

P

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$

See the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. **D50**, 1673) for a short review.

The "partial mean life" limits tabulated here are the limits on τ/B_i , where τ is the total mean life and B_i is the branching fraction for the mode in question. For *N* decays, *p* and *n* indicate proton and neutron partial lifetimes.

	Partial mean life		р
p DECAY MODES	(10 ³⁰ years)	Confidence level	(MeV/ <i>c</i>)
	Antilepton + meson		
$N \rightarrow e^+ \pi$	>158~(n), >1600~(p) 90%	459
$N \rightarrow \mu^+ \pi$	>100~(n),~>473~(p	90%	453
$N \rightarrow \nu \pi$	> 112 (n), > 25 (p)	90%	459
$p \rightarrow e^+ \eta$	> 313	90%	309
$p \rightarrow \mu^+ \eta$	> 126	90%	296
$n \rightarrow \nu \eta$	> 158	90%	310
$N \rightarrow e^+ \rho$	>217~(n), >75~(p)	90%	153
$N \rightarrow \mu^+ \rho$	>228~(n),~>110~(p	90%	119
$N \rightarrow \nu \rho$	> 19~(n), > 162~(p)	90%	153
$p \rightarrow e^+ \omega$	> 107	90%	142

Page 1

Created: 8/27/2002 13:44

p ightarrow	$\mu^+ \omega$	> 117	90%	104
$n \rightarrow$	$ u \omega$	> 108	90%	144
$N \rightarrow$	e^+K	> 17 (n), > 150 (p)	90%	337
р-	$\rightarrow e^+ K^0_S$	> 120	90%	337
р-	$\rightarrow e^+ K_I^{\bar{0}}$	> 51	90%	337
$N \rightarrow$	$\mu^+ K$	> 26 (n), > 120 (p)	90%	326
р-	$\rightarrow \mu^+ K^0_S$	> 150	90%	326
р-	$\rightarrow \mu^+ K_I^{0}$	> 83	90%	326
$N \rightarrow$	νΚ	> 86 (n), > 670 (p)	90%	339
n -	$\rightarrow \nu K_{S}^{0}$	> 51	90%	_
$p \rightarrow$	$e^+ K^* (892)^0$	> 84	90%	45
$N \rightarrow$	ν K*(892)	>78~(n),>51~(p)	90%	45
		Antilenton \pm mesons		
$n \rightarrow$	$e^{+}\pi^{+}\pi^{-}$		00%	118
$p \rightarrow p \rightarrow p$	$e^{+\pi^{0}\pi^{0}}$	> 147	90%	440
$\stackrel{P}{n} \rightarrow$	$e^{+}\pi^{-}\pi^{0}$	> 52	90%	449
$p \rightarrow$	$\mu^{+}\pi^{+}\pi^{-}$	> 133	90%	425
$p \rightarrow$	$\mu^{+} \pi^{0} \pi^{0}$	> 101	90%	427
$n \rightarrow n$	$\mu^{+}\pi^{-}\pi^{0}$	> 74	90%	427
$n \rightarrow$	$e^+ K^0 \pi^-$	> 18	90%	319
		lepton + meson		
$n \rightarrow$	$e^{-\pi^+}$		00%	150
$n \rightarrow$	$\mu^{-}\pi^{+}$	> 49	90%	453
$n \rightarrow$	$e^{-} a^{+}$	> 62	90%	154
$n \rightarrow$	$u^- o^+$	> 7	90%	120
$n \rightarrow$	$e^{-}K^{+}$	> 32	90%	340
$n \rightarrow$	$\mu^- K^+$	> 57	90%	330
		lenton + mesons		
$n \rightarrow$	$e^{-\pi^{+}\pi^{+}}$		90%	448
$\stackrel{P}{n} \rightarrow$		> 30	90%	449
	$e^{-}\pi^{+}\pi^{0}$	//9	5070	
$p \rightarrow$	$e^{-}\pi^{+}\pi^{0}$ $\mu^{-}\pi^{+}\pi^{+}$	> 17	90%	425
$p \rightarrow n \rightarrow$	$e^{-\pi^{+}\pi^{0}}$ $\mu^{-\pi^{+}\pi^{+}}$ $\mu^{-\pi^{+}\pi^{0}}$	> 29 > 17 > 34	90% 90%	425 427
$p \rightarrow n \rightarrow p \rightarrow p \rightarrow p$	$e^{-} \pi^{+} \pi^{0}$ $\mu^{-} \pi^{+} \pi^{+}$ $\mu^{-} \pi^{+} \pi^{0}$ $e^{-} \pi^{+} K^{+}$	> 29 > 17 > 34 > 75	90% 90% 90%	425 427 320
$egin{array}{ccc} p & ightarrow \ n & ightarrow \ p & ightarrow \ p & ightarrow \ p & ightarrow \end{array}$	$e^{-} \pi^{+} \pi^{0}$ $\mu^{-} \pi^{+} \pi^{+}$ $\mu^{-} \pi^{+} \pi^{0}$ $e^{-} \pi^{+} K^{+}$ $\mu^{-} \pi^{+} K^{+}$	> 29 > 17 > 34 > 75 > 245	90% 90% 90% 90%	425 427 320 279
$p \rightarrow n \rightarrow p \rightarrow p \rightarrow p \rightarrow$	$e^{-} \pi^{+} \pi^{0}$ $\mu^{-} \pi^{+} \pi^{+}$ $\mu^{-} \pi^{+} \pi^{0}$ $e^{-} \pi^{+} K^{+}$ $\mu^{-} \pi^{+} K^{+}$	> 29 > 17 > 34 > 75 > 245 Antilepton + photon(s)	90% 90% 90% 90%	425 427 320 279
$p \rightarrow n \rightarrow p \rightarrow $	$e^{-} \pi^{+} \pi^{0}$ $\mu^{-} \pi^{+} \pi^{+}$ $\mu^{-} \pi^{+} \pi^{0}$ $e^{-} \pi^{+} K^{+}$ $\mu^{-} \pi^{+} K^{+}$ $e^{+} \gamma$	> 29 > 17 > 34 > 75 > 245 Antilepton + photon(s) > 670	90% 90% 90% 90%	425 427 320 279 469
$p \rightarrow n \rightarrow p \rightarrow $	$e^{-} \pi^{+} \pi^{0}$ $\mu^{-} \pi^{+} \pi^{+}$ $\mu^{-} \pi^{+} \pi^{0}$ $e^{-} \pi^{+} K^{+}$ $\mu^{-} \pi^{+} K^{+}$ $e^{+} \gamma$ $\mu^{+} \gamma$	> 29 > 17 > 34 > 75 > 245 Antilepton + photon(s) > 670 > 478	90% 90% 90% 90% 90%	425 427 320 279 469 463
$\begin{array}{ccc} p \rightarrow & \\ n \rightarrow & \\ p \rightarrow & \\ p \rightarrow & \\ p \rightarrow & \\ p \rightarrow & \\ n \rightarrow & \end{array}$	$e^{-} \pi^{+} \pi^{0}$ $\mu^{-} \pi^{+} \pi^{+}$ $\mu^{-} \pi^{+} \pi^{0}$ $e^{-} \pi^{+} K^{+}$ $\mu^{-} \pi^{+} K^{+}$ $e^{+} \gamma$ $\mu^{+} \gamma$ $\nu \gamma$	> 29 > 17 > 34 > 75 > 245 Antilepton + photon(s) > 670 > 478 > 28	90% 90% 90% 90% 90% 90%	425 427 320 279 469 463 470
$\begin{array}{c} p \rightarrow \\ n \rightarrow \\ p \rightarrow \\ p \rightarrow \\ p \rightarrow \\ n \rightarrow \\ p \rightarrow \\ p \rightarrow \end{array}$	$e^{-} \pi^{+} \pi^{0}$ $\mu^{-} \pi^{+} \pi^{+}$ $\mu^{-} \pi^{+} \pi^{0}$ $e^{-} \pi^{+} K^{+}$ $\mu^{-} \pi^{+} K^{+}$ $e^{+} \gamma$ $\mu^{+} \gamma$ $\nu \gamma$ $e^{+} \gamma \gamma$	> 29 > 17 > 34 > 75 > 245 Antilepton + photon(s) > 670 > 478 > 28 > 100	90% 90% 90% 90% 90% 90% 90%	425 427 320 279 469 463 470 469
$\begin{array}{c} p \rightarrow \\ n \rightarrow \\ p \rightarrow \\ p \rightarrow \\ p \rightarrow \\ n \rightarrow \\ p \rightarrow \\ n \rightarrow \end{array}$	$e^{-} \pi^{+} \pi^{0}$ $\mu^{-} \pi^{+} \pi^{+}$ $\mu^{-} \pi^{+} \pi^{0}$ $e^{-} \pi^{+} K^{+}$ $\mu^{-} \pi^{+} K^{+}$ $e^{+} \gamma$ $\mu^{+} \gamma$ $\nu \gamma$ $e^{+} \gamma \gamma$ $\nu \gamma \gamma$	> 29 > 17 > 34 > 75 > 245 Antilepton + photon(s) > 670 > 478 > 28 > 100 > 219	90% 90% 90% 90% 90% 90% 90%	425 427 320 279 469 463 470 469 470

	Three (or more) leptons		
$p \rightarrow e^+ e^+ e^-$	> 793	90%	469
$ ho ightarrow e^+ \mu^+ \mu^-$	> 359	90%	457
$p \rightarrow e^+ \nu \nu$	> 17	90%	469
$n \rightarrow e^+ e^- \nu$	> 257	90%	470
$n \rightarrow \mu^+ e^- \nu$	> 83	90%	464
$n \rightarrow \mu^+ \mu^- \nu$	> 79	90%	458
$ ho ightarrow \ \mu^+ e^+ e^-$	> 529	90%	464
$ ho ightarrow \ \mu^+ \mu^+ \mu^-$	> 675	90%	439
$p \rightarrow \mu^+ \nu \nu$	> 21	90%	463
$ ho ightarrow e^- \mu^+ \mu^+$	> 6	90%	457
$n \rightarrow 3\nu$	> 0.0005	90%	470
$n \rightarrow 5\nu$	_		-
	Inclusive modes		
$N \rightarrow e^+$ anything	> 0.6 (n, p)	90%	_
$N \rightarrow \mu^+$ anything	> 12 (n n)	90%	_

$N \rightarrow$	μ^+ anything	> 12 (n, p)	90%	_
$N \rightarrow$	u anything	—		_
$N \rightarrow$	$e^+ \pi^0$ anything	> 0.6 (n, p)	90%	_
$N \rightarrow$	2 bodies, ν -free			_

$\Delta B = 2$ dinucleon modes

The following are lifetime limits per iron nucleus.

