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SUPERSYMMETRY, PART I (THEORY)

(by H.E. Haber)

I.1. Introduction: Supersymmetry (SUSY) is a generaliza-

tion of the space-time symmetries of quantum field theory that

transforms fermions into bosons and vice versa. It also provides

a framework for the unification of particle physics and grav-

ity [1–3], which is governed by the Planck scale, MP ≈ 1019 GeV

(defined to be the energy scale where the gravitational inter-

actions of elementary particles become comparable to their

gauge interactions). If supersymmetry were an exact symmetry

of nature, then particles and their superpartners (which differ

in spin by half a unit) would be degenerate in mass. Thus,

supersymmetry cannot be an exact symmetry of nature, and

must be broken. In theories of “low-energy” supersymmetry,

the effective scale of supersymmetry breaking is tied to the

electroweak scale [4–6], which is characterized by the Standard

Model Higgs vacuum expectation value v = 246 GeV. It is thus

possible that supersymmetry will ultimately explain the origin

of the large hierarchy of energy scales from the W and Z masses

to the Planck scale.

At present, there are no unambiguous experimental results

that require the existence of low-energy supersymmetry. How-

ever, if experimentation at future colliders uncovers evidence

for supersymmetry, this would have a profound effect on the

study of TeV-scale physics and the development of a more fun-

damental theory of mass and symmetry-breaking phenomena in

particle physics.

I.2. Structure of the MSSM: The minimal supersymmetric

extension of the Standard Model (MSSM) consists of taking the

Standard Model and adding the corresponding supersymmetric

partners [2,7]. In addition, the MSSM contains two hypercharge

Y = ±1 Higgs doublets, which is the minimal structure for

the Higgs sector of an anomaly-free supersymmetric extension

of the Standard Model. The supersymmetric structure of the

theory also requires (at least) two Higgs doublets to generate

mass for both “up”-type and “down”-type quarks (and charged

leptons) [8,9]. All renormalizable supersymmetric interactions

consistent with (global) B−L conservation (B =baryon number

and L =lepton number) are included. Finally, the most general

soft-supersymmetry-breaking terms are added [10].

If supersymmetry is associated with the origin of the scale of

electroweak interactions, then the mass parameters introduced

by the soft-supersymmetry-breaking terms must in general be of

order 1 TeV or below [11] (although models have been proposed

in which some supersymmetric particle masses can be larger, in

the range of 1–10 TeV [12]). Some lower bounds on these param-

eters exist due to the absence of supersymmetric-particle pro-

duction at current accelerators [13]. Additional constraints arise

from limits on the contributions of virtual supersymmetric par-

ticle exchange to a variety of Standard Model processes [14,15].

In particular, the Standard Model fit (without supersymmetry)

to precision electroweak data is quite good [16]. If all super-

symmetric particle masses are significantly heavier than mZ

(in practice, masses greater than 300 GeV are sufficient [17]),

then the effects of the supersymmetric particles decouple in

loop-corrections to electroweak observables [18]. In this case

the Standard Model global fit to precision data and the cor-

responding MSSM fit yield similar results. On the other hand,

regions of parameter space with light supersymmetric particle

masses can generate significant one-loop corrections, resulting

in a poorer overall fit to the data [19]. Thus, the precision

electroweak data provide some constraints on the magnitude of

the soft-supersymmetry-breaking terms.

As a consequence of B−L invariance, the MSSM possesses

a multiplicative R-parity invariance, where R = (−1)3(B−L)+2S

for a particle of spin S [20]. Note that this formula implies that

all the ordinary Standard Model particles have even R-parity,

whereas the corresponding supersymmetric partners have odd

R-parity. The conservation of R-parity in scattering and decay

processes has a crucial impact on supersymmetric phenomenol-

ogy. For example, starting from an initial state involving ordi-

nary (R-even) particles, it follows that supersymmetric particles

must be produced in pairs. In general, these particles are highly

unstable and decay quickly into lighter states. However, R-

parity invariance also implies that the lightest supersymmetric

particle (LSP) is absolutely stable, and must eventually be

produced at the end of a decay chain initiated by the decay of

a heavy unstable supersymmetric particle.

In order to be consistent with cosmological constraints,

a stable LSP is almost certainly electrically and color neu-

tral [21]. Consequently, the LSP in a R-parity-conserving the-

ory is weakly-interacting in ordinary matter, i.e. it behaves like

a stable heavy neutrino and will escape detectors without being

directly observed. Thus, the canonical signature for conven-

tional R-parity-conserving supersymmetric theories is missing

(transverse) energy, due to the escape of the LSP. Moreover,
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the LSP is a prime candidate for “cold dark matter” [22], a

potentially important component of the non-baryonic dark mat-

ter that is required in many models of cosmology and galaxy

formation [23].

