Neutrino Mixing

(A) Accelerator neutrino experiments

$ \nu_e \rightarrow \nu_{\tau}$								
$\Delta(m^2)$ for sin ² (2 θ) = 1								
VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT			
< 0.77	90	¹ ARMBRUSTEF	898	KARM				
$\bullet \bullet \bullet$ We do not use the	e following	g data for averages	, fits	, limits,	etc. ● ● ●			
< 5.9	90		01 B	NOMD	CERN SPS			
< 7.5	90	³ ESKUT	01	CHRS	CERN SPS			
<17	90	NAPLES	99	CCFR	FNAL			
<44	90	TALEBZADEH	87	HLBC	BEBC			
< 9	90	USHIDA	86C	EMUL	FNAL			
1			-					

¹ ARMBRUSTER 98 use KARMEN detector with ν_e from muon decay at rest and observe ${}^{12}C(\nu_e, e^-){}^{12}N_{gs}$. This is a disappearance experiment which is almost insensitive to $\nu_e \rightarrow \nu_\mu$ oscillation. Results are presented as limits to $\nu_e \rightarrow \nu_\tau$ oscillation, although the (non)oscillation could be to a non-visible flavor. A three-flavor analysis is also presented. ² ASTIER 01B searches for the appearance of ν_τ with the NOMAD detector at CERN's

SPS. The limit is based on an oscillation probability $< 0.74 \times 10^{-2}$, whereas the quoted sensitivity was 1.1×10^{-2} . The limit was obtained following the statitical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01.

³ESKUT 01 searches for the appearance of the ν_{τ} with the CHORUS detector at CERN's SPS. The limit is obtained following the statistical prescriptions in JUNK 99. The limit would have been 6 eV^2 if the prescriptions in FELDMAN 98 had been followed, as they were in ASTIER 01B.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

 COMMENT	TECN		DOCUMENT ID	<u>CL%</u>	UE	VALUE
CERN SPS	NOMD	01 B	⁴ ASTIER	90	.015	<0.015
etc. ● ● ●	, limits,	s, fits	g data for averages	following	• We do not use the	• • • V
CERN SPS	CHRS	01	⁵ ESKUT	90	0.052	<0.052
FNAL	CCFR	99	NAPLES	90	0.21	< 0.21
	KARM	R98	⁶ ARMBRUSTE	90	.338	<0.338
BEBC	HLBC	H 87	TALEBZADEH	90	0.36	< 0.36
FNAL	EMUL	86C	⁷ USHIDA	90	0.25	< 0.25
etc. • • • CERN SPS FNAL BEBC	, limits, CHRS CCFR KARM HLBC	s, fits 01 99 R98 H 87	g data for averages ⁵ ESKUT NAPLES ⁶ ARMBRUSTER TALEBZADEH	90 90 90 90 90 90	• We do not use the 0.052 0.21 0.338 0.36	•••V <0.052 <0.21 <0.338 <0.36

 4 ASTIER 01B limit is based on an oscillation probability < 0.74 \times 10 $^{-2}$, whereas the quoted sensitivity was 1.1 \times 10 $^{-2}$. The limit was obtained following the statitical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01.

⁵ ESKUT 01 limit obtained following the statistical prescriptions in JUNK 99. The limit would have been 0.03 if the prescriptions in FELDMAN 98 had been followed, as they were in ASTIER 01B.

⁶ See foonote in preceding table (ARMBRUSTER 98) for further details, and see the paper for a plot showing allowed regions. A three-flavor analysis is also presented here.

⁷ USHIDA 86C published result is $\sin^2 2\theta < 0.12$. The quoted result is corrected for a numerical mistake incurred in calculating the expected number of ν_e CC events, normalized to the total number of neutrino interactions (3886) rather than to the total number of ν_μ CC events (1870).

sin ² (2θ) for "La VALUE	гge <u> </u>	DOCUMENT ID		TECN	COMMENT
<0.7	90				BEBC CERN SPS
					DEDC CEINII SI S
^o Authors give P	$(\nu_e \rightarrow \nu_{\tau}) <$	0.35, equivalent to	o abov	e limit.	
		$ \nu_e \not\rightarrow \nu_e$			
$\Delta(m^2)$ for sin ² (2 heta) = 1				
VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
VALUE (eV ²) < 0.18	<u> </u>	<u>DOCUMENT ID</u> 9 HAMPEL			
	90	⁹ HAMPEL	98	GALX	⁵¹ Cr source
< 0.18	90	⁹ HAMPEL ng data for average	98 es, fits	GALX s, limits,	51Cr source etc. • • •
< 0.18 • • • We do not u	90 Ise the followin	⁹ HAMPEL ng data for average	98 es, fits 96	GALX s, limits, CNTR	⁵¹ Cr source
< 0.18 • • • We do not u <40	90 se the followir 90	⁹ HAMPEL ng data for average ¹⁰ BORISOV	98 es, fits 96	GALX 5, limits, CNTR HLBC	⁵¹ Cr source etc. ● ● ● IHEP-JINR detector
< 0.18 • • • We do not u <40 <14.9	90 Ise the followin 90 90	⁹ HAMPEL ng data for average ¹⁰ BORISOV BRUCKER	98 es, fits 96 86	GALX s, limits, CNTR HLBC HLBC	⁵¹ Cr source etc. ● ● IHEP-JINR detector 15-ft FNAL
< 0.18 • • • We do not u <40 <14.9 < 8	90 90 90 90 90 90	⁹ HAMPEL ng data for average ¹⁰ BORISOV BRUCKER BAKER	98 96 96 86 81 81	GALX 5, limits, CNTR HLBC HLBC HLBC	⁵¹ Cr source etc. ● ● IHEP-JINR detector 15-ft FNAL 15-ft FNAL

updates the BAHCALL 95 analysis result. They also gave 95% and 99% CL limits of < 0.2 and < 0.22, respectively.

 $^{10}\,{\rm BORISOV}$ 96 exclusion curve extrapolated to obtain this value; however, it does not have the right curvature in this region.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<7 × 10 ⁻²	90	¹¹ ERRIQUEZ	81	HLBC	BEBC CERN SPS
• • • We do no	t use the followin	g data for average	es, fits	, limits,	etc. • • •
<0.4	90	¹² HAMPEL	98	GALX	⁵¹ Cr source
<0.115	90	¹³ BORISOV	96	CNTR	$\Delta(m^2)=175~{ m eV}^2$
<0.54	90	BRUCKER	86	HLBC	15-ft FNAL
<0.6	90	BAKER	81	HLBC	15-ft FNAL
<0.3	90	¹¹ DEDEN	81	HLBC	BEBC CERN SPS
11	- ·				

¹¹Obtained from a Gaussian centered in the unphysical region.

 12 HAMPEL 98 analyzed the GALLEX calibration results with $^{51}\mathrm{Cr}$ neutrino sources and updates the BAHCALL 95 analysis result. They also gave 95% and 99% CL limits of < 0.45 and < 0.56, respectively.

¹³ BORISOV 96 sets less stringent limits at large $\Delta(m^2)$, but exclusion curve does not have clear asymptotic behavior.

$$---- \nu_e \rightarrow (\overline{\nu}_e)_L$$

This is a limit on lepton family-number violation and total lepton-number violation. $(\overline{\nu}_e)_L$ denotes a hypothetical left-handed $\overline{\nu}_e$. The bound is quoted in terms of $\Delta(m^2)$, $\sin(2\theta)$, and α , where α denotes the fractional admixture of (V+A) charged current.

 $\begin{array}{c} \alpha \Delta(m^2) \text{ for } \sin^2(2\theta) = 1 \\ \hline \\ \underline{VALUE} \ (eV^2) \\ \hline <0.14 \\ \bullet \ \bullet \ We \ do \ not \ use \ the \ following \ data \ for \ averages, \ fits, \ limits, \ etc. \ \bullet \ \bullet \end{array}$

<7 90 ¹⁵ COOPER 82 HLBC BEBC CERN SPS

¹⁴ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_{μ} , $\overline{\nu}_{\mu}$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$.

¹⁵ COOPER 82 states that existing bounds on V+A currents require α to be small.

$\alpha^2 \sin^2(2\theta)$ for "Large" $\Delta(m^2)$									
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT				
<0.032	90	¹⁶ FREEDMAN	93	CNTR	LAMPF				
• • • We do not use the	followir	ng data for averages	s, fits	, limits,	etc. ● ● ●				
<0.05	90	¹⁷ COOPER	82	HLBC	BEBC CERN SPS				
16									

¹⁰ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_{μ} , $\overline{\nu}_{\mu}$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$.

