THE Z BOSON
Revised March 2000 by C. Caso (Univ. of Genova) and A. Gurtu (Tata Inst.)

Precision measurements at the Z-boson resonance using electron–positron colliding beams began in 1989 at the SLC and at LEP. During 1989–95, the four CERN experiments have made high-statistics studies of the Z. The availability of longitudinally polarized electron beams at the SLC since 1993 has enabled a precision determination of the effective electroweak mixing angle $\sin^2\theta_W$ that is competitive with the CERN results on this parameter.

The Z-boson properties reported in this section may broadly be categorized as:

- The standard `lineshape’ parameters of the Z consisting of its mass, M_Z, its total width, Γ_Z, and its partial decay widths, Γ(hadrons), and $\Gamma(\ell\bar{\ell})$ where $\ell=e,\mu,\tau,\nu$;
- Z asymmetries in leptonic decays and extraction of Z couplings to charged and neutral leptons;
- The b- and c-quark-related partial widths and charge asymmetries which require special techniques;
- Determination of Z decay modes and the search for modes that violate known conservation laws;
- Average particle multiplicities in hadronic Z decay;
- Z anomalous couplings.

Details on Z-parameter determination and the study of $Z \rightarrow b\bar{b}, c\bar{c}$ at LEP and SLC are given in this note.

The standard `lineshape’ parameters of the Z are determined from an analysis of the production cross sections of these final states in e^+e^- collisions. The $Z \rightarrow \nu\bar{\nu}(\gamma)$ state is identified directly by detecting single photon production and indirectly by subtracting the visible partial widths from the total width. Inclusion in this analysis of the forward-backward asymmetry of charged leptons, $A_{FB}^{(0,\ell)}$, of the τ polarization, $P(\tau)$, and its forward-backward asymmetry, $P(\tau)^{fb}$, enables the separate determination of the effective vector (g_V) and axial vector (g_A) couplings of the Z to these leptons and the ratio (g_V/g_A) which...
is related to the effective electroweak mixing angle \(\sin^2 \theta_W \) (see the “Electroweak Model and Constraints on New Physics” Review).

Determination of the \(b \)- and \(c \)-quark-related partial widths and charge asymmetries involves tagging the \(b \) and \(c \) quarks. Traditionally this was done by requiring the presence of a prompt lepton in the event with high momentum and high transverse momentum (with respect to the accompanying jet). Precision vertex measurement with high-resolution detectors enabled one to do impact parameter and lifetime tagging. Neural-network techniques have also been used to classify events as \(b \) or non-\(b \) on a statistical basis using event-shape variables. Finally, the presence of a charmed meson (\(D/D^* \)) has been used to tag heavy quarks.

Z-parameter determination

LEP was run at energy points on and around the \(Z \) mass (88–94 GeV) constituting an energy ‘scan.’ The shape of the cross-section variation around the \(Z \) peak can be described by a Breit-Wigner ansatz with an energy-dependent total width [1–3]. The three main properties of this distribution, viz., the position of the peak, the width of the distribution, and the height of the peak, determine respectively the values of \(M_Z \), \(\Gamma_Z \), and \(\Gamma(e^+e^-) \times \Gamma(ff) \), where \(\Gamma(e^+e^-) \) and \(\Gamma(ff) \) are the electron and fermion partial widths of the \(Z \). The quantitative determination of these parameters is done by writing analytic expressions for these cross sections in terms of the parameters and fitting the calculated cross sections to the measured ones by varying these parameters, taking properly into account all the errors. Single-photon exchange (\(\sigma^0_\gamma \)) and \(\gamma-Z \) interference (\(\sigma^0_{\gamma Z} \)) are included, and the large (\(\sim 25 \% \)) initial-state radiation (ISR) effects are taken into account by convoluting the analytic expressions over a ‘Radiator Function’ [1–6] \(H(s,s') \). Thus for the process \(e^+e^- \rightarrow ff \):

\[
\sigma_f(s) = \int H(s,s') \sigma^0_f(s') \, ds' \\
\sigma^0_f(s) = \sigma^0_Z + \sigma^0_{\gamma} + \sigma^0_{\gamma Z} \tag{1}
\]

June 14, 2000 09:35
\[
\sigma_0^Z = \frac{12\pi}{M_Z^2} \frac{\Gamma(e^+ e^-) \Gamma(f \bar{f})}{\Gamma_Z^2} \frac{s \Gamma_Z^2}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2/M_Z^2} \tag{3}
\]

\[
\sigma_0^\gamma = \frac{4\pi \alpha^2(s)}{3s} Q_f^2 N_c^f \tag{4}
\]

\[
\sigma_0^\gamma Z = -\frac{2\sqrt{2} \alpha(s)}{3} (Q_f G_F N_c^f G_{Vf} G_{Vf}) \\
\times \frac{(s - M_Z^2)M_Z^2}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2/M_Z^2} \tag{5}
\]

where \(Q_f \) is the charge of the fermion, \(N_c^f = 3(1) \) for quark (lepton) and \(G_{Vf} \) is the neutral vector coupling of the Z to the fermion-antifermion pair \(f \bar{f} \).