In the MSSM, supersymmetry breaking is accomplished by

including the most general renormalizable soft-supersymmetry-

breaking terms consistent with the SU(3)×SU(2)×U(1) gauge

symmetry and R-parity invariance. These terms parameter-

ize our ignorance of the fundamental mechanism of super-

symmetry breaking. If supersymmetry breaking occurs sponta-

neously, then a massless Goldstone fermion called the goldstino

(G̃) must exist. The goldstino would then be the LSP and could

play an important role in supersymmetric phenomenology [24].

However, the goldstino is a physical degree of freedom only in

models of spontaneously broken global supersymmetry. If the

supersymmetry is a local symmetry, then the theory must in-

corporate gravity; the resulting theory is called supergravity. In

models of spontaneously broken supergravity, the goldstino is

“absorbed” by the gravitino (g̃3/2), the spin-3/2 partner of the

graviton [25]. By this super-Higgs mechanism, the goldstino is

removed from the physical spectrum and the gravitino acquires

a mass (m3/2).

It is very difficult (perhaps impossible) to construct a model

of spontaneously-broken low-energy supersymmetry where the

supersymmetry breaking arises solely as a consequence of the

interactions of the particles of the MSSM. A more viable scheme

posits a theory consisting of at least two distinct sectors:

a “hidden” sector consisting of particles that are completely

neutral with respect to the Standard Model gauge group, and a

“visible” sector consisting of the particles of the MSSM. There

are no renormalizable tree-level interactions between particles

of the visible and hidden sectors. Supersymmetry breaking is

assumed to occur in the hidden sector, and then transmitted to

the MSSM by some mechanism. Two theoretical scenarios have

been examined in detail: gravity-mediated and gauge-mediated

supersymmetry breaking.

Supergravity models provide a natural mechanism for trans-

mitting the supersymmetry breaking of the hidden sector to the

particle spectrum of the MSSM. In models of gravity-mediated

supersymmetry breaking, gravity is the messenger of super-

symmetry breaking [26,27]. More precisely, supersymmetry

breaking is mediated by effects of gravitational strength (sup-

pressed by an inverse power of the Planck mass). In this

scenario, the gravitino mass is of order the electroweak-

symmetry-breaking scale, while its couplings are roughly gravi-

tational in strength [1,28]. Such a gravitino would play no role

in supersymmetric phenomenology at colliders.

In gauge-mediated supersymmetry breaking, supersymmetry

breaking is transmitted to the MSSM via gauge forces. A typical

structure of such models involves a hidden sector where super-

symmetry is broken, a “messenger sector” consisting of particles

(messengers) with SU(3)×SU(2)×U(1) quantum numbers, and

the visible sector consisting of the fields of the MSSM [29,30].

The direct coupling of the messengers to the hidden sector

generates a supersymmetry breaking spectrum in the messen-

ger sector. Finally, supersymmetry breaking is transmitted to

the MSSM via the virtual exchange of the messengers. If this

approach is extended to incorporate gravitational phenomena,

then supergravity effects will also contribute to supersymmetry

breaking. However, in models of gauge-mediated supersymme-

try breaking, one usually chooses the model parameters in such

a way that the virtual exchange of the messengers dominates

the effects of the direct gravitational interactions between the

hidden and visible sectors. In this scenario, the gravitino mass

is typically in the eV to keV range, and is therefore the LSP.

The helicity ±1
2 components of g̃3/2 behave approximately like

the goldstino; its coupling to the particles of the MSSM is

significantly stronger than a coupling of gravitational strength.

I.3. Parameters of the MSSM: The parameters of the

MSSM are conveniently described by considering separately

the supersymmetry-conserving sector and the supersymmetry-

breaking sector. A careful discussion of the conventions used

in defining the MSSM parameters can be found in Ref. 31.

For simplicity, consider the case of one generation of quarks,

leptons, and their scalar superpartners. The parameters of

the supersymmetry-conserving sector consist of: (i) gauge cou-

plings: gs, g, and g′, corresponding to the Standard Model gauge

group SU(3)×SU(2)×U(1) respectively; (ii) a supersymmetry-

conserving Higgs mass parameter µ; and (iii) Higgs-fermion

Yukawa coupling constants: λu, λd, and λe (corresponding to

the coupling of one generation of quarks, leptons, and their

superpartners to the Higgs bosons and higgsinos).

The supersymmetry-breaking sector contains the following

set of parameters: (i) gaugino Majorana masses M3, M2 and

M1 associated with the SU(3), SU(2), and U(1) subgroups of

the Standard Model; (ii) five scalar squared-mass parameters

for the squarks and sleptons, M2

Q̃
, M2

Ũ
, M2

D̃
, M2

L̃
, and M2

Ẽ

[corresponding to the five electroweak gauge multiplets, i.e.,

superpartners of (u, d)L, ucL, dcL, (ν, e−)L, and ecL,]; (iii) Higgs–

squark-squark and Higgs-slepton-slepton trilinear interaction

terms, with coefficients Au, Ad, and Ae (these are the so-called

“A-parameters”); and (iv) three scalar Higgs squared-mass

parameters—two of which contribute to the diagonal Higgs

squared-masses, given by m2
1 + |µ|2 and m2

2 + |µ|2, and one off-

diagonal Higgs squared-mass term, m2
12 ≡ Bµ (which defines

the “B-parameter”). These three squared-mass parameters can

be re-expressed in terms of the two Higgs vacuum expectation

values, vd and vu, and one physical Higgs mass. Here, vd
(vu) is the vacuum expectation value of the Higgs field which

couples exclusively to down-type (up-type) quarks and leptons.