 17 COOPER 82 states that existing bounds on V+A currents require α to be small.

$$- \nu_{\mu} \rightarrow \nu_{e}$$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

	•	
VALUE (eV ²)	<u>CL%</u>	DOCUMENT ID TECN COMMENT
<0.09	90	ANGELINI 86 HLBC BEBC CERN PS
• • • We do not u	se the followin	g data for averages, fits, limits, etc. $ullet$ $ullet$
		¹⁸ AGUILAR 01 LSND $\nu \mu \rightarrow \nu_e$ osc.prob.
0.03 to 0.3	95	¹⁹ ATHANASSO98 LSND $\nu_{\mu} \rightarrow \nu_{e}$
<2.3	90	²⁰ LOVERRE 96 CHARM/CDHS
<0.9	90	VILAIN 94c CHM2 CERN SPS
<0.1	90	BLUMENFELD 89 CNTR
<1.3	90	AMMOSOV 88 HLBC SKAT at Serpukhov
<0.19	90	BERGSMA 88 CHRM
		²¹ LOVERRE 88 RVUE
<2.4	90	AHRENS 87 CNTR BNL AGS
<1.8	90	BOFILL 87 CNTR FNAL
<2.2	90	²² BRUCKER 86 HLBC 15-ft FNAL
<0.43	90	AHRENS 85 CNTR BNL AGS E734
<0.20	90	BERGSMA 84 CHRM
<1.7	90	ARMENISE 81 HLBC GGM CERN PS
<0.6	90	BAKER 81 HLBC 15-ft FNAL
<1.7	90	ERRIQUEZ 81 HLBC BEBC CERN PS
<1.2	95	BLIETSCHAU 78 HLBC GGM CERN PS
<1.2	95	BELLOTTI 76 HLBC GGM CERN PS

¹⁸ AGUILAR 01 is the final analyis of the LSND full data set. Search is made for the $\nu_{\mu} \rightarrow \nu_{e}$ oscillations using ν_{μ} from π^{+} decay in flight by observing beam-on electron events from $\nu_{e} C \rightarrow e^{-} X$. Present analysis results in $8.1 \pm 12.2 \pm 1.7$ excess events in the $60 < E_{e} < 200$ MeV energy range, corresponding to oscillation probability of $0.10 \pm 0.16 \pm 0.04\%$. This is consistent, though less significant, with the previous result of ATHANASSOPOULOS 98, which it supersedes. The present analysis uses selection criteria developed for the decay at rest region, and is less effective in removing the background above 60 MeV than ATHANASSOPOULOS 98.

¹⁹ ATHANASSOPOULOS 98 is a search for the $\nu_{\mu} \rightarrow \nu_{e}$ oscillations using ν_{μ} from π^{+} decay in flight. The 40 observed beam-on electron events are consistent with $\nu_{e}C \rightarrow$

 e^- X; the expected background is 21.9±2.1. Authors interpret this excess as evidence for an oscillation signal corresponding to oscillations with probability (0.26±0.10±0.05)%. Although the significance is only 2.3 σ , this measurement is an important and consistent cross check of ATHANASSOPOULOS 96 who reported evidence for $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillations

from μ^+ decay at rest. See also ATHANASSOPOULOS 98B.

²⁰LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

²¹LOVERRE 88 reports a less stringent, indirect limit based on theoretical analysis of neutral to charged current ratios.

²²15ft bubble chamber at FNAL.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

	• •	•	• •					
VA	LUE (units	10 ⁻³)	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
<	3.0		90	23	LOVERRE	96		CHARM/CDHS
<	2.5		90		AMMOSOV	88	HLBC	SKAT at Serpukhov
٠	• • We c	lo not use the	e followin	g d	ata for averages	, fits	, limits,	etc. • • •
				24	AGUILAR	01	LSND	$ \nu \mu \rightarrow \nu_e \text{ osc.prob.}$
	0.0005	to 0.03	95		ATHANASSO	.98	LSND	$\nu_{\mu} \rightarrow \nu_{\rho}$
<	9.4		90		VILAIN			μ e CERN SPS
	5.6		90	26	VILAIN			CERN SPS
	16		90		BLUMENFELD		CNTR	
	8		90		BERGSMA		CHRM	$\Delta(m^2) \geq 30 \ { m eV}^2$
				27	LOVERRE	88		
<	10		90		AHRENS	87	CNTR	BNL AGS
<	15		90		BOFILL	87	CNTR	FNAL
<	20		90		ANGELINI		HLBC	
	20	to 40				86 B	CNTR	$\Delta(m^2) = 5 - 10$
<	11		90	30	BRUCKER	86	HLBC	15-ft FNAL
<	3.4		90		AHRENS	85	CNTR	BNL AGS E734
	240		90		BERGSMA	84	-	
<	10		90		ARMENISE	81		GGM CERN PS
	6		90		BAKER	81	HLBC	15-ft FNAL
	10		90		ERRIQUEZ	81		BEBC CERN PS
	4		95		BLIETSCHAU	78		GGM CERN PS
	10		95		BELLOTTI	76	HLBC	GGM CERN PS
<u></u>	2							

²³LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

²⁴ AGUILAR 01 is the final analyis of the LSND full data set of the search for the $\nu_{\mu} \rightarrow \nu_{e}$ oscillations. See footnote in preceding table for futher details.

²⁵ ATHANASSOPOULOS 98 report $(0.26 \pm 0.10 \pm 0.05)$ % for the oscillation probability; the value of $\sin^2 2\theta$ for large Δm^2 is deduced from this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. If effect is due to oscillation, it is most likely to be intermediate $\sin^2 2\theta$ and Δm^2 . See also ATHANASSOPOULOS 98B.

 26 VILAIN 94C limit derived by combining the ν_{μ} and $\overline{\nu}_{\mu}$ data assuming CP conservation.

²⁷LOVERRE 88 reports a less stringent, indirect limit based on theoretical analysis of neutral to charged current ratios.

²⁸ ANGELINI 86 limit reaches 13×10^{-3} at $\Delta(m^2) \approx 2 \text{ eV}^2$.

²⁹ BERNARDI 86B is a typical fit to the data, assuming mixing between two species. As the authors state, this result is in conflict with earlier upper bounds on this type of neutrino oscillations.

³⁰15ft bubble chamber at FNAL.

 $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ —

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
<0.14	90	³¹ FREEDMAN	93	CNTR	LAMPF
$\bullet \bullet \bullet$ We do not use the	followin	g data for averages	, fits	, limits,	etc. • • •
0.03–0.05		³² AGUILAR	01	LSND	LAMPF
0.05–0.08	90	³³ ATHANASSO		LSND	LAMPF
0.048-0.090	80	³⁴ ATHANASSO	.95		
<0.07	90	³⁵ HILL	95		
<0.9	90	VILAIN	94C	CHM2	CERN SPS
<3.1	90	BOFILL	87	CNTR	FNAL
<2.4	90	TAYLOR	83	HLBC	15-ft FNAL
<0.91	90	³⁶ NEMETHY	81 B	CNTR	LAMPF
<1	95	BLIETSCHAU	78	HLBC	GGM CERN PS
21					

³¹ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_{μ} , $\overline{\nu}_{\mu}$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by

the reaction $\overline{\nu}_e p \rightarrow e^+ n$. FREEDMAN 93 replaces DURKIN 88.

³² AGUILAR 01 is the final analyis of the LSND full data set. It is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly for π^+ decay at rest. $\overline{\nu}_e$ are detected through $\overline{\nu}_e p \rightarrow e^+ n (20 < E_{e^+} < 60 \text{ MeV})$ in delayed coincidence with $np \rightarrow d\gamma$. AUthors observe $87.9 \pm 22.4 \pm 6.0$ total excess events. The observation is attributed to $\overline{\nu}_\mu \rightarrow \overline{\nu}_e$ oscillations with the oscillation probability of $0.264 \pm 0.067 \pm 0.045\%$, consistent with the previously published result. Taking into account all constraints, the most favored allowed region of oscillation parameters is a band of $\Delta(m^2)$ from 0.2–2.0 eV². Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 96 is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos

- ³³ ATHANASSOPOULOS 96 is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly from π^+ decay at rest. $\overline{\nu}_e$ could come from either $\overline{\nu}_\mu \rightarrow \overline{\nu}_e$ or $\nu_e \rightarrow \overline{\nu}_e$; our entry assumes the first interpretation. They are detected through $\overline{\nu}_e p \rightarrow e^+ n$ (20 MeV $\langle E_{e^+} \rangle$ 40 MeV) in delayed coincidence with $np \rightarrow d\gamma$. Authors observe 51 ± 20 ± 8 total excess events over an estimated background 12.5 ± 2.9. ATHANASSOPOULOS 96B is a shorter version of this paper.
- ³⁴ ATHANASSOPOULOS 95 error corresponds to the 1.6 σ band in the plot. The expected background is 2.7 \pm 0.4 events. Corresponds to an oscillation probability of $(0.34^{+0.20}_{-0.18} \pm 0.07)\%$. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96.
- ³⁵ HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ and obtains only upper limits.

HTTP://PDG.LBL.GOV

³⁶ In reaction $\overline{\nu}_e p \rightarrow e^+ n$.

$sin^2(2\theta)$ for "Larg	;e" Δ(<i>m</i> ²))			
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.004	95	BLIETSCHAU	78	HLBC	GGM CERN PS
• • • We do not use	the followi	ng data for averages	, fits	, limits,	etc. • • •
$0.0053 \pm 0.0013 \pm 0$.009	³⁷ AGUILAR	-	LSND	LAMPF
$0.0062 \pm 0.0024 \pm 0.00$	0010	³⁸ ATHANASSO		LSND	LAMPF
0.003-0.012	80	³⁹ ATHANASSO	.95		
<0.006	90	⁴⁰ HILL	95		
<4.8	90	VILAIN	9 4C	CHM2	CERN SPS
<5.6	90	⁴¹ VILAIN	9 4C	CHM2	CERN SPS
<0.024	90	⁴² FREEDMAN	93	CNTR	LAMPF
< 0.04	90	BOFILL	87	CNTR	FNAL
<0.013	90	TAYLOR	83	HLBC	15-ft FNAL
<0.2	90	⁴³ NEMETHY	81 B	CNTR	LAMPF

³⁷ AGUILAR 01 is the final analyis of the LSND full data set. The deduced oscillation probability is $0.264 \pm 0.067 \pm 0.045\%$; the value of $\sin^2 2\theta$ for large $\Delta(m^2)$ is twice this probability (although these values are excluded by other constraints). See footnote in preceding table for futher details, and the paper for a plot showing allowed regions. Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98.

