NOTES

[a] See the “Note on \(\pi^\pm \to \ell^\pm \nu \gamma \) and \(K^\pm \to \ell^\pm \nu \gamma \) Form Factors” in the \(\pi^\pm \) Particle Listings for definitions and details.

[b] Measurements of \(\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu) \) always include decays with \(\gamma \)'s, and measurements of \(\Gamma(e^+\nu_e\gamma) \) and \(\Gamma(\mu^+\nu_\mu\gamma) \) never include low-energy \(\gamma \)'s. Therefore, since no clean separation is possible, we consider the modes with \(\gamma \)'s to be subreactions of the modes without them, and let \(\left[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu) \right]/\Gamma_{\text{total}} = 100\% \).

[c] See the \(\pi^\pm \) Particle Listings for the energy limits used in this measurement; low-energy \(\gamma \)'s are not included.

[d] Derived from an analysis of neutrino-oscillation experiments.

[e] Astrophysical and cosmological arguments give limits of order \(10^{-13} \); see the \(\pi^0 \) Particle Listings.

[f] See the “Note on the Decay Width \(\Gamma(\eta \to \gamma\gamma) \)” in our 1994 edition, Phys. Rev. D50, 1 August 1994, Part I, p. 1451.

[g] C parity forbids this to occur as a single-photon process.

[h] See the “Note on scalar mesons” in the \(f_0(1370) \) Particle Listings. The interpretation of this entry as a particle is controversial.

[i] See the “Note on \(\rho(770) \)” in the \(\rho(770) \) Particle Listings.

[j] The \(e^+e^- \) branching fraction is from \(e^+e^- \to \pi^+\pi^- \) experiments only. The \(\omega\rho \) interference is then due to \(\omega\rho \) mixing only, and is expected to be small. If \(e\mu \) universality holds, \(\Gamma(\rho^0 \to \mu^+\mu^-) = \Gamma(\rho^0 \to e^+e^-) \times 0.99785 \).

[k] See the “Note on scalar mesons” in the \(f_0(1370) \) Particle Listings.

[l] See the “Note on \(a_1(1260) \)” in the \(a_1(1260) \) Particle Listings.

[m] This is only an educated guess; the error given is larger than the error on the average of the published values. See the Particle Listings for details.

[n] See the “Note on the \(f_1(1420) \)” in the \(\eta(1440) \) Particle Listings.

[o] See also the \(\omega(1650) \) Particle Listings.

[p] See the “Note on the \(\eta(1440) \)” in the \(\eta(1440) \) Particle Listings.

[q] See the “Note on the \(\rho(1450) \) and the \(\rho(1700) \)” in the \(\rho(1700) \) Particle Listings.

[r] See the “Note on non-quark-antiquark mesons” in the Particle Listings (see the index for the page number).

[s] See also the \(\omega(1420) \) Particle Listings.

[t] See the “Note on \(f_0(1710) \)” in the \(f_0(1710) \) Particle Listings.

[u] See the note in the \(K^\pm \) Particle Listings.
The definition of the slope parameter g of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m^2_{\pi^+} + \cdots.$$

For more details and definitions of parameters see the Particle Listings.

Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ's.

See the K^{\pm} Particle Listings for the energy limits used in this measurement.

Structure-dependent part.

Direct-emission branching fraction.

Violates angular-momentum conservation.

Derived from measured values of ϕ_{+-}, ϕ_{00}, $|\eta|$, $|m_{K^0_L} - m_{K^0_S}|$, and $\tau_{K^0_S}$, as described in the introduction to "Tests of Conservation Laws."

The CP-violation parameters are defined as follows (see also "Note on CP Violation in $K_S \to 3\pi$" and "Note on CP Violation in K^0_L Decay" in the Particle Listings):

$$\eta_{+-} = |\eta_{+-}|e^{i\phi_{+-}} = \frac{A(K^0_L \to \pi^+\pi^-)}{A(K^0_S \to \pi^+\pi^-)} = \epsilon + \epsilon'$$

$$\eta_{00} = |\eta_{00}|e^{i\phi_{00}} = \frac{A(K^0_L \to \pi^0\pi^0)}{A(K^0_S \to \pi^0\pi^0)} = \epsilon - 2\epsilon'$$

$$\delta = \frac{\Gamma(K^0_L \to \pi^-\ell^+\nu)}{\Gamma(K^0_L \to \pi^-\ell^+\nu) + \Gamma(K^0_L \to \pi^+\ell^-\nu)}$$

$$\text{Im}(\eta_{+-0})^2 = \frac{\Gamma(K^0_S \to \pi^+\pi^-\pi^0)_{CP \text{ viol.}}}{\Gamma(K^0_L \to \pi^+\pi^-\pi^0)}$$

$$\text{Im}(\eta_{000})^2 = \frac{\Gamma(K^0_S \to \pi^0\pi^0\pi^0)}{\Gamma(K^0_L \to \pi^0\pi^0\pi^0)}.$$

where for the last two relations CPT is assumed valid, i.e., $\text{Re}(\eta_{+-0}) \approx 0$ and $\text{Re}(\eta_{000}) \approx 0$.