$pp \rightarrow$	$\pi^+\pi^+$	> 0.7	90%	—
$pn \rightarrow$	$\pi^+\pi^0$	> 2	90%	—
$nn \rightarrow$	$\pi^+\pi^-$	> 0.7	90%	—
$nn \rightarrow$	$\pi^0 \pi^0$	> 3.4	90%	—
$pp \rightarrow$	e^+e^+	> 5.8	90%	—
$pp \rightarrow$	$e^+ \mu^+$	> 3.6	90%	_
$pp \rightarrow$	$\mu^+\mu^+$	> 1.7	90%	_
$pn \rightarrow$	$e^+\overline{ u}$	> 2.8	90%	—
$pn \rightarrow$	$\mu^+ \overline{ u}$	> 1.6	90%	—
$nn \rightarrow$	$\nu_e \overline{\nu}_e$	> 0.000012	90%	-
$nn \rightarrow$	$ u_{\mu}\overline{ u}_{\mu}$	> 0.000006	90%	_
$pp \rightarrow$	neutrinos	> 0.0000055	90%	_

HTTP://PDG.LBL.GOV Page 3

	Partial mean life		р
P DECAY MODES	(years)	Confidence level	(MeV/c)
$\overline{ ho} ightarrow e^- \gamma$	$> 7 imes 10^5$	90%	469
$\overline{\rho} \rightarrow \mu^- \gamma_{\perp}$	$> 5 imes 10^4$	90%	463
$\overline{p} \rightarrow e^{-} \pi^{0}$	$>4 imes10^5$	90%	459
$\overline{\rho} \rightarrow \mu^- \pi^0$	$> 5 imes 10^4$	90%	453
$\overline{\pmb{p}} ightarrow e^- \eta$	$> 2 \times 10^4$	90%	309
$\overline{p} \rightarrow \mu^- \eta$	$> 8 imes 10^3$	90%	296
$\overline{ ho} ightarrow e^- K_S^0$	> 900	90%	337
$\overline{p} \rightarrow \mu^- K_S^{0}$	$> 4 imes 10^3$	90%	326
$\overline{p} \rightarrow e^- K_I^0$	$> 9 imes 10^3$	90%	337
$\overline{p} \rightarrow \mu^{-} K_{L}^{\overline{0}}$	$> 7 imes 10^3$	90%	326
$\overline{p} \rightarrow e^- \gamma \gamma$	$> 2 imes 10^4$	90%	469
$\overline{\rho} \rightarrow \mu^- \gamma \gamma$	$> 2 imes 10^4$	90%	463
$\overline{ m ho} ightarrow e^- ho$	—		153
$\overline{ m ho} ightarrow e^- \omega$	> 200	90%	142
$\overline{p} \rightarrow e^- K^* (892)^0$			141

p DECAY MODES

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Mass $m = 1.0086649158 \pm 0.000000006$ u Mass $m = 939.56533 \pm 0.0004$ MeV ^[a] $m_n - m_p = 1.2933318 \pm 0.000005$ MeV $= 0.0013884489 \pm 0.000000006$ u Mean life $\tau = 885.7 \pm 0.8$ s $c\tau = 2.655 \times 10^8$ km Magnetic moment $\mu = -1.9130427 \pm 0.000005 \ \mu_N$ Electric dipole moment $d < 0.63 \times 10^{-25}$ e cm, CL = 90% Mean-square charge radius $\langle r_n^2 \rangle = -0.1161 \pm 0.0022$ fm² (S = 1.3) Electric polarizability $\alpha = (9.8^{+1.9}_{-2.3}) \times 10^{-4}$ fm³ (S = 1.1) Charge $q = (-0.4 \pm 1.1) \times 10^{-21}$ e Mean $n\overline{n}$ -oscillation time > 8.6×10^7 s, CL = 90% (free n) $> 1.2 \times 10^8$ s, CL = 90% [e] (bound n)

Decay parameters [f]

n

pe ⁻ $\overline{ u}_e$		100 %	1.19
n DECAY MO	DES	Fraction (Γ_i/Γ) Confidence level	р (MeV/c)
	11	$D = (-0.6 \pm 1.0) imes 10^{-3}$	
		$\phi_{AV} = (180.08 \pm 0.10)^{\circ} \ ^{[g]}$	
		$a = -0.102 \pm 0.005$	
		$B = 0.983 \pm 0.004$	
		$A = -0.1162 \pm 0.0013$ (S = 1.8)	
p	$e^{-}\overline{\nu}_{e}$	$\lambda \equiv g_A \ / \ g_V = -1.2670 \pm 0.0030$ (S = 1.	6)

	Charge conservation (Q) violating mode		
$p\nu_e\overline{\nu}_e$	$Q < 8 \times 10^{-27}$	68%	1.29

N(1440) P₁₁

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	60–70 %	397
$N\pi\pi$	30–40 %	342
$\Delta \pi$	20–30 %	143
$N \rho$	<8 %	†
$N(\pi\pi)^{I=0}_{S-wave}$	5–10 %	-
$p\gamma$	0.035–0.048 %	414
$p\gamma$, helicity ${=}1/2$	0.035–0.048 %	414
$n\gamma$	0.009–0.032 %	413
$n\gamma$, helicity=1/2	0.009–0.032 %	413

N(1520) D₁₃

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$

 $\begin{array}{l} \mbox{Breit-Wigner mass} = 1515 \mbox{ to } 1530 \ (\approx 1520) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 110 \mbox{ to } 135 \ (\approx 120) \ \mbox{MeV} \\ \mbox{p_{beam}} = 0.74 \ \mbox{GeV}/c & 4\pi \lambda^2 = 23.5 \ \mbox{mb} \\ \mbox{Re(pole position)} = 1505 \ \mbox{to } 1515 \ \mbox{($\approx 1510)$ MeV} \\ \mbox{$-2lm(pole position)} = 110 \ \mbox{to } 120 \ \mbox{($\approx 115)$ MeV} \\ \end{array}$

N(1520) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	50-60 %	456
$N\eta$	(0.0±1.0) %	149
$N\pi\pi$	40–50 %	410
$\Delta \pi$	15–25 %	228
N ho	15–25 %	†
$N(\pi\pi)^{I=0}_{S-wave}$	<8 %	-
$p\gamma$	0.46-0.56 %	470
$p\gamma$, helicity ${=}1/2$	0.001–0.034 %	470
$p\gamma$, helicity ${=}3/2$	0.44–0.53 %	470
$n\gamma$	0.30-0.53 %	470
$n\gamma$, helicity ${=}1/2$	0.04-0.10 %	470
$n\gamma$, helicity=3/2	0.25-0.45 %	470

N(1535) S₁₁

 $I(J^P) = \tfrac{1}{2}(\tfrac{1}{2}^-)$

Breit-Wigner mass = 1520 to 1555 (\approx 1535) MeV Breit-Wigner full width = 100 to 200 (\approx 150) MeV $p_{\text{beam}} = 0.76 \text{ GeV}/c$ $4\pi \lambda^2 = 22.5 \text{ mb}$ Re(pole position) = 1495 to 1515 (\approx 1505) MeV -2Im(pole position) = 90 to 250 (\approx 170) MeV

N(1535) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	35–55 %	467
$N\eta$	30–55 %	182
$N\pi\pi$	1–10 %	422
$\Delta \pi$	<1 %	242
N ho	<4 %	†
$N(\pi\pi)^{I=0}_{S-wave}$	<3 %	-
$N(1440)\pi$	<7 %	†
$p\gamma$	0.15-0.35 %	481
$p\gamma$, helicity ${=}1/2$	0.15-0.35 %	481
$n\gamma$	0.004–0.29 %	480
$n\gamma$, helicity ${=}1/2$	0.004–0.29 %	480

N(1650) S₁₁

 $I(J^P) = \tfrac{1}{2}(\tfrac{1}{2}^-)$

 $\begin{array}{l} \mbox{Breit-Wigner mass} = 1640 \ \mbox{to} \ 1680 \ (\approx 1650) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 145 \ \mbox{to} \ 190 \ (\approx 150) \ \mbox{MeV} \\ \mbox{$p_{\rm beam}$} = 0.96 \ \mbox{GeV}/c \ \ \ 4\pi \lambda^2 = 16.4 \ \mbox{mb} \\ \mbox{Re(pole position)} = 1640 \ \mbox{to} \ 1680 \ (\approx 1660) \ \mbox{MeV} \\ \ \ \ -2 \mbox{Im}(\mbox{pole position}) = 150 \ \mbox{to} \ 170 \ \ (\approx 160) \ \mbox{MeV} \end{array}$

N(1650) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	55–90 %	547
Nη	3–10 %	346
ΛΚ	3–11 %	161
$N\pi\pi$	10–20 %	511
$\Delta \pi$	1-7 %	344
Nρ	4–12 %	†
$N(\pi\pi)^{I=0}_{S-wave}$	<4 %	-
$N(1440)\pi$	<5 %	147
$p\gamma$	0.04-0.18 %	558
$p\gamma$, helicity ${=}1/2$	0.04-0.18 %	558
$n\gamma$	0.003–0.17 %	557
$n\gamma$, helicity=1/2	0.003–0.17 %	557

N(1675) D₁₅

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^-)$$

N(1675) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	40–50 %	563
$N\eta$	(0.0±1.0) %	374
ΛΚ	<1%	209
$N\pi\pi$	50-60 %	529
$\Delta\pi$	50-60 %	364
N ho	< 1–3 %	†
$p\gamma$	0.004–0.023 %	575
$p\gamma$, helicity ${=}1/2$	0.0–0.015 %	575
$p\gamma$, helicity ${=}3/2$	0.0–0.011 %	575
$n\gamma$	0.02-0.12 %	574
$n\gamma$, helicity ${=}1/2$	0.006-0.046 %	574
$n\gamma$, helicity=3/2	0.01–0.08 %	574

N(1680) F₁₅

 $I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$

 $\begin{array}{l} \mbox{Breit-Wigner mass} = 1675 \ \mbox{to} \ 1690 \ (\approx 1680) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 120 \ \mbox{to} \ 140 \ (\approx 130) \ \mbox{MeV} \\ \mbox{$p_{\rm beam}$} = 1.01 \ \mbox{GeV}/c \ \ \ 4\pi\lambda^2 = 15.2 \ \mbox{mb} \\ \mbox{Re(pole position)} = 1665 \ \mbox{to} \ 1675 \ (\approx 1670) \ \mbox{MeV} \\ \ \ -2\mbox{Im}(\mbox{pole position}) = 105 \ \mbox{to} \ 135 \ (\approx 120) \ \mbox{MeV} \end{array}$

N(1680) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	60–70 %	567
$N\eta$	(0.0 ± 1.0) %	379
$N\pi\pi$	30–40 %	532
$\Delta \pi$	5–15 %	369
N ho	3–15 %	†
$N(\pi\pi)^{I=0}_{S-wave}$	5-20 %	-
$p\gamma$	0.21-0.32 %	578
$p\gamma$, helicity ${=}1/2$	0.001–0.011 %	578
$p\gamma$, helicity $=3/2$	0.20-0.32 %	578
$n\gamma$	0.021-0.046 %	577
$n\gamma$, helicity ${=}1/2$	0.004–0.029 %	577
$n\gamma$, helicity=3/2	0.01-0.024 %	577

N(1700) D₁₃

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$

N(1700) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5–15 %	580
Nη	(0.0 ± 1.0) %	400
ΛΚ	<3 %	250
$N\pi\pi$	85–95 %	547
Nρ	<35 %	†
$p\gamma$	0.01-0.05 %	591
$p\gamma$, helicity ${=}1/2$	0.0-0.024 %	591
$p\gamma$, helicity=3/2	0.002–0.026 %	591
$n\gamma$	0.01-0.13 %	590
$n\gamma$, helicity ${=}1/2$	0.0-0.09 %	590
$n\gamma$, helicity=3/2	0.01–0.05 %	590

N(1710) P₁₁

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$

N(1710) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	10-20 %	587
$N\eta$	(6.0±1.0) %	410
ΛΚ	5-25 %	264
$N\pi\pi$	40–90 %	554
$\Delta \pi$	15–40 %	393
N ho	5–25 %	48
$N(\pi\pi)^{I=0}_{S-wave}$	10-40 %	_
${oldsymbol{ ho}}\gamma$	0.002–0.05%	598
$p\gamma$, helicity ${=}1/2$	0.002–0.05%	598
$n\gamma$	0.0-0.02%	597
$n\gamma$, helicity ${=}1/2$	0.0–0.02%	597

