$
• • We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$ $<3.8 \times 10^{-4}$	the follow 90 90	ASNER ALBRECH	96 T 918	CLE2	$e^+e^- \rightarrow e^+e^- \rightarrow$	$\Upsilon(45)$
• • We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$ $<3.8 \times 10^{-4}$	the follow 90 90	ASNER	96 T 918	CLE2	$e^+e^- \rightarrow e^+e^- \rightarrow$	$\Upsilon(45)$
$< \bullet \bullet$ We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$	90 90 90 90 90	ASNER ALBRECH ²¹⁵ AVERY ²¹⁶ AVERY	96 T 91B 89B 87	CLE2 ARG CLEO CLEO	$e^+e^- \rightarrow e^+e^- \rightarrow$	$\Upsilon(45)$
$<$ • • We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ Assumes equal property $<$ AVERY 89B repo	90 90 90 90 90 90	ASNER ALBRECH 215 AVERY 216 AVERY of $^{B+}$ and B0 at	96 898 87 $t the \Upsilon(4)$	CLE2 ARG CLEO CLEO S).	$e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow$	$\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$
$<$ • • We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ Assumes equal properties and the equal of AVERY 89B reports and AVERY 87 reports	90 90 90 90 90 roduction of	ASNER ALBRECH 215 AVERY 216 AVERY of $^{8+}$ and 80 at $^{\times}$ $^{10^{-4}}$ assumin	96 T $91B$ $89B$ 87 t the $\Upsilon(4)$ ng the $\Upsilon(4)$	CLE2 ARG CLEO CLEO S).	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{$	$\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Rightarrow B^0 \overline{B}^0$. We
 We do not use 4.3 × 10⁻⁵ 3.2 × 10⁻⁴ 3.8 × 10⁻⁴ 3.8 × 10⁻⁴ Assumes equal properties and properties are solutions. AVERY 89B report rescale to 50%. AVERY 87 report to 50%. 	90 90 90 90 90 roduction of the service of the serv	ASNER ALBRECH 215 AVERY 216 AVERY of $^{8+}$ and 80 at $^{\times}$ $^{10^{-4}}$ assumin	96 T $91B$ $89B$ 87 t the $\Upsilon(4)$ ng the $\Upsilon(4)$	CLE2 ARG CLEO CLEO S).	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{$	$\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\tau(4S)$ $\tau(4S)$ $\tau(4S)$ $\tau(4S)$ $\tau(4S)$ $\tau(4S)$ $\tau(4S)$ $\tau(4S)$ $\tau(4S)$ $\tau(4S)$ $\tau(4S)$
• • We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ Assumes equal processale to 50%. AVERY 87 report to 50%. T($K_1(1400)^0 \rho^0$)/	the follow 90 90 90 90 roduction of orts < 4.4 is $< 4.7 \times 10^{-10}$	ASNER ALBRECH 215 AVERY 216 AVERY of B^+ and B^0 at \times 10^{-4} assuming the 10^{-4} assuming the 10^{-4}	96 $1T$ $91B$ $89B$ 87 1 1 1 1 1 1 1 1 1 1	CLE2 ARG CLEO CLEO S). (4S) de	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	$\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $O(B^0\overline{B}^0)$. We rescale
• • We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ Assumes equal processale to 50%. AVERY 87 report to 50%.	the follow 90 90 90 90 roduction of orts < 4.4 is $< 4.7 \times 10^{-10}$	ASNER ALBRECH 215 AVERY 216 AVERY of B^+ and B^0 at \times 10^{-4} assuming the 0	96 89 87 $1 ext{the } \Upsilon(4)$ $1 ext{ng the } \Upsilon(4)$ $1 ext{the } \Upsilon(4)$	CLE2 ARG CLEO CLEO S). (4S) de decays	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	$\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ o $B^0\overline{B}^0$. We \overline{B}^0 . We \overline{B}^0 . We rescale
• • We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ Assumes equal properties as <2.14 AVERY 89B reported AVERY 87 reported <2.16 AVERY 89 AVERY 87 reported <2.16 AVERY 87 reported <2.16 AVERY 89	the follow 90 90 90 90 roduction of orts < 4.4 is $< 4.7 \times 10^{-10}$	ASNER ALBRECH 215 AVERY 216 AVERY of B^+ and B^0 at \times 10^{-4} assuming the 0	96 89 87 $1 ext{the } \Upsilon(4)$ $1 ext{ng the } \Upsilon(4)$ $1 ext{the } \Upsilon(4)$	CLE2 ARG CLEO CLEO S). (4S) de decays	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	$\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ o $B^0\overline{B}^0$. We \overline{B}^0 . We \overline{B}^0 . We rescale
• • We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ Assumes equal processed to 50%. Page 4.215 AVERY 87 report to 50%. T($K_1(1400)^0 \rho^0$)/ ALUE $<3.0 \times 10^{-3}$	the follow 90 90 90 90 roduction 6 orts < 4.4 6 $< 4.7 \times 10$ 6 6 6 6 6 6 6 6 6 6	ASNER ALBRECH 215 AVERY 216 AVERY of B^+ and B^0 at \times 10^{-4} assuming the 0	96 89 87 $1 ext{the } \Upsilon(4)$ $1 ext{ng the } \Upsilon(4)$ $1 ext{the } \Upsilon(4)$	CLE2 ARG CLEO CLEO S). (4S) de decays	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	r(4s) $r(4s)$ $r(4s)$ $r(4s)$ $r(4s)$ $r(4s)$ $r(4s)$ $r(4s)$ $r(4s)$
• • We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ Assumes equal processed to 50%. AVERY 87 report to 50%. $\Gamma(K_1(1400)^0 \rho^0)/V_{VALUE}$ $<3.0 \times 10^{-3}$ $\Gamma(K_1(1400)^0 \phi)/\Gamma$	the follow 90 90 90 90 roduction of orts < 4.4 as $< 4.7 \times 10^{-2}$ $\frac{CL\%}{90}$	ASNER ALBRECH 215 AVERY 216 AVERY of B^+ and B^0 at \times 10^{-4} assuming the $DOCUMENT$ ALBRECH	96 T 91B 89B 87 t the $\Upsilon(4)$ the $\Upsilon(4)$ T 91B	CLE2 ARG CLEO CLEO S). (4S) de decays	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
• • We do not use $<4.3 \times 10^{-5}$ $<3.2 \times 10^{-4}$ $<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ Assumes equal processed to 50%. AVERY 87 report to 50%. $\Gamma(K_1(1400)^0 \rho^0)/V_{ALUE}$ $<3.0 \times 10^{-3}$ $\Gamma(K_1(1400)^0 \phi)/\Gamma_{VALUE}$	90 90 90 90 90 roduction of orts < 4.4 ss < 4.7 × 1 Ftotal CL% 90 - total	ASNER ALBRECH 215 AVERY 216 AVERY of B^+ and B^0 at \times 10^{-4} assuming the $\frac{DOCUMENT}{DOCUMENT}$	96 T 91B 89B 87 t the $\Upsilon(4$ ng the Υ he $\Upsilon(4S)$	CLE2 ARG CLEO CLEO S). (4S) de decays TECN ARG	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	r(4S) $r(4S)$
$<3.8 \times 10^{-4}$ $<3.8 \times 10^{-4}$ 214 Assumes equal pr 215 AVERY 89B report rescale to 50%. 216 AVERY 87 report	90 90 90 90 90 roduction of orts < 4.4 ss < 4.7 × 3 Ttotal CL% 90 -total CL% 90	ASNER ALBRECH 215 AVERY 216 AVERY of B^+ and B^0 at \times 10^{-4} assuming the $\frac{DOCUMENT}{DOCUMENT}$	96 T 91B 89B 87 t the \(\gamma(4S)\) T 91B T 91B	CLE2 ARG CLEO CLEO S). (4S) de decays TECN ARG ARG	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	r(4S) $r(4S)$

CL% DOCUMENT ID TECN COMMENT CMALUE CL% ALBRECHT 91B ARG e ⁺ e ⁻ → T(4S) Tegy COMMENT CL% CL% DOCUMENT ID TECN COMMENT CMALUE CL% CMMENT CMALUE CM	$\Gamma(K_2^*(1430)^0 ho^0)/\Gamma$		DOCUMENT IS		TECN	CO14145	-	Г98
$(K_2^*(1430)^0 \phi)/\Gamma_{total}$ $(X_1 \times 10^{-3})$ 90 ALBRECHT 918 ARG $e^+e^- \rightarrow T(45)$ $(K^*(892)^0 \gamma)/\Gamma_{total}$ $(K^*(1680)^0 \gamma)/\Gamma_{t$								C(4C)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1.1 × 10	90	ALDRECHI	91 B	ARG	e e	\rightarrow 1	(43)
C(L4 × 10 ⁻³ 90 ALBRECHT 91B ARG $e^+e^- \rightarrow T(4S)$ $C(K^*(892)^0 \gamma)/\Gamma_{total}$ $C(K^*(892)^0 \gamma)/\Gamma_{total}$ $C(K^*(892)^0 \gamma)/\Gamma_{total}$ $C(K^*(892)^0 \gamma)/\Gamma_{total}$ $C(K^*(892)^0 \gamma)/\Gamma_{total}$ $C(K^*(1430)^0 \gamma)/\Gamma_{total}$ $C(K^*(1430)^0 \gamma)/\Gamma_{total}$ $C(K^*(1680)^0 \gamma)/\Gamma_{total}$ C	$(K_2^*(1430)^0\phi)/\Gamma_1$	total						Г99
$(K^*(892)^0 \gamma)/\Gamma_{total}$ A.0±1.7±0.8 8 217 AMMAR 93 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • < 21 90 218 ADAM 96D DLPH $e^+e^- \rightarrow \Upsilon(4S)$ < 24 90 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ <210 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 17 AMMAR 93 observed 6.6 ± 2.8 events above background. 18 ADAM 96D assumes $f_{B0} = f_{B^-} = 0.39$ and $f_{B_s} = 0.12$. 19 AVERY 89B reports < 2.8 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. Verescale to 50%. 16 (K1(1270)° γ)/Γ total ALUE CL% DOCUMENT ID TECN COMMENT rescale to 50%. 17 (K1(1400)° γ)/Γ total ALUE CL% DOCUMENT ID TECN COMMENT rescale to 50%. 18 (K1(1400)° γ)/Γ total ALUE CL% DOCUMENT ID TECN COMMENT rescale to 50%. 19 (K1(1400)° γ)/Γ total ALUE CL% DOCUMENT ID TECN COMMENT rescale to 50%. 10 (K1(1400)° γ)/Γ total 11 (K2(1430)° γ)/Γ total 12 (CL% DOCUMENT ID TECN COMMENT rescale to 50%. 13 (K2(1430)° γ)/Γ total 14 (CL% DOCUMENT ID TECN COMMENT rescale to 50%. 15 (K2(1430)° γ)/Γ total 16 (K2(1430)° γ)/Γ total 17 (K2(1430)° γ)/Γ total 18 (CL% DOCUMENT ID TECN COMMENT rescale to 50%. 16 (K2(1430)° γ)/Γ total 17 (CL% DOCUMENT ID TECN COMMENT rescale to 50%. 17 (K2(1430)° γ)/Γ total 18 (CL% DOCUMENT ID TECN COMMENT rescale to 50%. 18 (K2(1430)° γ)/Γ total 19 (CL% DOCUMENT ID TECN COMMENT rescale to 50%. 19 (K2(1430)° γ)/Γ total 10 (CL% DOCUMENT ID TECN COMMENT rescale to 50%. 10 (K2(1430)° γ)/Γ total 11 (CL% DOCUMENT ID TECN COMMENT rescale to 50%. 11 (K2(1430)° γ)/Γ total 12 (CL% DOCUMENT ID TECN COMMENT rescale to 50%. 12 (CL% DOCUMENT ID TECN COMMENT rescale to 50%. 13 (K2(1430)° γ)/Γ total TECN COMMENT rescale to 50%. 14 (K2(1430)° γ)/Γ total TECN COMMENT rescale to 50%. 15 (K2(1430)° γ)/Γ total TECN COMMENT rescale to 50%. 16 (K2(1430)° γ)/Γ total TECN COMMENT rescale to 50%. 17 (K2(1430)° γ)/Γ total TECN COMMENT rescale to 50%. 18 (K2(1430)° γ)/Γ total TECN COMMENT rescale to 50%.		<u>CL%</u>	DOCUMENT ID					
ALUE (units 10^{-5})	$<1.4\times10^{-3}$	90	ALBRECHT	91 B	ARG	e ⁺ e ⁻	\rightarrow 7	∩(4 <i>S</i>)
4.0±1.7±0.8 8 217 AMMAR 93 CLE2 $e^+e^ T(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • $T(4S)$ 21 90 218 ADAM 96D DLPH $e^+e^- \rightarrow Z$ 42 90 ALBRECHT 89G ARG $e^+e^- \rightarrow Z(4S)$ 224 90 219 AVERY 89B CLEO $e^+e^- \rightarrow T(4S)$ 2210 90 AVERY 87 CLEO $e^+e^- \rightarrow T(4S)$ 2210 90 AVERY 87 CLEO $e^+e^- \rightarrow T(4S)$ 17 AMMAR 93 observed 6.6 ± 2.8 events above background. 18 ADAM 96D assumes $f_{B^0} = f_{B^-} = 0.39$ and $f_{B_s} = 0.12$. 19 AVERY 89B reports < 2.8 × 10 ⁻⁴ assuming the $T(4S)$ decays 43% to $T(4S)$ decays 43% to $T(4S)$ 19 AVERY 89B reports < 2.8 × 10 ⁻⁴ assuming the $T(4S)$ decays 43% to $T(4S)$ 20 ALBRECHT 89G reports < 0.0078 assuming the $T(4S)$ decays 45% to $T(4S)$ 20 ALBRECHT 89G reports < 0.0078 assuming the $T(4S)$ decays 45% to $T(4S)$ 21 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 21 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 21 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 21 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 22 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 22 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 22 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 22 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 22 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 22 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 22 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 22 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 22 ALBRECHT 89G reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$ 23 ALBRECHT 89G Reports < 0.0048 assuming the $T(4S)$ decays 45% to $T(4S)$	$(K^*(892)^0\gamma)/\Gamma_{\rm to}$	tal						Γ ₁₀₀
	ALUE (units 10^{-5})	CL%	EVTS DOCUI	MENT	ID	TECN	СОМ	MENT
• We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	$4.0 \pm 1.7 \pm 0.8$		8 ²¹⁷ AMM	AR	93	CLE2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• • We do not use t	the following	g data for average	s, fits,	, limits,	etc. • •		(45)
ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ 219 AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 210 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 17 AMMAR 93 observed 6.6 ± 2.8 events above background. 18 ADAM 96D assumes $f_{B0} = f_{B^-} = 0.39$ and $f_{B_S} = 0.12$. 19 AVERY 89B reports $< 2.8 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. Version of the first								e [−] → 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 04	0.0	210 0 (50		00-	CL E 0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 24	90	²¹⁹ AVER	Y	89E	CLEO	e⊤ e	e
17 AMMAR 93 observed 6.6 ± 2.8 events above background. 18 ADAM 96D assumes $f_{B0} = f_{B^-} = 0.39$ and $f_{B_s} = 0.12$. 19 AVERY 89B reports $< 2.8 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$. Verescale to 50%. F(K1(1270)^0 γ)/Γtotal	<210	90	AVER	Υ	87	CLEO		
18 ADAM 96D assumes $f_{B^0} = f_{B^-} = 0.39$ and $f_{B_S} = 0.12$. 19 AVERY 89B reports $< 2.8 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$. Verscale to 50%. 16 ($K_1(1270)^0 \gamma$)/ Γ_{total} 17 ALUE							7	^(4 <i>S</i>)
20 ALBRECHT 89G reports < 0.0078 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. $(K_1(1400)^0\gamma)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{102/2} \Gamma_{102/2$	¹⁹ AVERY 89B repor rescale to 50%.	ts < 2.8 ×	$_{ m 3-}=0.39$ and $r_{ m B}$	$R_s = 0$ the γ	.12. (4 <i>S</i>) d∈	ecays 43	% to	
rescale to 50%. $ \frac{(K_1(1400)^0\gamma)/\Gamma_{\text{total}}}{ALUE} = \frac{CL\%}{221} \frac{DOCUMENT\ ID}{ALBRECHT} \frac{TECN}{896} \frac{COMMENT}{e^+e^- \rightarrow \Upsilon(4S)} $ 221 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. $ \frac{(K_2^*(1430)^0\gamma)/\Gamma_{\text{total}}}{ALUE} = \frac{CL\%}{90} \frac{DOCUMENT\ ID}{222} \frac{DOCUMENT\ ID}{ALBRECHT} \frac{TECN}{896} \frac{COMMENT}{e^+e^- \rightarrow \Upsilon(4S)} $ 222 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ 223 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. $ \frac{(K^*(1680)^0\gamma)/\Gamma_{\text{total}}}{ALUE} = \frac{CL\%}{90} \frac{DOCUMENT\ ID}{ALUE} \frac{TECN}{ALBRECHT} \frac{COMMENT}{e^+e^- \rightarrow \Upsilon(4S)} $	19 AVERY 89B reporrescale to 50%. 1 $(K_1(1270)^0\gamma)/\Gamma_{ m t}$	ts < 2.8 × otal	10 ⁻⁴ assuming	the \varUpsilon	(4 <i>S</i>) de			
ALUE CL% DOCUMENT ID TECN COMMENT 221 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ 21 ALBRECHT 89G reports < 0.0048 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 21 ALBRECHT 89G reports < 0.0048 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 22 ALBRECHT 89G REPORTS < 0.0048 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 22 ALBRECHT 89G REPORTS < 4.4 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 23 ALBRECHT 89G REPORTS < 4.4 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 24 ALBRECHT 89G REPORTS < 4.4 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 24 ALBRECHT 89G REPORTS < 4.4 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 25 ALBRECHT 89G REPORTS < 4.4 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%.	19 AVERY 89B repor rescale to 50%. $^{1}(K_{1}(1270)^{0}\gamma)/\Gamma_{ m t}$	ts < 2.8 × otal	10 ⁻⁴ assuming	the \varUpsilon	(4 <i>S</i>) de	<u>COMME</u>	ENT	Γ ₁₀₁
ALUE CL% DOCUMENT ID TECN COMMENT 221 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ 21 ALBRECHT 89G reports < 0.0048 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 21 ALBRECHT 89G reports < 0.0048 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 22 ALBRECHT 89G REPORTS < 0.0048 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 22 ALBRECHT 89G REPORTS < 4.4 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 23 ALBRECHT 89G REPORTS < 4.4 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 24 ALBRECHT 89G REPORTS < 4.4 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 24 ALBRECHT 89G REPORTS < 4.4 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 25 ALBRECHT 89G REPORTS < 4.4 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%.	19 AVERY 89B repor rescale to 50%. (K₁(1270)⁰ γ)/Γ_t ALUE < 0.0070 20 ALBRECHT 89G	ts $< 2.8 \times$ otal $\frac{CL\%}{90}$	10 ⁻⁴ assuming of the property of the propert	the γ	(4 <i>S</i>) de <u>TECN</u> ARG	<u>COMME</u> e ⁺ e ⁻	ENT → 1	Γ ₁₀₁
21 ALBRECHT 89G reports < 0.0048 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 21 $(K_2^*(1430)^0\gamma)/\Gamma_{total}$ 22 $(K_2^*(1430)^0\gamma)/\Gamma_{total}$ 22 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ 22 ALBRECHT 89G reports $< 4.4 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 23 ALBRECHT 89G reports $< 4.4 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%. 24 $(K^*(1680)^0\gamma)/\Gamma_{total}$ 23 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$	 AVERY 89B reporrescale to 50%. (K₁(1270)⁰ γ)/Γ_t ALUE O.0070 ALBRECHT 89G rescale to 50%. 	ts $< 2.8 \times$ otal	10 ⁻⁴ assuming of the property of the propert	the γ	(4 <i>S</i>) de <u>TECN</u> ARG	<u>COMME</u> e ⁺ e ⁻	ENT → 1	Γ_{101} $\Gamma(4S)$ $B^0 \overline{B}^0$
rescale to 50%. $\frac{\Gamma(K_2^*(1430)^0\gamma)/\Gamma_{\text{total}}}{\Gamma(K_2^*(1430)^0\gamma)/\Gamma_{\text{total}}} = \frac{\Gamma_{103}/\Gamma_{103}}{\Gamma_{103}/\Gamma_{103}} = \frac{\Gamma_{103}/\Gamma_{103}/\Gamma_{103}}{\Gamma_{103}/\Gamma_{103}} = \frac{\Gamma_{103}/\Gamma_{103}/\Gamma_{103}}{\Gamma_{103}/\Gamma_{103}} = \frac{\Gamma_{103}/\Gamma_{103}/\Gamma_{103}}{\Gamma_{103}/\Gamma_{103}} = \frac{\Gamma_{103}/\Gamma_{103}/\Gamma_{103}}{\Gamma_{104}/\Gamma_{103}} = \frac{\Gamma_{104}/\Gamma_{103}/\Gamma_{103}}{\Gamma_{104}/\Gamma_{103}} = \frac{\Gamma_{104}/\Gamma_{103}}{\Gamma_{104}/\Gamma_{103}} = \frac{\Gamma_{104}/\Gamma_{103}}{\Gamma_{104}/\Gamma_{10$	19 AVERY 89B reporrescale to 50%. (K ₁ (1270) ⁰ γ)/Γ _t ALUE <0.0070 20 ALBRECHT 89G rescale to 50%. (K ₁ (1400) ⁰ γ)/Γ _t	ts $< 2.8 \times$ otal	DOCUMENT ID 220 ALBRECHT 0.0078 assuming t	the $ au$ 89 $_{ m C}$	(4 <i>S</i>) de <i>TECN</i> ARG (4 <i>S</i>) de	<u>COMME</u> e ⁺ e ⁻ ecays 45	<u>•NT</u> → 7 % to	Γ_{101} $\Gamma(4S)$ $B^0 \overline{B}^0$
$(K_2^*(1430)^0\gamma)/\Gamma_{\text{total}}$ $CL\%$ $CL\%$ $DOCUMENT ID$ $TECN$ $COMMENT$ $CL\%$	19 AVERY 89B reporrescale to 50%. (K ₁ (1270) ⁰ γ)/Γ _t ALUE <0.0070 20 ALBRECHT 89G rescale to 50%. (K ₁ (1400) ⁰ γ)/Γ _t ALUE	ts $< 2.8 \times$ otal	DOCUMENT ID 220 ALBRECHT 0.0078 assuming t	the Υ	(4S) de TECN ARG (4S) de	COMME e ⁺ e ⁻ ecays 45	$NT \rightarrow 1$ % to	Γ_{101} $\Gamma^{(4S)}_{B^0\overline{B}^0}$ Γ_{102}
ALUE CL% DOCUMENT ID TECN COMMENT 24.0 × 10 ⁻⁴ 90 222 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ 22 ALBRECHT 89G reports < 4.4 × 10 ⁻⁴ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. V rescale to 50%. (K*(1680) ⁰ γ)/ Γ_{total} 4LUE CL% DOCUMENT ID TECN COMMENT 223 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$	19 AVERY 89B reporrescale to 50%. (K ₁ (1270) ⁰ γ)/Γ _t ALUE <0.0070 20 ALBRECHT 89G rescale to 50%. (K ₁ (1400) ⁰ γ)/Γ _t ALUE <0.0043 21 ALBRECHT 89G rescale to 50%.	ts $< 2.8 \times$ otal $\frac{CL\%}{90}$ reports < 0 otal $\frac{CL\%}{90}$ $\frac{CL\%}{90}$	DOCUMENT ID 220 ALBRECHT 0.0078 assuming t	the Υ 89G	(4 <i>S</i>) de TECN ARG (4 <i>S</i>) de	$\frac{COMME}{e^{+}e^{-}}$ ecays 45 $\frac{COMME}{e^{+}e^{-}}$	$\frac{ENT}{}$ \rightarrow $\frac{1}{2}$ $\frac{ENT}{}$ \rightarrow $\frac{1}{2}$	Γ_{101} $\Gamma(4S)$ $B^0\overline{B}^0$ Γ_{102} $\Gamma(4S)$
$<4.0 \times 10^{-4}$ 90 222 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ 22 ALBRECHT 89G reports $<4.4 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. V rescale to 50%. $\Gamma(K^*(1680)^0\gamma)/\Gamma_{\text{total}}$ $\Gamma_{104/4}$ $\Gamma_$	19 AVERY 89B reporrescale to 50%. (K ₁ (1270) ⁰ γ)/Γ _t ALUE <0.0070 20 ALBRECHT 89G rescale to 50%. (K ₁ (1400) ⁰ γ)/Γ _t ALUE <0.0043 21 ALBRECHT 89G rescale to 50%.	ts $< 2.8 \times$ otal	DOCUMENT ID 220 ALBRECHT 0.0078 assuming t	the Υ 89G	(4 <i>S</i>) de TECN ARG (4 <i>S</i>) de	$\frac{COMME}{e^{+}e^{-}}$ ecays 45 $\frac{COMME}{e^{+}e^{-}}$	$\frac{ENT}{}$ \rightarrow $\frac{1}{2}$ $\frac{ENT}{}$ \rightarrow $\frac{1}{2}$	Γ_{101} $\Gamma(4S)$ $B^0\overline{B}^0$ Γ_{102} $\Gamma(4S)$
222 ALBRECHT 89G reports $< 4.4 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. V rescale to 50%. $\Gamma(K^*(1680)^0 \gamma)/\Gamma_{\text{total}}$ $\frac{CL\%}{4LUE} \qquad \frac{CL\%}{90} \qquad \frac{DOCUMENT\ ID}{223} \qquad \frac{TECN}{ALBRECHT} \qquad \frac{COMMENT}{e^+e^- \rightarrow \Upsilon(4S)}$	19 AVERY 89B reporrescale to 50%. (K ₁ (1270) ⁰ γ)/Γ _t ALUE <0.0070 20 ALBRECHT 89G rescale to 50%. (K ₁ (1400) ⁰ γ)/Γ _t ALUE <0.0043 21 ALBRECHT 89G rescale to 50%. (K ₂ (1430) ⁰ γ)/Γ _t (K ₂ (1430) ⁰ γ)/Γ _t	ts $< 2.8 \times$ otal $\frac{CL\%}{90}$ otal $\frac{CL\%}{90}$ 2 reports < 0 reports < 0	DOCUMENT ID 220 ALBRECHT 0.0078 assuming to DOCUMENT ID 221 ALBRECHT 0.0048 assuming to	the Υ 89G the Υ 89G	(4S) de TECN ARG (4S) de TECN ARG (4S) de	$ \frac{COMME}{e^+e^-} $ ecays 45 $ \frac{COMME}{e^+e^-} $ ecays 45	$FNT \rightarrow 7$ % to $FNT \rightarrow 7$ % to	Γ_{101} $\Gamma_{(4S)}$ $B^0 \overline{B}^0$ Γ_{102} $\Gamma_{(4S)}$ $B^0 \overline{B}^0$ Γ_{103}
rescale to 50%. $\frac{\Gamma(K^*(1680)^0\gamma)/\Gamma_{\text{total}}}{\Gamma_{104/2000}} \frac{\Gamma_{104/2000}}{\frac{CL\%}{223}} \frac{DOCUMENT\ ID}{ALBRECHT} \frac{TECN}{89G\ ARG} \frac{COMMENT}{e^+e^- \rightarrow \Upsilon(4S)}$	19 AVERY 89B reporrescale to 50%. (K ₁ (1270) ⁰ γ)/Γ _t ALUE <0.0070 20 ALBRECHT 89G rescale to 50%. (K ₁ (1400) ⁰ γ)/Γ _t ALUE <0.0043 21 ALBRECHT 89G rescale to 50%. (K ₂ (1430) ⁰ γ)/Γ _t ALUE	ts $< 2.8 \times$ Otal	DOCUMENT ID	89G:he T	(4S) de TECN ARG (4S) de TECN ARG (4S) de TECN	$ \frac{COMME}{e^+e^-} $ ecays 45 $ \frac{COMME}{e^+e^-} $ ecays 45	$FNT \rightarrow 1$ **To state of the s	Γ_{101} $\Gamma_{(4S)}$ $B^0 \overline{B}^0$ Γ_{102} $\Gamma_{(4S)}$ $B^0 \overline{B}^0$ Γ_{103}
CL% DOCUMENT ID TECN COMMENT 0 TECN 0 ARG 0 0 0 ARG 0 0 0 0 0 ALBRECHT 89G ARG 0 0 0 0 0 0 0 0 0 0	19 AVERY 89B reporrescale to 50%. (K ₁ (1270) ⁰ γ)/Γ _t ALUE <0.0070 20 ALBRECHT 89G rescale to 50%. (K ₁ (1400) ⁰ γ)/Γ _t ALUE <0.0043 21 ALBRECHT 89G rescale to 50%. ((K ₂ (1430) ⁰ γ)/Γ _t ALUE <(4.0 × 10 ⁻⁴	ts $< 2.8 \times$ otal	DOCUMENT ID	the Υ 89G 89G the Υ	(4S) de TECN ARG (4S) de TECN ARG (4S) de TECN ARG	$ \begin{array}{c} \underline{COMME} \\ e^+ e^- \end{array} $ $ \begin{array}{c} \underline{COMME} \\ e^+ e^- \end{array} $ $ \begin{array}{c} \underline{COMME} \\ e^+ e^- \end{array} $	$FNT \rightarrow 7$ **To start the start that the start tha	Γ_{101} $\Gamma(4S)$ $B^0 \overline{B}^0$ Γ_{102} $\Gamma(4S)$ Γ_{103} $\Gamma(4S)$
	19 AVERY 89B reporrescale to 50%. (K ₁ (1270) ⁰ γ)/Γ _t ALUE <0.0070 20 ALBRECHT 89G rescale to 50%. (K ₁ (1400) ⁰ γ)/Γ _t ALUE <0.0043 21 ALBRECHT 89G rescale to 50%. ((K ₂ (1430) ⁰ γ)/Γ _t ALUE <4.0 × 10 ⁻⁴ 22 ALBRECHT 89G rescale to 50%.	ts $< 2.8 \times$ otal	DOCUMENT ID	the Υ 89G 89G the Υ	(4S) de TECN ARG (4S) de TECN ARG (4S) de TECN ARG	$ \begin{array}{c} \underline{COMME} \\ e^+ e^- \end{array} $ $ \begin{array}{c} \underline{COMME} \\ e^+ e^- \end{array} $ $ \begin{array}{c} \underline{COMME} \\ e^+ e^- \end{array} $	$FNT \rightarrow 7$ **To start the start that the start tha	Γ_{101} $\Gamma(4S)$ $B^0 \overline{B}^0$ Γ_{102} $\Gamma(4S)$ Γ_{103} $\Gamma(4S)$
	19 AVERY 89B reporrescale to 50%. (K ₁ (1270) ⁰ γ)/Γ _t ALUE <0.0070 20 ALBRECHT 89G rescale to 50%. (K ₁ (1400) ⁰ γ)/Γ _t ALUE <0.0043 21 ALBRECHT 89G rescale to 50%. ((K ₂ (1430) ⁰ γ)/Γ _t ALUE <4.0 × 10 ⁻⁴ 22 ALBRECHT 89G rescale to 50%.	total $\frac{CL\%}{90}$ 2 reports < 0 reports	0^{-4} assuming $\frac{DOCUMENT\ ID}{220}$ ALBRECHT 0.0078 assuming to $\frac{DOCUMENT\ ID}{221}$ ALBRECHT 0.0048 assuming to $\frac{DOCUMENT\ ID}{222}$ ALBRECHT $\frac{DOCUMENT\ ID}{222}$ ALBRECHT $\frac{DOCUMENT\ ID}{222}$ ALBRECHT $\frac{DOCUMENT\ ID}{222}$ ASSUMING	89G the Υ	$(4S)$ de $\frac{TECN}{ARG}$ $(4S)$ de $\frac{TECN}{ARG}$ $(4S)$ de $\frac{TECN}{ARG}$ $(4S)$	$ \frac{COMME}{e^{+}e^{-}} $ ecays 45 $ \frac{COMME}{e^{+}e^{-}} $ ecays 45 $ \frac{COMME}{e^{+}e^{-}} $ decays 4	$\frac{ENT}{A}$ to $\frac{ENT}{A}$ to $\frac{ENT}{A}$	Γ_{101} $\Gamma_{(4S)}$ $R^0 \overline{B}^0$ Γ_{102} $\Gamma_{(4S)}$ $R^0 \overline{B}^0$ Γ_{103} $\Gamma_{(4S)}$ Γ_{B}
	19 AVERY 89B reporrescale to 50%. (K ₁ (1270) ⁰ γ)/Γ _t (ALUE) <0.0070 20 ALBRECHT 89G rescale to 50%. (K ₁ (1400) ⁰ γ)/Γ _t (ALUE) <0.0043 21 ALBRECHT 89G rescale to 50%. ((K ₂ (1430) ⁰ γ)/Γ _t (ALUE) <4.0 × 10 ⁻⁴ 22 ALBRECHT 89G rescale to 50%. ((K*(1680) ⁰ γ)/Γ _t (ALUE) (CK*(1680) ⁰ γ)/Γ _t	total $\frac{CL\%}{90}$ 2 reports < 0 reports	0^{-4} assuming $\frac{DOCUMENT\ ID}{220}$ ALBRECHT 0.0078 assuming to $\frac{DOCUMENT\ ID}{221}$ ALBRECHT 0.0048 assuming to $\frac{DOCUMENT\ ID}{222}$ ALBRECHT $\frac{DOCUMENT\ ID}{222}$ ALBRECHT $\frac{DOCUMENT\ ID}{222}$ ALBRECHT $\frac{DOCUMENT\ ID}{222}$ ASSUMING	89G the Υ	$(4S)$ de $\frac{TECN}{ARG}$ $(4S)$ de $\frac{TECN}{ARG}$ $(4S)$ de $\frac{TECN}{ARG}$ $(4S)$	$ \frac{COMME}{e^{+}e^{-}} $ ecays 45 $ \frac{COMME}{e^{+}e^{-}} $ ecays 45 $ \frac{COMME}{e^{+}e^{-}} $ decays 4	$\frac{ENT}{A}$ to $\frac{ENT}{A}$ to $\frac{ENT}{A}$	Γ_{101} $\Gamma_{(4S)}$ $R^0 \overline{B}^0$ Γ_{102} $\Gamma_{(4S)}$ $R^0 \overline{B}^0$ Γ_{103} $\Gamma_{(4S)}$ Γ_{B}