Since \(\sigma_0^\gamma Z \) is expected to be much less than \(\sigma_0^Z \), the LEP Collaborations have generally calculated the interference term in the framework of the Standard Model. This fixing of \(\sigma_0^\gamma Z \) leads to a tighter constraint on \(M_Z \) and consequently a smaller error on its fitted value.

In the above framework, the QED radiative corrections have been explicitly taken into account by convoluting over the ISR and allowing the electromagnetic coupling constant to run [10]: \(\alpha(s) = \alpha/(1 - \Delta \alpha) \). On the other hand, weak radiative corrections that depend upon the assumptions of the electroweak theory and on the values of the unknown \(M_{\text{top}} \) and \(M_{\text{Higgs}} \) are accounted for by absorbing them into the couplings, which are then called the effective couplings \(G_V \) and \(G_A \) (or alternatively the effective parameters of the \(\ast \) scheme of Kennedy and Lynn [11]).

\(G_{Vf} \) and \(G_{Af} \) are complex numbers with a small imaginary part. As experimental data does not allow simultaneous extraction of both real and imaginary parts of the effective couplings, the convention \(g_{Af} = \text{Re}(G_{Af}) \) and \(g_{Vf} = \text{Re}(G_{Vf}) \) is used and the imaginary parts are added in the fitting code [4].

Defining

\[
A_f = 2g_{VF} \cdot g_{AF} (g_{VF}^2 + g_{AF}^2) \tag{6}
\]

the lowest-order expressions for the various lepton-related asymmetries on the Z pole are [7–9] \(A_{FB}^{(0,0)} = (3/4) A_e A_f \), \(P(\tau) = -A_\tau \), \(P(\tau f) = -(3/4) A_e \), \(A_{LR} = A_e \). The full analysis
takes into account the energy dependence of the asymmetries. Experimentally A_{LR} is defined as $(\sigma_L - \sigma_R) / (\sigma_L + \sigma_R)$ where $\sigma_L(R)$ are the $e^+e^- \to Z$ production cross sections with left- (right)-handed electrons.

The definition of the partial decay width of the Z to $f\bar{f}$ includes the effects of QED and QCD final state corrections as well as the contribution due to the imaginary parts of the couplings:

$$\Gamma(f\bar{f}) = \frac{G_F M_Z^3}{6\sqrt{2}\pi} N_f (|G_{Vf}|^2 R^f_A + |G_{VA}|^2 R^f_V) + \Delta_{ew/QCD} (7)$$

where R^f_V and R^f_A are radiator factors to account for final state QED and QCD corrections as well as effects due to nonzero fermion masses, and $\Delta_{ew/QCD}$ represents the non-factorizable electroweak/QCD corrections.

S-matrix approach to the Z

While practically all experimental analyses of LEP/SLC data have followed the ‘Breit-Wigner’ approach described above, an alternative S-matrix-based analysis is also possible. The Z, like all unstable particles, is associated with a complex pole in the S matrix. The pole position is process independent and gauge invariant. The mass, M_Z, and width, Γ_Z, can be defined in terms of the pole in the energy plane via $[12-15]$

$$\mathbf{s} = M_Z^2 - iM_Z\Gamma_Z$$

leading to the relations

$$M_Z = \frac{\sqrt{1 + \Gamma_Z^2 / M_Z^2}} \approx M_Z - 34.1 \text{ MeV}$$

$$\Gamma_Z = \frac{\Gamma_Z / \sqrt{1 + \Gamma_Z^2 / M_Z^2}} \approx \Gamma_Z - 0.9 \text{ MeV} .$$

Some authors $[16]$ choose to define the Z mass and width via

$$\mathbf{s} = (\overline{M}_Z - \frac{i}{2}\Gamma_Z)^2$$

which yields $\overline{M}_Z \approx M_Z - 26 \text{ MeV}$, $\Gamma_Z \approx \Gamma_Z - 1.2 \text{ MeV}$.

June 14, 2000 09:35
The L3 and OPAL Collaborations at LEP (ACCIARRI 97K and ACKERSTAFF 97C) have analyzed their data using the S-matrix approach as defined in Eq. (8), in addition to the conventional one. They observe a downward shift in the Z mass as expected.