HTTP://PDG.LBL.GOV

Created: 8/27/2002 13:44

N(1720) P₁₃

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$

 $\begin{array}{l} \mbox{Breit-Wigner mass} = 1650 \ \mbox{to} \ 1750 \ (\approx 1720) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 100 \ \mbox{to} \ 200 \ (\approx 150) \ \mbox{MeV} \\ \mbox{$p_{\rm beam}$} = 1.09 \ \mbox{GeV}/c \ \ 4\pi \lambda^2 = 13.9 \ \mbox{mb} \\ \mbox{Re(pole position)} = 1650 \ \mbox{to} \ 1750 \ (\approx 1700) \ \mbox{MeV} \\ \ \ -2\mbox{Im}(\mbox{pole position}) = 110 \ \mbox{to} \ 390 \ (\approx 250) \ \mbox{MeV} \end{array}$

N(1720) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	10-20 %	594
Nη	(4.0±1.0) %	420
ΛΚ	1–15 %	278
$N\pi\pi$	>70 %	561
$N \rho$	70–85 %	104
$p\gamma$	0.003–0.10 %	604
$p\gamma$, helicity ${=}1/2$	0.003–0.08 %	604
$p\gamma$, helicity $=3/2$	0.001-0.03 %	604
$n\gamma$	0.002–0.39 %	603
$n\gamma$, helicity ${=}1/2$	0.0-0.002 %	603
$n\gamma$, helicity=3/2	0.001–0.39 %	603

N(2190) G₁₇

 $I(J^P) = \frac{1}{2}(\frac{7}{2})$

Breit-Wigner mass = 2100 to 2200 (\approx 2190) MeV Breit-Wigner full width = 350 to 550 (\approx 450) MeV $p_{\text{beam}} = 2.07 \text{ GeV}/c$ $4\pi\lambda^2 = 6.21 \text{ mb}$ Re(pole position) = 1950 to 2150 (\approx 2050) MeV $-2\text{Im}(\text{pole position}) = 350 \text{ to } 550 (\approx 450) \text{ MeV}$

N(2190) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	10–20 %	888
$N\eta$	(0.0 ± 1.0) %	790

N (2220) H ₁₉	$I(J^P) = \frac{1}{2}(\frac{9}{2}^+)$	
Breit-Wigner Breit-Wigner <i>p</i> _{beam} = 1 Re(pole posit – 2Im(pole po	mass = 2180 to 2310 (\approx 2220) MeV full width = 320 to 550 (\approx 400) MeV 2.14 GeV/c $4\pi\lambda^2 = 5.97$ mb ion) = 2100 to 2240 (\approx 2170) MeV position) = 370 to 570 (\approx 470) MeV	
N(2220) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	10–20 %	905
N(2250) G ₁₉	$I(J^{\boldsymbol{\mathcal{P}}}) = \frac{1}{2}(\frac{9}{2}^{-})$	
Breit-Wigner Breit-Wigner p _{beam} = 1 Re(pole posit -2Im(pole po	mass = 2170 to 2310 (\approx 2250) MeV full width = 290 to 470 (\approx 400) MeV 2.21 GeV/c $4\pi\lambda^2 = 5.74$ mb ion) = 2080 to 2200 (\approx 2140) MeV osition) = 280 to 680 (\approx 480) MeV	
N(2250) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5–15 %	923
N(2600) <i>I</i> _{1,11}	$I(J^P) = \frac{1}{2}(\frac{11}{2}^-)$	
Breit-Wigner Breit-Wigner p _{beam} = 1	mass = 2550 to 2750 (\approx 2600) MeV full width = 500 to 800 (\approx 650) MeV 3.12 GeV/c $4\pi\lambda^2$ = 3.86 mb	
N(2600) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5-10 %	1126

 $p_{beam} = 0.87 \text{ GeV}/c$ $4\pi\lambda^2 = 18.6 \text{ mb}$ Re(pole position) = 1500 to 1700 (\approx 1600) MeV $-2\text{Im}(\text{pole position}) = 200 \text{ to } 400 (\approx 300) \text{ MeV}$

Δ(1600) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	10-25 %	512
$N\pi\pi$	75–90 %	473
$\Delta\pi$	40–70 %	301
N ho	<25 %	†
$N(1440)\pi$	10–35 %	74
$N\gamma$	0.001-0.02 %	525
$N\gamma$, helicity ${=}1/2$	0.0-0.02 %	525
$N\gamma$, helicity=3/2	0.001-0.005 %	525

∆(1620) S₃₁

 $I(J^P) = \tfrac{3}{2}(\tfrac{1}{2}^-)$

 $\begin{array}{l} \mbox{Breit-Wigner mass} = 1615 \mbox{ to } 1675 \ (\approx 1620) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 120 \mbox{ to } 180 \ (\approx 150) \ \mbox{MeV} \\ \mbox{p_{beam}} = 0.91 \ \mbox{GeV}/c & 4\pi \lambda^2 = 17.7 \ \mbox{mb} \\ \mbox{Re(pole position)} = 1580 \ \mbox{to } 1620 \ (\approx 1600) \ \mbox{MeV} \\ \mbox{-2lm(pole position)} = 100 \ \mbox{to } 130 \ (\approx 115) \ \mbox{MeV} \end{array}$

ム(1620) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	20–30 %	526
$N\pi\pi$	70–80 %	488
$\Delta \pi$	30–60 %	318
N ho	7–25 %	†
$N\gamma$	0.004–0.044 %	538
$N\gamma$, helicity=1/2	0.004–0.044 %	538

∆(1700) D₃₃

$$I(J^P) = \frac{3}{2}(\frac{3}{2})$$

Δ(1700) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	10-20 %	580
$N\pi\pi$	80–90 %	547
$\Delta\pi$	30–60 %	385
N ho	30–55 %	†
$N\gamma$	0.12-0.26 %	591
$N\gamma$, helicity ${=}1/2$	0.08-0.16 %	591
$N\gamma$, helicity=3/2	0.025–0.12 %	591

∆(1905) F₃₅

 $I(J^P) = \frac{3}{2}(\frac{5}{2}^+)$

Breit-Wigner mass = 1870 to 1920 (\approx 1905) MeV Breit-Wigner full width = 280 to 440 (\approx 350) MeV $p_{\text{beam}} = 1.45 \text{ GeV}/c$ $4\pi \lambda^2 = 9.62 \text{ mb}$ Re(pole position) = 1800 to 1860 (\approx 1830) MeV $-2\text{Im}(\text{pole position}) = 230 \text{ to } 330 (<math>\approx$ 280) MeV

Δ (1905) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5–15 %	713
$N\pi\pi$	85–95 %	687
$\Delta \pi$	<25 %	542
$N \rho$	>60 %	421
$N\gamma$	0.01-0.03 %	721
$N\gamma$, helicity ${=}1/2$	0.0-0.1 %	721
$N\gamma$, helicity=3/2	0.004–0.03 %	721

∆(1910) P₃₁

 $I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$

Breit-Wigner mass = 1870 to 1920 (\approx 1910) MeV Breit-Wigner full width = 190 to 270 (\approx 250) MeV $p_{\text{beam}} = 1.46 \text{ GeV}/c$ $4\pi\lambda^2 = 9.54 \text{ mb}$ Re(pole position) = 1830 to 1880 (\approx 1855) MeV $-2\text{Im}(\text{pole position}) = 200 \text{ to } 500 (<math>\approx$ 350) MeV

Δ (1910) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	15–30 %	716
$N\gamma$	0.0-0.2 %	725
$N\gamma$, helicity=1/2	0.0–0.2 %	725

∆(1920) P₃₃

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$

Δ(1920) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5–20 %	722

∆(1930) D₃₅

 $I(J^P) = \frac{3}{2}(\frac{5}{2}^-)$

 $\begin{array}{l} \mbox{Breit-Wigner mass} = 1920 \ \mbox{to} \ 1970 \ (\approx 1930) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 250 \ \mbox{to} \ 450 \ (\approx 350) \ \mbox{MeV} \\ \mbox{$p_{\rm beam}$} = 1.50 \ \mbox{GeV}/c & 4\pi \lambda^2 = 9.21 \ \mbox{mb} \\ \mbox{Re(pole position)} = 1840 \ \mbox{to} \ 1940 \ (\approx 1890) \ \mbox{MeV} \\ \mbox{-2lm(pole position)} = 200 \ \mbox{to} \ 300 \ (\approx 250) \ \mbox{MeV} \end{array}$

Δ(1930) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	10-20 %	729
$N\gamma$	0.0-0.02 %	737
$N\gamma$, helicity ${=}1/2$	0.0-0.01 %	737
$N\gamma$, helicity= $3/2$	0.0-0.01 %	737

∆(1950) F₃₇

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^+)$$

Breit-Wigner mass = 1940 to 1960 (\approx 1950) MeV Breit-Wigner full width = 290 to 350 (\approx 300) MeV $p_{\text{beam}} = 1.54 \text{ GeV}/c$ $4\pi \lambda^2 = 8.91 \text{ mb}$ Re(pole position) = 1880 to 1890 (\approx 1885) MeV $-2\text{Im}(\text{pole position}) = 210 \text{ to } 270 (<math>\approx$ 240) MeV

Δ (1950) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	35–40 %	741
$N\pi\pi$		716
$\Delta \pi$	20–30 %	574
$N \rho$	<10 %	469
$N\gamma$	0.08-0.13 %	749
$N\gamma$, helicity ${=}1/2$	0.03-0.055 %	749
$N\gamma$, helicity=3/2	0.05–0.075 %	749

∆(2420) H_{3,11}

 $I(J^P) = \tfrac{3}{2}(\tfrac{11}{2}^+)$

Breit-Wigner mass = 2300 to 2500 (\approx 2420) MeV Breit-Wigner full width = 300 to 500 (\approx 400) MeV $p_{\text{beam}} = 2.64 \text{ GeV}/c$ $4\pi \lambda^2 = 4.68 \text{ mb}$ Re(pole position) = 2260 to 2400 (\approx 2330) MeV $-2\text{Im}(\text{pole position}) = 350 \text{ to } 750 (\approx 550) \text{ MeV}$

Δ(2420) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5–15 %	1023

HTTP://PDG.LBL.GOV

Created: 8/27/2002 13:44

Λ

$$I(J^P) = 0(\tfrac{1}{2}^+)$$

 $\begin{array}{l} \text{Mass } m = 1115.683 \pm 0.006 \ \text{MeV} \\ \left(m_{\Lambda} - m_{\overline{\Lambda}} \right) \ / \ m_{\Lambda} = (-0.1 \pm 1.1) \times 10^{-5} \quad (\text{S} = 1.6) \\ \text{Mean life } \tau = (2.632 \pm 0.020) \times 10^{-10} \ \text{s} \quad (\text{S} = 1.6) \\ c\tau = 7.89 \ \text{cm} \\ \text{Magnetic moment } \mu = -0.613 \pm 0.004 \ \mu_N \\ \text{Electric dipole moment } d < \ 1.5 \times 10^{-16} \ e \ \text{cm}, \ \text{CL} = 95\% \end{array}$