³⁸ ATHANASSOPOULOS 96 reports $(0.31 \pm 0.12 \pm 0.05)$ % for the oscillation probability; the value of sin²2 θ for large $\Delta(m^2)$ should be twice this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. ³⁹ ATHANASSOPOULOS 95 error corresponds to the 1.6 σ band in the plot. The ex-

pected background is 2.7 \pm 0.4 events. Corresponds to an oscillation probability of $(0.34^{+0.20}_{-0.18} \pm 0.07)\%$. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96.

⁴⁰ HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ and obtains only upper limits.

 41 VILAIN 94C limit derived by combining the u_{μ} and $\overline{
u}_{\mu}$ data assuming CP conservation.

⁴² FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_{μ} , $\overline{\nu}_{\mu}$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$. FREEDMAN 93 replaces DURKIN 88.

⁴³ In reaction $\overline{\nu}_{\rho} p \rightarrow e^+ n$.

$$\nu_{\mu}(\overline{\nu}_{\mu}) \rightarrow \nu_{e}(\overline{\nu}_{e})$$
 —

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
<0.075	90	BORODOV 9	92	CNTR	BNL E776
$\bullet \bullet \bullet$ We do not use the	following a	lata for averages,	fits,	limits,	etc. • • •
<1.6	90 44	⁴ ROMOSAN	97	CCFR	FNAL
44					

⁴⁴ ROMOSAN 97 uses wideband beam with a 0.5 km decay region.

HTTP://PDG.LBL.GOV

$sin^2(2\theta)$ for "Large	" Δ(m ²)				
VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
<1.8	90	⁴⁵ ROMOSAN	97	CCFR	FNAL
• • • We do not use	the followi	ng data for averages	, fits	, limits,	etc. • • •
<3.8	90	⁴⁶ MCFARLAND	95	CCFR	FNAL
<3	90	BORODOV	92	CNTR	BNL E776

⁴⁵ ROMOSAN 97 uses wideband beam with a 0.5 km decay region.

 46 MCFARLAND 95 state that "This result is the most stringent to date for 250 $< \Delta(m^2) < 450 \ {\rm eV}^2$ and also excludes at 90%CL much of the high $\Delta(m^2)$ region favored by the recent LSND observation." See ATHANASSOPOULOS 95 and ATHANASSOPOULOS 96.

$$--- \nu_{\mu} \rightarrow \nu_{\tau} ----$$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
< 0.6	90	⁴⁷ ESKUT	01	CHRS	CERN SPS
$\bullet \bullet \bullet$ We do not use the	following	g data for averages	, fits	, limits,	etc. ● ● ●
< 0.7		⁴⁸ ASTIER	01 B	NOMD	CERN SPS
< 1.4		⁴⁹ ALTEGOER	98 B	NOMD	CERN SPS
< 1.5		⁵⁰ ESKUT	98	CHRS	CERN SPS
< 1.1		⁵¹ ESKUT	98 B	CHRS	CERN SPS
< 3.3	90	⁵² LOVERRE	96		CHARM/CDHS
< 1.4	90	MCFARLAND	95	CCFR	FNAL
< 4.5	90	BATUSOV	90 B	EMUL	FNAL
<10.2	90	BOFILL	87	CNTR	FNAL
< 6.3	90	BRUCKER	86	HLBC	15-ft FNAL
< 0.9	90	USHIDA	86 C	EMUL	FNAL
< 4.6	90	ARMENISE	81	HLBC	GGM CERN SPS
< 3	90	BAKER	81	HLBC	15-ft FNAL
< 6	90	ERRIQUEZ	81	HLBC	BEBC CERN SPS
< 3	90	USHIDA	81	EMUL	FNAL
47					

⁴⁷ ESKUT 01 limit obtained following the statistical prescriptions in JUNK 99. The limit would have been 0.5 eV² if the prescriptions in FELDMAN 98 had been followed, as they were in ASTIER 01B.

 48 ASTIER 01B limit is based on an oscillation probability $< 1.63 \times 10^{-4}$, whereas the quoted sensitivity was 2.5×10^{-4} . The limit was obtained following the statitical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01.

⁴⁹ ALTEGOER 98B is the NOMAD 1995 data sample result, searching for events with $\tau^- \rightarrow e^- \nu_\tau \overline{\nu}_e$, hadron⁻ ν_τ , or $\pi^- \pi^+ \pi^-$ decay modes using classical CL approach so of FELDMAN 98.

⁵⁰ ESKUT 98 search for events with one μ^- with indication of a kink from τ^- decay in the nuclear emulsion. No candidates were found in a 31,423 event subsample.

⁵¹ESKUT 98B search for $\tau^- \rightarrow \mu^- \nu_\tau \overline{\nu}_\mu$ or $h^- \nu_\tau \overline{\nu}_\mu$, where h^- is a negatively charged hadron. The μ^- sample is somewhat larger than in ESKUT 98, which this result super-

hadron. The μ^- sample is somewhat larger than in ESKUT 98, which this result supersedes. Bayesian limit.

⁵²LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

$\sin^2(2\theta)$ for "La	rge" $\Delta(m^2)$				
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.00033	90	⁵³ ASTIER	01 B	NOMD	CERN SPS
• • • We do not ι	ise the following	g data for averages	, fits,	limits,	etc. ● ● ●
<0.00068	90	⁵⁴ ESKUT	01	CHRS	CERN SPS
<0.0042	90	⁵⁵ ALTEGOER	98 B	NOMD	CERN SPS
<0.0035	90	⁵⁶ ESKUT	98	CHRS	CERN SPS
<0.0018	90	⁵⁷ ESKUT	98 B	CHRS	CERN SPS
<0.006	90	⁵⁸ LOVERRE	96		CHARM/CDHS
<0.0081	90	MCFARLAND	95	CCFR	FNAL
<0.06	90	BATUSOV	90 B	EMUL	FNAL
<0.34	90	BOFILL	87	CNTR	FNAL
<0.088	90	BRUCKER	86	HLBC	15-ft FNAL
< 0.004	90	USHIDA	86C	EMUL	FNAL
<0.11	90	BALLAGH	84	HLBC	15-ft FNAL
<0.017	90	ARMENISE	81	HLBC	GGM CERN SPS
<0.06	90	BAKER	81	HLBC	15-ft FNAL
<0.05	90	ERRIQUEZ	81	HLBC	BEBC CERN SPS
<0.013	90	USHIDA	81	EMUL	FNAL
					_

 $^{53}\,\text{ASTIER 01B}$ limit is based on an oscillation probability $< 1.63 \times 10^{-4}$, whereas the quoted sensitivity was 2.5×10^{-4} . The limit was obtained following the statitical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01.

- ⁵⁴ ESKUT 01 limit obtained following the statistical prescriptions in JUNK 99. The limit would have been 0.00040 if the prescriptions in FELDMAN 98 had been followed, as they refer to the statistical prescription of the p
- ⁵⁵ ALTEGOER 98B is the NOMAD 1995 data sample result, searching for events with $\tau^- \rightarrow e^- \nu_{\tau} \overline{\nu}_e$, hadron ν_{τ} , or $\pi^- \pi^+ \pi^-$ decay modes using classical CL approach of FELDMAN 98.
- ⁵⁶ ESKUT 98 search for events with one μ^- with indication of a kink from τ^- decay in the nuclear emulsion. No candidates were found in a 31,423 event subsample.
- ⁵⁷ESKUT 98B search for $\tau^- \rightarrow \mu^- \nu_\tau \overline{\nu}_\mu$ or $h^- \nu_\tau \overline{\nu}_\mu$, where h^- is a negatively charged hadron. The μ^- sample is somewhat larger than in ESKUT 98, which this result super-

sedes. Bayesian limit. $\overline{8}$ OVERPE 06 uses the charged surrent to neutral surrent ratio from the combined

⁵⁸LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

$$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$$
 —

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
<2.2	90	ASRATYAN	81	HLBC	FNAL
\bullet \bullet \bullet We do not use the	following d	ata for averages	, fits	, limits,	etc. • • •
<1.4	90	MCFARLAND	95	CCFR	FNAL
<6.5	90	BOFILL	87	CNTR	FNAL
<7.4	90	TAYLOR	83	HLBC	15-ft FNAL