 $\Gamma(K_3^*(1780)^0\gamma)/\Gamma_{\text{total}}$

 Γ_{105}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<0.010	90	224 ALBRECHT	89G ARG	$e^+e^- \rightarrow \gamma(4S)$

²²⁴ ALBRECHT 89G reports < 0.011 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale

 $\Gamma(K_{\Delta}^{*}(2045)^{0}\gamma)/\Gamma_{\text{total}}$

 Γ_{106}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID	TECN	<u>COMMENT</u>
<0.0043	90	225 ALBRECHT	89G ARG	$e^+e^- ightarrow \gamma(4S)$

²²⁵ ALBRECHT 89G reports < 0.0048 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We rescale to 50%.

 $\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{107}/Γ

<u>VALUE</u>	CL% EVTS	DOCUMENT ID		TECN	COMMENT
<1.5 × 10 ⁻⁵	90	GODANG	98	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not	use the follow	ing data for averages,	fits,	limits,	etc. • • •
$< 4.5 \times 10^{-5}$	90	²²⁶ ADAM	96 D	DLPH	$e^+e^- ightarrow Z$
$< 2.0 \times 10^{-5}$	90	ASNER	96	CLE2	Repl. by GODANG 98
$< 4.1 \times 10^{-5}$	90		96V	ALEP	$e^+e^- \rightarrow Z$
$< 5.5 \times 10^{-5}$	90		95N	DLPH	Sup. by ADAM 96D
$< 4.7 \times 10^{-5}$	90		94L	OPAL	$e^+e^- \rightarrow Z$
$< 2.9 \times 10^{-5}$	90		93	CLE2	$e^+e^- ightarrow \gamma(4S)$
$< 1.3 \times 10^{-4}$	90	²³⁰ ALBRECHT	90 B	ARG	$e^+e^- \rightarrow \Upsilon(4S)$
$< 7.7 \times 10^{-5}$	90	²³¹ BORTOLETTO	89	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
$< 2.6 \times 10^{-4}$	90	²³¹ BEBEK	87	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
$< 5 \times 10^{-4}$	90 4	GILES	84	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^{226}\,\}mathrm{ADAM}$ 96D assumes $\mathit{f}_{B^0}=\mathit{f}_{B^-}=0.39$ and $\mathit{f}_{B_{\mathrm{S}}}=0.12.$

 $\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$

 Γ_{108}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<9.3 × 10 ⁻⁶	90	GODANG 9	98 CLE2	$e^+e^- ightarrow \Upsilon(4S)$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
 0.91 \times 10 $^{-5}$ 90 ASNER 96 CLE2 Repl. by GODANG 98 $<$ 6.0 \times 10 $^{-5}$ 90 232 ACCIARRI 95H L3 $e^+e^- \rightarrow Z$

²²⁷ BUSKULIC 96V assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons.

 $^{^{228}\,\}mathrm{Assumes}$ a B^0 , B^- production fraction of 0.39 and a B_{S} production fraction of 0.12.

²²⁹ Assumes B($Z \to b\bar{b}$) = 0.217 and B_d^0 (B_s^0) fraction 39.5% (12%).

²³⁰ Assumes equal production of $B^0 \overline{B}{}^0$ and $B^+ B^-$ at $\Upsilon(4S)$.

²³¹ Paper assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%.

 $^{^{232}}$ ACCIARRI 95H assumes $f_{B^0}=$ 39.5 \pm 4.0 and $f_{B_s}=$ 12.0 \pm 3.0%.

$\Gamma(\eta\pi^0)/\Gamma_{ ext{total}}$	Cl %	DOCUMENT ID		TECN	COMMENT	Γ ₁₀₉ /Γ			
<8 × 10 ⁻⁶	90	BEHRENS			$e^+e^- \rightarrow$	$\Upsilon(45)$			
• • • We do not use the						, (13)			
$< 2.5 \times 10^{-4}$		ACCIARRI				7			
$<1.8 \times 10^{-3}$	90 234	ALBRECHT	90B	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$			
						,			
²³³ ACCIARRI 95H assumes $f_{B^0}=39.5\pm4.0$ and $f_{B_s}=12.0\pm3.0\%$. ²³⁴ ALBRECHT 90B limit assumes equal production of $B^0\overline{B}^0$ and B^+B^- at $\Upsilon(4S)$.									
$\Gamma(\eta\eta)/\Gamma_{total}$						Γ_{110}/Γ			
		DOCUMENT ID							
<1.8 × 10 ⁻⁵		BEHRENS				$\Upsilon(4S)$			
• • • We do not use the following data for averages, fits, limits, etc. • • • $<4.1\times10^{-4}$ 90 235 ACCIARRI 95H L3 $e^+e^-\to Z$									
$<4.1 \times 10^{-4}$						Z			
²³⁵ ACCIARRI 95H assumes $f_{B^0}=39.5\pm4.0$ and $f_{B_s}=12.0\pm3.0\%$.									
$\Gamma(\eta'\pi^0)/\Gamma_{total}$						Γ_{111}/Γ			
VALUE	<u>CL%</u>	DOCUMENT ID							
<1.1 × 10 ⁻⁵	90	BEHRENS	98	CLE2	$e^+e^ \rightarrow$	$\Upsilon(4S)$			
$\Gamma(\eta'\eta')/\Gamma_{total}$						Γ_{112}/Γ			
<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID							
<4.7 × 10 ⁻⁵	90	BEHRENS	98	CLE2	$e^+e^ \rightarrow$	$\Upsilon(4S)$			
$\Gamma(\eta'\eta)/\Gamma_{total}$						Γ_{113}/Γ			
<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID							
$<2.7\times10^{-5}$	90	BEHRENS	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$			
$\Gamma(\eta' ho^{f 0})/\Gamma_{ m total}$						Γ_{114}/Γ			
VALUE	<u>CL%</u>	DOCUMENT ID							
$<2.3 \times 10^{-5}$	90	BEHRENS	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$			
$\Gamma \left(\eta ho^0 ight) / \Gamma_{ ext{total}}$						Γ_{115}/Γ			
<u>VALUE</u> <1.3 × 10 ^{−5}	<u>CL%</u>	DOCUMENT ID			<u>COMMENT</u>				
<1.3 × 10 ⁻⁵	90	BEHRENS	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$			
$\Gamma(\omega\eta)/\Gamma_{total}$						Γ_{116}/Γ			
VALUE	<u>CL%</u>	DOCUMENT ID				ī			
<1.2 × 10 ⁻⁵		BERGFELD							
Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.									
$\Gamma(\omega\eta')/\Gamma_{total}$	CL N/	D06/44=-:= :=		TE 6		Γ ₁₁₇ /Γ			
<u>VALUE</u> <6.0 × 10 ^{−5}		DEDCEELD				ı			
		BERGFELD							
237 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.									

$\Gamma(\omega ho^0)/\Gamma_{ m total}$							Γ ₁₁₈ /Γ
VALUE <1.1 × 10 ⁻⁵	CL%		DOCUMENT ID		TECN		
$< 1.1 \times 10^{-5}$	90	238	BERGFELD	98	CLE2		
²³⁸ Assumes equal produ							
$\Gamma(\omega\omega)/\Gamma_{ ext{total}}$				·	ŕ		Γ ₁₁₉ /Γ
VALUE <1.9 × 10 ⁻⁵	CL%		DOCUMENT ID		TECN		
$< 1.9 \times 10^{-5}$	90	239	BERGFELD	98	CLE2		
²³⁹ Assumes equal produ	ction of	ғ <i>в</i> +	and B^0 at the	Υ (4	·S).		
$\Gamma(\phi\pi^0)/\Gamma_{ m total}$							Γ_{120}/Γ
<u>VALUE</u> <0.5 × 10 ^{−5}	CL%		DOCUMENT ID		TECN		
$< 0.5 \times 10^{-5}$	90	240	BERGFELD	98	CLE2		
²⁴⁰ Assumes equal produ	ction of	f <i>B</i> +	and B^0 at the	Υ (4	·S).		
$\Gamma(\phi\eta)/\Gamma_{total}$							Γ_{121}/Γ
VALUE	CL%		DOCUMENT ID		TECN		,
<u>VALUE</u> <0.9 × 10 ^{−5}	90	241	BERGFELD	98	CLE2		
²⁴¹ Assumes equal produ							
$\Gamma(\phi\eta')/\Gamma_{ ext{total}}$							Γ ₁₂₂ /Γ
VALUE	CI%		DOCUMENT ID		TECN		. 122/ .
<u>VALUE</u> <3.1 × 10 ⁻⁵	90	242	BERGEEL D	98	CLF2		
²⁴² Assumes equal produ	ction of	B	and B° at the	1 (4	5).		
$\Gamma(\phi ho^0)/\Gamma_{ m total}$							Γ_{123}/Γ
<u>VALUE</u> <1.3 × 10 ^{−5}	<u>CL%</u>		DOCUMENT ID BERGFELD		<u>TECN</u>		_
²⁴³ Assumes equal produ	ction of	f <i>B</i> +	and B^0 at the	$\Upsilon(4$	·S).		
$\Gamma(\phi\omega)/\Gamma_{ ext{total}}$							Γ_{124}/Γ
	CL%		DOCUMENT ID		TECN		
<i>VALUE</i> <2.1 × 10 ^{−5}	90	244	BERGFELD	98	CLE2		
²⁴⁴ Assumes equal produ	ction of	f <i>B</i> +	and B^0 at the	Υ (4	·S).		
$\Gamma(\phi\phi)/\Gamma_{total}$							Γ_{125}/Γ
	CL%		DOCUMENT ID		TECN	COMMENT	
$\frac{VALUE}{<1.2\times10^{-5} \text{ (CL} = 90\%)}$	<u></u> %) [<	3.9 >	$\times 10^{-5} (CL = 9)$	90%)	OUR 1	998 BEST L	IMIT]
			BERGFELD				
• • • We do not use the						etc. • • •	
$< 3.9 \times 10^{-5}$	90		ASNER				$\Upsilon(45)$
245 Assumes equal produ						J • '	· (· •)
	C.1011 01		and B at the	. (.	<i>o</i>		- /-
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$							Г ₁₂₆ /Г
<u>VALUE</u> <7.2 × 10 ^{−4}	<u>CL%</u>	246	DOCUMENT ID		TECN	COMMENT	
²⁴⁶ ALBRECHT 90B limi	t assum	ies e	qual production	of E	${}^{0}\overline{B}{}^{0}$ ar	nd B^+B^- a	t $\Upsilon(4S)$.
HTTP://PDG.LBL.G	OV		Page 37		Creat	ed: 12/18,	/2000 15:33