(Another notation often employed in the literature is v1 ≡ vd
and v2 ≡ vu.) Note that v2

d + v2
u = (246 GeV)2 is fixed by the

W mass, while the ratio

tan β = vu/vd (1)

is a free parameter of the model.

The total number of degrees of freedom of the MSSM is

quite large, primarily due to the parameters of the soft-super-

symmetry-breaking sector. In particular, in the case of three
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generations of quarks, leptons, and their superpartners, M2

Q̃
,

M2

Ũ
, M2

D̃
, M2

L̃
, and M2

Ẽ
are hermitian 3 × 3 matrices, and the

A-parameters are complex 3× 3 matrices. In addition, M1, M2,

M3, B and µ are in general complex. Finally, as in the Standard

Model, the Higgs-fermion Yukawa couplings, λf (f =u, d, and

e), are complex 3× 3 matrices which are related to the quark

and lepton mass matrices via: Mf = λfvf/
√

2, where ve ≡ vd
(with vu and vd as defined above). However, not all these

parameters are physical. Some of the MSSM parameters can

be eliminated by expressing interaction eigenstates in terms of

the mass eigenstates, with an appropriate redefinition of the

MSSM fields to remove unphysical degrees of freedom. The

analysis of Ref. 32 shows that the MSSM possesses 124 truly

independent parameters. Of these, 18 parameters correspond

to Standard Model parameters (including the QCD vacuum

angle θQCD), one corresponds to a Higgs sector parameter (the

analogue of the Standard Model Higgs mass), and 105 are

genuinely new parameters of the model. The latter include:

five real parameters and three CP -violating phases in the

gaugino/higgsino sector, 21 squark and slepton masses, 36

new real mixing angles to define the squark and slepton mass

eigenstates and 40 new CP -violating phases that can appear

in squark and slepton interactions. The most general R-parity-

conserving minimal supersymmetric extension of the Standard

Model (without additional theoretical assumptions) will be

denoted henceforth as MSSM-124 [33].

I.4. The supersymmetric-particle sector: Consider the

sector of supersymmetric particles (sparticles) in the MSSM.

The supersymmetric partners of the gauge and Higgs bosons

are fermions, whose names are obtained by appending “ino” at

the end of the corresponding Standard Model particle name.

The gluino is the color octet Majorana fermion partner of the

gluon with mass M
g̃

= |M3|. The supersymmetric partners of

the electroweak gauge and Higgs bosons (the gauginos and

higgsinos) can mix. As a result, the physical mass eigenstates

are model-dependent linear combinations of these states, called

charginos and neutralinos, which are obtained by diagonalizing

the corresponding mass matrices. The chargino-mass matrix

depends on M2, µ, tanβ and mW [34].

The corresponding chargino-mass eigenstates are denoted

by χ̃+
1 and χ̃+

2 , with masses

M2
χ̃+

1 ,χ̃
+
2

= 1
2

{
|µ|2 + |M2|2 + 2m2

W ∓
[(
|µ|2 + |M2|2 + 2m2

W

)2
− 4|µ|2|M2|2 − 4m4

W sin2 2β + 8m2
W sin 2β Re(µM2)

]1/2}
, (2)

where the states are ordered such that M
χ̃+

1
≤ M

χ̃+
2

. If CP -

violating effects are neglected (in which case, M2 and µ are real

parameters), then one can choose a convention where tanβ and

M2 are positive. (Note that the relative sign of M2 and µ is

meaningful. The sign of µ is convention-dependent; the reader

is warned that both sign conventions appear in the literature.)

The sign convention for µ implicit in Eq. (2) is used by the LEP

collaborations [13] in their plots of exclusion contours in the M2

vs. µ plane derived from the non-observation of e+e− → χ̃+
1 χ̃
−
1 .

The neutralino mass matrix depends on M1, M2, µ, tan β,

mZ , and the weak mixing angle θW [34]. The corresponding

neutralino eigenstates are usually denoted by χ̃0
i (i = 1, . . . 4),

according to the convention that M
χ̃0

1
≤ M

χ̃0
2
≤ M

χ̃0
3
≤ M

χ̃0
4
.

If a chargino or neutralino eigenstate approximates a particular

gaugino or higgsino state, it is convenient to employ the cor-

responding nomenclature. Specifically, if M1 and M2 are small

compared to mZ and |µ|, then the lightest neutralino χ̃0
1 would

be nearly a pure photino, γ̃, the supersymmetric partner of

the photon. If M1 and mZ are small compared to M2 and

|µ|, then the lightest neutralino would be nearly a pure bino,

B̃, the supersymmetric partner of the weak hypercharge gauge

boson. If M2 and mZ are small compared to M1 and |µ|, then

the lightest chargino pair and neutralino would constitute a

triplet of roughly mass-degenerate pure winos, W̃± and W̃ 0
3 ,

the supersymmetric partners of the weak SU(2) gauge bosons.