Decay parameters

$p\pi^-$	$lpha_{-}=$ 0.642 \pm 0.013
н	$\phi_{-} = (-6.5 \pm 3.5)^{\circ}$
	$\gamma_{-}=$ 0.76 $^{[h]}$
11	$\Delta_{-}=(8\pm4)^{\circ}$ $^{[h]}$
$n\pi^0$	$lpha_{0}=+0.65\pm0.05$
$pe^-\overline{\nu}_e$	$g_A/g_V = -0.718 \pm 0.015$ ^[f]

A DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$p\pi^{-}$	(63.9 ± 0.5) %	101
$n\pi^0$	(35.8 ± 0.5) %	104
$n\gamma$	$(1.75\pm0.15) imes10^{-3}$	162
$p\pi^-\gamma$	[i](8.4 ± 1.4) $ imes 10^{-4}$	101
$pe^-\overline{\nu}_e$	$(8.32\pm0.14) imes10^{-4}$	163
$p\mu^-\overline{ u}_\mu$	$(1.57\pm0.35) imes10^{-4}$	131

Л(1405) S₀₁

$$I(J^P) = 0(\frac{1}{2})$$

 $\begin{array}{l} \text{Mass } m = 1406 \pm 4 \ \text{MeV} \\ \text{Full width } \Gamma = 50.0 \pm 2.0 \ \text{MeV} \\ \text{Below } \overline{K} N \ \text{threshold} \end{array}$

A(1405) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Sigma \pi$	100 %	152

Л(1520) D₀₃

$$I(J^P) = 0(\frac{3}{2}^-)$$

 $\begin{array}{l} {\sf Mass} \ m = 1519.5 \pm 1.0 \ {\sf MeV} \ ^{[j]} \\ {\sf Full \ width} \ \Gamma = 15.6 \pm 1.0 \ {\sf MeV} \ ^{[j]} \\ p_{\sf beam} = 0.39 \ {\sf GeV}/c \qquad 4\pi \lambda^2 = 82.8 \ {\sf mb} \end{array}$

A(1520) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	$45 \pm 1\%$	244
$\Sigma \pi$	$42 \pm 1\%$	267
$\Lambda \pi \pi$	$10 \pm 1\%$	252
$\Sigma \pi \pi$	$0.9\pm0.1\%$	152
$\Lambda\gamma$	$0.8\pm0.2\%$	351

Λ(1600) P₀₁

 $I(J^P) = 0(\frac{1}{2}^+)$

 $\begin{array}{l} {\rm Mass} \,\, m = 1560 \,\, {\rm to} \,\, 1700 \,\, (\approx 1600) \,\, {\rm MeV} \\ {\rm Full \ width} \,\, \Gamma = 50 \,\, {\rm to} \,\, 250 \,\, (\approx 150) \,\, {\rm MeV} \\ p_{{\rm beam}} = 0.58 \,\, {\rm GeV}/c \qquad 4\pi \lambda^2 = 41.6 \,\, {\rm mb} \end{array}$

A(1600) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	15–30 %	343
$\Sigma \pi$	10-60 %	336

<i>Л</i> (167	'0) <i>S</i> ₀₁
---------------	----------------------------

$$I(J^P) = 0(\frac{1}{2}^-)$$

 $\begin{array}{l} {\rm Mass} \,\, m = 1660 \,\, {\rm to} \,\, 1680 \,\, (\approx 1670) \,\, {\rm MeV} \\ {\rm Full} \,\, {\rm width} \,\, \Gamma = 25 \,\, {\rm to} \,\, 50 \,\, (\approx 35) \,\, {\rm MeV} \\ p_{{\rm beam}} = 0.74 \,\, {\rm GeV}/c \qquad 4\pi \lambda^2 = 28.5 \,\, {\rm mb} \end{array}$

A(1670) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	20-30 %	414
$\Sigma \pi$	25–55 %	393
$\Lambda\eta$	10-25 %	64

Λ(1690) D₀₃

$$I(J^P) = 0(\tfrac{3}{2}^-)$$

 $\begin{array}{l} {\rm Mass} \,\, m = 1685 \,\, {\rm to} \,\, 1695 \,\, (\approx 1690) \,\, {\rm MeV} \\ {\rm Full} \,\, {\rm width} \,\, \Gamma = 50 \,\, {\rm to} \,\, 70 \,\, (\approx 60) \,\, {\rm MeV} \\ p_{{\rm beam}} = 0.78 \,\, {\rm GeV}/c \qquad 4\pi \lambda^2 = 26.1 \,\, {\rm mb} \end{array}$

A(1690) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	20–30 %	433
$\Sigma \pi$	20–40 %	409
$\Lambda\pi\pi$	\sim 25 %	415
$\Sigma \pi \pi$	\sim 20 %	350

Λ(1800) S₀₁

 $I(J^P) = 0(\tfrac{1}{2}^-)$

 $\begin{array}{ll} {\sf Mass} \,\, m = 1720 \,\, {\rm to} \,\, 1850 \,\, (\approx 1800) \,\, {\sf MeV} \\ {\sf Full} \,\, {\sf width} \,\, \Gamma = 200 \,\, {\rm to} \,\, 400 \,\, (\approx 300) \,\, {\sf MeV} \\ p_{{\sf beam}} = 1.01 \,\, {\sf GeV}/c \qquad 4\pi \lambda^2 = 17.5 \,\, {\sf mb} \end{array}$

A(1800) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	25-40 %	528
$\Sigma \pi$	seen	493
$\Sigma(1385)\pi$	seen	345
<i>NK</i> [*] (892)	seen	†

Λ(1810) P₀₁

 $I(J^P) = 0(\frac{1}{2}^+)$

 $\begin{array}{ll} {\sf Mass} \ m = 1750 \ {\rm to} \ 1850 \ (\approx 1810) \ {\sf MeV} \\ {\sf Full \ width} \ \Gamma = 50 \ {\rm to} \ 250 \ (\approx 150) \ {\sf MeV} \\ p_{\sf beam} = 1.04 \ {\sf GeV}/c \qquad 4\pi \lambda^2 = 17.0 \ {\sf mb} \end{array}$

A(1810) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	20–50 %	537
$\Sigma \pi$	10–40 %	501
$\Sigma(1385)\pi$	seen	356
<i>NK</i> [*] (892)	30-60 %	†

Л(1820) F ₀₅	$I(J^{\boldsymbol{P}}) = 0(\frac{5}{2}^+)$	
Mass $m=1815$ to $1825~(pprox 1820)$ MeV Full width $\Gamma=70$ to $90~(pprox 80)$ MeV $p_{beam}=1.06~GeV/c$ $4\pi\lambda^2=16.5$ mb		
A(1820) DECAY MODES	Fraction (Γ_i/Γ)	
NK	55–65 %	
$\Sigma \pi$	8–14 %	
$\Sigma(1385)\pi$	5–10 %	

Λ(1830) D₀₅

 $I(J^P) = 0(\frac{5}{2}^{-})$

 $I(J^P) = 0(\frac{3}{2}^+)$

p (MeV/c)

545

508

362

Mass m = 1810 to 1830 (≈ 1830) MeV Full width $\Gamma=60$ to 110 ($\approx95)$ MeV $p_{\rm beam} = 1.08~{
m GeV}/c$ $4\pi\lambda^2 = 16.0$ mb

A(1830) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
NK	3–10 %	553	
$\Sigma \pi$	35–75 %	515	
$\Sigma(1385)\pi$	>15 %	371	

Λ(1890) P₀₃ Mass m = 1850 to 1910 (≈ 1890) MeV Full width $\Gamma=60$ to 200 ($\approx 100)~\text{MeV}$ $p_{\text{beam}} = 1.21 \text{ GeV}/c$ $4\pi \lambda^2 = 13.6 \text{ mb}$

A(1890) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
NK	20–35 %	599	
$\Sigma \pi$	3–10 %	559	
$\Sigma(1385)\pi$	seen	420	
<i>NK</i> [*] (892)	seen	233	

Λ(2100) G₀₇

 $I(J^P) = 0(\tfrac{7}{2}^-)$

 $\begin{array}{l} {\sf Mass} \,\, m = 2090 \,\, {\rm to} \,\, 2110 \,\, (\approx 2100) \,\, {\sf MeV} \\ {\sf Full} \,\, {\sf width} \,\, {\sf \Gamma} = 100 \,\, {\rm to} \,\, 250 \,\, (\approx 200) \,\, {\sf MeV} \\ p_{{\sf beam}} = 1.68 \,\, {\sf GeV}/c \qquad 4\pi \lambda^2 = 8.68 \,\, {\sf mb} \end{array}$

A(2100) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	25–35 %	751
$\Sigma \pi$	\sim 5 %	704
$\Lambda\eta$	<3 %	617
ΞK	<3 %	483
$\Lambda\omega$	<8 %	443
<i>NK</i> [*] (892)	10–20 %	514

Λ(2110) F₀₅

$$I(J^P) = 0(\frac{5}{2}^+)$$

Mass m = 2090 to 2140 (≈ 2110) MeV Full width Γ = 150 to 250 (≈ 200) MeV $p_{\text{beam}} = 1.70 \text{ GeV}/c$ $4\pi \lambda^2 = 8.53 \text{ mb}$

A(2110) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
NK	5–25 %	757	
$\Sigma \pi$	10-40 %	711	
$\Lambda\omega$	seen	455	
$\Sigma(1385)\pi$	seen	589	
<i>NK</i> [*] (892)	10-60 %	524	

Λ(2350) H₀₉

 $I(J^P) = 0(\frac{9}{2}^+)$

 $\begin{array}{l} {\rm Mass} \,\, m = 2340 \,\, {\rm to} \,\, 2370 \,\, (\approx 2350) \,\, {\rm MeV} \\ {\rm Full \ width} \,\, \Gamma = 100 \,\, {\rm to} \,\, 250 \,\, (\approx 150) \,\, {\rm MeV} \\ p_{\rm beam} = 2.29 \,\, {\rm GeV}/c \qquad 4\pi \lambda^2 = 5.85 \,\, {\rm mb} \end{array}$

Fraction (Γ_j/Γ)	р (MeV/c)	
\sim 12 %	915	
\sim 10 %	867	
	Fraction (Γ_i/Γ) \sim 12 % \sim 10 %	

Σ0

$$I(J^P) = \mathbb{1}(\tfrac{1}{2}^+)$$

Mass $m = 1192.642 \pm 0.024$ MeV $m_{\Sigma^{-}} - m_{\Sigma^{0}} = 4.807 \pm 0.035$ MeV (S = 1.1) $m_{\Sigma^{0}} - m_{\Lambda} = 76.959 \pm 0.023$ MeV Mean life $\tau = (7.4 \pm 0.7) \times 10^{-20}$ s $c\tau = 2.22 \times 10^{-11}$ m

Transition magnetic moment $ig|\mu_{m{\Sigma}m{\Lambda}}ig|=1.61\pm0.08\;\mu_{m{N}}$

Σ^0 decay modes	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$\overline{\Lambda\gamma}$	100 %		74
$\Lambda\gamma\gamma$	< 3 %	90%	74
$\Lambda e^+ e^-$	[k] 5 × 10 ⁻³		74

