EXTRACTION OF ANOMALOUS ZZγ, Zγγ, AND ZZV COUPLINGS

Revised March 2000 by C. Caso (Univ. of Genova) and A. Gurtu (Tata Inst.)

In the reaction $e^+e^- \rightarrow Z\gamma$, deviations from the Standard Model for the $Z\gamma V$ couplings may be described in terms of 8 parameters, $h^V_i (i = 1, 4; V = \gamma, Z)$ [1]. In this formalism h^γ_1 and h^γ_2 lead to CP-violating and h^γ_3 and h^γ_4 to CP-conserving effects. All these anomalous contributions to the cross section increase rapidly with center-of-mass energy. In order to ensure unitarity, these parameters are usually described by a form-factor representation, $h^V_i(s) = h^V_i(s_0)/(1 + s/\Lambda^2)^n$, where Λ is the energy scale for the manifestation of a new phenomenon and n is a sufficiently large power. By convention one uses $n = 3$ for $h^\gamma_{1,3}$ and $n = 4$ for $h^\gamma_{2,4}$. Usually limits on h^V_i's are put assuming some value of Λ (sometimes ∞).

Above the $e^+e^- \rightarrow ZZ$ threshold, deviations from the Standard Model may be described by means of four anomalous couplings $f^V_i (i = 4, 5; V = \gamma, Z)$ [2]. The anomalous couplings f^γ_5 lead to violation of C and P symmetries while f^γ_4 introduces CP violation. These couplings are zero at tree level in the Standard Model.

Reference