Handling the large-angle e^+e^- final state

Unlike other $f\bar{f}$ decay final states of the Z, the e^+e^- final state has a contribution not only from the s-channel but also from the t-channel and s-t interference. The full amplitude is not amenable to fast calculation, which is essential if one has to carry out minimization fits within reasonable computer time. The usual procedure is to calculate the non-s channel part of the cross section separately using the Standard Model programs ALIBABA [17] or TOPAZ0 [18] with the measured value of M_{top}, and $M_{\text{Higgs}} = 150$ GeV and add it to the s-channel cross section calculated as for other channels. This leads to two additional sources of error in the analysis: firstly, the theoretical calculation in ALIBABA itself is known to be accurate to $\sim 0.5\%$, and secondly, there is uncertainty due to the error on M_{top} and the unknown value of M_{Higgs} (100–1000 GeV). These additional errors are propagated into the analysis by including them in the systematic error on the e^+e^- final state. As these errors are common to the four LEP experiments, this is taken into account when performing the LEP average.

Errors due to uncertainty in LEP energy determination [19–23]

The systematic errors related to the LEP energy measurement can be classified as:

- The absolute energy scale error;
- Energy-point-to-energy-point errors due to the non-linear response of the magnets to the exciting currents;
- Energy-point-to-energy-point errors due to possible higher-order effects in the relationship between the dipole field and beam energy;
• Energy reproducibility errors due to various unknown uncertainties in temperatures, tidal effects, corrector settings, RF status, etc.

Precise energy calibration was done outside normal data taking using the resonant depolarization technique. Run-time energies were determined every 10 minutes by measuring the relevant machine parameters and using a model which takes into account all the known effects, including leakage currents produced by trains in the Geneva area and the tidal effects due to gravitational forces of the Sun and the Moon. The LEP Energy Working Group has provided a covariance matrix from the determination of LEP energies for the different running periods during 1993–1995 [5].

Choice of fit parameters

The LEP Collaborations have chosen the following primary set of parameters for fitting: M_Z, Γ_Z, σ^0_{hadron}, $R(\text{lepton})$, $A^{(0,\ell)}_{FB}$, where $R(\text{lepton}) = \Gamma(\text{hadrons})/\Gamma(\text{lepton})$, $\sigma^0_{\text{hadron}} = 12\pi\Gamma(e^+e^-)\Gamma(\text{hadrons})/M_Z^2 \Gamma_Z^2$. With a knowledge of these fitted parameters and their covariance matrix, any other parameter can be derived. The main advantage of these parameters is that they form the least correlated set of parameters, so that it becomes easy to combine results from the different LEP experiments.

Thus, the most general fit carried out to cross section and asymmetry data determines the nine parameters: M_Z, Γ_Z, σ^0_{hadron}, $R(e)$, $R(\mu)$, $R(\tau)$, $A^{(0,e)}_{FB}$, $A^{(0,\mu)}_{FB}$, $A^{(0,\tau)}_{FB}$. Assumption of lepton universality leads to a five-parameter fit determining M_Z, Γ_Z, σ^0_{hadron}, $R(\text{lepton})$, $A^{(0,\ell)}_{FB}$. The use of only cross-section data leads to six- or four-parameter fits if lepton universality is or is not assumed, i.e., $A^{(0,\ell)}_{FB}$ values are not determined.

In order to determine the best values of the effective vector and axial vector couplings of the charged leptons to the Z, the above mentioned nine- and five-parameter fits are carried out with added constraints from the measured values of A_τ and A_ℓ obtained from τ polarization studies at LEP and the determination of A_{LR} at SLC.
Combining results from the LEP and SLC experiments [24]

Each LEP experiment provides the values of the parameters mentioned above together with the full covariance matrix. The statistical and experimental systematic errors are assumed to be uncorrelated among the four experiments. The sources of common systematic errors are i) the LEP energy uncertainties, ii) the effect of theoretical uncertainty in calculating the small-angle Bhabha cross section for luminosity determination and in estimating the non-s channel contribution to the large-angle Bhabha cross section, and iii) common theory errors. Using this information, a full covariance matrix, V, of all the input parameters is constructed and a combined parameter set is obtained by minimizing $\chi^2 = \Delta^T V^{-1} \Delta$, where Δ is the vector of residuals of the combined parameter set to the results of individual experiments.

Non-LEP measurement of a Z parameter, (e.g., $\Gamma(e^+e^-)$ from SLD) is included in the overall fit by calculating its value using the fit parameters and constraining it to the measurement.