Σ

$$I(J^P) = \mathbb{1}(\tfrac{1}{2}^+)$$

$$\begin{array}{ll} \text{Mass } m = 1197.449 \pm 0.030 \ \text{MeV} & (\text{S} = 1.2) \\ m_{\Sigma^-} - m_{\Sigma^+} = 8.08 \pm 0.08 \ \text{MeV} & (\text{S} = 1.9) \\ m_{\Sigma^-} - m_A = 81.766 \pm 0.030 \ \text{MeV} & (\text{S} = 1.2) \\ \text{Mean life } \tau = (1.479 \pm 0.011) \times 10^{-10} \ \text{s} & (\text{S} = 1.3) \\ c\tau = 4.434 \ \text{cm} \\ \text{Magnetic moment } \mu = -1.160 \pm 0.025 \ \mu_N & (\text{S} = 1.7) \\ \Sigma^- \ \text{charge radius} = 0.78 \pm 0.10 \ \text{fm} \end{array}$$

Decay parameters

$n\pi^-$	$lpha_{-} = -0.068 \pm 0.008$
"	$\phi=(10\pm15)^\circ$
"	$\gamma_{-}=$ 0.98 $^{[h]}$
"	$\Delta_{-}=(249^{+}_{-120})^{\circ}~^{[h]}$
$ne^-\overline{\nu}_e$	$g_{A}/g_{V} = 0.340 \pm 0.017 \; ^{[f]}$
н	$f_2(0)/f_1(0)=0.97\pm 0.14$
"	$D=0.11\pm0.10$
$\Lambda e^- \overline{\nu}_e$	$g_V/g_A = 0.01 \pm 0.10 [f] (S = 1.5)$
"	$g_{WM}/g_A=2.4\pm1.7$ ^[f]

Σ^- DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$n\pi^{-}$	(99.848±0.005) %	193
$n\pi^-\gamma$	[i](4.6 \pm 0.6) $ imes$ 10 $^{-4}$	193
$ne^-\overline{\nu}_e$	$(1.017\pm0.034) imes10^{-3}$	230
$n\mu^-\overline{ u}_\mu$	$(4.5 \pm 0.4) imes 10^{-4}$	210
$\Lambda e^- \overline{\nu}_e$	(5.73 ± 0.27) $\times 10^{-5}$	79

HTTP://PDG.LBL.GOV Page 25 Created: 8/27/2002 13:44

$$\begin{split} \pmb{\Sigma(1385)} \ \pmb{P_{13}} & I(J^P) = 1(\frac{3}{2}^+) \\ & \Sigma(1385)^+ \text{mass } m = 1382.8 \pm 0.4 \text{ MeV} \quad (S = 2.0) \\ & \Sigma(1385)^0 \text{ mass } m = 1383.7 \pm 1.0 \text{ MeV} \quad (S = 1.4) \\ & \Sigma(1385)^- \text{mass } m = 1387.2 \pm 0.5 \text{ MeV} \quad (S = 2.2) \\ & \Sigma(1385)^+ \text{full width } \Gamma = 35.8 \pm 0.8 \text{ MeV} \\ & \Sigma(1385)^0 \text{ full width } \Gamma = 36 \pm 5 \text{ MeV} \\ & \Sigma(1385)^- \text{full width } \Gamma = 39.4 \pm 2.1 \text{ MeV} \quad (S = 1.7) \\ & \text{Below } \overline{K} N \text{ threshold} \\ \hline \pmb{\Sigma(1385)} \ \pmb{DECAY MODES} & Fraction (\Gamma_i/\Gamma) \\ & \frac{\Lambda \pi}{\Sigma \pi} & \frac{88 \pm 2 \%}{12 \pm 2 \%} \end{split}$$

Σ(1660) P ₁₁	$I(J^P) = 1(\frac{1}{2}^+)$
Mass $m=1630$ to 1690 ($pprox$ 1660) MeV	

Full width Γ = 40 to 200 (\approx 100) MeV

$$p_{\rm beam} = 0.72 \,\,{
m GeV}/c \qquad 4\pi\lambda^2 = 29.9\,\,{
m mb}$$

Σ(1660) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	10-30 %	405
$\Lambda\pi$	seen	439
$\Sigma \pi$	seen	385

Σ(1670) D₁₃

 $I(J^P) = 1(\frac{3}{2}^{-})$

 $\begin{array}{l} {\sf Mass} \,\, m = 1665 \,\, {\rm to} \,\, 1685 \,\, (\approx 1670) \,\, {\sf MeV} \\ {\sf Full} \,\, {\sf width} \,\, \Gamma = 40 \,\, {\rm to} \,\, 80 \,\, (\approx 60) \,\, {\sf MeV} \\ p_{{\sf beam}} = 0.74 \,\, {\sf GeV}/c \qquad 4\pi \lambda^2 = 28.5 \,\, {\sf mb} \end{array}$

Σ (1670) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
NK	7–13 %	414	
$\Lambda\pi$	5–15 %	447	
$\Sigma \pi$	30-60 %	393	

HTTP://PDG.LBL.GOV

p (MeV/c)

208

127

Σ(1750) S₁₁

$$I(J^P) = \mathbb{1}(\tfrac{1}{2}^-)$$

 $\begin{array}{ll} {\rm Mass} \ m = 1730 \ {\rm to} \ 1800 \ (\approx 1750) \ {\rm MeV} \\ {\rm Full \ width} \ \Gamma = 60 \ {\rm to} \ 160 \ (\approx 90) \ {\rm MeV} \\ p_{{\rm beam}} = 0.91 \ {\rm GeV}/c \qquad 4\pi \lambda^2 = 20.7 \ {\rm mb} \end{array}$

Σ(1750) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	10-40 %	486
$\Lambda\pi$	seen	507
$\Sigma \pi$	<8 %	455
$\Sigma \eta$	15–55 %	81

Σ(1775) D₁₅

 $I(J^P) = \mathbb{1}(\tfrac{5}{2}^-)$

 $\begin{array}{l} {\sf Mass} \ m = 1770 \ {\sf to} \ 1780 \ (\approx 1775) \ {\sf MeV} \\ {\sf Full \ width} \ \Gamma = 105 \ {\sf to} \ 135 \ (\approx 120) \ {\sf MeV} \\ p_{{\sf beam}} = 0.96 \ {\sf GeV}/c \qquad 4\pi \lambda^2 = 19.0 \ {\sf mb} \end{array}$

$\Sigma(1775)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	37–43%	508
$\Lambda\pi$	14–20%	525
$\Sigma \pi$	2–5%	474
$\Sigma(1385)\pi$	8–12%	324
$\Lambda(1520)\pi$	17–23%	198

Σ(1915) F₁₅

 $I(J^P) = 1(\frac{5}{2}^+)$

 $\begin{array}{l} {\sf Mass} \ m = 1900 \ {\sf to} \ 1935 \ (\approx 1915) \ {\sf MeV} \\ {\sf Full \ width} \ \Gamma = 80 \ {\sf to} \ 160 \ (\approx 120) \ {\sf MeV} \\ p_{{\sf beam}} = 1.26 \ {\sf GeV}/c \qquad 4\pi \lambda^2 = 12.8 \ {\sf mb} \end{array}$

Σ (1915) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
NK	5–15 %	618	
$\Lambda\pi$	seen	622	
$\Sigma \pi$	seen	577	
$\Sigma(1385)\pi$	<5 %	440	

Σ(1940) D₁₃

$$I(J^P) = \mathbb{1}(\tfrac{3}{2}^-)$$

 $\begin{array}{l} {\rm Mass} \,\, m = 1900 \,\, {\rm to} \,\, 1950 \,\, (\approx 1940) \,\, {\rm MeV} \\ {\rm Full} \,\, {\rm width} \,\, \Gamma = 150 \,\, {\rm to} \,\, 300 \,\, (\approx 220) \,\, {\rm MeV} \\ p_{{\rm beam}} = 1.32 \,\, {\rm GeV}/c \qquad 4\pi \lambda^2 = 12.1 \,\, {\rm mb} \end{array}$

Σ(1940) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
NK	<20 %	637	
$\Lambda\pi$	seen	639	
$\Sigma \pi$	seen	594	
$\Sigma(1385)\pi$	seen	460	
$\Lambda(1520)\pi$	seen	354	
$\Delta(1232)\overline{K}$	seen	410	
$N\overline{K}^{*}(892)$	seen	320	

Σ(2030) F₁₇

$$I(J^P) = \mathbb{1}(\tfrac{7}{2}^+)$$

 $\begin{array}{l} {\rm Mass} \,\, m = 2025 \,\, {\rm to} \,\, 2040 \,\, (\approx 2030) \,\, {\rm MeV} \\ {\rm Full \ width} \,\, \Gamma = 150 \,\, {\rm to} \,\, 200 \,\, (\approx 180) \,\, {\rm MeV} \\ p_{\rm beam} = 1.52 \,\, {\rm GeV}/c \qquad 4\pi \lambda^2 = 9.93 \,\, {\rm mb} \end{array}$

Σ (2030) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
NK	17–23 %	702	
$\Lambda\pi$	17–23 %	700	
$\Sigma \pi$	5–10 %	657	
ΞK	<2 %	412	
$\Sigma(1385)\pi$	5–15 %	529	
$\Lambda(1520)\pi$	10–20 %	430	
$\Delta(1232)\overline{K}$	10–20 %	498	
<i>NK</i> *(892)	<5 %	438	

Σ(2250)

$$I(J^{P}) = 1(?^{?})$$

 $\begin{array}{l} {\rm Mass} \,\, m = 2210 \,\, {\rm to} \,\, 2280 \,\, (\approx 2250) \,\, {\rm MeV} \\ {\rm Full} \,\, {\rm width} \,\, \Gamma \,= \, 60 \,\, {\rm to} \,\, 150 \,\, (\approx 100) \,\, {\rm MeV} \\ p_{{\rm beam}} \,= \, 2.04 \,\, {\rm GeV}/c \qquad 4\pi \lambda^2 \,= \, 6.76 \,\, {\rm mb} \end{array}$

Σ (2250) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	<10 %	851
$\Lambda\pi$	seen	842
$\Sigma \pi$	seen	803

Ξ0

$$I(J^P) = \tfrac{1}{2}(\tfrac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass $m = 1314.83 \pm 0.20$ MeV $m_{\Xi^-} - m_{\Xi^0} = 6.48 \pm 0.24$ MeV Mean life $\tau = (2.90 \pm 0.09) \times 10^{-10}$ s $c\tau = 8.71$ cm Magnetic moment $\mu = -1.250 \pm 0.014$ μ_N

Decay parameters

$\Lambda \pi^0$	$\alpha = -0.411 \pm 0.022$ (S = 2.1)
"	$\phi = (21 \pm 12)^{\circ}$
	$\gamma=$ 0.85 $^{[h]}$
н	$\Delta = (218 {+12 \atop -19})^\circ \ {}^{[h]}$
$\Lambda\gamma$	$lpha=$ 0.4 \pm 0.4
$\Sigma^0 \gamma$	$lpha = -$ 0.63 \pm 0.09
$\Sigma^+ e^- \overline{ u}_e$	$g_1(0)/f_1(0) = 1.32 \substack{+0.22 \\ -0.18}$
$\Sigma^+ e^- \overline{ u}_e$	$f_2(0)/f_1(0) = 2.0 \pm 1.3$