Finally, if |µ| and mZ are small compared to M1 and M2, then

the lightest neutralino would be nearly a pure higgsino. Each of

the above cases leads to a strikingly different phenomenology.

The supersymmetric partners of the quarks and leptons are

spin-zero bosons: the squarks, charged sleptons, and sneutrinos.

For simplicity, only the one-generation case is illustrated below

(using first-generation notation). For a given fermion f , there

are two supersymmetric partners f̃L and f̃R which are scalar

partners of the corresponding left and right-handed fermion.

(There is no ν̃R in the MSSM.) However, in general, f̃L and

f̃R are not mass-eigenstates since there is f̃L-f̃R mixing which

is proportional in strength to the corresponding element of the

scalar squared-mass matrix [35]

M2
LR =

{
md(Ad − µ tan β), for “down”-type f
mu(Au − µ cot β), for “up”-type f ,

(3)

where md (mu) is the mass of the appropriate “down” (“up”)

type quark or lepton. The signs of the A-parameters are also

convention-dependent; see Ref. 31. Due to the appearance of

the fermion mass in Eq. (3), one expects MLR to be small

compared to the diagonal squark and slepton masses, with the

possible exception of the top-squark, since mt is large, and the

bottom-squark and tau-slepton if tan β � 1.

The (diagonal) L- and R-type squark and slepton squared-

masses are given by

M2

f̃L
= M2

F̃
+m2

f + (T3f − ef sin2 θW )m2
Z cos 2β ,

M2

f̃R
= M2

R̃
+m2

f + ef sin2 θWm
2
Z cos 2β , (4)

where M2

F̃
≡ M2

Q̃
[M2

L̃
] for ũL and d̃L [ν̃L and ẽL], and

M2

R̃
≡M2

Ũ
, M2

D̃
and M2

Ẽ
for ũR, d̃R, and ẽR, respectively. In

addition, ef = 2
3 , −1

3 , 0, −1 for f =u, d, ν, and e, respectively,

T3f = 1
2 [−1

2] for up-type [down-type] squarks and sleptons,

and mf is the corresponding quark or lepton mass. Squark and

slepton mass eigenstates, generically called f̃1 and f̃2 (these are

linear combinations of f̃L and f̃R), are obtained by diagonalizing

the corresponding 2× 2 squared-mass matrices.

In the case of three generations, the general analysis is

more complicated. The scalar squared-masses [M2

F̃
and M2

R̃
in
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Eq. (4)], the fermion masses mf and the A-parameters are now

3 × 3 matrices as noted in Section I.3. Thus, to obtain the

squark and slepton mass eigenstates, one must diagonalize 6×6

mass matrices. As a result, intergenerational mixing is possible,

although there are some constraints from the nonobservation of

FCNC’s [14,15]. In practice, because off-diagonal scalar mixing

is appreciable only for the third generation, this additional

complication can usually be neglected.

It should be noted that all mass formulae quoted in this

section are tree-level results. One-loop corrections will modify

all these results, and eventually must be included in any

precision study of supersymmetric phenomenology [36].

I.5. The Higgs sector of the MSSM: Next, consider the

Higgs sector of the MSSM [8,9,37]. Despite the large number

of potential CP -violating phases among the MSSM-124 param-

eters, one can show that the tree-level MSSM Higgs sector is

automatically CP -conserving. That is, unphysical phases can

be absorbed into the definition of the Higgs fields such that

tan β is a real parameter (conventionally chosen to be positive).

Moreover, the physical neutral Higgs scalars are CP eigenstates.

There are five physical Higgs particles in this model: a charged

Higgs boson pair (H±), two CP -even neutral Higgs bosons

(denoted by H0
1 and H0

2 where mH0
1
≤ mH0

2
) and one CP -odd

neutral Higgs boson (A0).

The properties of the Higgs sector are determined by the

Higgs potential, which is made up of quadratic terms [whose

squared-mass coefficients were mentioned above Eq. (1)] and

quartic interaction terms. The strengths of the interaction terms

are directly related to the gauge couplings by supersymmetry

(and are not affected at tree-level by supersymmetry breaking).

As a result, tan β [defined in Eq. (1)] and one Higgs mass

determine the tree-level Higgs-sector parameters. These include

the Higgs masses, an angle α [which measures the component

of the original Y = ±1 Higgs doublet states in the physical

CP -even neutral scalars], and the Higgs boson couplings.