Study of $Z \rightarrow b\bar{b}$ and $Z \rightarrow c\bar{c}$

In the sector of c- and b-physics the LEP experiments have measured the ratios of partial widths $R_b = \Gamma(Z \rightarrow b\bar{b})/\Gamma(Z \rightarrow \text{hadrons})$ and $R_c = \Gamma(Z \rightarrow c\bar{c})/\Gamma(Z \rightarrow \text{hadrons})$ and the forward-backward (charge) asymmetries $A_{FB}^{b\bar{b}}$ and $A_{FB}^{c\bar{c}}$. Several of the analyses have also determined other quantities, in particular the semileptonic branching ratios, $B(b \rightarrow \ell)$, $B(b \rightarrow c \rightarrow \ell^+)$, and $B(c \rightarrow \ell)$, the average $B^0\bar{B}^0$ mixing parameter χ and the probabilities for a c–quark to fragment into a D^+, a D_s, a D^{*+}, or a charmed baryon. The latter measurements do not concern properties of the Z boson and hence they do not appear in the listing below. However, for completeness, we will report at the end of this minireview their values as obtained fitting the data contained in the Z section. All these quantities are correlated with the electroweak parameters, and since the mixture of b hadrons is different from the one at the $\Upsilon(4S)$, their values might differ from those measured at the $\Upsilon(4S)$.

All the above quantities are correlated to each other since:
• Several analyses (for example the lepton fits) determine more than one parameter simultaneously;
• Some of the electroweak parameters depend explicitly on the values of other parameters (for example \(R_b\) depends on \(R_c\));
• Common tagging and analysis techniques produce common systematic uncertainties.

The LEP Electroweak Heavy Flavour Working Group has developed [25] a procedure for combining the measurements taking into account known sources of correlation. The combining procedure determines twelve parameters: the four parameters of interest in the electroweak sector, \(R_b\), \(R_c\), \(A_{FB}^b\), and \(A_{FB}^c\) and, in addition, \(B(b \to \ell)\), \(B(b \to c \to \ell^+)\), \(B(c \to \ell)\), \(\bar{A}\), \(f(D^+)\), \(f(D_s)\), \(f(c_{\text{baryon}})\) and \(P(c \to D^{*+}) \times B(D^{*+} \to \pi^+D^0)\), to take into account their correlations with the electroweak parameters. Before the fit both the peak and off-peak asymmetries are translated to the common energy \(\sqrt{s} = 91.26\) GeV using the predicted dependence from ZFITTER [6].

Summary of the measurements and of the various kinds of analysis

The measurements of \(R_b\) and \(R_c\) fall into two classes. In the first, named single-tag measurement, a method for selecting \(b\) and \(c\) events is applied and the number of tagged events is counted. The second technique, named double-tag measurement, is based on the following principle: if the number of events with a single hemisphere tagged is \(N_t\) and with both hemispheres tagged is \(N_{tt}\), then given a total number of \(N_{\text{had}}\) hadronic \(Z\) decays one has:

\[
\frac{N_t}{2N_{\text{had}}} = \varepsilon_b R_b + \varepsilon_c R_c + \varepsilon_{uds}(1 - R_b - R_c) \tag{12}
\]

\[
\frac{N_{tt}}{N_{\text{had}}} = C_b \varepsilon_b^2 R_b + C_c \varepsilon_c^2 R_c + C_{uds} \varepsilon_{uds}^2 (1 - R_b - R_c) \tag{13}
\]

where \(\varepsilon_b\), \(\varepsilon_c\), and \(\varepsilon_{uds}\) are the tagging efficiencies per hemisphere for \(b\), \(c\), and light quark events, and \(C_q \neq 1\) accounts for the fact that the tagging efficiencies between the hemispheres may be correlated. In tagging the \(b\) one has \(\varepsilon_b \gg \varepsilon_c \gg \varepsilon_{uds}\), \(C_b \approx 1\).
Neglecting the c and uds background and the hemisphere correlations, these equations give:

$$\varepsilon_b = 2N_{tt}/N_t$$

(14)

$$R_b = N_t^2/(4N_{tt}N_{\text{had}}).$$

(15)

The double-tagging method has thus the great advantage that the tagging efficiency is directly derived from the data, reducing the systematic error of the measurement. The backgrounds, dominated by $c\tau$ events, obviously complicate this simple picture, and their level must still be inferred by other means. The rate of charm background in these analyses depends explicitly on the value of R_c. The correlations in the tagging efficiencies between the hemispheres (due for instance to correlations in momentum between the b hadrons in the two hemispheres) are small but nevertheless lead to further systematic uncertainties.