$\Gamma(ho^0\pi^0)/\Gamma_{ ext{total}}$	CI %	DOCUMENT ID TECN (Γ ₁₂₇ /Γ
<2.4 × 10 ⁻⁵		ASNER 96 CLE2	
-		g data for averages, fits, limits, et	` ,
$< 4.0 \times 10^{-4}$	90	2 ⁴⁷ ALBRECHT 90B ARG 6	$e^+e^- ightarrow ~ \varUpsilon(4S)$
²⁴⁷ ALBRECHT 90в	limit assume	s equal production of $B^0 \overline{B}{}^0$ and	B^+B^- at $\Upsilon(4S)$.
$\Gamma(ho^{\mp}\pi^{\pm})/\Gamma_{total}$	a/		Γ ₁₂₈ /Γ
<i>∨ALUE</i> <8.8 × 10^{−5}	<u>CL%</u>	DOCUMENT ID TECN	$e^+e^- ightarrow \Upsilon(4S)$
	90 the followin	ASNER 96 CLE2 g data for averages, fits, limits, et	` ,
$< 5.2 \times 10^{-4}$	90		
$< 5.2 \times 10^{-3}$		249 BEBEK 87 CLEO	$e^+e^- \rightarrow \Gamma(45)$ $e^+e^- \rightarrow \Upsilon(45)$
		s equal production of $B^0 \overline{B}{}^0$ and	
ALDRECH I 908 249 REBEK 87 report		is equal production of $B^{\circ}B^{\circ}$ and $^{-3}$ assuming the $\varUpsilon(4S)$ decays 43	$B = B = A \cdot I (43)$. $B = B \cdot I (43)$
to 50%.	5 < 0.1 × 10	assuming the T (+3) decays +3	7/0 to D D . We rescale
r/_++) /	Г		Γ/Γ
$\Gamma(\pi^+\pi^-\pi^+\pi^-)/$	total	DOCUMENT ID TECH (Γ ₁₂₉ /Γ
/ALUE /2 2 × 10=4	00	DOCUMENT ID TECN C	20MMENT 7
		g data for averages, fits, limits, et	
$< 6.7 \times 10^{-4}$	90	²⁵¹ ABREU 95N DLPH S ²⁵² ALBRECHT 90B ARG <i>&</i>	$e^+e^- ightarrow \gamma(4S)$
		$f_{B_s} = 0.39$ and $f_{B_s} = 0.12$.	(10)
			ection fraction of 0.12
252 ALBRECHT OOR	limit assume	n fraction of 0.39 and a B_{S} produse equal production of $B^{0}\overline{B}{}^{0}$ and	R^+R^- at $\Upsilon(45)$
	mme assume	s equal production of D D and	
$\Gamma(ho^{f 0} ho^{f 0})/\Gamma_{ m total}$			Γ ₁₃₀ /Γ
VALUE		DOCUMENT ID TECN (
		²⁵³ ALBRECHT 90B ARG 6	
		g data for averages, fits, limits, et	
$< 2.9 \times 10^{-4}$	90	254 BORTOLETTO89 CLEO 6	
$<4.3 \times 10^{-4}$			$e^+e^- ightarrow ~ \varUpsilon(4S)$
		s equal production of $B^0 \overline{B}{}^0$ and	
²⁵⁴ Paper assumes th	e $\Upsilon(4S)$ dec	ays 43% to $B^0\overline{B}^0$. We rescale to	o 50%.
$\Gamma(a_1(1260)^{\mp}\pi^{\pm})$	/F _{total}		Γ ₁₃₁ /Γ
		DOCUMENT ID TECN C	- •
<u>VALUE</u> <4.9 × 10 ⁻⁴	<u>CL%</u> 90	BORTOLETTO89 CLEO	$e^+e^- ightarrow \gamma(4S)$
• • We do not use		g data for averages, fits, limits, et	
$< 6.3 \times 10^{-4}$	90	²⁵⁶ ALBRECHT 90B ARG 6	$e^+e^- ightarrow ~ \gamma(4S)$
<0.0 ∧ ±0		NEE	
	90	²⁵⁵ BEBEK 87 CLEO <i>e</i>	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 1.0 \times 10^{-3}$		255 BEBEK 87 CLEO ϵ says 43% to $B^0\overline{B}^0$. We rescale to	` '
$<$ 1.0 $ imes$ 10^{-3}	e $\Upsilon(4S)$ dec		50%.

$\Gamma(a_2(1320)^{\mp}\pi^{\pm})/\Gamma_{tc}$	otal					Γ ₁₃₂ /Γ
VALUE <3.0 × 10 ⁻⁴	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
						$\Upsilon(4S)$
• • • We do not use the						
$< 1.4 \times 10^{-3}$	90	²⁵⁷ BEBEK	87	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
257 Paper assumes the $ au $	(4 <i>S</i>) dec	cays 43% to $B^0\overline{B}^0$. We	rescale	to 50%.	
$\Gamma(\pi^+\pi^-\pi^0\pi^0)/\Gamma_{ m tota}$	ı					Γ ₁₃₃ /Γ
<i>VALUE</i> <3.1 × 10 ^{−3}	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
²⁵⁸ ALBRECHT 90B limit	t assume	es equal production	of B	$^0\overline{B}^0$ an	id <i>B</i> ⁺ <i>B</i> ⁻ a	t $\Upsilon(4S)$.
$\Gamma ig(ho^+ ho^-ig)/\Gamma_{ m total}$						Γ ₁₃₄ /Γ
<i>VALUE</i> <2.2 × 10 ^{−3}	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
²⁵⁹ ALBRECHT 90B limit	t assume	es equal production	of B	$^0\overline{B}^0$ an	id <i>B</i> + <i>B</i> - a	t $\Upsilon(4S)$.
$\Gamma(a_1(1260)^0\pi^0)/\Gamma_{\rm tot}$	al					Γ ₁₃₅ /Γ
VALUE <1.1 × 10 ⁻³	CL%	DOCUMENT ID		TECN	COMMENT	
$<1.1 \times 10^{-3}$	90	²⁶⁰ ALBRECHT	90 B	ARG	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
260 ALBRECHT 90B limit	t assume	es equal production	of B	$^0\overline{B}^0$ an	id B^+B^- a	t $\Upsilon(4S)$.
$\Gamma(\omega\pi^0)/\Gamma_{ m total}$						Γ ₁₃₆ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
$<1.4 \times 10^{-5}$ (CL = 90%)					998 BEST L	.IMIT]
$<1.4 \times 10^{-5}$						
• • We do not use the						
$<4.6 \times 10^{-4}$		²⁶² ALBRECHT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
²⁶¹ Assumes equal production 262 ALBRECHT 90B limit					od B^+B^- a	t Υ(4S).
$\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0})/\Gamma$						Γ ₁₃₇ /Γ
		DOCUMENT ID		TECN	COMMENT	
<i>VALUE</i> <9.0 × 10 ^{−3}	90 2	263 ALBRECHT	90R	ARG	e+e-	$\Upsilon(4S)$
263 ALBRECHT 90B limit						
		.s equal production	01 0	D an		
$\Gamma(a_1(1260)^+\rho^-)/\Gamma_{to}$	tal					Г ₁₃₈ /Г
VALUE	CL 0/	DOCUMENT ID		TECN	COMMENT	
√2 A √ 10=5	<u>CL%</u>	DOCUMENT ID	005	TECN A D.C.	<u>COMMENT</u>	2(46)
	<u>CL%</u> 90	DOCUMENT ID 264 ALBRECHT				
²⁶⁴ ALBRECHT 90B limit	CL% 90 ² t assume					t Υ(4S).
264 ALBRECHT 90B limi $\Gamma(a_1(1260)^0 \rho^0)/\Gamma_{\text{total}}$	<u>CL%</u> 90 ² t assume	es equal production	of B	$^0\overline{B}^0$ an	d <i>B⁺ B⁻</i> a	t γ(4S). Γ ₁₃₉ /Γ
264 ALBRECHT 90B limi $\Gamma(a_1(1260)^0 \rho^0)/\Gamma_{\text{total}}$	<u>CL%</u> 90 ² t assume	es equal production	of B	$^0\overline{B}^0$ an	d <i>B⁺ B⁻</i> a	t γ(4S). Γ ₁₃₉ /Γ
²⁶⁴ ALBRECHT 90B limit	CL% 90 2 t assume al CL% 90 2	es equal production <u>DOCUMENT ID</u> 265 ALBRECHT	of <i>B</i>	⁰ \overline{B}^0 an <u>TECN</u> ARG	d B^+B^- a $\frac{COMMENT}{e^+e^-} o$	t $\Upsilon(4S)$. $\frac{\Gamma_{139}/\Gamma}{\Upsilon(4S)}$

```
\Gamma(\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-)/\Gamma_{\text{total}}
                                                                                                      \Gamma_{140}/\Gamma
                                         <sup>266</sup> ALBRECHT
 < 3.0 \times 10^{-3}
                                                                  90B ARG
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
^{266} ALBRECHT 90B limit assumes equal production of B^0 \, \overline{B}{}^0 and B^+ \, B^- at \Upsilon(4S).
\Gamma(a_1(1260)^+a_1(1260)^-)/\Gamma_{\text{total}}
                                                                                                      \Gamma_{141}/\Gamma
                                              DOCUMENT ID
                                                                      TECN COMMENT
 < 2.8 \times 10^{-3}
                                         <sup>267</sup> BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)
                                90

    • • We do not use the following data for averages, fits, limits, etc.

                                         <sup>268</sup> ALBRECHT
< 6.0 \times 10^{-3}
                                90
                                                                 90B ARG
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
^{267} BORTOLETTO 89 reports < 3.2 	imes 10^{-3} assuming the \Upsilon(4S) decays 43% to B^0 \overline{B}{}^0.
^{268} ALBRECHT 90B limit assumes equal production of B^0\overline{B}{}^0 and B^+B^- at \Upsilon(4S).
\Gamma(\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^0)/\Gamma_{\text{total}}
                                                                       TECN COMMENT
                                         <sup>269</sup> ALBRECHT
<1.1 \times 10^{-2}
                                                                 90B ARG
                                90
^{269} ALBRECHT 90B limit assumes equal production of B^0\overline{B}{}^0 and B^+B^- at \Upsilon(4S).
\Gamma(p\overline{p})/\Gamma_{\text{total}}
                                                                                                      \Gamma_{143}/\Gamma
VALUE
                                CL%
                                              DOCUMENT ID
                                                                   TECN COMMENT
 <7.0 \times 10^{-6} (CL = 90%) [<1.8 \times 10^{-5} (CL = 90%) OUR 1998 BEST LIMIT]
                                         <sup>270</sup> COAN
 < 7.0 \times 10^{-6}
                                                                 99 CLE2
                                90
                                                                                 e^+e^- \rightarrow \Upsilon(4S)

    • • We do not use the following data for averages, fits, limits, etc.

 < 1.8 \times 10^{-5}
                                        <sup>271</sup> BUSKULIC
                                                                  96∨ ALEP
                                                                                 e^+e^- \rightarrow Z
                                90
                                        <sup>272</sup> ABREU
 < 3.5 \times 10^{-4}
                                90
                                                                  95N DLPH Sup. by ADAM 96D
                                        273 BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)
 < 3.4 \times 10^{-5}
                                90
                                         <sup>274</sup> ALBRECHT
<1.2 \times 10^{-4}
                                90
                                                                 88F ARG
 < 1.7 \times 10^{-4}
                                90
                                        <sup>273</sup> BEBEK
                                                                 87 CLEO e^+e^- \rightarrow \Upsilon(4S)
<sup>270</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
^{271} BUSKULIC 96V assumes PDG 96 production fractions for B^0, B^+, B_s, b baryons.
^{272} Assumes a B^0, B^- production fraction of 0.39 and a B_s production fraction of 0.12.
<sup>273</sup> Paper assumes the \Upsilon(4S) decays 43% to B^0\overline{B}^0. We rescale to 50%.
<sup>274</sup> ALBRECHT 88F reports < 1.3 \times 10^{-4} assuming the \Upsilon(4S) decays 45% to B^0 \overline{B}{}^0. We
    rescale to 50%.
\Gamma(p\overline{p}\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                      \Gamma_{144}/\Gamma
VALUE (units 10^{-4})
                                              DOCUMENT ID
                                CL%
                                                                       TECN COMMENT
                                         <sup>275</sup> BEBEK
                                                                 89 CLEO e^+e^- \rightarrow \Upsilon(4S)
 <2.5
                                90
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                         <sup>276</sup> ABREU
                                90
                                                                  95N DLPH Sup. by ADAM 96D
< 9.5
                                         <sup>277</sup> ALBRECHT
                                                                 88F ARG
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
   5.4 \pm 1.8 \pm 2.0
^{275} BEBEK 89 reports < 2.9 \times 10 ^{-4} assuming the \Upsilon(4S) decays 43% to B^0\overline{B}^0. We rescale
^{276} Assumes a B^0, B^- production fraction of 0.39 and a B_s production fraction of 0.12.
```

²⁷⁷ ALBRECHT 88F reports $6.0 \pm 2.0 \pm 2.2$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%.

HTTP://PDG.LBL.GOV

```
\Gamma(p\overline{\Lambda}\pi^{-})/\Gamma_{\text{total}}
                                                                                                                    \Gamma_{145}/\Gamma
                                                    DOCUMENT ID TECN COMMENT
                                    CL%
<1.3 \times 10^{-5} (CL = 90%) [<1.8 \times 10^{-4} (CL = 90%) OUR 1998 BEST LIMIT]
 < 1.3 \times 10^{-5}
                                              <sup>278</sup> COAN
                                                                          99 CLE2 e^+e^- \rightarrow \Upsilon(4S)
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
< 1.8 \times 10^{-4}
                                    90
                                              <sup>279</sup> ALBRECHT
                                                                          88F ARG e^+e^- \rightarrow \Upsilon(4S)
^{278} Assumes equal production of B^+ and B^0 at the \varUpsilon(4S). ^{279} ALBRECHT 88F reports <2.0\times10^{-4} assuming the \varUpsilon(4S) decays 45% to B^0\,\overline{B}{}^0. We
     rescale to 50%.
\Gamma(\overline{\Lambda}\Lambda)/\Gamma_{\text{total}}
                                                                                                                    \Gamma_{146}/\Gamma
                                                    DOCUMENT ID TECN COMMENT
                                                                       99 CLE2 e^+e^- \rightarrow \Upsilon(4S)
                                              <sup>280</sup> COAN
<sup>280</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\Delta^0 \overline{\Delta}{}^0)/\Gamma_{\text{total}}
                                                                                                                    \Gamma_{147}/\Gamma
                                                    DOCUMENT ID TECN COMMENT
                                              <sup>281</sup> BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)
<sup>281</sup> BORTOLETTO 89 reports < 0.0018 assuming \Upsilon(4S) decays 43% to B^0 \overline{B}{}^0. We rescale
     to 50%.
\Gamma(\Delta^{++}\Delta^{--})/\Gamma_{\text{total}}
                                                                                                                    \Gamma_{148}/\Gamma
                                                    DOCUMENT ID TECN COMMENT
                                              282 BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)
<sup>282</sup>BORTOLETTO 89 reports < 1.3 \times 10^{-4} assuming \Upsilon(4S) decays 43% to B^0 \overline{B}{}^0. We
     rescale to 50%.
\Gamma(\overline{\Sigma}_c^{--}\Delta^{++})/\Gamma_{\text{total}}
                                                                                                                    \Gamma_{149}/\Gamma
                                              \frac{DOCUMENT\ ID}{283} PROCARIO 94 CLE2 e^+e^-
ightarrow \varUpsilon(4S)
 < 0.0010
<sup>283</sup> PROCARIO 94 reports < 0.0012 for B(\Lambda_c^+ \rightarrow p K^- \pi^+) = 0.043. We rescale to our
     best value B(\Lambda_c^+ \rightarrow p K^- \pi^+) = 0.050.
\Gamma(\overline{\Lambda}_{c}^{-}p\pi^{+}\pi^{-})/\Gamma_{\text{total}}
                                                                                                                    \Gamma_{150}/\Gamma
VALUE (units 10^{-3})
1.33^{+0.46}_{-0.42}\pm0.37
                                              ^{284} FU
                                                                          97 CLE2 e^+e^- \rightarrow \Upsilon(4S)
^{284}\,\mathrm{FU} 97 uses PDG 96 values of \varLambda_{\mathcal{C}} branching fraction.
\Gamma(\overline{\Lambda}_{c}^{-}p)/\Gamma_{\text{total}}
                                                                                                                    \Gamma_{151}/\Gamma
                                                    DOCUMENT ID TECN COMMENT
                                                                          97 CLE2 e^+e^- \rightarrow \Upsilon(4S)
                                              285 FU
^{285}\,\mathrm{FU} 97 uses PDG 96 values of \varLambda_{\mathcal{C}} branching ratio.
```

$\Gamma(\overline{\Lambda}_{m{c}}^- ho \pi^0)/\Gamma_{ m total}$						Γ_{152}/Γ
<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT	
<5.9 × 10 ⁻⁴	90	²⁸⁶ FU	97	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
²⁸⁶ FU 97 uses PDG 96	values	of Λ_c branching ratio	٥.			

$\Gamma(\overline{\Lambda}_{c}^{-} \rho \pi^{+} \pi^{-} \pi^{0}) / \Gamma_{t}$	otal					Γ ₁₅₃ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<5.07 × 10 ⁻³	90	287 _{FU}	97	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
207						

 $^{287}\,\mathrm{FU}$ 97 uses PDG 96 values of Λ_{C} branching ratio.

 $^{288}\,\mathrm{FU}$ 97 uses PDG 96 values of $\varLambda_{\mathcal{C}}$ branching ratio.

 $\Gamma(e^+e^-)/\Gamma_{ ext{total}}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE	<u>CL%</u>	<u>DOCUMENT ID</u>		<u> TECN</u>	COMMENT
<5.9 × 10 ⁻⁶	90	AMMAR	94	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the	followi	ng data for averages	, fits,	limits,	etc. • • •
$< 1.4 \times 10^{-5}$	90	²⁹⁰ ACCIARRI	97 B	L3	$e^+e^- ightarrow Z$
$< 2.6 \times 10^{-5}$	90		89 B	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 7.6 \times 10^{-5}$	90	²⁹² ALBRECHT	87 D	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$<6.4 \times 10^{-5}$	90	²⁹³ AVERY	87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 3 \times 10^{-4}$	90	GILES	84	CLEO	Repl. by AVERY 87

 $^{^{290}}$ ACCIARRI 97B assume PDG 96 production fractions for B^+ , B^0 , B_s , and Λ_b .

 $\Gamma(\mu^+\mu^-)/\Gamma_{ ext{total}}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interac-

tions. $\frac{VALUE}{\sqrt{6.8 \times 10^{-7}}}$ $\frac{CL\%}{90}$ $\frac{DOCUMENT ID}{ABE}$ $\frac{TECN}{98}$ $\frac{COMMENT}{\sqrt{p}}$ at 1.8 TeV

 $^{^{291}}$ AVERY 89B reports $<3\times10^{-5}$ assuming the $\varUpsilon(4S)$ decays 43% to $B^0\,\overline{B}{}^0$. We rescale to 50%.

to 50%. 292 ALBRECHT 87D reports $< 8.5 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%.

rescale to 50%. 293 AVERY 87 reports $< 8 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0\overline{B}{}^0$. We rescale to 50%.

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$< 4.0 \times 10^{-5}$	90	ABBOTT	98B D0	<i>p</i> p 1.8 TeV
$< 1.0 \times 10^{-5}$	90	²⁹⁵ ACCIARRI	97B L3	$e^+e^- ightarrow Z$
$< 1.6 \times 10^{-6}$	90	²⁹⁶ ABE	96L CDF	Repl. by ABE 98
$< 5.9 \times 10^{-6}$	90	AMMAR	94 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 8.3 \times 10^{-6}$	90	²⁹⁷ ALBAJAR	91C UA1	$E_{cm}^{p\overline{p}} = 630 \; GeV$
$< 1.2 \times 10^{-5}$	90	²⁹⁸ ALBAJAR	91C UA1	$E_{cm}^{p\overline{p}} = 630 \; GeV$
$< 4.3 \times 10^{-5}$	90	²⁹⁹ AVERY	89B CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 4.5 \times 10^{-5}$	90	³⁰⁰ ALBRECHT	87D ARG	$e^+e^- ightarrow \Upsilon(4S)$
$< 7.7 \times 10^{-5}$	90	³⁰¹ AVERY	87 CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
$< 2 \times 10^{-4}$	90	GILES	84 CLEO	Repl. by AVERY 87

- ²⁹⁴ ABE 98 assumes production of $\sigma(B^0) = \sigma(B^+)$ and $\sigma(B_s)/\sigma(B^0) = 1/3$. They normalize to their measured $\sigma(B^0, p_T(B) > 6, |y| < 1.0) = 2.39 \pm 0.32 \pm 0.44 \,\mu b$.
- ²⁹⁵ ACCIARRI 97B assume PDG 96 production fractions for B^+ , B^0 , B_s , and Λ_h .
- ²⁹⁶ ABE 96L assumes equal B^0 and B^+ production. They normalize to their measured $\sigma(B^+, p_T(B) > 6 \text{ GeV}/c, |y| < 1) = 2.39 \pm 0.54 \,\mu\text{b}$.
- $^{297}B^0$ and $^{0}B^{0}_s$ are not separated.
- ²⁹⁸ Obtained from unseparated B^0 and B^0_s measurement by assuming a $B^0:B^0_s$ ratio 2:1.
- ²⁹⁹ AVERY 89B reports $< 5 \times 10^{-3}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%.
- 300 ALBRECHT 87D reports $< 5 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%.
- 301 AVERY 87 reports $< 9 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to 50%

 $\Gamma(K^0 e^+ e^-)/\Gamma_{\text{total}}$

 Γ_{158}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<3.0 × 10 ⁻⁴	90	ALBRECHT	91E ARG	$e^+e^- \rightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
5.2 \times 10⁻⁴ 90 ³⁰² AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

 302 AVERY 87 reports $<6.5\times10^{-4}$ assuming the $\varUpsilon(4S)$ decays 40% to $B^0\,\overline{B}{}^0.$ We rescale to 50%.

 $\Gamma(K^0\mu^+\mu^-)/\Gamma_{ ext{total}}$

l ₁₅₉/l

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

<u>VALUE</u>	CL%	<u>DOCUMENT ID</u>		TECN	COMMENT
$< 3.6 \times 10^{-4}$	90	303 AVERY	87	CLEO	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
5.2 \times 10⁻⁴ 90 ALBRECHT 91E ARG $e^+e^- \rightarrow \Upsilon(4S)$

 303 AVERY 87 reports $<4.5\times10^{-4}$ assuming the $\varUpsilon(4S)$ decays 40% to $B^0\,\overline{B}{}^0.$ We rescale to 50%.

$\Gamma(K^*(892)^0\,e^+\,e^-)/\Gamma_{\rm total}$

 Γ_{160}/Γ

Test for $\Delta B = 1$ weak neutral current.