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<4.4 \times 10^{-2}$	90	ASRATYAN	81	HLBC	FNAL
• • We do not use	the followir	ng data for averages	s, fits	, limits,	etc. • • •
<0.0081	90	MCFARLAND			FNAL
< 0.15	90	BOFILL	87		
$< 8.8 \times 10^{-2}$	90	TAYLOR	83	HLBC	15-ft FNAL
		$ \nu_{\mu}(\overline{\nu}_{\mu}) \rightarrow \nu_{\tau} $	$(\overline{ u}_{ au})$		
$\Delta(m^2)$ for $\sin^2(2\theta)$	•				
VALUE (eV ²) <1.5	CL%	DOCUMENT ID		TECN	COMMENT
					CERN SPS he CERN SPS wide-band
$\overline{ u}_{ au}$ interactions for	, ollowed by t	'	π. ٦	he max	led by quasi-elastic $ u_{ au}$ and imum sensitivity in $\sin^2 2\theta$ eV ² .
$\sin^2(2\theta)$ for "Large	e" Δ(<i>m</i> ²)				
VALUE (units 10 ⁻³) <8	CL%	DOCUMENT ID		TECN	COMMENT
<8	90	⁶⁰ GRUWE	93	CHM2	CERN SPS
neutrino beam for $\overline{ u}_{ au}$ interactions fo	${}^{\!$	and $\overline{ u}_{\mu} ightarrow \overline{ u}_{ au}$ oscill the decay $ au ightarrow u_{ au}$ (L) is reached for Δ	π . T (m^2)	ns signal ⁻ he max	he CERN SPS wide-band led by quasi-elastic $\nu_{ au}$ and imum sensitivity in $\sin^2 2\theta$ eV ² .
neutrino beam for $\overline{ u}_{ au}$ interactions for $(< 6.4 imes 10^{-3}$ at	${}^{\prime} u_{\mu} ightarrow u_{ au}$ bllowed by to the 90% C	and $\overline{ u}_{\mu} o ~ \overline{ u}_{ au}$ oscille the decay $ au o ~ u_{ au}$	π . T (m^2)	ns signal ⁻ he max	led by quasi-elastic $ u_{ au}$ and imum sensitivity in sin $^2 2 heta$
neutrino beam for $\overline{ u}_{ au}$ interactions fo $(< 6.4 imes 10^{-3}$ at $\Delta(m^2)$ for sin 2 (20	$ $	and $\overline{ u}_{\mu} \rightarrow \overline{ u}_{\tau}$ oscil the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $ \nu_{\mu} \not\rightarrow \nu_{\mu}$	π . π . π . π . π . π .	ns signal ⁻ he max) ~ 50	led by quasi-elastic $ u_{ au}$ and imum sensitivity in $\sin^2 2\theta$ eV ² .
neutrino beam for $\overline{ u}_{ au}$ interactions for (< 6.4 × 10 ⁻³ at $\Delta(m^2)$ for sin ² (20) VALUE (eV ²)	$ $	and $\overline{ u}_{\mu} ightarrow \overline{ u}_{ au}$ oscill the decay $ au ightarrow u_{ au}$ (L) is reached for Δ	π . π . π . π . π . π .	ns signal ⁻ he max	led by quasi-elastic $ u_{ au}$ and imum sensitivity in sin $^2 2 heta$
neutrino beam for $\overline{\nu}_{ au}$ interactions for (< 6.4 × 10 ⁻³ at $\Delta(m^2)$ for sin ² (26 (ALUE (eV ²) <0.23 OR >1500 OL	$ $	and $\overline{ u}_{\mu} \rightarrow \overline{ u}_{\tau}$ oscil the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $ \nu_{\mu} \not\rightarrow \nu_{\mu}$	π . π . π . π . π . π .	ns signal ⁻ he max) ~ 50	led by quasi-elastic $ u_{ au}$ and imum sensitivity in $\sin^2 2\theta$ eV ² .
neutrino beam for $\overline{\nu}_{\tau}$ interactions for (< 6.4 × 10 ⁻³ at $\Delta(m^2)$ for sin ² (26 <u>(ALUE (eV²)</u> <0.23 OR >1500 OU <0.23 OR >100		and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscill the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \rightarrow \nu_{\mu}$ <u>DOCUMENT ID</u>	llatio π. Τ .(m ²) 	ns signal ⁻ he max) ~ 50 <u></u>	led by quasi-elastic $ u_{ au}$ and imum sensitivity in $\sin^2 2\theta$ eV ² .
neutrino beam for $\overline{\nu}_{\tau}$ interactions for (< 6.4 × 10 ⁻³ at $\Delta(m^2)$ for sin ² (26 <u>(ALUE (eV²)</u> <0.23 OR >1500 OL <0.23 OR >100 <13 OR >1500		and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscill the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\overline{} \nu_{\mu} \not\rightarrow \nu_{\mu}$ $\underline{DOCUMENT \ ID}$ DYDAK STOCKDALE	84 84	ns signal he max) ~ 50 <u>TECN</u> CNTR CNTR	led by quasi-elastic $ u_{ au}$ and imum sensitivity in $\sin^2 2\theta$ eV ² . <u>COMMENT</u>
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ $\Delta(m^2)$ for $\sin^2(2\theta)$ $\Delta(m^2)$ for $a^2(2\theta)$ $\Delta(m^2)$ for $a^2(2\theta)$		and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscill the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\overline{} \nu_{\mu} \not\rightarrow \nu_{\mu}$ $\underline{DOCUMENT \ ID}$ DYDAK STOCKDALE	84 84	ns signal The max) ~ 50 <u>TECN</u> CNTR CNTR S, limits, CHRM	led by quasi-elastic ν_{τ} and imum sensitivity in $\sin^2 2\theta$ eV ² . <u>COMMENT</u> etc. • • •
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ $\Delta(m^2)$ for $\sin^2(2\theta)$ (>0.23 OR >1500 OU) < 0.23 OR >1500 < 13 OR >1500 < 0.29 OR >22 < 7		and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscilution: the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \not \rightarrow \nu_{\mu}$ <u>DOCUMENT ID</u> DYDAK STOCKDALE DYDAK STOCKDALE BERGSMA BELIKOV	84 84 85 88	ns signal The max) ~ 50	led by quasi-elastic $ u_{ au}$ and imum sensitivity in $\sin^2 2\theta$ eV ² . <u>COMMENT</u>
neutrino beam for $\overline{\nu}_{\tau}$ interactions for (< 6.4 × 10 ⁻³ at $\Delta(m^2)$ for sin ² (26) (0.23 OR >1500 OU (0.23 OR >1500 OU (0.23 OR >100 (13 OR >1500 • • We do not use < 0.29 OR >22 <7 <8.0 OR >1250	$ \nu_{\mu} \rightarrow \nu_{\tau} pollowed by the 90% C$	and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscill the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \rightarrow \nu_{\mu}$ <u>DOCUMENT ID</u> DYDAK STOCKDALE BERGSMA BELIKOV STOCKDALE	π. 1 π. 1	ns signal The max) ~ 50 <u>TECN</u> CNTR CNTR CNTR CHRM CNTR CNTR CNTR	led by quasi-elastic ν_{τ} and imum sensitivity in $\sin^2 2\theta$ eV ² . <u>COMMENT</u> etc. • • •
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ (< 6.4 × 10 ⁻³ at (< 6.4 × 10 ⁻³ at (< 6.4 × 10 ⁻³ at (20 (20 (20 (20 (20 (20 (21) (21) (22) (22) (22) (23) (24) (25) (24) (25) (26) (25) (26) (26) (27) ($ \nu_{\mu} \rightarrow \nu_{\tau} bollowed by to the 90% C $	and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscil the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \rightarrow \nu_{\mu}$ ν_{μ} <u>DOCUMENT ID</u> DYDAK STOCKDALE BERGSMA BELIKOV STOCKDALE BERGSMA	84 85 85 84	ns signal The max) ≃ 50 <u>TECN</u> CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR	led by quasi-elastic ν_{τ} and imum sensitivity in $\sin^2 2\theta$ eV ² . <u>COMMENT</u> etc. • • •
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ (< 6.4 × 10 ⁻³ at (< 6.4 × 10 ⁻³ at (< 6.4 × 10 ⁻³ at (20 (20 (20 (20 (20 (20 (21) (21) (22) (22) (22) (23) (24) (25) (24) (25) (26) (25) (26) (26) (27) ($ \nu_{\mu} \rightarrow \nu_{\tau} pollowed by the 90% C$	and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscill the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \rightarrow \nu_{\mu}$ <u>DOCUMENT ID</u> DYDAK STOCKDALE BERGSMA BELIKOV STOCKDALE	π. 1 π. 1	ns signal The max) ~ 50 <u>TECN</u> CNTR CNTR CNTR CHRM CNTR CNTR CNTR	led by quasi-elastic ν_{τ} and imum sensitivity in $\sin^2 2\theta$ eV ² . <u>COMMENT</u> etc. • • •
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ $\Delta(m^2)$ for $\sin^2(2\theta)$ $\sqrt{ALUE} (eV^2)$ < 0.23 OR >1500 OL < 0.23 OR >100 < 13 OR >1500 < 0.29 OR >22 < 7 < 8.0 OR >1250 < 0.29 OR >22 < 8.0 $\sin^2(2\theta)$ for $\Delta(m^2)$		and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscilution: the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \not \rightarrow \nu_{\mu}$ $\mu \not \rightarrow \nu_{\mu}$ DYDAK STOCKDALE BERGSMA BELIKOV STOCKDALE BERGSMA BELIKOV	84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 85 85 84 85 84 85 84 83	ns signal The max) ~ 50	led by quasi-elastic ν_{τ} and imum sensitivity in sin ² 26 eV ² . <u>COMMENT</u> etc. • • • Serpukhov
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ $\Delta(m^2)$ for sin ² (2 θ $VALUE (eV^2)$ < 0.23 OR >1500 OL < 0.23 OR >100 < 13 OR >1500 $\bullet \bullet \text{ We do not use}$ < 0.29 OR >22 < 7 < 8.0 OR >1250 < 0.29 OR >22 < 8.0 $\sin^2(2\theta)$ for $\Delta(m^2)$ VALUE		and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscilutions the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \not \rightarrow \nu_{\mu}$ $\mu \not \rightarrow \nu_{\mu}$ DYDAK STOCKDALE MERGSMA BELIKOV STOCKDALE BERGSMA BELIKOV STOCKDALE BERGSMA BELIKOV	84 84 84 84 84 84 84 84 84 84 84 84 84 84 85 85 85 84 83	ns signal The max) ~ 50	led by quasi-elastic ν_{τ} and imum sensitivity in sin ² 26 eV ² . <u>COMMENT</u> etc. • • • Serpukhov
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ $\Delta(m^2)$ for sin ² (20 $\Delta(m^2)$ for sin ² (20 $\Delta(m^2)$ for sin ² (20 $\Delta(m^2)$ for sin ² (20 $\Delta(m^2)$ $\Delta($	$r \nu_{\mu} \rightarrow \nu_{\tau}$ pollowed by the poly of the following poly of the poly of	and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscilutions the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \rightarrow \nu_{\mu} \rightarrow \nu_{\mu}$ <u>DOCUMENT ID</u> DYDAK STOCKDALE MERGSMA BELIKOV STOCKDALE BERGSMA BELIKOV (C) (2) (2) (1) <u>DOCUMENT ID</u> STOCKDALE	84 84 84 85 85 84 85 85 84 85 85 84 85 85 84 85 84 85 84 85 84 83	ns signal The max) ≃ 50 <u>TECN</u> CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR	led by quasi-elastic ν_{τ} and imum sensitivity in sin ² 26 eV ² . <u>COMMENT</u> etc. • • • Serpukhov <u>COMMENT</u> FNAL
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ $\Delta(m^2)$ for $\sin^2(2\theta)$ $\sqrt{ALUE} (eV^2)$ < 0.23 OR >1500 OL < 0.23 OR >1500 < 0.23 OR >100 < 13 OR >1500 < 0.29 OR >22 < 7 < 8.0 OR >1250 < 0.29 OR >22 < 8.0 $\sin^2(2\theta)$ for $\Delta(m^2)$ \sqrt{ALUE} < 0.02 < 0.02 < 0.02		and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscilution: the decay $\tau \rightarrow \nu_{\tau}$ is reached for Δ $\mu \not \rightarrow \nu_{\mu}$ $\mu \not \rightarrow \nu_{\mu}$ DOCUMENT ID DYDAK STOCKDALE MERGSMA BELIKOV STOCKDALE BERGSMA BELIKOV μ DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ns signal The max) ~ 50	led by quasi-elastic ν_{τ} and imum sensitivity in $\sin^2 2\theta$ eV ² . etc. • • • Serpukhov <u>COMMENT</u> FNAL
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ $\Delta(m^2)$ for sin ² (20) $\langle 0.23 \text{ OR } > 1500 \text{ OL}$ $\langle 0.23 \text{ OR } > 1500 \text{ OL}$ $\langle 0.23 \text{ OR } > 100$ $\langle 13 \text{ OR } > 1500$ $\langle 0.29 \text{ OR } > 22$ $\langle 7 \\ \langle 8.0 \text{ OR } > 1250 \\ \langle 0.29 \text{ OR } > 22 \\ \langle 8.0 \\ \sin^2(2\theta) \text{ for } \Delta(m^2 \text{ ALUE})$ $\langle 0.02 \\ \bullet \bullet \text{ We do not use} \\ \langle 0.17 \\ \rangle$	$r \nu_{\mu} \rightarrow \nu_{\tau}$ pollowed by the solution of the solution o	and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscill the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \not \rightarrow \nu_{\mu}$ $\mu \not \rightarrow \nu_{\mu}$ DYDAK STOCKDALE DYDAK STOCKDALE BERGSMA BELIKOV STOCKDALE BERGSMA BELIKOV μ μ μ μ μ μ μ μ μ μ	Ilatio π. 84 84 84 85 85 84 85 84 83 85 85 85 85 85 85 85 85 85 86 87 88 88 85 85 86 88 88 88 89 80 81 82 83 83 <tr< td=""><td>ns signal The max) ≃ 50 <u>TECN</u> CNTR</td><td>led by quasi-elastic ν_{τ} and imum sensitivity in $\sin^2 2\theta$ eV². etc. • • • Serpukhov <u>COMMENT</u> FNAL etc. • • •</td></tr<>	ns signal The max) ≃ 50 <u>TECN</u> CNTR	led by quasi-elastic ν_{τ} and imum sensitivity in $\sin^2 2\theta$ eV ² . etc. • • • Serpukhov <u>COMMENT</u> FNAL etc. • • •
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ $\Delta(m^2)$ for sin ² (2 θ $\sqrt{ALUE} (eV^2)$ < 0.23 OR >1500 OL < 0.23 OR >100 < 13 OR >1500 < 0.29 OR >22 < 7 < 8.0 OR >1250 < 0.29 OR >22 < 7 < 8.0 OR >1250 < 0.29 OR >22 < 8.0 $sin^2(2\theta)$ for $\Delta(m^2)$ \sqrt{ALUE} < 0.02 < 0.017 < 0.07	$r \nu_{\mu} \rightarrow \nu_{\tau}$ pollowed by the followed by the followed by the following polyton	and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscill the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \not \rightarrow \nu_{\mu}$ $\mu \not \rightarrow \nu_{\mu}$ DYDAK STOCKDALE DYDAK STOCKDALE BERGSMA BELIKOV STOCKDALE BERGSMA BELIKOV μ μ μ μ μ μ μ μ μ μ	Ilatio π. 84 84 85 85 84 85 84 83 85 85 86 85 86 87 88 85 88 85 88 85 88 85 88 85 86 85	ns signal The max TECN CNTR CNTR CNTR CNTR CHRM CNTR	led by quasi-elastic ν_{τ} and imum sensitivity in sin ² 26 eV ² . etc. • • • Serpukhov $\frac{COMMENT}{FNAL}$ etc. • • • Serpukhov
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ $\Delta(m^2)$ for sin ² (20) $\Delta(m^2)$ for sin ² (20) $\Delta(m^2)$ for sin ² (20) $\Delta(m^2)$ for sin ² (20) $\Delta(m^2)$	$r \nu_{\mu} \rightarrow \nu_{\tau}$ followed by the poly of the following poly of the following poly of the following poly of the	and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscill the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \not \rightarrow \nu_{\mu}$ DOCUMENT ID DYDAK STOCKDALE DYDAK STOCKDALE BERGSMA BELIKOV STOCKDALE BERGSMA BELIKOV ρ DOCUMENT ID 61 STOCKDALE ng data for averages 62 BERGSMA 63 BELIKOV 62 BERGSMA	Ilatio π.	ns signal The max) ≃ 50 <u>TECN</u> CNTR	led by quasi-elastic ν_{τ} and imum sensitivity in sin ² 26 eV ² . etc. • • • Serpukhov <u>COMMENT</u> FNAL etc. • • • Serpukhov CERN PS
neutrino beam for $\overline{\nu}_{\tau}$ interactions for $(< 6.4 \times 10^{-3} \text{ at})$ $\Delta(m^2)$ for $\sin^2(2\theta)$ $\sqrt{ALUE} (eV^2)$ < 0.23 OR >1500 OL < 0.23 OR >1500 < 0.29 OR >22	$r \nu_{\mu} \rightarrow \nu_{\tau}$ pollowed by the followed by the followed by the following polyton	and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscill the decay $\tau \rightarrow \nu_{\tau}$ (L) is reached for Δ $\mu \not \rightarrow \nu_{\mu}$ $\mu \not \rightarrow \nu_{\mu}$ DYDAK STOCKDALE DYDAK STOCKDALE BERGSMA BELIKOV STOCKDALE BERGSMA BELIKOV μ μ μ μ μ μ μ μ μ μ	Ilatio π. 84 84 85 85 84 85 84 83 85 85 86 85 86 87 88 85 88 85 88 85 88 85 88 85 86 85	ns signal The max) ≃ 50 <u>TECN</u> CNTR	led by quasi-elastic ν_{τ} and imum sensitivity in $\sin^2 2\theta$ eV ² . etc. • • • Serpukhov <u>COMMENT</u> FNAL etc. • • • Serpukhov CERN PS CERN PS