When one-loop radiative corrections are incorporated, ad-

ditional parameters of the supersymmetric model enter via

virtual loops. The impact of these corrections can be sig-

nificant [38]. For example, at tree-level, MSSM-124 predicts

mH0
1
≤ mZ | cos 2β| ≤ mZ [8,9]. If this prediction were un-

modified, it would imply that H0
1 must be discovered at the

LEP collider (running at its maximum energy and luminos-

ity); otherwise MSSM-124 would be ruled out. However, when

radiative corrections are included, the light Higgs-mass upper

bound may be significantly increased. The qualitative behavior

of the radiative corrections can be most easily seen in the large

top-squark mass limit, where in addition, both the splitting

of the two diagonal entries [Eq. (4)] and the two off-diagonal

entries [Eq. (3)] of the top-squark squared-mass matrix are

small in comparison to the average of the two top-squark

squared-masses, M2
S ≡ 1

2(M2
t̃1

+ M2
t̃2

). In this case (assuming

mA0 > mZ), the upper bound on the lightest CP-even Higgs

mass at one-loop is approximately given by

m2
H0

1
.m2

Z +
3g2m4

t

8π2m2
W

{
ln
(
M2

S/m
2
t

)
+
X2
t

M2
S

(
1− X2

t

12M2
S

)}
, (5)

where Xt ≡ At − µ cotβ is the top-squark mixing factor [see

Eq. (3)]. A more complete treatment of the radiative correc-

tions [39] shows that Eq. (5) somewhat overestimates the true

upper bound of mH0
1
. These more refined computations, which

incorporate renormalization group improvement and the leading

two-loop contributions, yield mH0
1
. 130 GeV (with an accuracy

of a few GeV) for mt = 175 GeV and MS . 1 TeV [39].

In addition, one-loop radiative corrections can also intro-

duce CP -violating effects in the Higgs sector, which depend on

some of the CP -violating phases among the MSSM-124 param-

eters [40]. Although these effects are more model-dependent,

they can have a non-trivial impact on the Higgs searches at

LEP and future colliders.

I.6. Reducing the MSSM parameter freedom: Even in

the absence of a fundamental theory of supersymmetry break-

ing, one is hard-pressed to regard MSSM-124 as a fundamental

theory. For example, no fundamental explanation is provided

for the origin of electroweak symmetry breaking. Moreover,

MSSM-124 is not a phenomenologically viable theory over most

of its parameter space. Among the phenomenologically deficien-

cies are: (i) no conservation of the separate lepton numbers Le,

Lµ, and Lτ ; (ii) unsuppressed FCNC’s; and (iii) new sources

of CP -violation that are inconsistent with the experimental

bounds. As a result, almost the entire MSSM-124 parameter

space is ruled out! This theory is viable only at very special

“exceptional” points of the full parameter space.

MSSM-124 is also theoretically deficient since it provides

no explanation for the origin of the supersymmetry-breaking

parameters (and in particular, why these parameters should

conform to the exceptional points of the parameter space

mentioned above). Moreover, the MSSM contains many new

sources of CP violation. For example, some combination of

the complex phases of the gaugino-mass parameters, the A-

parameters, and µ must be less than of order 10−2–10−3 (for a

supersymmetry-breaking scale of 100 GeV) to avoid generating

electric dipole moments for the neutron, electron, and atoms in

conflict with observed data [41,42].

There are two general approaches for reducing the param-

eter freedom of MSSM-124. In the low-energy approach, an

attempt is made to elucidate the nature of the exceptional

points in the MSSM-124 parameter space that are phenomeno-

logically viable. Consider the following two possible choices.

First, one can assume that M2

Q̃
, M2

Ũ
, M2

D̃
, M2

L̃
, M2

Ẽ
and

the matrix A-parameters are generation-independent (horizon-

tal universality [5,32,43]). Alternatively, one can simply require

that all the aforementioned matrices are flavor diagonal in a

basis where the quark and lepton mass matrices are diagonal

(flavor alignment [44]). In either case, Le, Lµ, and Lτ are

separately conserved, while tree-level FCNC’s are automati-

cally absent. In both cases, the number of free parameters

characterizing the MSSM is substantially less than 124. Both

scenarios are phenomenologically viable, although there is no

strong theoretical basis for either scenario.
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In the high-energy approach, one treats the parameters

of the MSSM as running parameters and imposes a particu-

lar structure on the soft-supersymmetry-breaking terms at a

common high-energy scale [such as the Planck scale (MP)].

Using the renormalization group equations, one can then de-

rive the low-energy MSSM parameters. The initial conditions

(at the appropriate high-energy scale) for the renormalization

group equations depend on the mechanism by which supersym-

metry breaking is communicated to the effective low energy

theory. Examples of this scenario are provided by models of

gravity-mediated and gauge-mediated supersymmetry breaking

(see Section I.2). One bonus of such an approach is that one of

the diagonal Higgs squared-mass parameters is typically driven

negative by renormalization group evolution. Thus, electroweak

symmetry breaking is generated radiatively, and the resulting

electroweak symmetry-breaking scale is intimately tied to the

scale of low-energy supersymmetry breaking.