VALUE CL% DOCUMENT ID TECN COMMENT
<2.9 × 10⁻⁴ 90 ALBRECHT 91E ARG
$$e^+e^- \rightarrow \Upsilon(4S)$$

HTTP://PDG.LBL.GOV

Page 43

$\Gamma(K^*(892)^0\mu^+\mu^-)/$					Γ ₁₆₁ /Γ
Test for $\Delta B = 1$ v		tral current. <u>DOCUMENT ID</u>		TECN	COMMENT
$<4.0 \times 10^{-6} \text{ (CL} = 90^{\circ}$					
$<4.0 \times 10^{-6}$		³⁰⁴ AFFOLDER			
• • • We do not use the					
$< 2.5 \times 10^{-5}$		³⁰⁵ ABE	96L	CDF	Repl. by AF- <u>F</u> OLDER 99B
$< 2.3 \times 10^{-5}$		306 ALBAJAR			
$< 3.4 \times 10^{-4}$					$e^+e^- o ag{7}(4S)$
304 AFFOLDER 99B mea	asured re	elative to $B^0 o J$	$\psi(1.$	$S)K^*(89)$	92) ⁰ .
305 ABE 96L measured re	elative to	$B^0 \rightarrow J/\psi(1S) K$	[*] (89	2) ⁰ usinį	g PDG 94 branching ratios.
306 ALBAJAR 91C assun	nes 36%	of b quarks give E	³⁰ me	sons.	
$\Gamma(K^*(892)^0 \nu \overline{\nu})/\Gamma_{\text{tot}}$	tal				Γ ₁₆₂ /Γ
Test for $\Delta B = 1$	veak neu	tral current.			
<u>VALUE</u> <1.0 × 10 ^{−3}	<u>CL%</u>	307 ADAM			
					$e^+e^- \rightarrow Z$
307 ADAM 96D assumes	$f_{B^0} = f$	$f_{B^-}=0.39$ and f_{E}	$B_s = 0$	0.12.	
$\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{total}$					Γ /Γ
Test of lepton fam	ilv numb	per conservation.			Γ ₁₆₃ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT
$<3.5 \times 10^{-6} \text{ (CL} = 90^{\circ}$	%) [<5	$5.9 \times 10^{-6} \text{ (CL} =$	90%	OUR 1	998 BEST LIMIT]
$< 3.5 \times 10^{-6}$	90	ABE	98\	CDF	$p\overline{p}$ at 1.8 TeV
• • • We do not use the	e followin	ng data for average	es, fits	s, limits,	etc. • • •
$< 1.6 \times 10^{-5}$	90	³⁰⁸ ACCIARRI	97E	3 L3	$e^+e^- \rightarrow Z$
$< 5.9 \times 10^{-6}$	90	AMMAR			$e^+e^- ightarrow \Upsilon(4S)$
$< 3.4 \times 10^{-5}$		309 AVERY			$e^+e^- \rightarrow \Upsilon(4S)$
$<4.5 \times 10^{-5}$		310 ALBRECHT			$e^+e^- \rightarrow \Upsilon(4S)$
$< 7.7 \times 10^{-5}$ $< 3 \times 10^{-4}$	90 90	311 AVERY GILES			$e^+e^- ightarrow~ \varUpsilon(4S)$ Repl. by AVERY 87
					· · · · · ·
308 ACCIARRI 97B assur	me PDG	96 production frac	ctions 0	for B^{\top} ,	B° , B_{s} , and Λ_{b} .
309 Paper assumes the 3					to 50%. He lecays 45% to $B^0 \overline{B}{}^0$. We
rescale to 50%.				` ,	
311 AVERY 87 reports <	$9 \times 10^{-}$	$^{-5}$ assuming the γ	^(4 <i>S</i>)	decays 4	40% to $B^0\overline{B}^0$. We rescale
to 50%.					
$\Gamma(e^{\pm} au^{\mp})/\Gamma_{ ext{total}}$					Γ ₁₆₄ /Γ
Test of lepton fam	ily numb	er conservation.			-0.7
VALUE		DOCUMENT ID			COMMENT
<5.3 × 10 ⁻⁴	90	AMMAR	94	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
$\Gamma(\mu^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$	مريم بران	aar aanaan (ation			Γ ₁₆₅ /Γ
Test of lepton fam	illy numb _ <u>CL%_</u>	Der conservation. <u>DOCUMENT ID</u>		TECN	COMMENT
<8.3 × 10 ⁻⁴	90	AMMAR	94		$e^+e^- ightarrow \gamma(4S)$
					, ,

POLARIZATION IN BO DECAY

$\Gamma_I / \Gamma \text{ in } B^0 \to J/\psi(1S) K^*(892)^0$

 $\Gamma_L/\Gamma=1$ [0] would indicate that $B^0 o J/\psi(1S)\,K^*(892)^0$ followed by $K^*(892)^0 o$ $K_S^0 \pi^0$ is a pure *CP* eigenstate with CP = -1[+1].

DOCUMENT ID TECN COMMENT Error includes scale factor of 1.4. See the ideogram below. ³¹² JESSOP 97 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.52\!\pm\!0.07\!\pm\!0.04$ ABE 95z CDF $0.65 \pm 0.10 \pm 0.04$ ³¹³ ALBRECHT 13 94G ARG $0.97 \pm 0.16 \pm 0.15$ ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet313 ALAM 42 94 CLE2 Sup. by JESSOP 97 312 JESSOP 97 is the average over a mixture of B^0 and B^+ decays. The *P*-wave fraction

is found to be $0.16\pm0.08\pm0.04$. $313\,\mathrm{Averaged}$ over an admixture of B^0 and B^+ decays.

$$\Gamma_L/\Gamma$$
 in $B^0 \rightarrow J/\psi(1S)K^*(892)^0$

$$\Gamma_L/\Gamma \text{ in } B^0 \to \ D^{*-} \rho^+$$

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.93±0.05±0.05	76	ALAM	94	CLE2	$e^+e^- ightarrow \ \varUpsilon(4S)$

$B^0 - \overline{B}{}^0$ MIXING

Written March 2000 by O. Schneider (Univ. of Lausanne)

Formalism in quantum mechanics

HTTP://PDG.LBL.GOV Page 45 Created: 12/18/2000 15:33 There are two neutral $B^0-\overline{B}^0$ meson systems, $B_d-\overline{B}_d$ and $B_s-\overline{B}_s$ (generically denoted $B_q-\overline{B}_q$, q=s,d), which exhibit the phenomenon of particle-antiparticle mixing [1]. Such a system is produced in one of its two possible states of well-defined flavor: $|B^0\rangle$ ($\overline{b}q$) or $|\overline{B}^0\rangle$ ($b\overline{q}$). Due to flavor-changing interactions, this initial state evolves into a time-dependent quantum superposition of the two flavor states, $a(t)|B^0\rangle + b(t)|\overline{B}^0\rangle$, satisfying the equation

 $i\frac{\partial}{\partial t} \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \right) \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}, \tag{1}$

where \mathbf{M} and Γ , known as the mass and decay matrices, describe the dispersive and absorptive parts of $B^0 - \overline{B}{}^0$ mixing. These matrices are hermitian, and CPT invariance requires $M_{11} = M_{22} \equiv M$ and $\Gamma_{11} = \Gamma_{22} \equiv \Gamma$, where M and Γ are the mass and decay width of the B^0 and $\overline{B}{}^0$ flavor states.

The two eigenstates of the effective hamiltonian matrix $(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma})$ are given by

$$|B_{\pm}\rangle = p|B^{0}\rangle \pm q|\overline{B}^{0}\rangle,$$
 (2)

and correspond to the eigenvalues

$$\lambda_{\pm} = \left(M - \frac{i}{2}\Gamma\right) \pm \frac{q}{p} \left(M_{12} - \frac{i}{2}\Gamma_{12}\right) , \qquad (3)$$

where

$$\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}}.$$
 (4)

Created: 12/18/2000 15:33

We choose a convention where Re(q/p) > 0 and $CP|B^0\rangle = |\overline{B}^0\rangle$. An alternative notation is

$$|B_{\pm}\rangle = \frac{(1+\epsilon)|B^0\rangle \pm (1-\epsilon)|\overline{B}^0\rangle}{\sqrt{2(1+|\epsilon|^2)}} \quad \text{with} \quad \frac{1-\epsilon}{1+\epsilon} = \frac{q}{p}.$$
 (5)

The time dependence of these eigenstates of well-defined masses $M_{\pm} = \text{Re}(\lambda_{\pm})$ and widths $\Gamma_{\pm} = -2 \text{Im}(\lambda_{\pm})$ is given by the phases $e^{-i\lambda_{\pm}t} = e^{-iM_{\pm}t}e^{-\frac{1}{2}\Gamma_{\pm}t}$: the evolution of a pure $|B^{0}\rangle$ or $|\overline{B}^{0}\rangle$ state at t=0 is thus given by

$$|B^{0}(t)\rangle = g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B}^{0}\rangle,$$
 (6)

$$|\overline{B}^{0}(t)\rangle = g_{+}(t)|\overline{B}^{0}\rangle + \frac{p}{q}g_{-}(t)|B^{0}\rangle,$$
 (7)

where

$$g_{\pm}(t) = \frac{1}{2} \left(e^{-i\lambda_{+}t} \pm e^{-i\lambda_{-}t} \right) . \tag{8}$$

This means that the flavor states oscillate into each other with time-dependent probabilities proportional to

$$|g_{\pm}(t)|^2 = \frac{e^{-\Gamma t}}{2} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) \pm \cos(\Delta m t) \right],$$
 (9)

where

$$\Delta m = |M_{+} - M_{-}|, \quad \Delta \Gamma = |\Gamma_{+} - \Gamma_{-}|.$$
 (10)

Time-integrated mixing probabilities are only well defined when considering decays to flavor-specific final states, *i.e.* final states f such that the instantaneous decay amplitudes $A_{\overline{f}} = \langle \overline{f} | H | B^0 \rangle$ and $\overline{A}_f = \langle f | H | \overline{B}^0 \rangle$, where H is the weak interaction hamiltonian, are both zero. Due to mixing, a produced B^0 can decay to the final state \overline{f} (mixed event) in addition to the final state f (unmixed event). Restricting the sample to these two decay channels, the time-integrated mixing probability is given by

$$\chi_f^{B^0 \to \overline{B}^0} = \frac{\int_0^\infty |\langle \overline{f} | H | B^0(t) \rangle|^2 dt}{\int_0^\infty |\langle \overline{f} | H | B^0(t) \rangle|^2 dt + \int_0^\infty |\langle f | H | B^0(t) \rangle|^2 dt}
= \frac{|\xi_f|^2 (x^2 + y^2)}{|\xi_f|^2 (x^2 + y^2) + 2 + x^2 - y^2},$$
(11)

where we have defined $\xi_f = \frac{q}{p} \overline{A_f}$ and

$$x = \frac{\Delta m}{\Gamma}, \quad y = \frac{\Delta \Gamma}{2\Gamma}.$$
 (12)

The mixing probability $\chi_f^{\overline{B}^0 \to B^0}$ for the case of a produced \overline{B}^0 is obtained by replacing ξ_f with $1/\xi_f$ in Eq. (11). It is different from $\chi_f^{B^0 \to \overline{B}^0}$ if $|\xi_f|^2 \neq 1$, a condition reflecting non-invariance under the CP transformation. CP violation in the decay amplitudes is discussed elsewhere [2] and we assume $|\overline{A}_{\overline{f}}| = |A_f|$ from now on. The deviation of $|q/p|^2$ from 1, namely the quantity

$$1 - \left| \frac{q}{p} \right|^2 = \frac{4 \operatorname{Re}(\epsilon)}{1 + |\epsilon|^2} + \mathcal{O}\left(\left(\frac{\operatorname{Re}(\epsilon)}{1 + |\epsilon|^2} \right)^2 \right) , \tag{13}$$

describes CP violation in $B^0-\overline{B}^0$ mixing. As can be seen from Eq. (4), this can occur only if $M_{12} \neq 0$, $\Gamma_{12} \neq 0$ and if the phase difference between M_{12} and Γ_{12} is different from 0 or π .

In the absence of CP violation, $|q/p|^2 = 1$, $Re(\epsilon) = 0$, the mass eigenstates are also CP eigenstates,

$$CP|B_{\pm}\rangle = \pm |B_{\pm}\rangle,$$
 (14)

the phases $\varphi_{M_{12}} = \arg(M_{12})$ and $\varphi_{\Gamma_{12}} = \arg(\Gamma_{12})$ satisfy

$$\sin(\varphi_{M_{12}} - \varphi_{\Gamma_{12}}) = 0, \qquad (15)$$

the mass and decay width differences reduce to

$$\Delta m = 2 |M_{12}|, \quad \Delta \Gamma = 2 |\Gamma_{12}|, \quad (16)$$

and the time-integrated mixing probabilities $\chi_f^{B^0 \to \overline{B}^0}$ and $\chi_f^{\overline{B}^0 \to B^0}$ become both equal to

$$\chi = \frac{x^2 + y^2}{2(x^2 + 1)} \,. \tag{17}$$

HTTP://PDG.LBL.GOV

Page 48

Standard Model predictions and phenomenology

In the Standard Model, the transitions $B_q^0 \to \overline{B}_q^0$ and $\overline{B}_q^0 \to B_q^0$ are due to the weak interaction. They are described, at the lowest order, by the box diagrams involving two W bosons and two up-type quarks, as is the case for $K^0 - \overline{K}^0$ mixing. However, the long range interactions arising from intermediate virtual states are negligible for the neutral B meson systems, because the large B mass is away from the region of hadronic resonances. The calculation of the dispersive and absorptive parts of the box diagrams yields the following predictions for the off-diagonal element of the mass and decay matrices [3],

$$M_{12} = -\frac{G_F^2 m_W^2 \eta_B m_{B_q} B_{B_q} f_{B_q}^2}{12\pi^2} S_0(m_t^2/m_W^2) (V_{tq}^* V_{tb})^2$$

$$\Gamma_{12} = \frac{G_F^2 m_b^2 \eta_B' m_{B_q} B_{B_q} f_{B_q}^2}{8\pi}$$

$$\times \left[(V_{tq}^* V_{tb})^2 + V_{tq}^* V_{tb} V_{cq}^* V_{cb} \mathcal{O}\left(\frac{m_c^2}{m_b^2}\right) \right]$$

$$+ (V_{cq}^* V_{cb})^2 \mathcal{O}\left(\frac{m_c^4}{m_b^4}\right)$$

$$(19)$$

where G_F is the Fermi constant, m_W the W mass, m_i the mass of quark i, and where $m_{B_q} = M$, f_{B_q} and B_{B_q} are the B_q^0 mass, decay constant and bag parameter. The known function $S_0(x_t)$ can be approximated very well with $0.784 \, x_t^{0.76}$ [4] and V_{ij} are the elements of the CKM matrix [5]. The QCD corrections η_B and η_B' are of order unity. The only non negligible contributions to M_{12} are from top-top diagrams. The phases of M_{12} and Γ_{12} satisfy

$$\varphi_{M_{12}} - \varphi_{\Gamma_{12}} = \pi + \mathcal{O}\left(\frac{m_c^2}{m_b^2}\right) \tag{20}$$

implying that the mass eigenstates have mass and width differences of opposite signs. This means that, like in the $K^0-\overline{K}^0$ system, the "heavy" state with mass $M_{\text{heavy}} = \max(M_+, M_-)$ has a smaller decay width than that of the "light" state with mass $M_{\text{light}} = \min(M_+, M_-)$. We thus redefine

$$\Delta m = M_{\text{heavy}} - M_{\text{light}}, \quad \Delta \Gamma = \Gamma_{\text{light}} - \Gamma_{\text{heavy}}, \quad (21)$$

where Δm is positive by definition and $\Delta\Gamma$ is expected to be positive in the Standard Model.

Furthermore, since Γ_{12} is, like M_{12} , dominated by the top-top diagrams, the quantity

$$\left| \frac{\Gamma_{12}}{M_{12}} \right| \simeq \frac{3\pi}{2} \frac{m_b^2}{m_W^2} \frac{1}{S_0(m_t^2/m_W^2)} \sim \mathcal{O}\left(\frac{m_b^2}{m_t^2}\right) \tag{22}$$

is small, and a power expansion of $|q/p|^2$ yields

$$\left| \frac{q}{p} \right|^2 = 1 + \left| \frac{\Gamma_{12}}{M_{12}} \right| \sin(\varphi_{M_{12}} - \varphi_{\Gamma_{12}}) + \mathcal{O}\left(\left| \frac{\Gamma_{12}}{M_{12}} \right|^2 \right). \tag{23}$$

Therefore, considering both Eqs. (20) and (22), the CP-violating parameter

$$1 - \left| \frac{q}{p} \right|^2 \simeq \operatorname{Im} \left(\frac{\Gamma_{12}}{M_{12}} \right) \tag{24}$$

Created: 12/18/2000 15:33

is expected to be tiny: $\sim \mathcal{O}(10^{-3})$ for the $B_d - \overline{B}_d$ system and $\lesssim \mathcal{O}(10^{-4})$ for the $B_s - \overline{B}_s$ system [6].

In the approximation of negligible CP violation in the mixing, the ratio $\Delta\Gamma/\Delta m$ is equal to the small quantity $|\Gamma_{12}/M_{12}|$ of Eq. (22); it is hence independent of CKM matrix elements, *i.e.* the same for the $B_d-\overline{B}_d$ and $B_s-\overline{B}_s$ systems. It can be calculated with lattice QCD techniques; typical results are $\sim 5 \times 10^{-3}$ with quoted uncertainties of 30% at least. Given

the current experimental knowledge (discussed below) on the mixing parameter x,

$$\begin{cases} x_d = 0.73 \pm 0.03 & (B_d - \overline{B}_d \text{ system}) \\ x_s \gtrsim 20 \text{ at } 95\% \text{ CL} & (B_s - \overline{B}_s \text{ system}) \end{cases}, \tag{25}$$

the Standard Model thus predicts that $\Delta\Gamma/\Gamma$ is very small for the $B_d-\overline{B}_d$ system (below 1%), but may be quite large for the $B_s-\overline{B}_s$ system (up to $\sim 20\%$). This width difference is caused by the existence of final states to which both the B_q^0 and \overline{B}_q^0 mesons can decay. Such decays involve $b \to c\overline{c}q$ quark-level transitions, which are Cabibbo-suppressed if q=d and Cabibbo-allowed if q=s. If the final states common to B_s^0 and \overline{B}_s^0 are predominantly CP-even as discussed in Ref. 7, then the $B_s-\overline{B}_s$ mass eigenstate with the largest decay width corresponds to the CP-even eigenstate. Taking Eq. (21) into account, one thus expects $\Gamma_{\text{light}} = \Gamma_+$ and

$$\Delta m_s = M_- - M_+ > 0, \quad \Delta \Gamma_s = \Gamma_+ - \Gamma_- > 0.$$
 (26)

$Experimental \ issues \ and \ methods \ for \ oscillation \ analyses$

Time-integrated measurements of $B^0-\overline{B}^0$ mixing were published for the first time in 1987 by UA1 [8] and ARGUS [9], and since then by many different experiments. These are typically based on counting same-sign and opposite-sign lepton pairs from the semileptonic decay of the produced $b\bar{b}$ pairs. At high energy colliders, such analyses cannot easily separate the B_d and B_s contributions, therefore experiments at $\Upsilon(4S)$ machines are best suited to measure χ_d .

However, better sensitivity is obtained from time-dependent analyses aimed at the direct measurement of the oscillation frequencies Δm_d and Δm_s , from the proper time distributions

of B_d or B_s candidates identified through their decay in (mostly) flavor-specific modes and suitably tagged as mixed or unmixed. This is particularly true for the $B_s-\overline{B}_s$ system where the large value of x_s implies maximal mixing, i.e. $\chi_s \simeq 1/2$. In such analyses, performed at high-energy colliders, the neutral B mesons are either partially reconstructed from a charm meson, or selected from a lepton with high transverse momentum with respect to the b jet, or selected from a reconstructed displaced vertex. The proper time $t = \frac{m_B}{p}L$ is measured from the distance L between the production vertex and the B decay vertex, as measured with a silicon vertex detector, and from an estimate of the B momentum p.

The statistical significance S of an oscillation signal can be approximated as [10]

$$S \approx \sqrt{N/2} f_{\text{sig}} \left(1 - 2\eta\right) e^{-(\Delta m \, \sigma_t)^2/2}, \qquad (27)$$

where N and $f_{\rm sig}$ are the number of candidates and the fraction of signal in the selected sample, η is the mistag probability, and σ_t is the proper time resolution. The quantity \mathcal{S} decreases very quickly as Δm increases; this dependence is controlled by σ_t , which is therefore a critical parameter for Δm_s analyses. The proper time resolution $\sigma_t \sim \frac{m_B}{\langle p \rangle} \sigma_L \oplus t \frac{\sigma_p}{p}$ includes a constant contribution due to the decay length resolution σ_L (typically 0.1–0.3 ps), and a term due to the relative momentum resolution $\frac{\sigma_p}{p}$ (typically 10–20% for partially reconstructed decays), which increases with proper time.

In order to tag a B candidate as mixed or unmixed, it is necessary to determine its flavor state both at production (initial state) and at decay (final state). The initial and final state mistag probabilities, η_i and η_f , degrade \mathcal{S} by a total factor $(1-2\eta) = (1-2\eta_i)(1-2\eta_f)$. In inclusive lepton analyses,

the final state is tagged by the charge of the lepton from $b \to \ell^-$ decays; the biggest contribution to η_f is then due to $\overline{b} \to \overline{c} \to \ell^-$ decays. Alternatively, the charge of a reconstructed charm meson $(D^{*-}$ from B_d^0 or D_s^- from B_s^0), or that of a kaon thought to come from a $b \to c \to s$ decay [11], can be used. For fully inclusive analyses based on topological vertexing, final state tagging techniques include jet charge [12] and charge dipole methods [11].

The initial state tags are somewhat less dependent on the procedure used to select B candidates. They can be divided in two groups: the ones that tag the initial charge of the \bar{b} quark contained in the B candidate itself (same-side tag), and the ones that tag the initial charge of the other b quark produced in the event (opposite-side tag). On the same side, the charge of a track from the primary vertex is correlated with the production state of the B if that track is a decay product of a B^{**} state or the first particle in the fragmentation chain [13,14]. Jet charge techniques work on both sides. Finally, the charge of a lepton from $b \to \ell^-$ or of a kaon from $b \to c \to s$ can be used as opposite side tags, keeping in mind that their performance depends on integrated mixing. At SLC, the beam polarization produced a sizeable forward-backward asymmetry in the $Z \to b \overline{b}$ decays and provided another very interesting and effective initial state tag based on the polar angle of the B candidate [11]. Initial state tags have also been combined to reach $\eta_i \sim 26\%$ at LEP [14,15] or even 16% at SLD [11] with full efficiency. The equivalent figure at CDF is currently $\sim 40\%$ [16].