HTTP://PDG.LBL.GOV

Created: 12/17/2002 10:45

- ⁶¹ This bound applies for $\Delta(m^2) = 100 \text{ eV}^2$. Less stringent bounds apply for other $\Delta(m^2)$; these are nontrivial for $8 < \Delta(m^2) < 1250 \text{ eV}^2$.
- ⁶² This bound applies for $\Delta(m^2) = 0.7-9$. eV². Less stringent bounds apply for other
- $\Delta(m^2)$; these are nontrivial for $0.28 < \Delta(m^2) < 22 \text{ eV}^2$. ⁶³ This bound applies for a wide range of $\Delta(m^2) > 7 \text{ eV}^2$. For some values of $\Delta(m^2)$, the value is less stringent; the least restrictive, nontrivial bound occurs approximately at $\Delta(m^2) = 300 \text{ eV}^2$ where $\sin^2(2\theta) < 0.13$ at CL = 90%.
- ⁶⁴ This bound applies for $\Delta(m^2) = 1.-10$. eV². Less stringent bounds apply for other $\Delta(m^2)$; these are nontrivial for 0.23 < $\Delta(m^2)$ <90 eV².
- ⁶⁵ This bound applies for $\Delta(m^2) = 110 \text{ eV}^2$. Less stringent bounds apply for other $\Delta(m^2)$; these are nontrivial for $13 < \Delta(m^2) < 1500 \text{ eV}^2$.
- ⁶⁶ Bound holds for $\Delta(m^2) = 20-1000 \text{ eV}^2$.