= ⁰ DECAY MODES		Fraction (I	- ;/Γ)	Sca Confid	le factor/ ence level	<i>р</i> (MeV/c)
$\Lambda \pi^0$		(99.522-	+0.032)%		S=1.7	135
$\Lambda\gamma$		(1.18 =	±0.30)×	10-3	S=2.0	184
$\Sigma^{0}\gamma$		(3.33 =	±0.10)×	10^{-3}		117
$\Sigma^+ e^- \overline{ u}_e$		(2.7 =	±0.4)×	10^{-4}		120
$\Sigma^+ \mu^- \overline{ u}_\mu$		< 1.1	×	10-3	CL=90%	64
	$\Delta S = \Delta Q (SQ)$ $\Delta S = 2 \text{ forb}$) violating idden (<i>S2</i>)	; modes c) modes	or		
$\Sigma^- e^+ \nu_e$	SQ	< 9	×	10 ⁻⁴	CL=90%	112
$\Sigma^{-}\mu^{+} u_{\mu}$	SQ	< 9	×	10^{-4}	CL=90%	49
$p\pi^{-}$	<i>S2</i>	< 4	×	10^{-5}	CL=90%	299
$pe^-\overline{\nu}_e$	<i>S2</i>	< 1.3	×	10^{-3}		323

HTTP://PDG.LBL.GOV

 $p\mu^-\overline{\nu}_\mu$

< 1.3

S2

309

 $imes 10^{-3}$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass $m = 1321.31 \pm 0.13$ MeV Mean life $\tau = (1.639 \pm 0.015) \times 10^{-10}$ s $c\tau = 4.91$ cm Magnetic moment $\mu = -0.6507 \pm 0.0025 \ \mu_N$

Decay parameters

 $\begin{array}{ll} \Lambda \pi^{-} & \alpha = -0.458 \pm 0.012 \quad (\mathsf{S} = 1.8) \\ [\alpha(\Xi^{-})\alpha_{-}(\Lambda) - \alpha(\overline{\Xi^{+}})\alpha_{+}(\overline{\Lambda})] / [\alpha(\Xi^{-})\alpha_{-}(\Lambda) + \alpha(\overline{\Xi^{+}})\alpha_{+}(\overline{\Lambda})] \\ & = 0.012 \pm 0.014 \\ & & \phi = (4 \pm 4)^{\circ} \\ & & \gamma = 0.89 \ ^{[h]} \\ & & \alpha = (188 \pm 8)^{\circ} \ ^{[h]} \\ \Lambda e^{-} \overline{\nu}_{e} & g_{A}/g_{V} = -0.25 \pm 0.05 \ ^{[f]} \end{array}$

= DECAY MODES	F	- raction (Γ _i /Γ)) Confidence	e level	<i>р</i> (MeV/c)
$\Lambda\pi^{-}$		(99.887±0.0	35) %		139
$\Sigma^-\gamma$		(1.27 ± 0.2	3) $ imes 10^{-4}$		118
$\Lambda e^- \overline{\nu}_e$		(5.63 ± 0.3	1) $ imes$ 10 $^{-4}$		190
$\Lambda\mu^-\overline{ u}_\mu$		(3.5 + 3.5) - 2.2	$) imes 10^{-4}$		163
$\Sigma^0 e^- \overline{\nu}_e$		(8.7 ± 1.7)) $ imes$ 10 $^{-5}$		122
$\Sigma^0 \mu^- \overline{\nu}_\mu$		< 8	imes 10 ⁻⁴	90%	70
$\Xi^0 e^- \overline{\nu}_e$		< 2.3	imes 10 ⁻³	90%	6
	$\Delta S = 2$ forbid	den (<i>S2</i>) ma	odes		
$n\pi^-$	<i>S2</i>	< 1.9	imes 10 ⁻⁵	90%	303
$ne^-\overline{\nu}_e$	52	< 3.2	imes 10 ⁻³	90%	327
$n\mu^-\overline{ u}_\mu$	<i>S2</i>	< 1.5	%	90%	314
$p\pi^{-}\pi^{-}$	<i>S2</i>	< 4	imes 10 ⁻⁴	90%	223
$p\pi^-e^-\overline{ u}_e$	<i>S2</i>	< 4	imes 10 ⁻⁴	90%	304
$p\pi^-\mu^-\overline{ u}_\mu$	<i>S2</i>	< 4	imes 10 ⁻⁴	90%	250
$p\mu^-\mu^-$	L	< 4	$\times 10^{-4}$	90%	272

Ξ(1530) P₁₃

Ξ(1690)

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

$$\begin{split} &\varXi(1530)^0 \text{ mass } m = 1531.80 \pm 0.32 \text{ MeV} \quad (\text{S} = 1.3) \\ &\varXi(1530)^- \text{ mass } m = 1535.0 \pm 0.6 \text{ MeV} \\ &\varXi(1530)^0 \text{ full width } \Gamma = 9.1 \pm 0.5 \text{ MeV} \\ &\varXi(1530)^- \text{ full width } \Gamma = 9.9^{+1.7}_{-1.9} \text{ MeV} \end{split}$$

E(1530) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$\Xi\pi$	100 %		152
$\equiv \gamma$	<4 %	90%	200

$$I(J^P) = \frac{1}{2}(?^?)$$

Mass $m = 1690 \pm 10$ MeV ^[j] Full width $\Gamma < 30$ MeV

Ξ(1690) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
ΛK	seen	240	
$\Sigma \overline{K}$	seen	51	
$\Xi\pi$	seen	-	
$\Xi^{-}\pi^{+}\pi^{-}$	possibly seen	214	

Ξ(1820) D₁₃

$$I(J^P) = \frac{1}{2}(\frac{3}{2})$$

Mass $m=1823\pm5$ MeV $^{[j]}$ Full width $\Gamma=24^{+15}_{-10}$ MeV $^{[j]}$

E(1820) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
ΛK	large	400	
$\Sigma \overline{K}$	small	320	
$\equiv \pi$	small	413	
$\Xi(1530)\pi$	small	234	

Ξ(1950)

$$I(J^P) = \tfrac{1}{2}(?^?)$$

Mass $m = 1950 \pm 15$ MeV ^[j] Full width $\Gamma = 60 \pm 20$ MeV ^[j]

E(1950) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
ΛK	seen	522	
$\Sigma \overline{K}$	possibly seen	460	
Ξπ	seen	518	

Ξ(2030)

 $I(J^P) = \frac{1}{2} (\geq \frac{5}{2}?)$

Mass $m=2025\pm5$ MeV $^{[j]}$ Full width $\Gamma=20^{+15}_{-5}$ MeV $^{[j]}$

Ξ(2030) DECAY MODES	Fraction (Γ_i/Γ)	р (MeV/c)	
ΛK	\sim 20 %	589	
$\Sigma \overline{K}$	\sim 80 %	533	
$\equiv \pi$	small	573	
$\Xi(1530)\pi$	small	421	
$\Lambda \overline{K} \pi$	small	501	
$\Sigma \overline{K} \pi$	small	430	

Ω-

 $I(J^P) = 0(\tfrac{3}{2}^+)$

 J^P is not yet measured; $\frac{3}{2}^+$ is the quark model prediction.

 $\begin{array}{l} \text{Mass } m = 1672.45 \pm 0.29 \ \text{MeV} \\ (m_{\Omega^{-}} - m_{\overline{\Omega}^{+}}) \ / \ m_{\Omega^{-}} = (-1 \pm 8) \times 10^{-5} \\ \text{Mean life } \tau = (0.821 \pm 0.011) \times 10^{-10} \ \text{s} \\ c\tau = 2.461 \ \text{cm} \\ (\tau_{\Omega^{-}} - \tau_{\overline{\Omega}^{+}}) \ / \ \tau_{\Omega^{-}} = -0.002 \pm 0.040 \\ \text{Magnetic moment } \mu = -2.02 \pm 0.05 \ \mu_{N} \end{array}$

Decay parameters

ΛK^{-}	$lpha=-$ 0.026 \pm 0.023
$\frac{1}{2}[\alpha(\Lambda)]$	$(K^-) + \alpha (\overline{\Lambda} K^+)] = -0.004 \pm 0.040$
$\Xi^0\pi^-$	$lpha=$ 0.09 \pm 0.14
$\Xi^{-}\pi^{0}$	$lpha=$ 0.05 \pm 0.21

Ω^- decay modes	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
ΛΚ-	(67.8±0.7) %		211
$\Xi^0 \pi^-$	(23.6±0.7) %		294
$\Xi^{-}\pi^{0}$	(8.6±0.4) %		290
$\Xi^{-}\pi^{+}\pi^{-}$	$(4.3^{+3.4}_{-1.3}) imes$ 10	-4	190
\varXi (1530) ⁰ π^-	$(6.4^{+5.1}_{-2.0}) imes 10$	-4	17
$\Xi^0 e^- \overline{\nu}_e$	$(5.6\pm2.8) imes10$	-3	319
$\Xi^-\gamma$	< 4.6 × 10	-4 90%	314
	$\Delta S = 2$ forbidden (S2) modes	5	
$\Lambda\pi^{-}$	$S2$ < 1.9 \times 10	-4 90%	449

Ω(2250)⁻

$$I(J^{P}) = 0(?^{?})$$

Mass $m = 2252 \pm 9$ MeV Full width Γ = 55 \pm 18 MeV

$\Omega(2250)^-$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
$\Xi^{-}\pi^{+}K^{-}$	seen	531	
$\Xi(1530)^{0}K^{-}$	seen	437	

HTTP://PDG.LBL.GOV Page 35

$$I(J^P) = 0(\frac{1}{2}^+)$$

J is not well measured; $\frac{1}{2}$ is the quark-model prediction.

Mass $m = 2284.9 \pm 0.6$ MeV Mean life $\tau = (200 \pm 6) \times 10^{-15}$ s (S = 1.6) $c\tau = 59.9 \ \mu$ m

Decay asymmetry parameters

 Λ_c^+

 $\begin{array}{ll} \Lambda \pi^+ & \alpha = -0.98 \pm 0.19 \\ \Sigma^+ \pi^0 & \alpha = -0.45 \pm 0.32 \\ \Lambda \ell^+ \nu_\ell & \alpha = -0.82 \substack{+0.11 \\ -0.07} \end{array}$

Nearly all branching fractions of the Λ_c^+ are measured relative to the $pK^-\pi^+$ mode, but there are no model-independent measurements of this branching fraction. We explain how we arrive at our value of $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$ in a Note at the beginning of the branching-ratio measurements in the Listings. When this branching fraction is eventually well determined, all the other branching fractions will slide up or down proportionally as the true value differs from the value we use here.