In the absence of experimental evidence for a width difference, and since $\Delta\Gamma/\Delta m$ is predicted to be very small, oscillation analyses typically neglect $\Delta\Gamma$ and describe the data with the physics functions $\Gamma e^{-\Gamma t} (1 \pm \cos \Delta m t)/2$. As can be seen from Eq. (9), a non zero value of $\Delta\Gamma$ would effectively reduce the oscillation amplitude with a small time-dependent factor that would be very difficult to distinguish from time resolution effects. Whereas measurements of Δm_d are usually extracted from the data using a maximum likelihood fit, no significant $B_s - \overline{B}_s$ oscillations have been seen so far, and all B_s analyses set lower limits on Δm_s . The original technique used to set such limits was to study the likelihood as a function of Δm_s . However, these limits turned out to be difficult to combine. A method was therefore developed [10], in which a B_s oscillation amplitude \mathcal{A} is measured at each fixed value of Δm_s , using a maximum likelihood fit based on the functions $\Gamma_s e^{-\Gamma_s t} (1 \pm A \cos \Delta m_s t)/2$. To a very good approximation, the statistical uncertainty on \mathcal{A} is Gaussian and equal to $1/\mathcal{S}$ [10]. Measurements of \mathcal{A} performed at a given value of Δm_s can be averaged easily. If $\Delta m_s = \Delta m_s^{\text{true}}$, one expects $\mathcal{A} = 1$ within the total uncertainty $\sigma_{\mathcal{A}}$; however, if Δm_s is far from its true value, a measurement consistent with A = 0 is expected. A value of Δm_s can be excluded at 95% CL if $\mathcal{A} + 1.645 \, \sigma_{\mathcal{A}} \leq 1$. If Δm_s^{true} is very large, one expects $\mathcal{A}=0$, and all values of Δm_s such that $1.645 \, \sigma_{\mathcal{A}}(\Delta m_s) < 1$ are expected to be excluded at 95% CL. Because of the proper time resolution, the quantity $\sigma_{\mathcal{A}}(\Delta m_s)$ is an increasing function of Δm_s and one therefore expects to be able to exclude individual Δm_s values up to $\Delta m_s^{\rm sens}$, where $\Delta m_s^{\rm sens}$, called here the sensitivity of the analysis, is defined by $1.645 \,\sigma_{\mathcal{A}}(\Delta m_s^{\rm sens}) = 1.$

B_d mixing studies

Many $B_d - \overline{B}_d$ oscillations analyses have been performed by the ALEPH [17,12], CDF [13,18], DELPHI [19], L3 [20], OPAL [21] and SLD [11] collaborations. Although a variety

of different techniques have been used, the Δm_d results have remarkably similar precision. The systematic uncertainties are not negligible; they are often dominated by sample composition, mistag probability, or b-hadron lifetime contributions. Before being combined, the measurements are adjusted on the basis of a common set of input values, including the b-hadron lifetimes and fractions published in this Review. Some measurements are statistically correlated. Systematic correlations arise both from common physics sources (fragmentation fractions, lifetimes, branching ratios of b hadrons), and from purely experimental or algorithmic effects (efficiency, resolution, tagging, background description). Combining all published measurements [17,13,19,20,21] and accounting for all identified correlations as described in Ref. 22 yields $\Delta m_d = 0.478 \pm 0.012 (\text{stat}) \pm 0.013 (\text{syst})$ ps⁻¹.

On the other hand, ARGUS and CLEO have published timeintegrated measurements based on semileptonic decays [23,24], which average to $\chi_d^{\Upsilon(4S)} = 0.156 \pm 0.024$. The width difference $\Delta\Gamma_d$ could in principle be extracted from the measured value of Γ_d , and the above averages for Δm_d and χ_d (see Eqs. (12) and (17)). The results are however compatible with $\Delta\Gamma_d = 0$, and their precision is still insufficient to provide an interesting constraint. Neglecting $\Delta\Gamma_d$ and using the measured B_d lifetime, the Δm_d and χ_d results are combined to yield the world average

$$\Delta m_d = 0.472 \pm 0.017 \text{ ps}^{-1}$$
 (28)

or, equivalently,

$$\chi_d = 0.174 \pm 0.009. \tag{29}$$

Created: 12/18/2000 15:33

Evidence for CP violation in B_d mixing has been searched for, both with semileptonic and inclusive B_d decays, in samples where the initial flavor state is tagged. In the semileptonic case, where the final state tag is also available, the following asymmetry

$$\frac{N(\overline{B}_d^0(t) \to \ell^+ \nu_\ell X) - N(B_d^0(t) \to \ell^- \overline{\nu}_\ell X)}{N(\overline{B}_d^0(t) \to \ell^+ \nu_\ell X) + N(B_d^0(t) \to \ell^- \overline{\nu}_\ell X)}$$

$$= a_{CP} \simeq 1 - |q/p|_d^2 \simeq \frac{4 \operatorname{Re}(\epsilon_d)}{1 + |\epsilon_d|^2} \tag{30}$$

has been measured, either in time-integrated analyses at CLEO [24] and CDF [25], or in more recent and sensitive time-dependent analyses at LEP [26,27,28]. In the inclusive case, also investigated at LEP [29,27,30], no final state tag is used, and the asymmetry [31]

$$\frac{N(B_d^0(t) \to \text{all}) - N(\overline{B}_d^0(t) \to \text{all})}{N(B_d^0(t) \to \text{all}) + N(\overline{B}_d^0(t) \to \text{all})}$$

$$\simeq a_{CP} \left[\frac{x_d}{2} \sin(\Delta m_d t) - \sin^2\left(\frac{\Delta m_d t}{2}\right) \right] \tag{31}$$

must be measured as a function of the proper time to extract information on CP violation. In all cases asymmetries compatible with zero have been found, with a precision limited by the available statistics. A simple average of all published and preliminary results [24–30] neglecting small possible statistical correlations and assuming half of the systematics to be correlated, is $a_{CP} = -0.017 \pm 0.016$, a result which does not yet constrain the Standard Model.

The Δm_d result of Eq. (28) provides an estimate of $|M_{12}|$ and can be used, together with Eqs. (16) and (18), to extract the modulus of the CKM matrix element V_{td} within the Standard Model [32]. The main experimental uncertainties on the resulting estimate of $|V_{td}|$ come from m_t and Δm_d ; however, these are at present completely dominated by the

15–20% uncertainty usually quoted on the hadronic matrix element $f_{B_d}\sqrt{B_{B_d}} \sim 200$ MeV obtained from lattice QCD calculations [33].

B_s mixing studies

 $B_s-\overline{B}_s$ oscillation has been the subject of many recent studies from ALEPH [14], CDF [34], DELPHI [35,15], OPAL [36] and SLD [37]. No oscillation signal has been found so far. The most sensitive analyses appear to be the ones based on inclusive lepton samples, and on samples where a lepton and a D_s meson have been reconstructed in the same jet. All results are limited by the available statistics. These are combined to yield the amplitudes \mathcal{A} shown in Fig. 1 as a function of Δm_s [22].

As before, the individual results have been adjusted to common physics inputs, and all known correlations have been accounted for; furthermore, the sensitivities of the inclusive analyses, which depend directly through Eq. (27) on the assumed fraction f_s of B_s mesons in an unbiased sample of weakly-decaying b hadrons, have been rescaled to a common value of $f_s = 0.100 \pm 0.012$ [22]. The combined sensitivity for 95% CL exclusion of Δm_s values is found to be 14.5 ps⁻¹. All values of Δm_s below 14.3 ps⁻¹ are excluded at 95% CL, and no deviation from $\mathcal{A} = 0$ is seen in Fig. 1 that would indicate the observation of a signal.

Some Δm_s analyses are still preliminary [15,37]. Using only published results, the combined Δm_s result is

$$\Delta m_s > 10.6 \text{ ps}^{-1}$$
 at 95% CL, (32)

Created: 12/18/2000 15:33

with a sensitivity of 12.1 ps^{-1} .

The information on $|V_{ts}|$ obtained, in the framework of the Standard Model, from the combined limit is hampered by

Figure 1: Combined measurements of the B_s oscillation amplitude as a function of Δm_s [22], including all preliminary results available at the end of 1999. The measurements are dominated by statistical uncertainties. Neighboring points are statistically correlated.

the hadronic uncertainty, as in the B_d case. However, many uncertainties cancel in the frequency ratio

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \left| \frac{V_{ts}}{V_{td}} \right|^2 \,, \tag{33}$$

where $\xi = (f_{B_s}\sqrt{B_{B_s}})/(f_{B_d}\sqrt{B_{B_d}})$, of order unity, is currently estimated from lattice QCD with a 5–6% uncertainty [33]. The CKM matrix can be constrained using the experimental results on Δm_d , Δm_s , $|V_{ub}/V_{cb}|$ and ϵ_K , together with theoretical inputs and unitarity conditions [32]. Given the information available from $|V_{ub}/V_{cb}|$ and ϵ_K measurements, the constraint from our knowledge on the ratio $\Delta m_d/\Delta m_s$ is presently more effective in limiting the position of the apex of the CKM unitarity triangle than the one obtained from the Δm_d measurements alone, due to the reduced hadronic uncertainty in Eq. (33). We note also that the Standard Model would not easily accommodate values of Δm_s above $\sim 25~{\rm ps}^{-1}$.

Information on $\Delta\Gamma_s$ can be obtained by studying the proper time distribution of untagged data samples enriched in B_s mesons [38]. In the case of an inclusive B_s selection [39] or a semileptonic B_s decay selection [40,41], both the shortand long-lived components are present, and the proper time distribution is a superposition of two exponentials with decay constants $\Gamma_s \pm \Delta \Gamma_s/2$. In principle, this provides sensitivity to both Γ_s and $(\Delta\Gamma_s/\Gamma_s)^2$. Ignoring $\Delta\Gamma_s$ and fitting for a single exponential leads to an estimate of Γ_s with a relative bias proportional to $(\Delta \Gamma_s/\Gamma_s)^2$. An alternative approach, which is directly sensitive to first order in $\Delta\Gamma_s/\Gamma_s$, is to determine the lifetime of B_s candidates decaying to CP eigenstates; measurements already exist for $B_s^0 \to J/\psi \phi$ [42] and $B_s^0 \to$ $D_s^{(*)+}D_s^{(*)-}$ [43], which are mostly CP-even states [7]. An estimate of $\Delta\Gamma_s/\Gamma_s$ has also been obtained directly from a measurement of the $B_s^0 \to D_s^{(*)+} D_s^{(*)-}$ branching ratio [43], under the assumption that these decays practically account for all the CP-even final states.

Present data is not precise enough to efficiently constrain both Γ_s and $\Delta\Gamma_s/\Gamma_s$; since the B_s and B_d lifetimes are predicted to be equal within less than a percent [44], an expectation compatible with the current experimental data [45], the constraint $\Gamma_s = \Gamma_d$ can also be used to extract $\Delta\Gamma_s/\Gamma_s$. Applying the combination procedure described in Ref. 22 on the published B_s lifetime results [40,42,46] yields

$$\Delta\Gamma_s/\Gamma_s < 0.65$$
 at 95% CL (34)

without external constraint, or

$$\Delta\Gamma_s/\Gamma_s < 0.33$$
 at 95% CL (35)

when constraining $1/\Gamma_s$ to the measured B_d lifetime. These results are not yet precise enough to test Standard Model predictions.

$Average \ b\hbox{-}hadron\ mixing\ and\ b\hbox{-}hadron\ production\ fractions$

Let f_u , f_d , f_s and f_{baryon} be the B_u , B_d , B_s and b_{baryon} fractions composing an unbiased sample of weakly-decaying b hadrons produced in high energy colliders. LEP experiments have measured $f_s \times \text{BR}(B_s^0 \to D_s^- \ell^+ \nu_\ell X)$ [47], $\text{BR}(b \to \Lambda_b^0) \times \text{BR}(\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell X)$ [48] and $\text{BR}(b \to \Xi_b^-) \times \text{BR}(\Xi_b^- \to \Xi^- \ell^- \overline{\nu}_\ell X)$ [49] from partially reconstructed final states including a lepton, f_{baryon} from protons identified in b events [50], and the production rate of charged b hadrons [51]. The various b hadron fractions have also been measured at CDF from electron-charm final states [52]. All the published results have been combined following the procedure and assumptions described in Ref. 22, to yield $f_u = f_d = (38.4 \pm 1.8)\%$, $f_s = (11.7 \pm 3.0)\%$ and $f_{\text{baryon}} = (11.5 \pm 2.0)\%$ under the constraints

$$f_u = f_d$$
 and $f_u + f_d + f_s + f_{\text{baryon}} = 1$. (36)

HTTP://PDG.LBL.GOV Page 60 Created: 12/18/2000 15:33

Time-integrated mixing analyses performed with lepton pairs from $b\overline{b}$ events produced at high energy colliders measure the quantity

$$\overline{\chi} = f_d' \chi_d + f_s' \chi_s \,, \tag{37}$$

where f'_d and f'_s are the fractions of B_d and B_s hadrons in a sample of semileptonic b-hadron decays. Assuming that all b hadrons have the same semileptonic decay width implies $f'_q = f_q/(\Gamma_q \tau_b)$ (q = s, d), where τ_b is the average b-hadron lifetime. Hence $\overline{\chi}$ measurements can be used to improve our knowledge on the fractions f_u , f_d , f_s and f_{baryon} .

Combining the above estimates of these fractions with the average $\overline{\chi} = 0.118 \pm 0.005$ (published in this *Review*), χ_d from Eq. (29) and $\chi_s = \frac{1}{2}$ yields, under the constraints of Eq. (36),

$$f_u = f_d = (38.9 \pm 1.3)\%,$$
 (38)

$$f_s = (10.7 \pm 1.4)\%, \tag{39}$$

Created: 12/18/2000 15:33

$$f_{\text{baryon}} = (11.6 \pm 2.0)\%,$$
 (40)

showing that mixing information substantially reduces the uncertainty on f_s . These results and the averages quoted in Eqs. (28) and (29) for χ_d and Δm_d have been obtained in a consistent way by the B oscillations working group [22], taking into account the fact that many individual measurements of Δm_d depend on the assumed values for the b-hadron fractions.

$Summary\ and\ prospects$

 $B^0-\overline{B}{}^0$ mixing has been a field of intense study in the last few years. The mass difference in the $B_d-\overline{B}_d$ system is very well measured (with an accuracy of $\sim 3.5\%$) but, despite an impressive theoretical effort, the hadronic uncertainty still limits the precision of the extracted estimate of $|V_{td}|$. The

mass difference in the $B_s-\overline{B}_s$ system is much larger and still unmeasured. However, the current experimental lower limit on Δm_s already provides, together with Δm_d , a significant constraint on the CKM matrix within the Standard Model. No strong experimental evidence exists yet for the rather large decay width difference expected in the $B_s-\overline{B}_s$ system. It is interesting to recall that the ratio $\Delta\Gamma_s/\Delta m_s$ does not depend on CKM matrix elements in the Standard Model (see Eq. (22)), and that a measurement of either Δm_s or $\Delta\Gamma_s$ could be turned into a Standard Model prediction of the other one.

The LEP and SLD experiments have still not finalized all their B_s oscillation analyses, but a measurement of Δm_s from data collected at the Z pole becomes unlikely. In the near future, the most promising prospects for B_s mixing are from Run II at the Tevatron, where both Δm_s and $\Delta \Gamma_s$ are expected to be measured; CDF will be able to observe B_s oscillations for values of Δm_s up to ~ 40 ps⁻¹ [53], well above the current Standard Model prediction.

CP violation in B mixing, which has not been seen yet, as well as the phases involved in B mixing, will be further investigated with the large statistics that will become available both at the B factories and at the Tevatron.

B mixing may not have delivered all its secrets yet, because it is one of the phenomena where new physics might very well reveal itself (for example new particles involved in the box diagrams). Theoretical calculations in lattice QCD are becoming more reliable and further progress in reducing hadronic uncertainties is expected. In the long term, a stringent check of the consistency, within the Standard Model, of the B_d and B_s mixing measurements with all other measured observables in B physics (including CP asymmetries in B decays) will be possible, allowing to place limits on new physics or, better, discover new physics.

References

- 1. T.D. Lee and C.S. Wu, Ann. Rev. Nucl. Sci. **16**, 511 (1966);
 - I.I. Bigi and A.I. Sanda, "CP violation," Cambridge, Cambridge Univ. Press, 2000;
 - G.C. Branco, L. Lavoura, and J.P. Silva, "*CP* violation," Clarendon Press Oxford, 1999;
 - see also the review on $B^0-\overline{B}^0$ mixing by H. Quinn in C. Caso *et al.*, Eur. Phys. J. **C3**, 1 (1998).
- 2. See the review on CP violation in B decays by H. Quinn and A. Sanda in this publication.
- 3. A.J. Buras, W. Slominski, and H. Steger, Nucl. Phys. **B245**, 369 (1984).
- 4. A.J. Buras and R. Fleischer, in "Heavy Flavours II," ed. A.J. Buras and M. Lindner, Singapore World Scientific (1998).
- 5. M. Kobayashi and K. Maskawa, Prog. Theor. Phys. **49**, 652 (1973).
- 6. I.I. Bigi *et al.*, in "*CP* violation," ed. C. Jarlskog, Singapore World Scientific, 1989.
- 7. R. Aleksan *et al.*, Phys. Lett. **B316**, 567 (1993).
- 8. C. Albajar *et al.*, **UA1** Collab., Phys. Lett. **B186**, 247 (1987).
- 9. H. Albrecht *et al.*, **ARGUS** Collab., Phys. Lett. **B192**, 245 (1987).
- 10. H.-G. Moser and A. Roussarie, Nucl. Instrum. Methods **384**, 491 (1997).
- 11. **SLD** Collab., SLAC-PUB-7228, SLAC-PUB-7229, SLAC-PUB-7230, contrib. to 28th Int. Conf. on High Energy Physics, Warsaw, 1996.
- 12. **ALEPH** Collab., contrib. 596 to Int. Europhysics Conf. on High Energy Physics, Jerusalem, 1997.

- F. Abe et al., CDF Collab., Phys. Rev. Lett. 80, 2057 (1998), Phys. Rev. D59, 032001 (1999) Phys. Rev. D60, 051101 (1999); Phys. Rev. D60, 072003 (1999);
 T. Affolder et al., CDF Collab., Phys. Rev. D60, 112004 (1999).
- 14. R. Barate *et al.*, **ALEPH** Collab., Eur. Phys. J. **C4**, 367 (1998); Eur. Phys. J. **C7**, 553 (1999).
- 15. **DELPHI** Collab., contrib. 4_520 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999; contrib. 236 to 29th Int. Conf. on High Energy Physics, Vancouver, 1998.
- 16. M. Paulini, private communication.
- 17. D. Buskilic *et al.*, **ALEPH** Collab., Z. Phys. **C75**, 397 (1997).
- 18. **CDF** Collab., www-cdf.fnal.gov/physics/new/bottom/bottom.html.
- 19. P. Abreu *et al.*, **DELPHI** Collab., Z. Phys. **C76**, 579 (1997).
- 20. M. Acciarri *et al.*, **L3** Collab., Eur. Phys. J. **C5**, 195 (1998).
- 21. G. Alexander et al., OPAL Collab., Z. Phys. C72, 377 (1996);
 K. Ackerstaff et al., OPAL Collab., Z. Phys. C76, 401 (1997); Z. Phys. C76, 417 (1997).
- 22. **ALEPH**, **CDF**, **DELPHI**, **L3**, **OPAL**, and **SLD** Collab., "Combined results on b-hadron production rates, lifetimes, oscillations, and semileptonic decays," LEPHFS note 99-02, to be subm. as CERN-EP preprint; the combined results on B mixing and b hadron fractions included in the above paper or published in this Review have been obtained by the B oscillations working group; see http://www.cern.ch/LEPBOSC/ for more information.
- 23. H. Albrecht *et al.*, **ARGUS** Collab., Z. Phys. **C55**, 357 (1992); Phys. Lett. **B324**, 249 (1994).
- 24. J. Bartelt *et al.*, **CLEO** Collab., Phys. Rev. Lett. **71**, 1680 (1993).
- 25. F. Abe et al., CDF Collab., Phys. Rev. D55, 2546 (1997).

- 26. K. Ackerstaff *et al.*, **OPAL** Collab., Z. Phys. **C76**, 401 (1997).
- 27. **DELPHI** Collab., conf. note 97-98, contrib. 449 to Int. Europhysics Conf. on High Energy Physics, Jerusalem, 1997.
- 28. **ALEPH** Collab., conf. note 99-026, contrib. 4_421 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
- 29. G. Abbiendi *et al.*, **OPAL** Collab., Eur. Phys. J. **C12**, 609 (2000).
- 30. **ALEPH** Collab., conf. note 98-032, contrib. 4_396 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
- 31. M. Beneke, G. Buchalla, and I. Dunietz, Phys. Lett. B393, 132 (1997);
 I. Dunietz, Eur. Phys. J. C7, 197 (1999).
- 32. See the review on the CKM quark-mixing matrix by F.J. Gilman, K. Kleinknecht and B. Renk in this publication.
- S. Aoki, talk at 19th Int. Symp. on Lepton and Photon Interactions, Stanford, 1999, hep-ph/9912288;
 P. Ball et al., "B decays at the LHC," hep-ph/0003238 and CERN-TH/2000-101, to appear in the proceedings of the 1999 workshop on Standard Model physics at the LHC, CERN.
- 34. F. Abe *et al.*, **CDF** Collab., Phys. Rev. Lett. **82**, 3576 (1999).
- 35. W. Adam *et al.*, **DELPHI** Collab., Phys. Lett. **B414**, 382 (1997).
- 36. G. Abbiendi *et al.*, **OPAL** Collab., Eur. Phys. J. **C11**, 587 (1999).
- 37. **SLD** Collab., SLAC-PUB-8225, contrib. to 19th Int. Symp. on Lepton and Photon Interactions, Stanford, 1999.
- 38. K. Hartkorn and H.-G. Moser, Eur. Phys. J. **C8**, 381 (1999).
- 39. M. Acciarri *et al.*, **L3** Collab., Phys. Lett. **B438**, 417 (1998).

- 40. F. Abe *et al.*, **CDF** Collab., Phys. Rev. **D59**, 032004 (1999).
- 41. **DELPHI** Collab., contrib. 4_520 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
- 42. F. Abe *et al.*, **CDF** Collab., Phys. Rev. **D57**, 5382 (1998).
- 43. R. Barate *et al.*, **ALEPH** Collab., CERN-EP/2000-036, Feb. 2000, subm. to Phys. Lett. B.
- 44. See for example M. Beneke, G. Buchalla, and I. Dunietz, Phys. Rev. **D54**, 4419 (1996).
- 45. See the review on production and decay of b-hadrons by L. Gibbons and K. Honscheid in this publication.
- 46. D. Buskulic *et al.*, **ALEPH** Collab., Phys. Lett. **B377**, 205 (1996);
 - P. Abreu *et al.*, **DELPHI** Collab., Z. Phys. **C71**, 11 (1996):
 - K. Ackerstaff *et al.*, **OPAL** Collab., Phys. Lett. **B426**, 161 (1998).
- 47. P. Abreu *et al.*, **DELPHI** Collab., Phys. Lett. **B289**, 199 (1992);
 - P.D. Acton *et al.*, **OPAL** Collab., Phys. Lett. **B295**, 357 (1992);
 - D. Buskulic *et al.*, **ALEPH** Collab., Phys. Lett. **B361**, 221 (1995).
- 48. P. Abreu *et al.*, **DELPHI** Collab., Z. Phys. **C68**, 375 (1995);
 - R. Barate *et al.*, **ALEPH** Collab., Eur. Phys. J. **C2**, 197 (1998).
- 49. P. Abreu *et al.*, **DELPHI** Collab., Z. Phys. **C68**, 541 (1995);
 - D. Buskulic *et al.*, **ALEPH** Collab., Phys. Lett. **B384**, 449 (1996).
- 50. R. Barate *et al.*, **ALEPH** Collab., Eur. Phys. J. **C5**, 205 (1998).
- 51. **DELPHI** Collab., contrib. 5_515 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.