One prediction of the high-energy approach that arises in

most grand unified supergravity models and gauge-mediated

supersymmetry-breaking models is the unification of gaugino

mass parameters at some high-energy scale MX, i.e.,

M1(MX) = M2(MX) = M3(MX) = m1/2 . (6)

Consequently, the effective low-energy gaugino mass parameters

(at the electroweak scale) are related:

M3 = (g2
s/g

2)M2 , M1 = (5g′ 2/3g2)M2 ' 0.5M2 . (7)

In this case, the chargino and neutralino masses and mixing

angles depend only on three unknown parameters: the gluino

mass, µ, and tanβ. If in addition |µ| � M1, mZ , then the

lightest neutralino is nearly a pure bino, an assumption often

made in supersymmetric particle searches at colliders.

Recently, attention has been given to a class of supergravity

models in which Eq. (7) does not hold. In models where no

tree-level gaugino masses are generated, one finds a model-

independent contribution to the gaugino mass whose origin can

be traced to the super-conformal (super-Weyl) anomaly which

is common to all supergravity models [45]. This approach has

been called anomaly-mediated supersymmetry breaking. Eq. (7)

is then replaced (in the one-loop approximation) by:

Mi '
big2

i

16π2
m3/2 , (8)

wherem3/2 is the gravitino mass (assumed to be of order 1 TeV),

and bi are the coefficients of the MSSM gauge beta-functions cor-

responding to the corresponding U(1), SU(2) and SU(3) gauge

groups: (b1, b2, b3) = (33
5 , 1,−3). Eq. (8) yields M1 ' 2.8M2

and M3 ' −8.3M2, which implies that the lightest chargino

pair and neutralino make up a nearly-mass degenerate triplet

of winos. The corresponding supersymmetric phenomenology

differs significantly from the standard phenomenology based

on Eq. (7), and is explored in detail in Ref. [46]. Anomaly-

mediated supersymmetry breaking also generates (approximate)

flavor-diagonal squark and slepton mass matrices. However, in

the MSSM this cannot be the sole source of supersymmetry-

breaking in the slepton sector (which yields negative squared-

mass contributions for the sleptons).

I.7. The constrained MSSMs: mSUGRA, GMSB, and

SGUTs: One way to guarantee the absence of significant

FCNC’s mediated by virtual supersymmetric-particle exchange

is to posit that the diagonal soft-supersymmetry-breaking scalar

squared-masses are universal at some energy scale. In models

of gauge-mediated supersymmetry breaking, scalar squared-

masses are expected to be flavor independent since gauge

forces are flavor-blind. In the minimal supergravity (mSUGRA)

framework [1–3], the soft-supersymmetry-breaking parameters

at the Planck scale take a particularly simple form in which the

scalar squared-masses and the A-parameters are flavor diagonal

and universal [26]:

M2

Q̃
(MP) = M2

Ũ
(MP) = M2

D̃
(MP) = m2

01 ,

M2

L̃
(MP) = M2

Ẽ
(MP) = m2

01 ,

m2
1(MP) = m2

2(MP) = m2
0 ,

AU (MP) = AD(MP) = AL(MP) = A01 , (9)

where 1 is a 3× 3 identity matrix in generation space. Renor-

malization group evolution is then used to derive the values of

the supersymmetric parameters at the low-energy (electroweak)

scale. For example, to compute squark and slepton masses, one

must use the low-energy values for M2

F̃
and M2

R̃
in Eq. (4).

Through the renormalization group running with boundary

conditions specified in Eq. (7) and Eq. (9), one can show that

the low-energy values of M2

F̃
and M2

R̃
depend primarily on m2

0

and m2
1/2. A number of useful approximate analytic expressions

for superpartner masses in terms of the mSUGRA parameters

can be found in Ref. 47.

Clearly, in the mSUGRA approach, the MSSM-124 param-

eter freedom has been sharply reduced. For example, typical

mSUGRA models give low-energy values for the scalar mass

parameters that satisfy M
L̃
≈M

Ẽ
< M

Q̃
≈ M

Ũ
≈M

D̃
with

the squark mass parameters somewhere between a factor of 1–3

larger than the slepton mass parameters (e.g., see Ref. 47).

More precisely, the low-energy values of the squark mass pa-

rameters of the first two generations are roughly degenerate,

while M
Q̃3

and M
Ũ3

are typically reduced by a factor of 1–3

from the values of the first and second generation squark mass

parameters because of renormalization effects due to the heavy

top quark mass.

As a result, one typically finds that four flavors of squarks

(with two squark eigenstates per flavor) and b̃R are nearly

mass-degenerate. The b̃L mass and the diagonal t̃L and t̃R

masses are reduced compared to the common squark mass of

the first two generations. (If tanβ � 1, then the pattern of

third generation squark masses is somewhat altered; e.g., see

Ref. 48.) In addition, there are six flavors of nearly mass-

degenerate sleptons (with two slepton eigenstates per flavor for

the charged sleptons and one per flavor for the sneutrinos); the
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sleptons are expected to be somewhat lighter than the mass-

degenerate squarks. Finally, third generation squark masses and

tau-slepton masses are sensitive to the strength of the respective

f̃L–f̃R mixing as discussed below Eq. (3).