The measurements in the b- and c-sector can be essentially grouped in the following categories:

- Lifetime (and lepton) double-tagging measurements of R_b. These are the most precise measurements of R_b and obviously dominate the combined result. The main sources of systematics come from the charm contamination and from estimating the hemisphere b-tagging efficiency correlation. The charm rejection has been improved (and hence the systematic errors reduced) by using either the information of the secondary vertex invariant mass or the information from the energy of all particles at the secondary vertex and their rapidity;

- Analyses with $D/D^{*\pm}$ to measure R_c. These measurements make use of several different tagging techniques (inclusive/exclusive double tag, exclusive double tag, reconstruction of all weakly decaying charmed states) and no assumptions are made on the energy dependence of charm fragmentation;

- Lepton fits which use hadronic events with one or more leptons in the final state to measure A^{μ}_{FB}.
and A_{cFB}^c. Each analysis usually gives several other electroweak parameters. The dominant sources of systematics are due to lepton identification, to other semileptonic branching ratios and to the modeling of the semileptonic decay;

- Measurements of A_{bFB}^b using lifetime tagged events with a hemisphere charge measurement. Their contribution to the combined result has roughly the same weight as the lepton fits;
- Analyses with D/D^* to measure A_{cFB}^c or simultaneously A_{bFB}^b and A_{cFB}^c;
- Measurements of A_b and A_c from SLD, using several tagging methods (lepton, kaon, D/D^*, and vertex mass). These quantities are directly extracted from a measurement of the left–right forward–backward asymmetry in $c\bar{c}$ and $b\bar{b}$ production using a polarized electron beam.

Averaging procedure

All the measurements are provided by the LEP Collaborations in the form of tables with a detailed breakdown of the systematic errors of each measurement and its dependence on other electroweak parameters.

The averaging proceeds via the following steps:

- Define and propagate a consistent set of external inputs such as branching ratios, hadron lifetimes, fragmentation models etc. All the measurements are also consistently checked to ensure that all use a common set of assumptions (for instance since the QCD corrections for the forward–backward asymmetries are strongly dependent on the experimental conditions, the data are corrected before combining);
- Form the full (statistical and systematic) covariance matrix of the measurements. The systematic correlations between different analyses are calculated from the detailed error breakdown in the measurement tables. The correlations relating several
measurements made by the same analysis are also used;

- Take into account any explicit dependence of a measurement on the other electroweak parameters. As an example of this dependence we illustrate the case of the double-tag measurement of R_b, where c-quarks constitute the main background. The normalization of the charm contribution is not usually fixed by the data and the measurement of R_b depends on the assumed value of R_c, which can be written as:

$$R_b = R_b^{\text{meas}} + a(R_c) \frac{(R_c - R_c^{\text{used}})}{R_c}, \quad \text{(16)}$$

where R_b^{meas} is the result of the analysis which assumed a value of $R_c = R_c^{\text{used}}$ and $a(R_c)$ is the constant which gives the dependence on R_c;

- Perform a χ^2 minimization with respect to the combined electroweak parameters.

After the fit the average peak asymmetries $A_{FB}^{c\ell}$ and $A_{FB}^{b\ell}$ are corrected for the energy shift from 91.26 GeV to M_Z and for QED (initial state radiation), γ exchange, and γZ interference effects to obtain the corresponding pole asymmetries $A_{FB}^{0,c}$ and $A_{FB}^{0,b}$.

This averaging procedure, using the twelve parameters described above and applied to the data contained in the Z particle listing below, gives the following results:

$$R_b^0 = 0.21644 \pm 0.00075$$

$$R_c^0 = 0.1671 \pm 0.0048$$

$$A_{FB}^{0,b} = 0.1003 \pm 0.0022$$

$$A_{FB}^{0,c} = 0.0701 \pm 0.0045$$

$$B(b \to \ell) = 0.1056 \pm 0.0026$$

$$B(b \to c \to \ell^+) = 0.0807 \pm 0.0034$$

$$B(c \to \ell) = 0.0990 \pm 0.0037$$
\[\overline{\chi} = 0.1177 \pm 0.0055 \]
\[f(D^+) = 0.239 \pm 0.016 \]
\[f(D_s) = 0.116 \pm 0.025 \]
\[f(c_{\text{baryon}}) = 0.084 \pm 0.023 \]
\[P(c \to D^{*+}) \times B(D^{*+} \to \pi^+ D^0) = 0.1657 \pm 0.0057 \]

References

8. M. Bohm et al., ibid, p. 203.
9. S. Jadach et al., ibid, p. 235.
10. G. Burgers et al., ibid, p. 55.