$$\overline{\nu}_{\mu} \not\rightarrow \overline{\nu}_{\mu}$$
 ——

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$								
VALUE (eV ²)	CL%	DOCUMENT ID	TECN					
<7 OR >1200 OUR LI	ΜΙΤ							
<7 OR >1200	90	STOCKDALE 85	CNTR					

$\sin^2(2\theta)$ for 190 eV² < $\Delta(m^2)$ < 320 eV²

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
<0.02	90	67 STOCKDALE 85	CNTR	FNAL

⁶⁷ This bound applies for $\Delta(m^2)$ between 190 and 320 or = 530 eV². Less stringent bounds apply for other $\Delta(m^2)$; these are nontrivial for $7 < \Delta(m^2) < 1200 \text{ eV}^2$.

$$-\nu_{\mu} \rightarrow (\overline{\nu}_{e})_{L}$$
 —

See note above for $\nu_e \rightarrow \ (\overline{\nu}_e)_L$ limit

$\alpha \Delta(m^2)$ for $\sin^2(2\theta) = 1$

<i>VALUE</i> (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT			
<0.16	90	⁶⁸ FREEDMAN	93	CNTR	LAMPF			
$\bullet \bullet \bullet$ We do not use the	followir	ng data for averages	s, fits	, limits,	etc. ● ● ●			
<0.7	90	⁶⁹ COOPER	82	HLBC	BEBC CERN SPS			
⁶⁸ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_μ , $\overline{\nu}_\mu$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected								
					er than the CERN BEBC			
experiment, but the l	imit on	$\sin^2 heta$ is almost a fa	octor	of 100 le	ess sensitive.			

⁶⁹COOPER 82 states that existing bounds on V+A currents require α to be small.

$\alpha^2 \sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.001	90	⁷⁰ COOPER	82	HLBC	BEBC CERN SPS
$\bullet \bullet \bullet$ We do not use the	e followi	ng data for averages	, fits	, limits,	etc. • • •
<0.07	90	⁷¹ FREEDMAN	93	CNTR	LAMPF

Citation: K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: http://pdg.lbl.gov)

 70 COOPER 82 states that existing bounds on V+A currents require lpha to be small.

⁷¹ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_{μ} , $\overline{\nu}_{\mu}$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$. The limit on $\Delta(m^2)$ is better than the CERN BEBC experiment, but the limit on $\sin^2\theta$

(B) Reactor $\overline{\nu}_e$ disappearance experiments

In most cases, the reaction $\overline{
u}_e \, p
ightarrow \, e^+ \, n$ is observed at different distances from one or more reactors in a complex.

Events (Observed/Expected) from Reactor $\overline{\nu}_e$ Experiments

VALUE	DOCUMENT ID	-	TECN	COMMENT				
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
$1.01 \ \pm 0.024 \!\pm\! 0.053$	⁷² BOEHM	01		Palo Verde react. 0.75–0.89 km				
$1.04 \ \pm 0.03 \ \pm 0.08$	⁷³ BOEHM	00 C		Palo Verde react. 0.75–0.89 km				
$1.01 \ \pm 0.028 \!\pm\! 0.027$	⁷⁴ APOLLONIO	99	CHOZ					
$0.987 \!\pm\! 0.006 \!\pm\! 0.037$	⁷⁵ GREENWOOD	96		Savannah River, 18.2 m				
$0.988\!\pm\!0.004\!\pm\!0.05$	ACHKAR	95	CNTR	Bugey reactor, 15 m				
$0.994\!\pm\!0.010\!\pm\!0.05$	ACHKAR	95	CNTR	Bugey reactor, 40 m				
$0.915\!\pm\!0.132\!\pm\!0.05$	ACHKAR	95	CNTR	Bugey reactor, 95 m				
$0.987\!\pm\!0.014\!\pm\!0.027$	⁷⁶ DECLAIS	94	CNTR	Bugey reactor, 15 m				
$0.985\!\pm\!0.018\!\pm\!0.034$	KUVSHINN	91	CNTR	Rovno reactor				
$1.05 \ \pm 0.02 \ \pm 0.05$	VUILLEUMIEF	R 82		Gösgen reactor				
$0.955\!\pm\!0.035\!\pm\!0.110$	⁷⁷ KWON	81		$\overline{\nu}_e p \rightarrow e^+ n$				
0.89 ± 0.15	⁷⁷ BOEHM	80		$\overline{\nu}_e p \rightarrow e^+ n$				
0.38 ± 0.21	^{78,79} REINES	80						
0.40 ± 0.22	^{78,79} REINES	80						

 72 BOEHM 01 search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors.

⁷³ BOEHM 00C search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo

Verde reactors. ⁷⁴ APOLLONIO 99, APOLLONIO 98 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. They use $\overline{\nu}_e p \rightarrow e^+ n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98.

 75 GREENWOOD 96 search for neutrino oscillations at 18 m and 24 m from the reactor at Savannah River.

⁷⁶DECLAIS 94 result based on integral measurement of neutrons only. Result is ratio of measured cross section to that expected in standard V-A theory. Replaced by ACHKAR 95.

77 KWON 81 represents an analysis of a larger set of data from the same experiment as BOEHM 80.

⁷⁸ REINES 80 involves comparison of neutral- and charged-current reactions $\overline{\nu}_e d \rightarrow n p \overline{\nu}_e$ and $\overline{\nu}_e d \rightarrow nne^+$ respectively. Combined analysis of reactor $\overline{\nu}_e$ experiments was performed by SILVERMAN 81.

⁷⁹ The two REINES 80 values correspond to the calculated $\overline{\nu}_e$ fluxes of AVIGNONE 80 and DAVIS 79 respectively.

 $\overline{\nu}_e \not\rightarrow \overline{\nu}_e -$

Δ(m^2) for	sin ²	(2 <i>θ</i>)) =	1
----	-------	-------	------------------	-----------------------	-----	---

VALUE (eV^2)	CL%	DOCUMENT ID		TECN	COMMENT
<0.0007	90	⁸⁰ APOLLONIO	99	CHOZ	Chooz reactors 1 km
• • • We do no	t use the	following data for	avera	iges, fits,	limits, etc. • • •
<0.0011	90	⁸¹ BOEHM	01		Palo Verde react. 0.75–0.89 km
< 0.0011	90	⁸² BOEHM	00		Palo Verde react. 0.8 km
<0.01	90	⁸³ ACHKAR	95	CNTR	Bugey reactor
<0.0075	90	⁸⁴ VIDYAKIN	94		Krasnoyarsk reactors
<0.04	90	⁸⁵ AFONIN	88	CNTR	Rovno reactor
<0.014	68	⁸⁶ VIDYAKIN	87		$\overline{\nu}_e p \rightarrow e^+ n$
<0.019	90	⁸⁷ ZACEK	86		Gösgen reactor

⁸⁰ APOLLONIO 99 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. They use $\overline{\nu}_e p \rightarrow e^+ n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98. This is the most sensitive search in terms of $\Delta(m^2)$ for $\overline{\nu}_e$ disappearance.

⁸¹ BOEHM 01, a continuation of BOEHM 00, is a disappearance search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors. Result is less restrictive than APOLLONIO 99.

⁸²BOEHM 00 is a disappearance search for neutrino oscillations at 0.75 and 0.89 km distance from Palo Verde reactors. The detection reaction is $\overline{\nu}_e p \rightarrow e^+ n$ in a segmented Gd loaded scintillator target. Result is less restrictive than APOLLONIO 99.

⁸³ ACHKAR 95 bound is for L=15, 40, and 95 m.

 84 VIDYAKIN 94 bound is for L=57.0 m, 57.6 m, and 231.4 m. Supersedes VIDYAKIN 90.

⁸⁵ AFONIN 86 and AFONIN 87 also give limits on $\sin^2(2\theta)$ for intermediate values of $\Delta(m^2)$. (See also KETOV 92). Supersedes AFONIN 87, AFONIN 86, AFONIN 85, AFONIN 83, and BELENKII 83.

⁸⁶ VIDYAKIN 87 bound is for L = 32.8 and 92.3 m distance from two reactors. ⁸⁷ This bound is from data for L=37.9 m, 45.9 m, and 64.7 m.