Due to the implicit m1/2 dependence in the low-energy

values of M2

Q̃
, M2

Ũ
and M2

D̃
, there is a tendency for the gluino

in mSUGRA models to be lighter than the first and second

generation squarks. Moreover, the LSP is typically the lightest

neutralino, χ̃0
1, which is dominated by its bino component.

However, there are some regions of mSUGRA parameter space

where the above conclusions do not hold. For example, one can

reject those mSUGRA parameter regimes in which the LSP is

a chargino.

One can count the number of independent parameters in

the mSUGRA framework. In addition to 18 Standard Model

parameters (excluding the Higgs mass), one must specify m0,

m1/2, A0, and Planck-scale values for µ and B-parameters

(denoted by µ0 and B0). In principle, A0, B0 and µ0 can be

complex, although in the mSUGRA approach, these parameters

are taken (arbitrarily) to be real. As previously noted, renor-

malization group evolution is used to compute the low-energy

values of the mSUGRA parameters, which then fixes all the pa-

rameters of the low-energy MSSM. In particular, the two Higgs

vacuum expectation values (or equivalently, mZ and tan β) can

be expressed as a function of the Planck-scale supergravity

parameters. The simplest procedure is to remove µ0 and B0

in favor of mZ and tanβ (the sign of µ0 is not fixed in this

process). In this case, the MSSM spectrum and its interaction

strengths are determined by five parameters: m0, A0, m1/2,

tan β, and the sign of µ0, in addition to the 18 parameters

of the Standard Model. However, the mSUGRA approach is

probably too simplistic. Theoretical considerations suggest that

the universality of Planck-scale soft-supersymmetry-breaking

parameters is not generic [49].

In the minimal gauge-mediated supersymmetry-breaking

(GMSB) approach, there is one effective mass scale, Λ, that

determines all low-energy scalar and gaugino mass parameters

through loop-effects (while the resulting A-parameters are sup-

pressed). In order that the resulting superpartner masses be of

order 1 TeV or less, one must have Λ ∼ 100 TeV. The origin

of the µ and B-parameters is quite model dependent and lies

somewhat outside the ansatz of gauge-mediated supersymme-

try breaking. The simplest models of this type are even more

restrictive than mSUGRA, with two fewer degrees of freedom.

However, minimal GMSB is not a fully realized model. The sec-

tor of supersymmetry-breaking dynamics can be very complex,

and no complete model of gauge-mediated supersymmetry yet

exists that is both simple and compelling.

It was noted in Section I.2 that the gravitino is the LSP

in GMSB models. Thus, in such models, the next-to-lightest

supersymmetric particle (NLSP) plays a crucial role in the phe-

nomenology of supersymmetric particle production and decay.

Note that unlike the LSP, the NLSP can be charged. In GMSB

models, the most likely candidates for the NLSP are χ̃0
1 and

τ̃±R . The NLSP will decay into its superpartner plus a gravitino

(e.g., χ̃0
1 → γg̃3/2, χ̃0

1 → Zg̃3/2 or τ̃±R → τ±g̃3/2), with lifetimes

and branching ratios that depend on the model parameters.

Different choices for the identity of the NLSP and its

decay rate lead to a variety of distinctive supersymmetric

phenomenologies [30,50]. For example, a long-lived χ̃0
1-NLSP

that decays outside collider detectors leads to supersymmetric

decay chains with missing energy in association with leptons

and/or hadronic jets (this case is indistinguishable from the

canonical phenomenology of the χ̃0
1-LSP). On the other hand, if

χ̃0
1 → γg̃3/2 is the dominant decay mode, and the decay occurs

inside the detector, then nearly all supersymmetric particle

decay chains would contain a photon. In contrast, the case of a

τ̃±R -NLSP would lead either to a new long-lived charged particle

(i.e., the τ̃±R ) or to supersymmetric particle decay chains with

τ -leptons.

Finally, grand unification can impose additional constraints

on the MSSM parameters. Perhaps one of the most com-

pelling hints for low-energy supersymmetry is the unification

of SU(3)×SU(2)×U(1) gauge couplings predicted by models of

supersymmetric grand unified theories (SGUTs) [5,51] (with

the supersymmetry-breaking scale of order 1 TeV or below).

Gauge coupling unification, which takes place at an energy scale

of order 1016 GeV, is quite robust (i.e., the unification depends

weakly on the details of the theory at the unification scale). In

particular, given the low-energy values of the electroweak cou-

plings g(mZ) and g′(mZ), one can predict αs(mZ) by using the

MSSM renormalization group equations to extrapolate to higher

energies and imposing the unification condition on the three

gauge couplings at some high-energy scale, MX. This procedure

(which fixes MX) can be successful (i.e., three running couplings

will meet at a single point) only for a unique value of αs(mZ).

The extrapolation depends somewhat on the low-energy super-

symmetric spectrum (so-called low-energy “threshold effects”)

and on the SGUT spectrum (high-energy threshold effects),

which can somewhat alter the evolution of couplings. Ref. [52]

summarizes the comparison of present data with the expecta-

tions of SGUTs, and shows that the measured value of αs(mZ)

is in good agreement with the predictions of supersymmetric

grand unification for a reasonable choice of supersymmetric

threshold corrections.