- F. Abe *et al.*, **CDF** Collab., Phys. Rev. **D60**, 092005 (1999);
 T. Affolder *et al.* **CDF** Collab. Phys. Rev. Lett. **84**, 1662.
 - T. Affolder *et al.*, **CDF** Collab., Phys. Rev. Lett. **84**, 1663 (2000).
- 53. **CDF** Collab., "Update to Proposal P-909: physics performance of the CDF II detector with an inner silicon layer and a time-of-flight detector," Jan. 1999; see www-cdf.fnal.gov/upgrades/btb_update_jan99.ps.

B⁰- \overline{B}^0 MIXING PARAMETERS

For a discussion of $B^0-\overline{B}^0$ mixing see the note on " $B^0-\overline{B}^0$ Mixing" in the B^0 Particle Listings above.

 χ_d is a measure of the time-integrated B^0 - \overline{B}^0 mixing probability that a produced $B^0(\overline{B}^0)$ decays as a $\overline{B}^0(B^0)$. Mixing violates $\Delta B \neq 2$ rule.

$$\chi_d = \frac{x_d^2}{2(1+x_d^2)}$$

$$x_d = \frac{\Delta m_{B^0}}{\Gamma_{B^0}} = (m_{B_H^0} - m_{B_L^0}) \tau_{B^0},$$

where H, L stand for heavy and light states of two B^0 CP eigenstates and $au_{B^0} = \frac{1}{0.5(\Gamma_{B^0_H} + \Gamma_{B^0_I})}$.

 χ_d

This B^0 - \overline{B}^0 mixing parameter is the probability (integrated over time) that a produced B^0 (or \overline{B}^0) decays as a \overline{B}^0 (or B^0), e.g. for inclusive lepton decays

$$\chi_d = \Gamma(B^0 \to \ell^- X \text{ (via } \overline{B}^0)) / \Gamma(B^0 \to \ell^{\pm} X)$$

= $\Gamma(\overline{B}^0 \to \ell^+ X \text{ (via } B^0)) / \Gamma(\overline{B}^0 \to \ell^{\pm} X)$

Where experiments have measured the parameter $r=\chi/(1-\chi)$, we have converted to χ . Mixing violates the $\Delta B \neq 2$ rule.

Note that the measurement of χ at energies higher than the $\Upsilon(4S)$ have not separated χ_d from χ_s where the subscripts indicate $B^0(\overline{b}d)$ or $B^0_s(\overline{b}s)$. They are listed in the $B^0_s-\overline{B}^0_s$ MIXING section.

The experiments at $\Upsilon(4S)$ make an assumption about the $B^0\overline{B}^0$ fraction and about the ratio of the B^\pm and B^0 semileptonic branching ratios (usually that it equals one).

OUR EVALUATION, provided by the LEP B Oscillation Working Group, includes χ_d calculated from Δm_{B^0} and τ_{B^0} .

<u>VALUE CL%</u>	<u>DOCUMENT ID</u>	<u>TECN</u>	<u>COMMENT</u>
0.174±0.009 OUR EVALUATI 0.156±0.024 OUR AVERAGE	ON		
$0.16 \pm 0.04 \pm 0.04$ $0.149 \pm 0.023 \pm 0.022$ 0.171 ± 0.048	314 ALBRECHT 315 BARTELT 316 ALBRECHT	93 CLE2	$e^{+}e^{-} \rightarrow \Upsilon(4S)$ $e^{+}e^{-} \rightarrow \Upsilon(4S)$ $e^{+}e^{-} \rightarrow \Upsilon(4S)$
HTTP://PDG.LBL.GOV	Page 67	Created	d: 12/18/2000 15:33

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.20 \ \pm 0.13 \ \pm 0.12$		³¹⁷ ALBRECHT	96D ARG	$e^+e^- \rightarrow \Upsilon(4S)$
$0.19 \ \pm 0.07 \ \pm 0.09$		³¹⁸ ALBRECHT		$e^+e^- \rightarrow \Upsilon(4S)$
0.24 ± 0.12		³¹⁹ ELSEN	90 JADE	$e^{+}e^{-}$ 35–44 GeV
$0.158 ^{igoplus 0.052}_{-0.059}$		ARTUSO	89 CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.17\ \pm0.05$				$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 0.19	90	321 BEAN	87B CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
< 0.27	90	³²² AVERY	84 CLEO	$e^+e^- \rightarrow \Upsilon(4S)$

- 314 ALBRECHT 94 reports r=0.194 \pm 0.062 \pm 0.054. We convert to χ for comparison. Uses tagged events (lepton + pion from D^*).
- ³¹⁵BARTELT 93 analysis performed using tagged events (lepton+pion from D^*). Using dilepton events they obtain $0.157 \pm 0.016 \stackrel{+}{-} 0.033$
- 316 ALBRECHT 92L is a combined measurement employing several lepton-based techniques. It uses all previous ARGUS data in addition to new data and therefore supersedes AL-BRECHT 871. A value of $r=20.6\pm7.0\%$ is directly measured. The value can be used to measure $x = \Delta M/\Gamma = 0.72 \pm 0.15$ for the B_d meson. Assumes $f_{+-}/f_0 = 1.0 \pm 0.05$ and uses $\tau_{B^{\pm}}/\tau_{B^0} = (0.95 \pm 0.14) (f_{+-}/f_0)$.
- 317 Uses D^{*+} K^{\pm} correlations. 318 Uses $(D^{*+}$ ℓ^-) K^{\pm} correlations.
- 319 These experiments see a combination of $B_{\rm S}$ and $B_{\rm d}$ mesons.
- $^{
 m 320}$ ALBRECHT 871 is inclusive measurement with like-sign dileptons, with tagged B decays plus leptons, and one fully reconstructed event. Measures r=0.21 \pm 0.08. We convert to χ for comparison. Superseded by ALBRECHT 92L.
- $^{321}\,\mathrm{BEAN}$ 87B measured r<~0.24; we converted to $\chi.$
- 322 Same-sign dilepton events. Limit assumes semileptonic BR for B^+ and B^0 equal. If B^0/B^{\pm} ratio <0.58, no limit exists. The limit was corrected in BEAN 87B from r < 0.30 to r < 0.37. We converted this limit to χ .

$\Delta m_{B^0} = m_{B^0_{\mu}} - m_{B^0_{\mu}}$

 Δm_{B^0} is a measure of 2π times the $B^0 {\overline B}{}^0$ oscillation frequency in time-dependent mixing experiments.

The second "OUR EVALUATION" (0.478 \pm 0.018) is an average of the data listed below performed by the LEP B Oscillation Working Group as described in our "Review of $B-\overline{B}$ Mixing" in the B^0 Section of these Listings. The averaging procedure takes into account correlations between the measurements.

The first "OUR EVALUATION" (0.472 \pm 0.017), also provided by the LEP B Oscillation Working Group, includes Δm_d calculated from χ_d measured at $\Upsilon(4S)$.

$VALUE (10^{12} \ h \ s^{-1})$ DOCUMENT ID **EVTS** TECN COMMENT 0.472 ± 0.017 OUR EVALUATION 0.478 ± 0.018 OUR EVALUATION

 $[(0.467 \pm 0.015) \times 10^{12} \ \hbar \ s^{-1} \ OUR \ 1998 \ AVERAGE]$ Average is meaningless. ³²³ ABE $p\overline{p}$ at 1.8 TeV $0.503 \pm 0.064 \pm 0.071$ 99k CDF 324 ABE 990 CDF $p\overline{p}$ at 1.8 TeV $0.500 \pm 0.052 \pm 0.043$

```
0.516\!\pm\!0.099\!+\!0.029\\-0.035
                                           <sup>325</sup> AFFOLDER
                                                                     99c CDF
                                                                                     p\overline{p} at 1.8 TeV
0.471 ^{+\, 0.078\, +\, 0.033}_{-\, 0.068\, -\, 0.034}
                                           326 ABE
                                                                     98c CDF
                                                                                     p\overline{p} at 1.8 TeV
                                           <sup>327</sup> ACCIARRI
                                                                                      e^+e^- \rightarrow Z
                                                                     98D L3
0.458 \pm 0.046 \pm 0.032
                                           328 ACCIARRI
                                                                     98D L3
                                                                                      e^+e^- \rightarrow Z
0.437 \pm 0.043 \pm 0.044
                                           <sup>329</sup> ACCIARRI
                                                                                      e^+e^- \rightarrow Z
                                                                     98D L3
0.472 \pm 0.049 \pm 0.053
                                           330 ABREU
                                                                     97N DLPH e^+e^- \rightarrow Z
0.523 \pm 0.072 \pm 0.043
                                           328 ABREU
                                                                     97N DLPH e^+e^- \rightarrow Z
0.493 \pm 0.042 \pm 0.027
                                           <sup>331</sup> ABREU
                                                                     97N DLPH e^+e^- 	o Z
0.499 \pm 0.053 \pm 0.015
                                           327 ABREU
                                                                     97N DLPH e^+e^- \rightarrow Z
0.480 \pm 0.040 \pm 0.051
0.444\!\pm\!0.029 \!+\! 0.020 \\ -0.017
                                           ^{328} ACKERSTAFF 970 OPAL \,e^{+}\,e^{-}
ightarrow\,Z
0.430\!\pm\!0.043 \!+\! 0.028 \\ -0.030
                                           ^{327} ACKERSTAFF 97V OPAL e^+e^- \rightarrow Z
                                           <sup>332</sup> BUSKULIC
                                                                                     e^+e^- \rightarrow Z
                                                                     97D ALEP
0.482 \pm 0.044 \pm 0.024
                                           <sup>328</sup> BUSKULIC
                                                                     97D ALEP
                                                                                     e^+e^- \rightarrow Z
0.404 \pm 0.045 \pm 0.027
                                           <sup>327</sup> BUSKULIC
                                                                                     e^+e^- \rightarrow Z
                                                                     97D ALEP
0.452 \pm 0.039 \pm 0.044
                                           <sup>333</sup> ALEXANDER
0.539 \pm 0.060 \pm 0.024
                                                                    96V OPAL e^+e^- \rightarrow Z
0.567 \pm 0.089 + 0.029
                                           <sup>334</sup> ALEXANDER
                                                                     96V OPAL e^+e^- \rightarrow Z
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                           <sup>335</sup> ACCIARRI
                                                                     98D L3
                                                                                      e^+e^- \rightarrow Z
0.444 \pm 0.028 \pm 0.028
                                           <sup>336</sup> ABREU
                                                                     97N DLPH e^+e^- \rightarrow Z
0.497 \pm 0.035
0.467\!\pm\!0.022^{\phantom{0}+\phantom{0}0.017}_{\phantom{0}-\phantom{0}0.015}
                                           ^{337} ACKERSTAFF 97V OPAL \,e^+e^-
ightarrow\,Z
                                           <sup>338</sup> BUSKULIC
                                                                     97D ALEP e^+e^- \rightarrow Z
0.446 \pm 0.032
0.531^{\,+\,0.050}_{\,-\,0.046}\,{\pm}\,0.078
                                           339 ABREU
                                                                     96Q DLPH Sup. by ABREU 97N
0.496 ^{\,+\, 0.055}_{\,-\, 0.051} \!\pm\! 0.043
                                           <sup>327</sup> ACCIARRI
                                                                     96E L3
                                                                                     Repl. by ACCIARRI 98D
0.548\!\pm\!0.050\!+\!0.023\\-0.019
                                           <sup>340</sup> ALEXANDER
                                                                     96V OPAL e^+e^- \rightarrow Z
                                           341 AKERS
0.496 \pm 0.046
                                                                     95J OPAL Repl. by ACKER-
                                                                                         STAFF 97V
0.462 {}^{+\, 0.040 \, +\, 0.052}_{-\, 0.053 \, -\, 0.035}
                                           327 AKERS
                                                                     95J OPAL
                                                                                     Repl. by ACKER-
                                                                                         STAFF 97V
                                           330 ABREU
0.50 \pm 0.12 \pm 0.06
                                                                     94M DLPH
                                                                                     Sup. by ABREU 97N
                                           333 AKERS
0.508 \pm 0.075 \pm 0.025
                                                                     94C OPAL
                                                                                     Repl. by ALEXAN-
                                                                                         DER 96V
                                           334 AKERS
0.57 \pm 0.11 \pm 0.02
                                  153
                                                                     94H OPAL
                                                                                     Repl. by ALEXAN-
                                                                                         DER 96V
\begin{array}{cccc} 0.50 & +0.07 & +0.11 \\ -0.06 & -0.10 \end{array}
                                           <sup>327</sup> BUSKULIC
                                                                     94B ALEP
                                                                                     Sup. by BUSKULIC 97D
0.52 \begin{tabular}{cccc} +0.10 & +0.04 \\ -0.11 & -0.03 \end{tabular}
                                           <sup>334</sup> BUSKULIC
                                                                     93k ALEP
                                                                                     Sup. by BUSKULIC 97D
323 Uses di-muon events.
<sup>324</sup> Uses jet-charge and lepton-flavor tagging.
325 Uses \ell^- D^{*+} - \ell events.
326\,\mathrm{Uses}~\pi\text{-}B in the same side.
327 Uses \ell-\ell.
328 Uses \ell-Q_{hem}.
^{329} Uses \ell\text{-}\ell with impact parameters.
330_{\mathrm{Uses}} D^{*\pm}-Q_{\mathrm{hem}}.
```

- $^{331}\,\mathrm{Uses}\ \pi_s^\pm\,\ell\text{-}Q_\mathrm{hem}.$
- 332 Uses $D^{*\pm}$ - ℓ/Q_{hem} .
- 333 Uses $D^{*\pm}\ell$ - Q_{hem} .
- 334 Uses $D^{*\pm}$ - ℓ .
- 335 ACCIARRI 98D combines results from ℓ - ℓ , ℓ - Q_{hem} , and ℓ - ℓ with impact parameters.
- 336 ABREU 97N combines results from $D^{*\pm}$ - $Q_{\rm hem}$, ℓ - $Q_{\rm hem}$, π_s^{\pm} ℓ - $Q_{\rm hem}$, and ℓ - ℓ . 337 ACKERSTAFF 97V combines results from ℓ - ℓ , ℓ - $Q_{\rm hem}$, D^* - ℓ , and $D^{*\pm}$ - $Q_{\rm hem}$.
- $^{338}\, \rm BUSKULIC$ 97D combines results from $D^{*\pm}\text{-}\ell/Q_{\rm hem}$, $\ell\text{-}Q_{\rm hem}$, and $\ell\text{-}\ell.$
- ³³⁹ ABREU 96Q analysis performed using lepton, kaon, and jet-charge tags.
- 340 ALEXANDER 96V combines results from $D^{*\pm}$ - ℓ and $D^{*\pm}$ ℓ - Q_{hem} .
- 341 AKERS 95J combines results fromt charge measurement, $D^{*\pm}$ ℓ - $Q_{
 m hem}$ and ℓ - ℓ .

 $x_d = \Delta m_{B^0} / \Gamma_{B^0}$

The second "OUR EVALUATION" (0.740 \pm 0.031) is an average of the data listed in Δm_{R0} section performed by the LEP B Oscillation Working Group as described in our "Review of $B-\overline{B}$ Mixing" in the B^0 Section of these Listings. The averaging procedure takes into account correlations between the measurements.

The first "OUR EVALUATION" (0.730 \pm 0.029), also provided by the LEP B Oscillation Working Group, includes χ_d measured at $\Upsilon(4S)$.

DOCUMENT ID

VALUE 0.730 ± 0.029 OUR EVALUATION

 0.740 ± 0.031 OUR EVALUATION

CP VIOLATION IN B DECAY – STANDARD MODEL PREDICTIONS

Revised January 2000 by H. Quinn (SLAC) and A.I. Sanda (Nagoya University).

With the commissioning of the asymmetric B Factories at KEKB and PEP II, and of CESR III and with the completion of the main ring injector at Fermilab, we are headed into an exciting time for the study of CP violation in B meson decays. This review outlines the basic ideas of such studies. For the most part, we follow the discussions given in Refs. [1–3].

Time evolution of neutral B meson states

Neutral B mesons, like neutral K mesons, have mass eigenstates which are not flavor eigenstates. This subject is reviewed separately [4]. Here we give some formulae to establish the notation used in this review. The mass eigenstates are given by:

$$|B_1\rangle = p|B^0\rangle + q|\overline{B}^0\rangle ,$$

$$|B_2\rangle = p|B^0\rangle - q|\overline{B}^0\rangle ,$$
(1)

where B^0 and \overline{B}^0 are flavor eigenstates containing the \overline{b} and b quarks respectively. The ratio

$$\frac{q}{p} = +\sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}} \ . \tag{2}$$

Created: 12/18/2000 15:33

Here, the CP operator is defined so that $CP|B^0\rangle = |\overline{B}^0\rangle$, and CPT symmetry is assumed. We define $M_{12} = \overline{M}_{12}e^{i\xi}$, where the phase ξ is restricted to $-\frac{1}{2}\pi < \xi < \frac{1}{2}\pi$, and \overline{M}_{12} is taken to be real but not necessarily positive; and similarly (with a

different phase) for Γ_{12} . The convention used here is that the real part of q/p is positive.

The differences in the eigenvalues $\Delta M = M_2 - M_1$ and $\Delta \Gamma = \Gamma_1 - \Gamma_2$ are given by

$$\Delta M = -2\operatorname{Re}\left(\frac{q}{p}(M_{12} - \frac{i}{2}\Gamma_{12})\right)$$

$$\simeq -2\overline{M}_{12}$$

$$\Delta\Gamma = -4\operatorname{Im}\left(\frac{q}{p}(M_{12} - \frac{i}{2}\Gamma_{12})\right)$$

$$\simeq 2\overline{\Gamma}_{12}\cos\zeta. \tag{3}$$

Here we denoted $\frac{\Gamma_{12}}{M_{12}} = re^{i\zeta}$. As we expect $r \sim 10^{-3}$ in the Standard Model for B_d , we kept only the leading order term in r. In the Standard Model, with these conventions and given that all models give a positive value for the parameter B_B , ΔM is positive, so that B_2 is heavier than B_1 ; this is unlikely to be tested soon. (Note that a common alternative convention is to name the two states B_L and B_H for light and heavy respectively; then the sign of q/p becomes the quantity to be tested.)

This review focuses on the B_d system, but also mentions some possibly interesting studies for CP violation in B_s decays, which may be pursued at hadron colliders. Much of the discussion here can be applied directly for B_s decays with the appropriate replacement of the spectator quark type.

The time evolution of states starting out at time t = 0 as pure B^0 or \overline{B}^0 is given by:

$$|B^{0}(t)\rangle = g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B}^{0}\rangle$$
$$|\overline{B}^{0}(t)\rangle = g_{+}(t)|\overline{B}^{0}\rangle + \frac{p}{q}g_{-}(t)|B^{0}\rangle, \tag{4}$$

where

$$g_{\pm}(t) = \frac{1}{2}e^{-iM_1t}e^{-\frac{1}{2}\Gamma_1t}\left[1 \pm e^{-i\Delta Mt}e^{\frac{1}{2}\Delta\Gamma t}\right].$$
 (5)

We define

$$A(f) = \langle f|H|B^{0}\rangle ,$$

$$\overline{A}(f) = \langle f|H|\overline{B}^{0}\rangle ,$$

$$\overline{\rho}(f) = \frac{\overline{A}(f)}{A(f)} = \rho(f)^{-1} ,$$
(6)

where f is a final state that is possible for both B^0 and \overline{B}^0 decays. The time-dependent decay rates are thus given by

$$\Gamma(B^{0}(t) \to f)$$

$$\propto e^{-\Gamma_{1}t} |A(f)|^{2} \left[K_{+}(t) + K_{-}(t) \left| \frac{q}{p} \right|^{2} |\overline{\rho}(f)|^{2} \right]$$

$$+ 2\operatorname{Re} \left[L^{*}(t) \left(\frac{q}{p} \right) \overline{\rho}(f) \right], \qquad (7)$$

$$\Gamma(\overline{B}^{0}(t) \to f)$$

$$\propto e^{-\Gamma_1 t} |\overline{A}(f)|^2 \left[K_+(t) + K_-(t) \left| \frac{p}{q} \right|^2 |\rho(f)|^2 + 2 \operatorname{Re} \left[L^*(t) \left(\frac{p}{q} \right) \rho(f) \right] \right], \tag{8}$$

where

$$|g_{\pm}(t)|^{2} = \frac{1}{4}e^{-\Gamma_{1}t}K_{\pm}(t) ,$$

$$g_{-}(t)g_{+}^{*}(t) = \frac{1}{4}e^{-\Gamma_{1}t}L^{*}(t) ,$$

$$K_{\pm}(t) = 1 + e^{\Delta\Gamma t} \pm 2e^{\frac{1}{2}\Delta\Gamma t}\cos\Delta Mt ,$$

$$L^{*}(t) = 1 - e^{\Delta\Gamma t} + 2ie^{\frac{1}{2}\Delta\Gamma t}\sin\Delta Mt .$$
(9)

HTTP://PDG.LBL.GOV

Page 73

For the case of B_d decays the quantity $\Delta\Gamma/\Gamma$ is small and is usually dropped, for B_s decays it may be significant [6] and hence is retained in Eqs. 4–8.

Three classes of CP violation in B decays

When two amplitudes with different phase-structure contribute to a B decay, they may interfere and produce CP-violating effects [5]. There are three distinct types of CP violation: (1) CP violation from nonvanishing relative phase between the mass and the width parts of the mixing matrix which gives $|q/p| \neq 1$, often called "indirect;" (2) Direct CP violation, which is any effect that indicates two decay amplitudes have different weak phases (those arising from Lagrangian couplings), in particular it occurs whenever $|\rho(f)| \neq 1$; (3) Interference between a decays with and without mixing which can occur for decays to CP eigenstates whenever $Arg((q/p)\overline{\rho}(f)) \neq 0$. This can occur even for modes where both the other types do not, i.e. |q/p|, $|\rho(f)| = 1$.

(1) Indirect CP violation

In the next few years, experiments will accumulate a large number of semileptonic B decays. Any asymmetry in the wrong-sign semileptonic decays (or in any other wrong-flavor decays) is a clean sign of indirect CP violation.