Λ_c^+ DECAY MODES		Fraction (Γ _i /Γ)	Scale factor/ Confidence level	р (MeV/c)
Hadronic modes	with	a <i>p</i> : $S = -1$ fin	al states	
$p\overline{K}^0$		(2.3 \pm 0.6) %)	872
$pK^{-}\pi^{+}$	[/]	(5.0 \pm 1.3) %)	822
$p\overline{K}^*(892)^0$	[<i>m</i>]	(1.6 \pm 0.5) %)	681
$\Delta(1232)^{++}K^{-}$		(8.6 \pm 3.0) $ imes$	10 ⁻³	709
$\Lambda(1520)\pi^+$	[<i>m</i>]	(5.9 \pm 2.1) $ imes$	10 ⁻³	626
$ ho { m K}^{-} \pi^{+}$ nonresonant		(2.8 \pm 0.8) %)	822
$p\overline{K}^0\pi^0$		(3.3 \pm 1.0) %)	822

$p\overline{K}^{0}\eta$		(1.2 \pm 0.4) %	567
$p\overline{K}^0\pi^+\pi^-$		(2.6 \pm 0.7) %	753
$p K^- \pi^+ \pi^0$		(3.4 \pm 1.0) %	758
$p K^*(892)^- \pi^+$	[<i>m</i>]	($1.1~\pm~0.5$) %	579
$p(K^-\pi^+)_{ m nonresonant}\pi^0$		(3.6 \pm 1.2) %	758
$\Delta(1232)\overline{K}^*(892)$		seen	416
$pK^{-}\pi^{+}\pi^{+}\pi^{-}$		(1.1 \pm 0.8) $ imes$ 10 $^{-3}$	670
$p K^- \pi^+ \pi^0 \pi^0$		$(8 \pm 4) \times 10^{-3}$	676

Hadronic modes with a p: S = 0 final states

$p\pi^+\pi^-$	(3.5 \pm 2.0) $\times10^{-3}$	926
$p f_0(980)$ [m]	h] (2.8 \pm 1.9) $ imes$ 10 $^{-3}$	621
$p\pi^+\pi^+\pi^-\pi^-$	(1.8 \pm 1.2) $ imes$ 10 $^{-3}$	851
р К ⁺ К ⁻	(7.7 \pm 3.5) $ imes$ 10 $^{-4}$	615
$p\phi$ [m	n] (8.2 \pm 2.7) $ imes$ 10 ⁻⁴	589
$ ho {\it K}^+ {\it K}^-$ non- ϕ	(3.5 \pm 1.7) $ imes$ 10 $^{-4}$	615

Hadronic modes with a hyperon: S = -1 final states

$\Lambda \pi^+$	(9.0 \pm 2.8) $ imes$ 10 $^{-3}$		863
$\Lambda \pi^+ \pi^0$	$(3.6 \pm 1.3)\%$		843
Λho^+	< 5 %	CL=95%	638
$\Lambda \pi^+ \pi^+ \pi^-$	(3.3 \pm 1.0) %		806
$\Lambda \pi^+ \eta$	(1.8 \pm 0.6) %		690
$\Sigma(1385)^+ \eta$	[m] (8.5 \pm 3.3) $ imes$ 10 ⁻³		569
$\Lambda K^+ \overline{K}{}^0$	(6.0 \pm 2.1) $ imes$ 10 $^{-3}$		441
$\Xi(1690)^0 {\it K}^+$, $\Xi(1690)^0 ightarrow$	(1.6 \pm 0.8) $\times10^{-3}$		286
$\Sigma^0 \pi^+$	$(9.9 \pm 3.2) \times 10^{-3}$		824
$\Sigma^+ \pi^0$	$(1.00\pm0.34)\%$		826
$\Sigma^+\eta$	$(5.5 \pm 2.3) \times 10^{-3}$		712
$\Sigma^+\pi^+\pi^-$	$(3.6 \pm 1.0)\%$		803
$\Sigma^+ ho^0$	< 1.4 %	CL=95%	578
$\Sigma^{-}\pi^{+}\pi^{+}$	(1.9 \pm 0.8) %		798
$\Sigma^0 \pi^+ \pi^0$	(1.8 \pm 0.8) %		802
$\Sigma^0 \pi^+ \pi^+ \pi^-$	(1.1 \pm 0.4) %		762
$\Sigma^+ \pi^+ \pi^- \pi^0$	—		766
$\Sigma^+ \omega$	$[m]$ (2.7 \pm 1.0) %		568
$\Sigma^+ K^+ K^-$	(2.9 \pm 0.9) $ imes$ 10 $^{-3}$		346
$\Sigma^+\phi$	$[m]$ (3.1 \pm 1.0) $ imes$ 10 ⁻³		292
$\Xi(1690)^{0}K^{+}$,	(8.3 \pm 3.5) $ imes$ 10 $^{-4}$		286
$arepsilon(1690)^0 o \ \Sigma^+ K^-$			
$\Sigma^+ K^+ K^-$ nonresonant	$< 7 \times 10^{-4}$	CL=90%	346
$\Xi^0 K^+$	(3.9 \pm 1.4) $ imes$ 10 ⁻³		652
$\Xi^{-}K^{+}\pi^{+}$	(4.9 \pm 1.7) $ imes$ 10 $^{-3}$		564
${\it \Xi}(1530)^{0}{\it K}^{+}$	[m] (2.6 \pm 1.0) $ imes$ 10 ⁻³		471

HTTP://PDG.LBL.GOV Page 37

Created: 8/27/2002 13:44

Hadronic mod	es with a h	iyperoi	n: S =	= 0 final st	ates	
ΛK^+		(6.7	\pm 2.5	$) \times 10^{-4}$		780
$\Sigma^0 K^+$		(5.6	± 2.4	$) \times 10^{-4}$		734
$\Sigma^+ K^+ \pi^-$		(1.7	\pm 0.7	$) imes 10^{-3}$		668
	Semilepto	onic m	odes			
$\Lambda \ell^+ u_\ell$	[<i>n</i>]	(2.0	± 0.6) %		_
$\Lambda e^{+} \nu_{e}$		(2.1	± 0.6) %		870
$\Lambda \mu^+ \nu_{\mu}$		(2.0	± 0.7)%		866
	Inclusiv	ve mod	les			
e^+ anything		(4.5	\pm 1.7) %		_
pe^+ anything		(1.8	\pm 0.9) %		_
p anything		(50	± 16) %		_
p anything (no Λ)		(12	± 19) %		-
n anything		(50	± 16) %		-
n anything (no Л)		(29	± 17) %		-
Λ anything		(35	± 11) %	S=1.4	_
Σ^\pm anything	[0]	(10	\pm 5) %		-
$\Delta C = 1$ we	ak neutral	curren	t (<i>C1</i>) modes, c	or	
Leptor	number (L) viol	ating	modes		
$p\mu^+\mu^-$	C1	< 3.4		imes 10 ⁻⁴	CL=90%	936
$\Sigma^{-}\mu^{+}\mu^{+}$	L	< 7.0		imes 10 ⁻⁴	CL=90%	811

HTTP://PDG.LBL.GOV Page 38

Λ_c(2593)⁺

$$I(J^P) = 0(\frac{1}{2}^{-})$$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant.

 $\begin{array}{l} {\rm Mass} \,\,m=2593.9\,\pm\,0.8\,\,{\rm MeV} \\ m\,-\,m_{\Lambda_c^+}\,=\,308.9\,\pm\,0.6\,\,{\rm MeV} \quad ({\rm S}=1.1) \\ {\rm Full}\,\,{\rm width}\,\,\Gamma\,=\,3.6^{+2.0}_{-1.3}\,\,{\rm MeV} \end{array}$

 $\Lambda_c^+ \pi \pi$ and its submode $\Sigma_c(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

$\Lambda_c(2593)^+$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Lambda_{c}^{+}\pi^{+}\pi^{-}}$	[ho]pprox 67~%	124
$\Sigma_{c}(2455)^{++}\pi^{-}$	24 \pm 7 %	21
$\Sigma_{c}(2455)^{0}\pi^{+}$	24 \pm 7 %	24
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 \pm 10 %	124
$\Lambda_c^+ \pi^0$	[q] not seen	261
$\Lambda_c^+ \gamma$	not seen	291

$$\Lambda_{c}(2625)^{+} \qquad I(J^{P}) = 0(\frac{3}{2}^{-})$$

$$J^{P} \text{ has not been measured; } \frac{3}{2}^{-} \text{ is the quark-model}$$

$$Mass \ m = 2626.6 \pm 0.8 \text{ MeV} \quad (S = 1.2)$$

$$m - m_{+} = 341.7 \pm 0.6 \text{ MeV} \quad (S = 1.6)$$

 $m - m_{\Lambda_c^+} = 341.7 \pm 0.6 \text{ MeV}$ (S = 1.6) Full width $\Gamma < 1.9 \text{ MeV}$, CL = 90%

 $\Lambda_c^+ \pi \pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

$\Lambda_c(2625)^+$ DECAY MODES	F	raction (Γ _i /Γ)	Confidence level	р (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	[<i>p</i>]	pprox 67%		184
$\Sigma_{c}(2455)^{++}\pi^{-}$	<	<5	90%	100
$\Sigma_c(2455)^0\pi^+$	<	<5	90%	101
$\Lambda_c^+ \pi^+ \pi^-$ 3-body		large		184
$\Lambda_c^+ \pi^0$	[<i>q</i>]	not seen		293
$\Lambda_c^+ \gamma$		not seen		319

HTTP://PDG.LBL.GOV

prediction.

n

*Σ*_c(2455)

$$I(J^P) = \mathbb{1}(\tfrac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

$$\begin{split} & \Sigma_c(2455)^{++} \text{mass } m = 2452.6 \pm 0.6 \text{ MeV} \\ & \Sigma_c(2455)^+ \text{ mass } m = 2451.3 \pm 0.7 \text{ MeV} \\ & \Sigma_c(2455)^0 \text{ mass } m = 2452.2 \pm 0.6 \text{ MeV} \\ & m_{\Sigma_c^{++}} - m_{\Lambda_c^+} = 167.67 \pm 0.15 \text{ MeV} \\ & m_{\Sigma_c^+} - m_{\Lambda_c^+} = 166.4 \pm 0.4 \text{ MeV} \\ & m_{\Sigma_c^0} - m_{\Lambda_c^+} = 167.32 \pm 0.15 \text{ MeV} \\ & m_{\Sigma_c^{++}} - m_{\Sigma_c^0} = 0.35 \pm 0.18 \text{ MeV} \\ & m_{\Sigma_c^+} - m_{\Sigma_c^0} = -0.9 \pm 0.4 \text{ MeV} \\ & \Sigma_c(2455)^{++} \text{full width } \Gamma = 2.0 \pm 0.5 \text{ MeV} \\ & \Sigma_c(2455)^+ \text{ full width } \Gamma = 1.6 \pm 0.5 \text{ MeV} \end{split}$$

 $\Lambda_{\rm c}^+\,\pi$ is the only strong decay allowed to a $\Sigma_{\rm c}$ having this mass.

Σ_c (2455) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Lambda_{c}^{+}\pi}$	pprox 100 %	90

Σ_c(2520)

$$I(J^P) = \mathbb{1}(\tfrac{3}{2}^+)$$

 J^P has not been measured; $\frac{3}{2}^+$ is the quark-model prediction.

$$\begin{split} & \Sigma_c(2520)^{++} \text{mass } m = 2519.4 \pm 1.5 \text{ MeV} \\ & \Sigma_c(2520)^+ \text{ mass } m = 2515.9 \pm 2.4 \text{ MeV} \\ & \Sigma_c(2520)^0 \text{ mass } m = 2517.5 \pm 1.4 \text{ MeV} \\ & m_{\Sigma_c(2520)^{++}} - m_{\Lambda_c^+} = 234.5 \pm 1.4 \text{ MeV} \\ & m_{\Sigma_c(2520)^+} - m_{\Lambda_c^+} = 231.0 \pm 2.3 \text{ MeV} \\ & m_{\Sigma_c(2520)^0} - m_{\Lambda_c^+} = 232.6 \pm 1.3 \text{ MeV} \\ & m_{\Sigma_c(2520)^{++}} - m_{\Sigma_c(2520)^0} = 1.9 \pm 1.7 \text{ MeV} \\ & \Sigma_c(2520)^{++} \text{ full width } \Gamma = 18 \pm 5 \text{ MeV} \\ & \Sigma_c(2520)^+ \text{ full width } \Gamma < 17 \text{ MeV}, \text{ CL} = 90\% \\ & \Sigma_c(2520)^0 \text{ full width } \Gamma = 13 \pm 5 \text{ MeV} \end{split}$$

 $\Lambda_{\rm C}^+\,\pi$ is the only strong decay allowed to a $\Sigma_{\rm C}$ having this mass.