Additional SGUT predictions arise through the unification

of the Higgs-fermion Yukawa couplings (λf). There is some

evidence that λb = λτ leads to good low-energy phenomenol-

ogy [53], and an intriguing possibility that λb = λτ = λt may

be phenomenologically viable [54,48] in the parameter regime

where tan β ' mt/mb. Finally, grand unification imposes con-

straints on the soft-supersymmetry-breaking parameters. For

example, gaugino-mass unification leads to the relations given

in Eq. (7). Diagonal squark and slepton soft-supersymmetry-

breaking scalar masses may also be unified, which is analogous

to the unification of Higgs-fermion Yukawa couplings.

In the absence of a fundamental theory of supersymmetry

breaking, further progress will require a detailed knowledge

of the supersymmetric-particle spectrum in order to determine

the nature of the high-energy parameters. Of course, any of
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the theoretical assumptions described in this section could be

wrong and must eventually be tested experimentally.

I.8. Beyond the MSSM: Non-minimal models of low-energy

supersymmetry can also be constructed. One approach is to add

new structure beyond the Standard Model at the TeV scale or

below. The supersymmetric extension of such a theory would be

a non-minimal extension of the MSSM. Possible new structures

include: (i) the supersymmetric generalization of the see-saw

model of neutrino masses [55,56]; (ii) an enlarged electroweak

gauge group beyond SU(2)×U(1) [57]; (iii) the addition of

new, possibly exotic, matter multiplets [e.g., a vector-like color

triplet with electric charge 1
3e; such states sometimes occur as

low-energy remnants in E6 grand unification models]; and/or

(iv) the addition of low-energy SU(3)×SU(2)×U(1) singlets [58].

A possible theoretical motivation for such new structure arises

from the study of phenomenologically viable string theory

ground states [59].

A second approach is to retain the minimal particle con-

tent of the MSSM but remove the assumption of R-parity

invariance. The most general R-parity-violating (RPV) theory

involving the MSSM spectrum introduces many new parameters

to both the supersymmetry-conserving and the supersymmetry-

breaking sectors. Each new interaction term violates either B

or L conservation. For example, consider new scalar-fermion

Yukawa couplings derived from the following interactions:

(λL)pmnL̂pL̂mÊ
c
n+(λ′L)pmnL̂pQ̂mD̂

c
n+(λB)pmnÛ

c
pD̂

c
mD̂

c
n , (10)

where p, m, and n are generation indices, and gauge group

indices are suppressed. In the notation above, Q̂, Ûc, D̂c, L̂,

and Êc respectively represent (u, d)L, ucL, dcL, (ν, e−)L, and ecL
and the corresponding superpartners. The Yukawa interactions

are obtained from Eq. (10) by taking all possible combinations

involving two fermions and one scalar superpartner. Note that

the term in Eq. (10) proportional to λB violates B, while the

other two terms violate L.

Phenomenological constraints on various low-energy B- and

L-violating processes yield limits on each of the coefficients

(λL)pmn, (λ′L)pmn and (λB)pmn taken one at a time [60]. If

more than one coefficient is simultaneously non-zero, then the

limits are in general more complicated. All possible RPV terms

cannot be simultaneously present and unsuppressed; otherwise

the proton decay rate would be many orders of magnitude

larger than the present experimental bound. One way to avoid

proton decay is to impose B- or L-invariance (either one alone

would suffice). Otherwise, one must accept the requirement

that certain RPV coefficients must be extremely suppressed.

If R-parity is not conserved, supersymmetric phenomenol-

ogy exhibits features that are quite distinct from that of the

MSSM. The LSP is no longer stable, which implies that not all

supersymmetric decay chains must yield missing-energy events

at colliders. Both ∆L= 1 and ∆L= 2 phenomena are allowed

(if L is violated), leading to neutrino masses and mixing [61],

neutrinoless double beta decay [62], sneutrino-antisneutrino

mixing [56,63,64], and s-channel resonant production of the

sneutrino in e+e− collisions [65]. Since the distinction between

the Higgs and matter multiplets is lost, R-parity violation

permits the mixing of sleptons and Higgs bosons, the mix-

ing of neutrinos and neutralinos, and the mixing of charged

leptons and charginos, leading to more complicated mass ma-

trices and mass eigenstates than in the MSSM. Note that if

λ′L 6= 0, then squarks can behave as leptoquarks since the

following processes are allowed: e+um → d̃n → e+um, νdm and

e+dm → ũn → e+dm. (As above, m and n are generation labels,

so that d2 = s, d3 = b, etc.)

The theory and phenomenology of alternative low-energy

supersymmetric models and its consequences for collider physics

have recently begun to attract significant attention. In par-

ticular, experimental and theoretical constraints place some

non-trivial restrictions on R-parity-violating alternatives to the

MSSM (see, e.g., Refs. [60,66] for further details).
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