The semileptonic asymmetry for the wrong sign B_q decay, where q = d or s, is given by

$$a_{SL}(B_q) = \frac{\Gamma(\overline{B}_q(t) \to \ell^+ X) - \Gamma(B_q(t) \to \ell^- X)}{\Gamma(\overline{B}_q(t) \to \ell^+ X) + \Gamma(B_q(t) \to \ell^- X)}$$
$$= \frac{|p/q|^2 - |q/p|^2}{|p/q|^2 + |q/p|^2} = r_{B_q} \sin \zeta_{B_q} , \qquad (10)$$

where we kept only the leading order term in r_{B_q} . Within the context of the Standard Model, if hadronic rescattering effects

are small then $\sin \zeta_{B_q}$ is small because M_{12} and Γ_{12} acquire their phases from the same combination of CKM matrix elements. Since this asymmetry is tiny in the Standard Model, this may be a fruitful area to search for physics beyond the Standard Model.

(2) Direct CP violation

Direct CP violation is the name given to CP violation that arises because there is a difference between the weak phases of any two decay amplitudes for a single decay. Weak phases are those that arise because of a complex coupling constant in the Lagrangian. Note that a single weak phase from a complex coupling constant is never physically meaningful because it can generally be removed by redefining some field by a phase. Only the differences between the phases of couplings which cannot be changed by such redefinitions are physically meaningful. The strong and electromagnetic couplings can always be defined to be real but, as Kobayashi and Maskawa first observed, in the three generation Standard Model one cannot remove all the phases from the CKM matrix by any choice of field redefinitions [7].

There are two distinct ways to observe direct CP-violation effects in B decays:

• $|\overline{A_f}/A_f| \neq 1$ leading to rate asymmetries for CP-conjugate decays. Here, two amplitudes with different weak phases must contribute to the same decay; they must also have different strong phases, that is, the phases that arise because of absorptive parts (often called final-state interaction effects). When the final state f has different flavor content than its CP conjugate, this gives a rate asymmetry that is directly observable. The asymmetry is given by

$$a = \frac{2A_1 A_2 \sin(\xi_1 - \xi_2) \sin(\delta_1 - \delta_2)}{A_1^2 + A_2^2 + 2A_1 A_2 \cos(\xi_1 - \xi_2) \cos(\delta_1 - \delta_2)},$$
 (11)

where the A_i are the magnitudes, the ξ_i are the weak phases, and the δ_i are the strong phases of the two amplitudes contributing to A_f . The impact of direct CP violation of this type in decays of neutral B's to flavor eigenstates is discussed below.

• Any difference (other than an overall sign) between the CP asymmetries for decays of B_d mesons to flavor eigenstates, or between those of neutral B_s mesons, is an evidence of direct CP violation. As is shown below, such asymmetries arise whenever the decay weak phase is not canceled by the mixing weak phase, hence any two different results imply that there is a difference between the weak phases of the amplitudes for the two decays. Only if the asymmetries are the same can one choose a phase convention which ascribes all CP-violating phases to the mixing amplitude. For example, the expected asymmetries for the $B \to J/\psi K_S$ and $B \to \pi\pi$ decays are different (whether or not penguin graphs add additional direct CP-violating effects of the type $|\overline{A}_{\overline{f}}/A_f| \neq 1$ in the latter channel) because the dominant decay amplitudes have different weak phases in the Standard Model.

(3) Decays of B^0 and \overline{B}^0 to CP eigenstates

In decays to ${\cal CP}$ eigenstates, the time-dependent asymmetry is given by

$$a_f(t) = \frac{\Gamma(\overline{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\overline{B}^0(t) \to f) + \Gamma(B^0(t) \to f)}.$$
 (12)

Asymmetry is generated if: (i) both $A(B\to f)$ and $A(\overline B\to f)$ are nonzero; and (ii) the mixing weak phase in $\frac{q}{p}$ is different from the weak decay phase in $\overline p(f)$. To the leading order in r, the Standard Model predicts

$$q/p = \frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} = e^{-i2\phi_{\text{mixing}}}$$
 (13)

If there is only one amplitude (or two with the same weak phase) contributing to $A(B \to f)$ and $A(\overline{B} \to f)$ then $|\overline{\rho}(f)| = 1$ and the relationship between the measured asymmetry and the Kobayshi-Maskawa phases is cleanly predicted by

$$a_f(t) = \operatorname{Im}\left(\frac{q}{p}\overline{\rho}(f)\right) \sin \Delta M t$$
$$= -\eta_f \sin 2(\phi_{\text{mixing}} + \phi_{\text{decay}}) \sin \Delta M t . \tag{14}$$

Here we have used the fact that in such cases we can write $\overline{\rho}(f) = \eta_f e^{-i2\phi_{\text{decay}}}$ where $\eta_f = \pm$ is the CP eigenvalue of the state f. The weak phases ϕ_{mixing} and ϕ_{decay} are parameterization dependent quantities, but the combination $\phi_{\text{mixing}} + \phi_{\text{decay}}$ is parameterization independent. This is CP violation due to the interference between decays with and without mixing. Note that a single measurement of $\sin(2\phi)$ yields four ambiguous solutions for ϕ .

When more than one amplitude with different weak phases contribute to a decay to a CP eigenstate there can also be direct CP violation effects $|\lambda_f = (q/p) \rho(f)| \neq 1$ and the asymmetry takes the more complicated form

$$a_f(t) = \frac{(|\lambda_f|^2 - 1)\cos(\Delta M t) + 2\operatorname{Im}\lambda_f\sin(\Delta M t)}{(1 + |\lambda_f|^2)} \ . \tag{15}$$

The quantity λ_f involves the ratio of the two amplitudes that contribute to A_f as well as their relative strong phases and hence introduces the uncertainties of hadronic physics into the relationship between the measured asymmetry and the K–M phases. However in certain cases such channels can be useful in resolving the ambiguities mentioned above. If $\cos(2\phi)$ can be measured as well as $\sin(\phi)$ only a two-fold ambiguity remains. This can be resolved only by knowledge of the sign of certain strong phase shifts [8].

When a B meson decays to a CP self-conjugate set of quarks the final state is in general a mixture of CP even and CP odd states, which contribute opposite sign and hence partially canceling asymmetries. In two special cases, namely the decay to two spin zero particles, or one spin zero and one non-zero spin particle there is a unique CP eigenvalue because there is only one possible relative angular momentum between the two final state particles. Quasi-two-body modes involving two particles with non-zero spin can sometimes be resolved into contributions of definite CP by angular analysis of the decays of the "final-state" particles [9].

There can also be a direct CP violation in these channels from the interference of two contributions to the same decay amplitude, $|\rho(f)| \neq 1$. This introduces dependence on the relative strengths of the two amplitude contributions and on their relative strong phases. Since these cannot be reliably calculated at present, this complicates the attempt to relate the measured asymmetry to the phases of CKM matrix elements.

$Standard\ Model\ predictions\ for\ CP\mbox{-}violating\ asymmetries$

• Unitarity Triangles

The requirement that the CKM matrix be unitary leads to a number of relationships among its entries. The constraints that the product of row i with the complex conjugate of row j is zero are generically referred to as "unitarity triangles" because they each take the form of a sum of three complex numbers equal to zero and hence can be represented by triangles in the complex plane. There are six such relationships, (see for example Ref. 10); the most commonly studied is that with all angles of the same order of magnitude, given by the relationship

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0. (16)$$

This relation can be represented as a triangle on the complex plane, as shown in Fig. 1, where the signs of all three angles are also defined. When the sides are scaled by $|V_{cd}V_{cb}^*|$, the apex of the triangle is the point ρ , η , where these parameters are defined by the Wolfenstein parameterization of the CKM matrix [11]. If $\eta = 0$, the CKM matrix is real and there is no CP violation in the Standard Model.

Figure 1: Angles of the unitarity triangle are related to the Kobayashi-Maskawa phases of the CKM matrix. The right-hand rule gives the positive direction of the angle between two vectors. This figure was reproduced from Ref. 1 with permission from Cambridge University Press.

The angles of the triangle are

$$\phi_{1} = \pi - \arg\left(\frac{-V_{tb}^{*}V_{td}}{-V_{cb}^{*}V_{cd}}\right) = \beta ,$$

$$\phi_{2} = \arg\left(\frac{V_{tb}^{*}V_{td}}{-V_{ub}^{*}V_{ud}}\right) = \alpha ,$$

$$\phi_{3} = \arg\left(\frac{V_{ub}^{*}V_{ud}}{-V_{cb}^{*}V_{cd}}\right) = \gamma .$$

$$(17)$$

Two naming conventions for these angles are commonly used in the literature [12,13]; we provide the translation dictionary

in Eq. (17), but use the ϕ_i notation in the remainder of this review, where ϕ_i is the angle opposite the side $V_{ib}^*V_{id}$ of the unitarity triangle and i represents the i-th up-type quark. As defined here, for consistency with the measured value of ϵ_K , these angles are all positive in the Standard Model, thus a determination of the sign of these angles constitutes a test of the Standard Model [14].

There are two other independent angles of the Standard Model which appear in other triangles. These are denoted

$$\chi = \arg\left(\frac{-V_{cs}^* V_{cb}}{V_{ts}^* V_{tb}}\right) = \beta_s$$

$$\chi' = \arg\left(\frac{-V_{ud}^* V_{us}}{V_{cd}^* V_{cs}}\right) = -\beta_K .$$
(18)

Again there are two naming conventions in common usage so we give both. These angles are of order λ^2 and λ^4 respectively [15], where $\lambda = V_{us}$. The first of them is the phase of the B_s mixing and thus is in principle measurable, though it will not be easy to achieve a result significantly different from zero for such a small angle. The angle χ' will be even more difficult to measure. Meaningful standard model tests can be defined which use the measured value of λ coupled with χ and any two of the three ϕ_i [16].

A major aim of CP-violation studies of B decays is to make enough independent measurements of the sides and angles that this unitarity triangle is overdetermined, and thereby check the validity of the Standard Model predictions that relate various measurements to aspects of this triangle. Constraints can be made on the basis of present data on the B-meson mixing and lifetime, and on the ratio of charmless decays to decays with charm (V_{ub}/V_{cb}) , and on ϵ in K decays [17]. These constraints have been discussed in many places in the literature; for a

recent summary of the measurements involved, see Ref. [18]. Note, however, that any given "Standard Model allowed range" cannot be interpreted as a statistically-based error range. The ranges of allowed values depend on matrix element estimates. Improved methods to calculate such quantities, and understand the uncertainties in them, are needed to further sharpen tests of the Standard Model. Recent progress in lattice simulation using dynamical fermions seems encouraging [19]. It can be hoped that reliable computations of f_B , B_B , and B_K will be completed in the next few years. This will reduce the theoretical uncertainties in the relationships between measured mixing effects and the magnitudes of CKM parameters.

In the Standard Model there are only two independent phases in this triangle since, by definition, the three angles add up to π . The literature often discusses tests of whether the angles add up to π ; but this really means tests of whether relationships between different measurements, predicted in terms of the two independent parameters in the Standard Model, hold true. For example, many models that go beyond the Standard Model predict an additional contribution to the mixing matrix. Any change in phase of M_{12} will change the measured asymmetries so that $\phi_1(\text{measured}) \to \phi_1 - \phi_{\text{new}}$ and $\phi_2(\text{measured}) \to \phi_2 + \phi_{\text{new}}$. Thus the requirement that the sum of the three angles must add up to π is not sensitive to ϕ_{new} [20]. However, the angles as determined from the sides of the triangle would, in general, no longer coincide with those measured from asymmetries. It is equally important to check the asymmetries in channels for which the Standard model predicts very small or vanishing asymmetries. A new mixing contribution which changes the phase of M_{12} will generate significant asymmetries in such

channels. In the Standard Model the CKM matrix must be unitary, this leads to relationships among its entries.

• Standard Model decay amplitudes

In the Standard Model, there are two classes of quarklevel diagrams that contribute to hadronic B decays, as shown in Fig. 2. Tree diagrams are those where the W produces an additional quark-antiquark pair. Penguin diagrams are loop diagrams where the W reconnects to the same quark line. Penguin diagrams can further be classified by the nature of the particle emitted from the loop: gluonic or QCD penguins if it is a gluon, and electroweak penguins if it is a photon or a Z boson. In addition, one can label penguin diagrams by the flavor of the up-type quark in the loop; for any process all three flavor types contribute. For some processes, there are additional annihilation-type diagrams; these always contribute to the same CKM structure as the corresponding trees. For a detailed discussion of the status of calculations based on these diagrams, or rather on the more complete operator product approach which also includes higher order QCD corrections see, for example, Ref. 21. Note that the distinction between tree and penguin contributions is a heuristic one, the separation of contributions by the operator that enters is more precise.

To explore possible CP violations, it is useful to tabulate all possible decays by the CKM structure of the various amplitudes. Let us first consider decays $b \to q\overline{q}'s$. The CKM factors for the diagrams for such decays are given in Table 1. Here we have used the fact that, for all such decays, the contribution to the amplitude from penguin graphs has the structure

$$A_{P}(q\overline{q}s) = V_{tb}V_{ts}^{*}P_{t} + V_{cb}V_{cs}^{*}P_{c} + V_{ub}V_{us}^{*}P_{u} , \qquad (19)$$

Figure 2: Quark level processes for the example of $b \to c\overline{c}s$. (a) Tree diagram; (b) Penguin diagram. In the case of electroweak penguin contributions, the gluon is replaced by a Z or a γ .

where the P_i quantities are the amplitudes described by the loop diagram with a flavor i quark apart from the explicitly shown CKM factor (i.e., including strong phases). These are actually divergent quantities, so it is convenient to use a Standard Model unitarity relationship, $V_{tb}V_{ts}^* + V_{cb}V_{cs}^* + V_{ub}V_{us}^* = 0$, to regroup them in the following way

$$A_{P}(q\overline{q}s) = V_{cb}V_{cs}^{*}(P_{c} - P_{t}) + V_{ub}V_{us}^{*}(P_{u} - P_{t}) , \qquad (20)$$

or, equivalently,

$$A_P(q\bar{q}s) = V_{tb}V_{ts}^*(P_t - P_c) + V_{ub}V_{us}^*(P_u - P_c) . (21)$$

The first term is of order λ^2 , whereas the second is of order λ^4 , and can be ignored in most instances. For modes with $q' \neq q$, there are no penguin contributions. Note also that for the $q\overline{q} = u\overline{u}$, $d\overline{d}$ cases, the QCD penguin graphs contribute only to the isospin zero combinations, whereas tree graphs contribute only for $u\overline{u}$ and hence have both $\Delta I = 0$ and $\Delta I = 1$ parts, as do electroweak penguins.

The CKM coefficients for $b \to q\overline{q}'d$ are listed in Table 2. A similar exercise to that described above for the penguins yields

$$A_P(q\bar{q}d) = V_{tb}V_{td}^*(P_t - P_c) + V_{ub}V_{ud}^*(P_u - P_c) . {22}$$

Here the two CKM contributions are of the same order of magnitude λ^3 , so both must be considered. This grouping is generally preferred over the alternative, because the second term here is somewhat smaller than the first term; it has no top-quark contribution and would vanish if the up and charm quarks were degenerate. In early literature it was often dropped, but, particularly for modes where there is no tree contribution, its effect in generating direct CP violation may be important [22]. Here the $q\bar{q}=u\bar{u}, d\bar{d}$ cases in the penguin graph contribute only to the isospin zero combinations, yielding $\Delta I=1/2$ for the three-quark combination, whereas tree graphs and electroweak penguins have both $\Delta I=1/2$ and $\Delta I=3/2$ parts. For $q\bar{q}=c\bar{c}$, isospin does not distinguish between tree and penguin contributions.

Table 1: $B \to q\overline{q}s$ decay modes

Quark process	Leading term	Secondary term	Sample B_d modes	B_d angle	Sample B_s modes	B_s angle
$b \to c\overline{c}s$	$V_{cb}V_{cs}^* = A\lambda^2$ tree + penguin(c - t)	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$ penguin only(u - t)	$J/\psi K_S$	β	$J/\psi\eta$ $D_s\overline{D}_s$	0
$b o s \overline{s} s$	$V_{cb}V_{cs}^* = A\lambda^2$ penguin only(c - t)	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$ penguin only(u - t)	ϕK_S	β	$\phi\eta'$	0
$b \to u\overline{u}s$ $b \to d\overline{d}s$	$V_{cb}V_{cs}^* = A\lambda^2$ penguin only $(c-t)$	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$ tree + penguin(u - t)	$\pi^0 K_S$ ρK_S	competing terms	$\phi \pi^0 \ K_S \overline{K}_S$	competing

GOV Page 85 Created: 12/18/2000 15:33

Table 2: $B \to q\overline{q}d$ decay modes

	-				
Quark process	Leading term	Secondary term	Sample B_d modes	B_d angle	Sample B_s modes
$b \to c\overline{c}d$	$V_{cb}V_{cd}^* = -A\lambda^3$ tree + penguin(c - u)	$V_{tb}V_{td}^* = A\lambda^3(1 - \rho + i\eta)$ penguin only $(t - u)$	D^+D^-	*β	J/\psiK_S
$b \to s\overline{s}d$	$V_{tb}V_{td}^* = A\lambda^3(1 - \rho + i\eta)$ penguin only $(t - u)$	$V_{cb}V_{cd}^* = A\lambda^3$ penguin only(c - u)	$\phi\pi \ K_S\overline{K}_S$	competing	ϕK_S
$b \to u\overline{u}d$ $b \to d\overline{d}d$	$V_{ub}V_{ud}^* = A\lambda^3(\rho - i\eta)$ tree + penguin(u - c)	$V_{tb}V_{td}^* = A\lambda^3(1 - \rho + i\eta)$ penguin only $(t - c)$	$\pi\pi; \pi ho \ \pi a_1$	*\alpha	$\pi^0 K_S$ $ ho^0 K_S$
$b \to c \overline{u} d$	$V_{cb}V_{ud}^* = A\lambda^2$	0	$ \begin{array}{c} D^0 \pi^0, \ D^0 \rho^0 \\ \downarrow \downarrow C I \end{array} $	β P eigenstate	$ \begin{array}{c} D^0 K_S \\ $

 $^{^*\}mbox{Leading terms}$ only, large secondary terms shift asymmetry.

DG.LBL.GOV Page 86 Created: 12/18/2000 15:33

Modes with direct CP violation

The largest direct CP violation is expected when there are two comparable magnitude contributions with different weak phases. Modes where the tree graphs are Cabibbo suppressed, compared to the penguins or modes with two comparable penguin contributions, are thus the best candidates. As can be seen from the tables and expressions for penguin contributions above, there are many possible modes to study. Because strong phases cannot usually be predicted, there is no clean prediction as to which modes will show the largest direct CP-violation effects. One interesting suggestion is to study three-body modes with more than one resonance in the same kinematic region. Then the different amplitudes can have very different, possibly known, strong phase structure because of the resonance (Breit-Wigner) phases [23].

Over the past two years, new information has become available from the CLEO Collaboration which suggests that penguin contributions, at least for some modes, are larger than initial estimates suggested. This is seen by using SU(3) and comparing $B \to K\pi$ and $B \to \pi\pi$ decays. To get an order of

magnitude picture, we ignore such details as Clebsch-Gordan coefficients and assume that top penguins dominate the penguin contributions. Thus, we identify the tree and penguin contributions, minus their CKM coefficients, as T and P, the same for both modes. Writing $A_{T,P}(K\pi)$ for the tree and penguin contributions to the $K\pi$ amplitude, and similarly for $\pi\pi$ from the Tables, we see that $|A^T(K\pi)/A^T(\pi\pi)| = \mathcal{O}(\lambda)$. Thus, if the tree graph matrix elements were to dominate both decays, we would expect $Br(B \to K\pi)/Br(B \to \pi\pi) \sim \mathcal{O}(\lambda^2)$. Naively, this was expected, since the ratio of tree to penguin contribution was estimated to be $\frac{P}{T} = \frac{\alpha_S}{12\pi} \log \frac{m_t^2}{m_b^2} \sim \mathcal{O}(0.02)$. Experimentally, this is not so [24]; in fact, the $K\pi$ branching ratio is larger. This indicates that $A^{P}(K\pi) \sim A^{T}(\pi\pi)$, which suggests that $\frac{P}{T} = \mathcal{O}(\lambda)$ or larger, considerably bigger than expected. Note that this is one way that new physics could be hidden in modes with $|\rho(f)| \neq 1$; any new physics contribution can always be written as a sum of two terms with the weak phases of the two Standard Model terms (for example in Eq. (22)), and thus, when added to the Standard Model contributions, appears only as a change in the sizes of P and T from that expected in the Standard Model. However, we cannot calculate these relative sizes well enough to identify such an effect with confidence.

From the point of view of looking for direct CP-violation effects, a large P/T is good news. The largest asymmetry is expected when the interfering amplitudes have comparable magnitudes. This may be so in $B \to K\pi$ decay (or the penguin contribution may even be larger than the tree). There is no reason for the strong phases to be equal (although they could both be small). Therefore, $B^{\pm} \to K^{\pm}\pi$ is a likely hunting ground for direct CP violation. (Note there is no gluonic penguin contribution to charged $B \to \pi\pi$, and hence, no significant CP violation expected in the Standard Model.) However, as we will

see below, a large P/T complicates the relationship between the measured asymmetry in neutral B decays to $\pi^+\pi^-$ and KM phases.

Studies of CP eigenstates

$\bullet f = J/\psi K_S$

The asymmetry in the Golden Mode $B \to J/\psi K_S$ [25] will be measured soon. Since, using Eq. (20), the dominant penguin contribution has the same weak phase as the tree graph, and the remaining term is tiny, there is effectively only one weak phase in the decay amplitude. Hence, in the asymmetry, all dependence on the amplitudes cancel. With about 1% uncertainty,

$$\frac{q}{p}\overline{\rho}(J/\psi K_S) \simeq -\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \cdot \frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}} \cdot \frac{V_{cs} V_{cd}^*}{V_{cs}^* V_{cd}} \equiv -e^{-2i\phi_1} , \quad (23)$$

where the last factor arises from the $K^0-\overline{K}^0$ mixing amplitude and appears because of the K_S in the final state. The asymmetry is thus given by

$$a_{J/\psi K_S} = \sin(2\phi_1)\sin\Delta Mt , \qquad (24)$$

where the angle ϕ_1 is defined in Fig. 1. Given current constraints a large positive value for $\sin(2\phi_1)$ will be strongly suggestive that the KM ansatz for CP violation is at least one of the sources of this interesting phenomenon.

$$ullet~B^0
ightarrow \pi^+\pi^-$$

The tree and penguin terms appear at the same order in λ (see Eq. (22) and Table 2.) If penguin decays were negligible the asymmetry would directly measure $\sin(2\phi_2)$. Given the enhanced penguin contribution seen from comparing $\pi\pi$ and $K\pi$ decays, the penguins cannot be ignored, and a treatment that does not assume $|\rho(f)| = 1$ must be made.