Ξ_c^+

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

 $\begin{array}{l} {\sf Mass} \,\, m = 2466.3 \pm 1.4 \,\, {\sf MeV} \\ {\sf Mean} \,\, {\sf life} \,\, \tau = (442 \pm 26) \times 10^{-15} \,\, {\sf s} \quad ({\sf S} = 1.3) \\ c\tau = 132 \,\, \mu {\sf m} \end{array}$

No absolute branching fractions have been measured. THE FOLLOWING ARE BRANCHING *RATIOS* RELATIVE TO $\Xi^- \pi^+ \pi^+$.

=+ DECAY MODES	Fraction (Γ_{i}/Γ)	Confidence level	р (MeV/c)
$\frac{c}{AV'+ -+}$			705
$\Lambda \Lambda \pi^+ \pi^+$	r] 0.58 ± 0.18		785
$\Lambda K^*(892)^0 \pi^+$ [m,r	r] <0.29	90%	603
$\Sigma(1385)^{+} K^{-} \pi^{+}$ [m,r	r] <0.41	90%	677
$\Sigma^+ K^- \pi^+$ [/	r] 1.18±0.31		809
$\Sigma^+\overline{\kappa}^*(892)^0 \qquad [m,r]$	r] 0.92±0.30		654
$\Sigma^0 K^- \pi^+ \pi^+ \qquad [n$	r] 0.49±0.26		734
$\Xi^0 \pi^+$ [/	r] 0.55±0.16		876
$\Xi^{-}\pi^{+}\pi^{+}$	r] defined as 1		850
$\Xi(1530)^0 \pi^+$ [m,r	r] <0.2	90%	749
$\Xi^0 \pi^+ \pi^0 \qquad [\prime$	r] 2.34±0.68		855
$\Xi^0 \pi^+ \pi^+ \pi^- \qquad [\prime$	r] 1.74 ± 0.50		817
$\Xi^0 e^+ \nu_e \qquad [\prime$	r] 2.3 $^{+0.7}_{-0.9}$		883
$pK^{-}\pi^{+}$	r] 0.21±0.03		943
$p\overline{K}^*(892)^0\qquad [m,r]$	r] 0.12 ± 0.02		824

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ **Ξ**⁰_c J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction. Mass $m = 2471.8 \pm 1.4$ MeV $m_{\Xi_c^0} - m_{\Xi_c^+} = 5.5 \pm 1.8 \; {
m MeV}$ Mean life $au = (98^{+23}_{-15}) imes 10^{-15} \; {
m s}$ $c\tau = 29 \ \mu m$ Decay asymmetry parameters $\Xi^-\pi^+$ $\alpha = -0.6 \pm 0.4$ $=^{0}_{c}$ DECAY MODES Fraction (Γ_i/Γ) seen seen seen seen seen seen

p (MeV/c) $\Lambda \overline{K}^0$ 907 $\Lambda \overline{K}^0 \pi^+ \pi^-$ 788 $\begin{array}{l} \Lambda K^- \pi^+ \pi^+ \pi^- \\ \Xi^- \pi^+ \end{array}$ 704 876 $\varXi^-\pi^+\pi^+\pi^-$ 817 $pK^{-}\overline{K}^{*}(892)^{0}$ 408 $\Omega^- K^+$ 523 seen $\Xi^- e^+ \nu_e$ 883 seen $\overline{\Xi}^{-}\ell^{+}$ anything seen

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass $m = 2574.1 \pm 3.3$ MeV $m_{\Xi_c^{\prime+}} - m_{\Xi_c^+} = 107.8 \pm 3.0 \; {
m MeV}$

The $\Xi_c^{\prime+} - \Xi_c^+$ mass difference is too small for any strong decay to occur.

$\frac{z'^{+}}{c}$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Xi_c^+ \gamma}$	seen	106

HTTP://PDG.LBL.GOV

 $\Xi_c^{\prime+}$

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Ξ'⁰ J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction. Mass $m = 2578.8 \pm 3.2$ MeV $m_{\Xi_c'^0} - m_{\Xi_c^0} = 107.0 \pm 2.9 \; {
m MeV}$ The $\Xi_c^{\prime 0} - \Xi_c^0$ mass difference is too small for any strong decay to occur. E^{/0} DECAY MODES Fraction (Γ_i/Γ) p (MeV/c)seen Ξ_c(2645) $I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$ J^P has not been measured; $\frac{3}{2}^+$ is the quark-model prediction. $\Xi_c(2645)^+$ mass $m=2647.4\pm2.0$ MeV (S = 1.2) $\Xi_c(2645)^0$ mass $m=2644.5\pm1.8$ MeV $m_{\Xi_c(2645)^+} - m_{\Xi_c^0} = 175.6 \pm 1.4 \text{ MeV} \quad (S = 1.7)$ $m_{\Xi_c(2645)^0} - m_{\Xi_c^+} = 178.2 \pm 1.1 \text{ MeV}$ $\Xi_c(2645)^+$ full width $\Gamma < 3.1$ MeV, CL = 90% $\Xi_c(2645)^0$ full width $\Gamma < 5.5$ MeV, CL = 90%

 $\varXi_{c}\pi$ is the only strong decay allowed to a \varXi_{c} resonance having this mass.

$= \frac{0}{c} \pi^+$ seen	103
$= \frac{1}{c} \pi^{-}$ seen	107

HTTP://PDG.LBL.GOV

105

Ξ_c (2815) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Xi_c^+}\pi^+\pi^-$	seen	196
$\Xi_c^0 \pi^+ \pi^-$	seen	193

 \mathcal{P}_{c} J^{P} has not been measured; $\frac{1}{2}^{+}$ is the quark-model prediction. Mass $m = 2697.5 \pm 2.6$ MeV (S = 1.2) Mean life $\tau = (64 \pm 20) \times 10^{-15}$ s $c\tau = 19 \ \mu$ m

No absolute branching fractions have been measured.

Ω_c^0 decay modes	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Sigma^+ K^- K^- \pi^+$	seen	691
$\Xi^0 \kappa^- \pi^+$	seen	902
$\Xi^- K^- \pi^+ \pi^+$	seen	832
$\Omega^{-}\pi^{+}$	seen	822
$\Omega^{-}\pi^{+}\pi^{0}$	seen	798
$\Omega^{-}\pi^{-}\pi^{+}\pi^{+}$	seen	754

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $I(J^P)$ not yet measured; $0(\frac{1}{2}^+)$ is the quark model prediction. Mass $m = 5624 \pm 9$ MeV (S = 1.8) Mean life $\tau = (1.229 \pm 0.080) \times 10^{-12}$ s $c\tau = 368 \ \mu$ m

These branching fractions are actually an average over weakly decaying *b*-baryons weighted by their production rates in *Z* decay (or high-energy $p\overline{p}$), branching ratios, and detection efficiencies. They scale with the LEP *b*-baryon production fraction B($b \rightarrow b$ -baryon) and are evaluated for our value B($b \rightarrow b$ -baryon) = (11.8 ± 2.0)%.

The branching fractions B(*b*-baryon $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$ anything) and B($\Lambda_b^0 \rightarrow$

 $\Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \rightarrow b$ -baryon) were used to determine B($b \rightarrow b$ -baryon), as described in the note "Production and Decay of *b*-Flavored Hadrons."

Λ_b^0 decay modes	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$J/\psi(1S)$ Λ	$(4.7 \pm 2.8) imes 10^{-1}$	- 4	1744
$\Lambda_c^+ \pi^-$	seen		2345
$\Lambda_{c}^{+}a_{1}(1260)^{-}$	seen		2156
$\Lambda_{c}^{+}\ell^{-}\overline{\nu}_{\ell}$ anything	[s] (7.7±1.8) %		-
$p\pi^-$	$< 5.0 \times 10^{-1}$	-5 90%	2732
pK ⁻	$< 5.0 \times 10^{-10}$	-5 90%	2711

HTTP://PDG.LBL.GOV

 Λ_b^0

b-baryon ADMIXTURE (Λ_b , Ξ_b , Σ_b , Ω_b)

Mean life $\tau = (1.208 \pm 0.051) \times 10^{-12}$ s

These branching fractions are actually an average over weakly decaying *b*-baryons weighted by their production rates in *Z* decay (or high-energy $p\overline{p}$), branching ratios, and detection efficiencies. They scale with the LEP *b*-baryon production fraction B($b \rightarrow b$ -baryon) and are evaluated for our value B($b \rightarrow b$ -baryon) = (11.8 ± 2.0)%.

The branching fractions B(b-baryon $\to~\Lambda\ell^-\,\overline{\nu}_\ell\,{\rm anything})$ and B(Λ^0_b \to

 $\Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \rightarrow b$ -baryon) were used to determine B($b \rightarrow b$ -baryon), as described in the note "Production and Decay of *b*-Flavored Hadrons."

b-baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$p\mu^-\overline{ u}$ anything	(4.2 + 1.7) %	_
$ ho \ell \overline{ u}_\ell$ anything	$(4.0\pm 1.0)\%$	_
<i>p</i> anything	(50 ± 17) %	-
$\Lambda\ell^-\overline{ u}_\ell$ anything	$(2.7\pm~0.5)~\%$	-
$\Lambda/\overline{\Lambda}$ anything	(28 \pm 6)%	-
$\Xi^-\ell^-\overline{ u}_\ell$ anything	$(4.7\pm1.3) imes10^{-3}$	-

NOTES

- [a] The masses of the p and n are most precisely known in u (unified atomic mass units). The conversion factor to MeV, $1 \text{ u} = 931.494013 \pm 0.000037 \text{ MeV}$, is less well known than are the masses in u.
- [b] These two results are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [c] The limit is from neutrality-of-matter experiments; it assumes $q_n = q_p + q_e$. See also the charge of the neutron.
- [d] The first limit is geochemical and independent of decay mode. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray \overline{p} 's is $\tau_{\overline{p}} > 10^7$ yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\overline{p}}/B(\overline{p} \rightarrow e^-\gamma) > 7 \times 10^5$ yr.
- [e] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [f] The parameters g_A , g_V , and g_{WM} for semileptonic modes are defined by $\overline{B}_f[\gamma_\lambda(g_V + g_A\gamma_5) + i(g_{WM}/m_{B_i}) \sigma_{\lambda\nu} q^{\nu}]B_i$, and ϕ_{AV} is defined by $g_A/g_V = |g_A/g_V|e^{i\phi_{AV}}$. See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.
- [g] Time-reversal invariance requires this to be 0° or 180° .
- [h] The decay parameters γ and Δ are calculated from α and ϕ using

$$\gamma = \sqrt{1 - lpha^2} \, \cos \! \phi$$
 , $an \Delta = - rac{1}{lpha} \, \sqrt{1 - lpha^2} \, \sin \! \phi$.

See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.

- [*i*] See the Listings for the pion momentum range used in this measurement.
- [*j*] The error given here is only an educated guess. It is larger than the error on the weighted average of the published values.
- [k] A theoretical value using QED.
- [/] See the note on " Λ_c^+ Branching Fractions" in the Λ_c^+ Particle Listings.
- [*m*] This branching fraction includes all the decay modes of the final-state resonance.
- [n] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [o] The value is for the sum of the charge states or particle/antiparticle states indicated.

- [p] Assuming isospin conservation, so that the other third is $\Lambda_c^+\,\pi^0\,\pi^0.$
- [q] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .
- [r] No absolute branching fractions have been measured. The following are branching ratios relative to $\Xi^- \pi^+ \pi^+$.
- [s] Not a pure measurement. See note at head of \varLambda^0_b Decay Modes.