See the K^0_S Particle Listings for the energy limits used in this measurement.

The value is for the sum of the charge states or particle/antiparticle states indicated.

$\text{Re}(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy CPT invariance.
[hh] See the K^0_L Particle Listings for the energy limits used in this measurement.

[ii] Allowed by higher-order electroweak interactions.

[jj] Violates CP in leading order. Test of direct CP violation since the indirect CP-violating and CP-conserving contributions are expected to be suppressed.

[kk] See the “Note on $f_0(1370)$” in the $f_0(1370)$ Particle Listings and in the 1994 edition.

[ll] See the note in the $L(1770)$ Particle Listings in Reviews of Modern Physics 56, No. 2 Pt. II (1984), p. S200. See also the “Note on $K_2(1770)$ and the $K_2(1820)$” in the $K_2(1770)$ Particle Listings.

[mm] See the “Note on $K_2(1770)$ and the $K_2(1820)$” in the $K_2(1770)$ Particle Listings.

[nn] This result applies to $Z^0 \rightarrow c\bar{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.

[oo] This is a weighted average of D^\pm (44%) and D^0 (56%) branching fractions. See “D^+ and $D^0 \rightarrow (\eta$ anything) / (total D^+ and D^0)” under “D^+ Branching Ratios” in the Particle Listings.

[pp] This value averages the e^+ and μ^+ branching fractions, after making a small phase-space adjustment to the μ^+ fraction to be able to use it as an e^+ fraction; hence our ℓ^+ here is really an e^+.

[qq] An ℓ indicates an e or a μ mode, not a sum over these modes.

[rr] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.

[ss] The two experiments measuring this fraction are in serious disagreement. See the Particle Listings.

[tt] This value includes only $\pi^+\pi^-$ decays of the intermediate resonance, because branching fractions of this resonance are not known.

[uu] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.

[vv] This $D^0_1-D^0_2$ limit is inferred from the $D^0-\bar{D}^0$ mixing ratio $\Gamma(K^+\pi^- (\text{via}\ \bar{D}^0)) / \Gamma(K^-\pi^+)$ near the end of the D^0 Listings.

[ww] The exclusive e^+ modes $K^-e^+\nu_e$, $K^-\pi^0e^+\nu_e$, $K^-\pi^0 e^+\nu_e$, and $\pi^-e^+\nu_e$ are constrained to equal this (well-measured) inclusive fraction.

[xx] The experiments on the division of this charge mode amongst its submodes disagree, and the submode branching fractions here add up to considerably more than the charged-mode fraction.

[yy] However, these upper limits are in serious disagreement with values obtained in another experiment.
[zz] For now, we average together measurements of the $Xe^+\nu_e$ and $X\mu^+\nu_\mu$ branching fractions. This is the average, not the sum.

[aaa] This branching fraction includes all the decay modes of the final-state resonance.

[bbb] This value includes only K^+K^- decays of the intermediate resonance, because branching fractions of this resonance are not known.

[ccc] B^0 and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.

[ddd] These values are model dependent. See 'Note on Semileptonic Decays' in the B^+ Particle Listings.

[eee] D^{**} stands for the sum of the $D(1\,^1S_0)$, $D(1\,^3P_0)$, $D(1\,^3P_1)$, $D(1\,^3P_2)$, $D(2\,^1S_0)$, and $D(2\,^1S_1)$ resonances.

[fff] $D^{(*)}\bar{D}^{(*)}$ stands for the sum of $D^*\bar{D}^*$, $D^*\bar{D}$, $D\bar{D}^*$, and $D\bar{D}$.

[ggg] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.

[hhh] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.

[iii] Not a pure measurement. See note at head of B^0_s Decay Modes.

[ijj] Includes $p\bar{p}\pi^+\pi^-\gamma$ and excludes $p\bar{p}\eta$, $p\bar{p}\omega$, $p\bar{p}\eta'$.

[kkk] J^{PC} known by production in e^+e^- via single photon annihilation. IG is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.

[lll] Spectroscopic labeling for these states is theoretical, pending experimental information.