		-()			
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.02	90	⁸⁸ ACHKAR	95	CNTR	For $\Delta(m^2)=0.6~{ m eV}^2$
$\bullet \bullet \bullet$ We do not	use the	following data for a	vera	ges, fits,	limits, etc. • • •
<0.17	90	⁸⁹ BOEHM	01		Palo Verde react. 0.75–0.89 km
<0.21	90		00		Palo Verde react. 0.8 km
<0.10	90			CHOZ	Chooz reactors 1 km
<0.24	90	⁹² GREENWOOD	96		
<0.04	90	⁹² GREENWOOD	96		For $\Delta(m^2) = 1.0 \text{ eV}^2$
<0.087	68	⁹³ VYRODOV	95	CNTR	For $\Delta(m^2) > 2 \text{ eV}^2$
<0.15	90	⁹⁴ VIDYAKIN	94		For $\Delta(m^2) > 5.0 \times 10^{-2} \text{ eV}^2$
<0.2	90	⁹⁵ AFONIN	88	CNTR	$\overline{\nu}_e p \rightarrow e^+ n$
<0.14	68	⁹⁶ VIDYAKIN	87		$\overline{\nu}_e p \rightarrow e^+ n$
<0.21	90	⁹⁷ ZACEK	86		$\overline{\nu}_e p \rightarrow e^+ n$
<0.19	90	⁹⁸ ZACEK	85		Gösgen reactor
<0.16	90	⁹⁹ GABATHULER	84		$\overline{\nu}_e p \rightarrow e^+ n$
					-

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

- ⁸⁸ ACHKAR 95 bound is from data for L=15, 40, and 95 m distance from the Bugey reactor.
- ⁸⁹ BOEHM 01 search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors. Continuation of BOEHM 00.
- ⁹⁰ BOEHM 00 search for neutrino oscillations at 0.75 and 0.89 km distance from Palo Verde reactors.
- ⁹¹APOLLONIO 99 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors.
- ⁹² GREENWOOD 96 search for neutrino oscillations at 18 m and 24 m from the reactor at Savannah River by observing $\overline{\nu}_e p \rightarrow e^+ n$ in a Gd loaded scintillator target. Their region of sensitivity in $\Delta(m^2)$ and $\sin^2 2\theta$ is already excluded by ACHKAR 95.
- 93 The VYRODOV 95 bound is from data for L=15 m distance from the Bugey-5 reactor.
- ⁹⁴ The VIDYAKIN 94 bound is from data for L=57.0 m, 57.6 m, and 231.4 m from three reactors in the Krasnoyarsk Reactor complex.
- ⁹⁵ Several different methods of data analysis are used in AFONIN 88. We quote the most stringent limits. Different upper limits on $\sin^2 2\theta$ apply at intermediate values of $\Delta(m^2)$. Supersedes AFONIN 87, AFONIN 85, and BELENKII 83.

⁹⁶ VIDYAKIN 87 bound is for L = 32.8 and 92.3 m distance from two reactors.

- 97 This bound is from data for L=37.9 m, 45.9 m, and 64.7 m distance from Gosgen reactor.
- ⁹⁸ ZACEK 85 gives two sets of bounds depending on what assumptions are used in the data analysis. The bounds in figure 3(a) of ZACEK 85 are progressively poorer for large $\Delta(m^2)$ whereas those of figure 3(b) approach a constant. We list the latter. Both sets of bounds use combination of data from 37.9, 45.9, and 64.7m distance from reactor. ZACEK 85 states "Our experiment excludes this area (the oscillation parameter region allowed by the Bugey data, CAVAIGNAC 84) almost completely, thus disproving the indications of neutrino oscillations of CAVAIGNAC 84 with a high degree of confidence."
- ⁹⁹ This bound comes from a combination of the VUILLEUMIER 82 data at distance 37.9m from Gosgen reactor and new data at 45.9m.

(C) Atmospheric neutrino observations

Neutrinos and antineutrinos produced in the atmosphere induce μ -like and e-like events in underground detectors. The ratio of the numbers of the two kinds of events is defined as μ/e . It has the advantage that systematic effects, such as flux uncertainty, tend to cancel, for both experimental and theoretical values of the ratio. The "ratio of the ratios" of experimental to theoretical μ/e , $R(\mu/e)$, or that of experimental to theoretical $\mu/total$, $R(\mu/total)$ with total = $\mu+e$, is reported below. If the actual value is not unity, the value obtained in a given experiment may depend on the experimental conditions.

$R(\mu/e) = (Measured Ratio \mu/e) / (Expected Ratio \mu/e)$

<u>DOCUMENT ID</u>		TECN	COMMENT
ving data for averages	s, fits	, limits,	etc. • • •
¹⁰⁰ ALLISON	99	SOU2	Calorimeter
¹⁰¹ FUKUDA	98	SKAM	sub-GeV
	98E	SKAM	multi-GeV
	96 B	KAMI	Water Cerenkov
¹⁰⁴ DAUM	95	FREJ	Calorimeter
¹⁰⁵ FUKUDA	94	KAMI	sub-GeV
¹⁰⁶ FUKUDA	94	KAMI	multi-Gev
¹⁰⁷ BECKER-SZ	92 B	IMB	Water Cerenkov
	ving data for averages 100 ALLISON 101 FUKUDA 102 FUKUDA 103 FUKUDA 104 DAUM 105 FUKUDA 106 FUKUDA	ving data for averages, fits 100 ALLISON 99 101 FUKUDA 98 102 FUKUDA 98E 103 FUKUDA 96B 104 DAUM 95 105 FUKUDA 94 106 FUKUDA 94	ving data for averages, fits, limits, 100 ALLISON 99 SOU2 101 FUKUDA 98 SKAM 102 FUKUDA 98E SKAM 103 FUKUDA 96B KAMI 104 DAUM 95 FREJ 105 FUKUDA 94 KAMI 106 FUKUDA 94 KAMI

- 100 ALLISON 99 result is based on an exposure of 3.9 kton yr, 2.6 times the exposure reported in ALLISON 97, and replaces that result.
- 101 FUKUDA 98 result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained e-like events with 0.1 GeV/c<p_e and μ -like events with $0.2~{
 m GeV}/c{<}p_{\mu}$, both having a visible energy $< 1.33~{
 m GeV}$. These criteria match the definition used by FUKUDA 94.
- 102 FUKUDA 98E result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained single-ring events with visible energy > 1.33 GeV and partially contained events. All partially contained events are classified as μ -like.
- $^{103}\,{
 m FUKUDA}$ 96B studied neutron background in the atmospheric neutrino sample observed in the Kamiokande detector. No evidence for the background contamination was found.
- 104 DAUM 95 results are based on an exposure of 2.0 kton yr which includes the data used by BERGER 90B. This ratio is for the contained and semicontained events. DAUM 95 also report $R(\mu/e) = 0.99 \pm 0.13 \pm 0.08$ for the total neutrino induced data sample which includes upward going stopping muons and horizontal muons in addition to the contained and semicontained events.
- 105 FUKUDA 94 result is based on an exposure of 7.7 kton yr and updates the HIRATA 92 result. The analyzed data sample consists of fully-contained e-like events with 0.1 < $p_e < 1.33 \text{ GeV}/c$ and fully-contained μ -like events with $0.2 < p_{\mu} < 1.5 \text{ GeV}/c$.
- $^{106}\,{
 m FUKUDA}$ 94 analyzed the data sample consisting of fully contained events with visible energy > 1.33 GeV and partially contained μ -like events.
- 107 BECKER-SZENDY 92B reports the fraction of nonshowering events (mostly muons from atomospheric neutrinos) as 0.36 \pm 0.02 \pm 0.02, as compared with expected fraction $0.51 \pm 0.01 \pm 0.05$. After cutting the energy range to the Kamiokande limits, BEIER 92 finds $R(\mu/e)$ very close to the Kamiokande value.

$R(\nu_{\mu}) = (Measured Flux of \nu_{\mu}) / (Expected Flux of \nu_{\mu})$

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the following data	for a	/erages,	fits, limits, etc. • • •
$0.72\!\pm\!0.026\!\pm\!0.13$	¹⁰⁸ AMBROSIO	01	MCRO	upward through-going
$0.57 \!\pm\! 0.05 \ \pm 0.15$	¹⁰⁹ AMBROSIO	00	MCRO	upgoing partially contained
$0.71\!\pm\!0.05\ \pm0.19$	¹¹⁰ AMBROSIO	00	MCRO	downgoing partially contained $+$
	111			upgoing stopping
$0.74\!\pm\!0.036\!\pm\!0.046$	¹¹¹ AMBROSIO	98	MCRO	Streamer tubes
	¹¹² CASPER	91	IMB	Water Cherenkov
	¹¹³ AGLIETTA	89	NUSX	
0.95 ± 0.22	¹¹⁴ BOLIEV	81		Baksan
0.62 ± 0.17	CROUCH	78		Case Western/UCI

- $^{108}\,{\rm AMBROSIO}$ 01 result is based on the upward through-going muon tracks with ${\it E}_{\mu}>1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The first error is the statistical error, the second is the systematic error, dominated by the theoretical error in the predicted flux.
- $^{109}\operatorname{AMBROSIO}$ 00 result is based on the upgoing partially contained event sample. It came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle.
- 110 AMBROSIO 00 result is based on the combined samples of downgoing partially contained events and upgoing stopping events. These two subsamples could not be distinguished due to the lack of timing information. The result came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is

statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle.

- ¹¹¹ AMBROSIO 98 result is for all nadir angles and updates AHLEN 95 result. The lower cutoff on the muon energy is 1 GeV. In addition to the statistical and systematic errors, there is a Monte Carlo flux error (theoretical error) of ± 0.13 . With a neutrino oscillation hypothesis, the fit either to the flux or zenith distribution independently yields $\sin^2 2\theta = 1.0$ and $\Delta(m^2) \sim$ a few times 10^{-3} eV^2 . However, the fit to the observed zenith distribution gives a maximum probability for χ^2 of only 5% for the best oscillation hypothesis.
- ¹¹² CASPER 91 correlates showering/nonshowering signature of single-ring events with parent atmospheric-neutrino flavor. They find nonshowering ($\approx \nu_{\mu}$ induced) fraction is 0.41 \pm 0.03 \pm 0.02, as compared with expected 0.51 \pm 0.05 (syst).
- ¹¹³ AGLIETTA 89 finds no evidence for any anomaly in the neutrino flux. They define $\rho = (\text{measured number of } \nu_e's)/(\text{measured number of } \nu_\mu's)$. They report $\rho(\text{measured}) = \rho(\text{expected}) = 0.96 \substack{+0.32 \\ -0.28}$.
- 114 From this data BOLIEV 81 obtain the limit $\Delta(m^2) \leq 6 \times 10^{-3} \ {\rm eV}^2$ for maximal mixing, $\nu_\mu \not\rightarrow \nu_\mu$ type oscillation.

