THE $f_{J}(2220)$

Updated April 2002 by M. Doser (CERN).

This state has been seen in $J/\psi(1S)$ radiative decay into $K\overline{K}$ $(K^+K^- \text{ and } K_S^0K_S^0 \text{ modes seen (BALTRUSAITIS 86D, BAI}$ 96B)). An upper limit from DM2 for these modes (AUGUSTIN 88) is at the level at which observation is claimed. There are also indications for further decay modes $(\pi^+\pi^-)$ and $\overline{p}p$ (BAI 96B) and $\pi^0\pi^0$ (BAI 98H)) in the same production process, although again at the level at which previous upper limits had been obtained (BALTRUSAITIS 86D). This is also seen in $\eta\eta$ (ALDE 86B), $K_S^0 K_S^0$ (ASTON 88D), and in $K^+ K^-$ (ALDE 88F), albeit with very low statistics. Its J^{PC} is determined from the angular distributions of these observations. It is not seen in Υ radiative decays (BARU 89), B inclusive decays (BEHRENDS 84), nor in $\gamma\gamma$ (GODANG 97, ALAM 98C, ACCIARRI 01H), which would not be surprising if it were a glueball, since its two-photon width would then be expected to be small. It is also not seen in formation in $\overline{p}p \to K^+K^-$ (BARDIN 87, SCULLI 87), in $\overline{p}p \to K_SK_S$ (BARNES 93, EVANGELISTA 97), $\overline{p}p \rightarrow \phi \phi$ (EVANGELISTA 98), in $\overline{p}p \rightarrow \eta \eta$ (AMSLER 01), nor in $\overline{p}p \to \pi\pi$ (HASAN 96, AMSLER 01). The upper limit in $\overline{p}p$ formation can be related to the claimed decay into $\overline{p}p$ to give a lower limit for the process $J/\psi(1S) \to \gamma \xi$ of $\sim 2.3 \times 10^{-3}$ (GODFREY 99). Such a signal should be visible in the inclusive photon spectrum (BLOOM 85). The limit also leads to the conclusion that the reported two-body final states constitute only a small fraction of all decay modes of the ξ . Observation of further decay modes and confirmation of the $\overline{p}p$ decay would be very desirable.

References

References may be found at the end of the $f_J(2220)$ Listing.