If all six modes of $B^+ \to \pi^+ \pi^0$, $B^0 \to \pi^+ \pi^-$, $B^0 \to \pi^0 \pi^0$ and their charge conjugates can be measured with sufficient

accuracy, ϕ_2 can be extracted using an isospin analysis [26], up to small corrections from electroweak penguins. However, the branching ratio for the charged modes is less than 10^{-5} [24], and that for the more difficult to measure $B^0 \to \pi^0 \pi^0$ is expected to be even smaller. Therefore, further ingenuity is needed to get at this angle cleanly. A future possibility is to study the Dalitz plot of $B \to 3\pi$ decays [27].

Further Measurements

As Tables 1 and 2 suggest there are many more CPeigenstate modes that are interesting to study, both for B_d and
similarly for B_s decays. The latter states are not accessible for
the B factories operating at the $\Upsilon(4S)$ resonance, but may be
studied at hadronic colliders. The CDF result on the asymmetry
in the $J/\psi K_S$ mode is an indication of the capabilities of
such facilities for B physics [29]. Upgrades of the Fermilab
detectors are in progress and proposals for new detectors with
the capability to achieve fast triggers for a larger variety of
purely hadronic modes are under development, promising some
future improvement in this capability.

In addition to CP-eigenstate modes there are many additional modes for which particular studies have been proposed, in particular those focussed on extracting ϕ_3 (γ). Modes such as DK, DK^* and D^*K where the D mesons decay to CP eigenstates provide theoretically clean extraction of this parameter but have small branching ratios [30]. Other approaches involve the more copious $K\pi$ modes but rely on the use of isospin and SU(3) (U-spin) symmetries, so have larger theoretical uncertainties [31]. This is an active area of current theoretical work.

For a recent review of how predictions for CP-violating effects are affected by Beyond Standard Model effects see Ref. 28. There are also many ways to search for new physics effects in B decays that do not involve just the CP-violation

effects. For example searches for isospin breaking effects in $K\pi$ modes have recently been suggested as a likely method to isolate such effects [32].

References

- 1. Much of what is presented is explained in further detail in I.I. Bigi and A.I. Sanda, *CP Violation*, Cambridge University Press, Cambridge (1999).
- 2. For a review of CP violation in B decays see: I.I. Bigi, V.A. Khoze, N.G. Uraltsev, and A.I. Sanda, in CP Violation, ed. C. Jarlskog (World Scientific, Singapore, 1989).
- 3. Y. Nir and H.R. Quinn, Ann. Rev. Nucl. Sci. **42**, 211 (1992).
- 4. See our review on " $B^0-\overline{B}^0$ Mixing" by O. Schneider in the B^0 Listings in the full Review.
- 5. A.B. Carter and A.I. Sanda, Phys. Rev. Lett. **45**, 952 (1980); Phys. Rev. **D23**, 1567 (1981).
- R. Aleksan et al., Phys. Lett. **B316**, 567 (1993);
 M. Beneke, G. Buchalla, I. Duniety, Phys. Rev. **D54**, 4419 (1996).
- 7. See our review on the CKM mixing matrix by F.J. Gilman, K. Kleinknecht and B. Renk in the full *Review*.
- 8. Y. Grossman and H. Quinn, Phys. Rev. **D56**, 7259 (1997).
- 9. J.R. Dell'Aquila and C.A. Nelson, Phys. Rev. **D33**, 101 (1986);
 - B. Kayser *et al.*, Phys. Lett. **B237**, 3339 (1990);
 - I. Dunietz et al., Phys. Rev. **D43**, 2193 (1991).
- 10. R. Alexsan, B. Kayser, and D. London, Phys. Rev. Lett. **73**, 18 (1994).
- 11. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
- 12. The angles of the unitarity triangle ϕ_1 , ϕ_2 , ϕ_3 are those used in J.L. Rosner, A.I. Sanda, and M. Schmidt in *Proc. Fermilab Workshop on High Sensitivity Beauty Physics at Fermilab*, A.J. Slaughter, N. Lockyer and M. Schmidt, eds., 1987.

- 13. C.O. Dib *et al.*, Phys. Rev. **D41**, 1522 (1990). See also Y. Nir SLAC Report 412 p. 102 (1992) for careful definition of the signs in the α, β, γ notation.
- 14. Y. Nir and H. Quinn, Phys. Rev. **D42**, 1473 (1990).
- 15. I.I. Bigi and A.I. Sanda, Nucl. Phys. **B193**, 85 (1981); I.I. Bigi, in *Proceedings of the Tau-Charm Workshop*, SLAC-Report 343, p. 169 (1989).
- 16. J.P. Silva and L. Wolfenstein Phys. Rev. **D55**, 5331 (1997).
- 17. See our review on "CP Violation" by L. Wolfenstein in the full Review.
- 18. Adam F. Falk, talk presented at 19th International Symposium on Lepton and Photon Interactions at High-Energies (LP 99) (Stanford, CA 9–14 Aug 1999) hep-ph/9908520.
- 19. S. Aoki, talk presented at 19th International Symposium on Lepton and Photon Interactions at High-Energies (LP 99) (Stanford, CA, 9–14 Aug 1999).
- 20. See for example Y. Nir and D. Silverman, Nucl. Phys. **B345**, 301 (1990).
- 21. G. Buchalla, A. J. Buras, M. E. Lautenbacher, Rev. Mod. Phys. **68**, 1125 (1996).
- J.M. Gérard and W.S. Hou, Phys. Rev. **D43**, 2909 (1991) and Phys. Lett. **B253**, 478 (1991);
 H. Simma, G. Eilam, and D. Wyler, Nucl. Phys. **B352**, 367 (1991);
 R. Fleischer, Phys. Lett. **B341**, 205 (1994).
- 23. D. Atwood and A. Soni, Z. Phys. **C64**, 241 (1994); Phys. Rev. Lett. **74**, 220 (1995).
- 24. Y. Kwon et al., CLEO-CONF-99-14, Talk given at 19th International Symposium on Lepton and Photon Interactions at High-Energies (LP 99) (Stanford, CA, 9-14 Aug 1999) hep-ex/9908039.
- I.I. Bigi and A.I. Sanda, Nucl. Phys. **B193**, 85 (1981);
 Nucl. Phys. **B281**, 41 (1987).
- 26. M. Gronau and D. London, Phys. Rev. Lett. **65**, 3381 (1990).
- 27. H.R. Quinn and A.E. Snyder, Phys. Rev. 48, 2139 (1993).

- 28. *CP* Violation beyond the Standard Model. By Y. Grossman, Y. Nir, R. Rattazzi, SLAC-PUB-7379, Jan 1997. In *Heavy flavours II* p. 755, A.J. Buras, M. Lindner, eds., e-Print Archive: hep-ph/9701231.
- 29. CDF Collaboration: T. Affolder *et al.*, Phys. Rev. **D61**, 072005 (2000).
- 30. I. Dunietz, Phys. Lett. **B270**, 75 (1991);
 M. Gronau and D. Wyler, Phys. Lett. **B265**, 172 (1991);
 D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. **78**, 3257 (1997).
- 31. See for example M. Gronau, J.L. Rosner, and D. London, Phys. Rev. Lett. **73**, 21 (1994);

 M. Gronau, O.F. Hernandez, D. London, and J.L. Rosner
 - M. Gronau, O.F. Hernandez, D. London, and J.L. Rosner Phys. Rev. **D50**, 4529 (1994);
 - M. Gronau and J.L. Rosner, Phys. Rev. Lett. **76**, 1200 (1996);
 - R. Fleischer and T. Mannel, Phys. Rev. **D57**, 2752 (1998);
 - M. Neubert and J. L. Rosner, Phys. Lett. **B441**, 403 (1998) and Phys. Rev. Lett. **81**, 5076 (1998);
 - M. Neubert, Invited talk at *High Energy Physics International Euroconference on Quantum Chromo Dynamics* (QCD '99) (Montpellier, France, 7–13 July 1999) hep-ph/9909564.
- 32. Y. Grossman, M. Neubert, and A.L. Kagan (Cincinnati U.). SLAC-PUB-8243, hep-ph/9909297.

CP VIOLATION PARAMETERS

$Re(\epsilon_{R0})/(1+|\epsilon_{R0}|^2)$

CP Impurity in B_d^0 system. It is obtained from either $a_{\ell\ell}$, the charge asymmetry in like-sign dilepton events or a_{cp} , the time-dependent asymmetry of inclusive B^0 and \overline{B}^0 decays.

```
VALUE

0.002±0.007 OUR AVERAGE

0.001±0.014±0.003

342 ABBIENDI

99J OPAL e^+e^- \rightarrow Z

0.002±0.007±0.003

343 ACKERSTAFF 97U OPAL e^+e^- \rightarrow Z

• • • We do not use the following data for averages, fits, limits, etc. • • •

<0.045

2000 TECN

COMMENT

POCUMENT ID

SOURCE

POCUMENT ID

TECN

COMMENT

POCUMENT ID

SOURCE

POCUMENT ID

TECN

COMMENT

POCUMENT ID

TECN

COMMENT

POCUMENT ID

SOURCE

POCUMENT ID

TECN

COMMENT

POCUMENT

POCUMENT ID

SOURCE

POCUMENT ID

TECN

COMMENT

POCUMENT

POCUMENT ID

SOURCE

POCUMENT ID

TECN

COMMENT

POCUMENT

POCUMENT ID

TECN

COMMENT

POCUMENT ID

TECN

COMMENT

POCUMENT

POCUMENT ID

TECN

COMMENT

POCUMENT ID

TECN

TOTAL

TOTA
```

- 342 Data analyzed using the time-dependent asymmetry of inclusive B^0 decay. The production flavor of B^0 mesons is determined using both the jet charge and the charge of secondary vertex in the opposite hemisphere.
- 343 ACKERSTAFF 97U assumes CPT and is based on measuring the charge asymmetry in a sample of B^0 decays defined by lepton and $Q_{\rm hem}$ tags. If CPT is not invoked, ${\rm Re}(\epsilon_B)=-0.006\pm0.010\pm0.006$ is found. The indirect CPT violation parameter is determined to ${\rm Im}(\delta\,B)=-0.020\pm0.016\pm0.006$.
- 344 BARTELT 93 finds $a_{\ell\ell}=0.031\pm0.096\pm0.032$ which corresponds to $|a_{\ell\ell}|<0.18$, which yields the above $|{\rm Re}(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2|$.

$sin(2\beta)$

For a discussion of CP violation, see the note on "CP Violation in B Decay Standard Model Predictions" in the B^0 Particle Listings above. $\sin(2\beta)$ is a measure of the CP-violating amplitude in the $B^0_d \to J/\psi(1S) K^0_S$.

	u	, ,				
VALUE	DOCUMENT ID	TEC	N <u>COMMENT</u>			
0.9 ± 0.4 OUR AVERAGE						
$0.79^{igoplus 0.41}_{-0.44}$	³⁴⁵ AFFOLDER	00c CDI	$p\overline{p}$ at 1.8 TeV			
$3.2 \ ^{+1.8}_{-2.0} \ \pm 0.5$	³⁴⁶ ACKERSTAFF	98Z OPA	$AL e^+e^- \rightarrow Z$			
• • • We do not use the following	ng data for averages	, fits, lim	ts, etc. • • •			
$1.8 \pm 1.1 \pm 0.3$	³⁴⁷ ABE	98u CDF	Repl. by AF- FOLDER 00C			
345 AFFOLDER 00C uses about	400 $B^0 \to J/\psi(15)$	$(S)K_S^0$ eve	nts. The production flavor of			
B^0 was determined using three tagging algorithms: a same-side tag, a jet-charge tag, and a soft-lepton tag. 346 ACKERSTAFF 98z uses 24 candidates for $B_d^0 \to J/\psi(1S)K_S^0$ decay. A combination						
	G G		•			
of jet-charge and vertex-char						
347 ABE 98U uses 198 \pm 17 B_d^0 determined using the same s	$ ightarrow \ J/\psi(1S) {\cal K}^0$ evide tagging techniqu	ents. The e.	e production flavor of B^0 was			

$B^0 \rightarrow D^{*-}\ell^+\nu_\ell$ FORM FACTORS

R_1 (form factor ratio $\sim V/$	<i>A</i> ₁)			
VALUE	DOCUMENT ID		TECN	COMMENT
$1.18 \pm 0.30 \pm 0.12$	DUBOSCQ	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
R_2 (form factor ratio $\sim~A_2$	/A ₁)			
VALUE	DOCUMENT ID		TECN	COMMENT
$0.71 \pm 0.22 \pm 0.07$	DUBOSCQ	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$ ho_{A_1}^2$ (form factor slope)				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.91 \pm 0.15 \pm 0.06$	DUBOSCQ	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

B⁰ REFERENCES

AFFOLDER BEHRENS CSORNA ABBIENDI ABE ABE AFFOLDER	00C 00 00 99J 99K 99Q 99B	PR D61 072005 PR D61 052001 PR D61 111101 EPJ C12 609 PR D60 051101 PR D60 072003 PRL 83 3378	T. Affolder et al. B.H. Behrens et al. S.E. Csorna et al. G. Abbiendi et al. F. Abe et al. T. Affolder et al. T. Affolder et al.	(CDF Collab.) (CLEO Collab.) (CLEO Collab.) (OPAL Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
AFFOLDER ARTUSO BARTELT COAN ABBOTT ABE	99C 99 99 99 98B 98	PR D60 112004 PRL 82 3020 PRL 82 3746 PR D59 111101 PL B423 419 PR D57 R3811	T. Affolder et al. M. Artuso et al. J. Bartelt et al. T.E. Coan et al. B. Abbott et al. F. Abe et al.	(CDF Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (D0 Collab.) (CDF Collab.)
ABE ABE Also ABE ABE	98B 98C 99C 98O 98Q	PR D57 5382 PRL 80 2057 PR D59 032001 PR D58 072001 PR D58 092002	F. Abe et al.	(CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
ABE ABE ACCIARRI ACCIARRI ACKERSTAFF BARATE	98U 98V 98D 98S 98Z 98Q	PRL 81 5513 PRL 81 5742 EPJ C5 195 PL B438 417 EPJ C5 379 EPJ C4 387	F. Abe et al. F. Abe et al. M. Acciarri et al. M. Acciarri et al. K. Ackerstaff et al. R. Barate et al.	(CDF Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (OPAL Collab.) (ALEPH Collab.)
BEHRENS BERGFELD BRANDENB GODANG NEMATI ABE	98 98 98 98 98 97 J 97 F	PRL 80 3710 PRL 81 272 PRL 80 2762 PRL 80 3456 PR D57 5363 PRL 79 590	B.H. Behrens et al. T. Bergfeld et al. G. Brandenbrug et al. R. Godang et al. B. Nemati et al. K. Abe et al. P. Abreu et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (SLD Collab.) (DELPHI Collab.)
ABREU Also ABREU ACCIARRI ACCIARRI ACKERSTAFF	97K 97N 97B 97C 97G	ZPHY C74 19 ZPHY C75 579 erratum ZPHY C76 579 PL B391 474 PL B391 481 PL B395 128	P. Abreu <i>et al.</i> M. Acciarri <i>et al.</i> M. Acciarri <i>et al.</i> K. Ackerstaff <i>et al.</i>	(DELPHI Collab.) (L3 Collab.) (L3 Collab.) (OPAL Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS	97U 97V 97 97	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208	 K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. 	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
BUSKULIC BUSKULIC FU JESSOP ABE ABE	97 97D 97 97 96B 96C	PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462	D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al.	(ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (CDF Collab.)
ABE ABE ABE ABREU ABREU	96H 96L 96Q 96P 96Q	PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17	F. Abe et al. F. Abe et al. F. Abe et al. F. Abreu et al. P. Abreu et al. P. Abreu et al.	(CDF Collab.) (CDF Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.)
ACCIARRI ADAM ALBRECHT ALEXANDER ALEXANDER ASNER	96E 96D 96D 96T 96V 96	PL B383 487 ZPHY C72 207 PL B374 256 PRL 77 5000 ZPHY C72 377 PR D53 1039	M. Acciarri et al. W. Adam et al. H. Albrecht et al. J.P. Alexander et al. G. Alexander et al. D.M. Asner et al.	(L3 Collab.) (DELPHI Collab.) (ARGUS Collab.) (CLEO Collab.) (OPAL Collab.) (CLEO Collab.)
BARISH BISHAI BUSKULIC BUSKULIC DUBOSCQ GIBAUT	96B 96 96J 96V 96	PRL 76 1570 PL B369 186 ZPHY C71 31 PL B384 471 PRL 76 3898 PR D53 4734	B.C. Barish <i>et al.</i> M. Bishai <i>et al.</i> D. Buskulic <i>et al.</i> D. Buskulic <i>et al.</i> J.E. Duboscq <i>et al.</i> D. Gibaut <i>et al.</i>	(CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.)
PDG ABE ABREU ABREU ACCIARRI	96 95Z 95N 95Q 95H	PR D54 1 PRL 75 3068 PL B357 255 ZPHY C68 13 PL B363 127	F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al.	(CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (L3 Collab.)

ACCIARRI ADAM AKERS AKERS ALEXANDER AISO BARISH BUSKULIC ABE ABREU AKERS AKERS AKERS AKERS AKERS ALAM ALBRECHT ALBRECHT ALBRECHT AMMAR ATHANAS AISO BUSKULIC PDG	94C 94H 94J 94L 94 94 94G 94 95 94B 94	PL B363 137 ZPHY C68 363 ZPHY C66 555 ZPHY C67 379 PL B341 435 PL B347 469 (erratum) PR D51 1014 PL B359 236 PRL 72 3456 PL B338 409 PL B327 411 PL B336 585 PL B337 196 PL B337 196 PL B337 393 PR D50 43 PL B324 249 PL B340 217 PR D49 5701 PRL 73 3503 PRL 74 3090 (erratum) PL B322 441 PR D50 173	M. Acciarri et al. W. Adam et al. R. Akers et al. R. Akers et al. J. Alexander et al. J. Alexander et al. B.C. Barish et al. D. Buskulic et al. F. Abe et al. R. Akers et al. H. Albrecht et al. H. Albrecht et al. H. Albrecht et al. R. Ammar et al. M. Athanas et al. M. Athanas et al. D. Buskulic et al. L. Montanet et al.	(L3 Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (CLEO COllab.)
PROCARIO	94	PRL 73 1306	M. Procario <i>et al.</i>	(CLEO Collab.)
STONE ABREU	94 93D	HEPSY 93-11 ZPHY C57 181	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	93G	PL B312 253	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACTON	93C	PL B307 247	P.D. Acton et al.	(OPAL Collab.)
ALBRECHT ALBRECHT	93 93E	ZPHY C57 533 ZPHY C60 11	H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(ARGUS Collab.) (ARGUS Collab.)
ALEXANDER	93E	PL B319 365	J. Alexander <i>et al.</i>	(CLEO Collab.)
AMMAR	93	PRL 71 674	R. Ammar et al.	(CLEO Collab.)
BARTELT	93	PRL 71 1680	J.E. Bartelt <i>et al.</i>	(CLEO Collab.)
BATTLE BEAN	93 03B	PRL 71 3922	M. Battle <i>et al.</i>	(CLEO Collab.)
BUSKULIC	93B 93D	PRL 70 2681 PL B307 194	A. Bean <i>et al.</i> D. Buskulic <i>et al.</i>	(CLEO Collab.) (ALEPH Collab.)
Also	94H	PL B325 537 (errata)	D. Buskune et un	(ALLI II Collab.)
BUSKULIC	93K	PL B313 498 `	D. Buskulic et al.	(ALEPH Collab.)
SANGHERA	93	PR D47 791	S. Sanghera <i>et al.</i>	(CLEO Collab.)
ALBRECHT ALBRECHT	92C 92G	PL B275 195 ZPHY C54 1	H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(ARGUS Collab.) (ARGUS Collab.)
ALBRECHT	92L	ZPHY C55 357	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BORTOLETTO	92	PR D45 21	D. Bortoletto et al.	(CLEO Collab.)
HENDERSON	92	PR D45 2212	S. Henderson <i>et al.</i>	(CLEO Collab.)
KRAMER	92 91C	PL B279 181 PL B262 163	G. Kramer, W.F. Palmer	(HAMB, OSU)
ALBAJAR ALBAJAR	91C 91E	PL B202 103 PL B273 540	C. Albajar <i>et al.</i> C. Albajar <i>et al.</i>	(UA1 Collab.) (UA1 Collab.)
ALBRECHT	91B	PL B254 288	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	91C	PL B255 297	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	91E	PL B262 148	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BERKELMAN "Decays of	91 B Me	ARNPS 41 1	K. Berkelman, S. Stone	(CORN, SYRA)
FULTON	91	PR D43 651	R. Fulton et al.	(CLEO Collab.)
ALBRECHT	90B	PL B241 278	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	90J	ZPHY C48 543	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ANTREASYAN BORTOLETTO		ZPHY C48 553 PRL 64 2117	D. Antreasyan <i>et al.</i> D. Bortoletto <i>et al.</i>	(Crystal Ball Collab.) (CLEO Collab.)
ELSEN	90	ZPHY C46 349	E. Elsen <i>et al.</i>	(JADE Collab.)
ROSNER	90	PR D42 3732		
WAGNER	90 90	PRL 64 1095	S.R. Wagner <i>et al.</i>	(Mark II Collab.)
ALBRECHT ALBRECHT	89C 89G	PL B219 121 PL B229 304	H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(ARGUS Collab.) (ARGUS Collab.)
ALBRECHT	89J	PL B229 175	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	89L	PL B232 554	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ARTUSO	89 90	PRL 62 2233	M. Artuso <i>et al.</i>	(CLEO Collab.)
AVERILL AVERY	89 89B	PR D39 123 PL B223 470	D.A. Averill <i>et al.</i> P. Avery <i>et al.</i>	(HRS Collab.) (CLEO Collab.)
BEBEK	89	PRL 62 8	C. Bebek <i>et al.</i>	(CLEO Collab.)
BORTOLETTO	89	PRL 62 2436	D. Bortoletto et al.	(CLEO Collab.)

ALBRECHT ALBRECHT ALBRECHT ALBRECHT ALBRECHT AVERY BEAN BEBEK ALAM ALBRECHT PDG CHEN HAAS AVERY GILES	89B 88F 88K 87C 87D 87I 87J 87 87B 87 86 86F 86 85 85 84	PRL 63 1667 PL B209 119 PL B215 424 PL B185 218 PL B199 451 PL B192 245 PL B197 452 PL B183 429 PRL 58 183 PR D36 1289 PR D34 3279 PL B182 95 PL 170B PR D31 2386 PRL 55 1248 PRL 53 1309 PR D30 2279 PRL 50 881	D. Bortoletto et al. H. Albrecht et al. P. Avery et al. A. Bean et al. C. Bebek et al. M.S. Alam et al. H. Albrecht et al. B. Adwilar-Benitez et al. A. Chen et al. J. Haas et al. P. Avery et al. R. Giles et al. S. Behrends et al.	(CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (CLEO Collab.) (CERN, CIT+) (CLEO Collab.)
---	---	--	--	--