$R(\mu/\text{total}) = (\text{Measured Ratio } \mu/\text{total}) / (\text{Expected Ratio } \mu/\text{total})$

VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>
• • • We do not use the follow	ing data for averages	s, fits	, limits,	etc. • • •
$1.1^{+0.07}_{-0.12}{\pm}0.11$	¹¹⁵ CLARK	97	IMB	multi-GeV

 115 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cerenkov detector with visible energy > 0.95 GeV.

$N_{\rm up}(\mu)/N_{\rm down}(\mu)$

 116 FUKUDA 98E result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained single-ring μ -like events with visible energy > 1.33 GeV and partially contained events. All partially contained events are classified as μ -like. Upward-going events are those with $-1 < \cos$ (zenith angle) < -0.2 and downward-going events with those with 0.2 $< \cos$ (zenith angle) < 1. FUKUDA 98E result strongly deviates from an expected value of 0.98 \pm 0.03 \pm 0.02.

$N_{\rm up}(e)/N_{\rm down}(e)$

VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT
\bullet \bullet We do not use the follo	wing data for averages, fit	s, limits,	etc. • • •
1014			

 $0.84^{+0.14}_{-0.12} \pm 0.02$ 117 FUKUDA 98E SKAM multi-GeV

¹¹⁷ FUKUDA 98E result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained single-ring *e*-like events with visible energy > 1.33 GeV. Upward-going events are those with $-1 < \cos$ (zenith angle) < -0.2 and downward-going events are those with $0.2 < \cos$ (zenith angle) < 1. FUKUDA 98E result is conpared to an expected value of $1.01 \pm 0.06 \pm 0.03$.

$\sin^2(2 heta)$ for given $\Delta(m^2)$ $(u_e \leftrightarrow u_{\mu})$								
For a review	w see B	AHCALL 89.						
For a review see BAHCALL 89.VALUECL%DOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • • •<0.6								
• • • We do not	use the	e following data for a	vera	ges, fits,	limits, etc. • • •			
<0.6	90	-						
<0.5		¹¹⁹ CLARK	97	IMB	$\Delta(m^2) > 0.1 \; \mathrm{eV}^2$			
>0.55	90							
<0.47	90	¹²¹ BERGER	90 B		$\Delta(m^2) > 1 \ { m eV}^2$			
<0.14	90	LOSECCO	87	IMB	$\Delta(m^2) = 0.00011 \text{ eV}^2$			
110								

¹¹⁸ OYAMA 98 obtained this result by an analysis of upward-going muons in Kamiokande. The data sample used is essentially the same as that used by HATAKEYAMA 98.

¹¹⁹CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cerenkov detector with visible energy > 0.95 GeV.

¹²⁰ FUKUDA 94 obtained this result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande.

¹²¹ BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antinuetrino oscillations.

$\Delta(m^2)$ for sin²(2 θ) = 1 ($\nu_e \leftrightarrow \nu_\mu$)

CL%	DOCUMENT ID		TECN
e follow	ing data for average	s, fits	, limits, etc. • •
90	¹²² ОҮАМА	98	KAMI
	•=	97	IMB
90		94	KAMI
90	¹²⁵ BERGER	90 B	FREJ
	e follow 90 90	e following data for averages 90 122 OYAMA 123 CLARK 90 124 FUKUDA	e following data for averages, fits 90 122 OYAMA 98 123 CLARK 97 90 124 FUKUDA 94

 122 OYAMA 98 obtained this result by an analysis of upward-going muons in Kamiokande. The data sample used is essentially the same as that used by HATAKEYAMA 98.

 123 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cerenkov detector with visible energy > 0.95 GeV.

 124 FUKUDA 94 obtained this result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande.

 125 BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antinuetrino oscillations.

$\sin^2(2\theta)$ for given $\Delta(m^2)$ ($\overline{\nu}_e \leftrightarrow \overline{\nu}_{\mu}$)

<u>VALUE (10⁻⁵ eV²)</u>	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	ne follow	ing data for averages, fi	ts, limits,	etc. • • •
<0.9	99			$\Delta(m^2) > 3 imes 10^{-4} \text{ eV}^2$
<0.7	99	¹²⁶ SMIRNOV 94	I THEO	$\Delta(m^2) < 10^{-11} \; { m eV}^2$

 $^{126}\, {\rm SMIRNOV}$ 94 analyzed the data from SN 1987A using stellar-collapse models. They also give less stringent upper limits on $\sin^2 2\theta$ for $10^{-11} < \Delta(m^2) < 3 \times 10^{-7} \ {\rm eV}^2$ and $10^{-5} < \Delta(m^2) < 3 \times 10^{-4} \ {\rm eV}^2$. The same results apply to $\overline{\nu}_e \leftrightarrow \overline{\nu}_{\tau}$, ν_{μ} , and ν_{τ} .

HTTP://PDG.LBL.GOV Page 16

$\sin^2(2 heta)$ for given $\Delta(m^2)$ $(u_\mu \leftrightarrow u_ au)$								
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT			
• • • We do not	use the	e following data for a	avera	ges, fits,	limits, etc. • • •			
>0.8	90	¹²⁷ AMBROSIO	01		$\Delta(m^2) = 0.0006 - 0.015 \text{ eV}^2$			
>0.82	90	¹²⁸ AMBROSIO	01	MCRO	$\Delta(m^2) = 0.001 - 0.006 \text{ ev}^2$			
>0.25	90	¹²⁹ AMBROSIO	00	MCRO	$\Delta(m^2) > 3 \times 10^{-4} \text{ eV}^2$			
>0.4	90	¹³⁰ FUKUDA	99 C	SKAM	$\Delta(m^2) = 0.001 - 0.1 \text{ eV}^2$			
>0.7	90	¹³¹ FUKUDA	99 D	SKAM	$\Delta(m^2) = 0.0015 - 0.015 \text{ eV}^2$			
>0.82	90	¹³² AMBROSIO	98	MCRO	$\Delta(m^2) \sim 0.0025 \ \mathrm{eV}^2$			
>0.82	90	¹³³ FUKUDA	98 C	SKAM	$\Delta(m^2) = 0.0005 - 0.006 \text{ eV}^2$			
>0.3	90	¹³⁴ HATAKEYAMA	۹98	KAMI	$\Delta(m^2) = 0.00055 - 0.14 \text{ eV}^2$			
>0.73	90	¹³⁵ HATAKEYAMA	۹8	KAMI	$\Delta(m^2) = 0.004 - 0.025 \text{ eV}^2$			
<0.7		¹³⁶ CLARK	97	IMB	$\Delta(m^2) > 0.1 {\rm eV}^2$			
>0.65	90	¹³⁷ FUKUDA	94	KAMI	$\Delta(m^2) = 0.005 - 0.03 \text{ eV}^2$			
<0.5	90	¹³⁸ BECKER-SZ	92	IMB	$\Delta(m^2) = 1 - 2 \times 10^{-4} \text{ eV}^2$			
<0.6	90	¹³⁹ BERGER	90 B	FREJ	$\Delta(m^2) > 1 \text{ eV}^2$			
107								

- ¹²⁷ AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits.
- ¹²⁸ AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. See the previous footnote.
- ¹²⁹ AMBROSIO 00 obtained this result by using the upgoing partially contained event sample and the combined samples of downgoing partially contained events and upgoing stopping events. These data came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to these samples is 4 GeV. The maximum of the χ^2 probability (97%) occurs at maximal mixing and $\Delta(m^2) = (1 \sim 20) \times 10^{-3} \text{ eV}^2$.
- ¹³⁰ FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muons is $(1.74 \pm 0.07 \pm 0.02) \times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. The zenith-angle dependence of the flux does not agree with no-oscillation predictions. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99C obtained the best fit at sin²2 θ =0.95 and $\Delta(m^2)$ =5.9 × 10⁻³ eV². FUKUDA 99C also reports 68% and 99% confidence-level allowed regions for the same hypothesis.
- ¹³¹ FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is $(0.39 \pm 0.04 \pm 0.02) \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. This is compared to the expected flux of $(0.73 \pm 0.16 \text{ (theoretical error)}) \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. The flux of upward through-going muons is taken from FUKUDA 99C. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99D obtained the best fit in the physical region at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.9 \times 10^{-3} \text{ eV}^2$. FUKUDA 99D further reports the result of the oscillation analysis using the zenith-angle dependence of upward-stopping/through-going flux ratio. The best fit in the physical region is obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.1 \times 10^{-3} \text{ eV}^2$.

- ¹³² AMBROSIO 98 result is only 17% probable at maximum because of relatively low flux for $\cos\theta < -0.8$.
- 133 FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric-neutrino data which include the 25.5 kton yr data used by FUKUDA 98 (sub-GeV) and FUKUDA 98E (multi-GeV). Inside the physical region, the best fit was obtained at $\sin^22\theta{=}1.0$ and $\Delta(m^2){=}2.2{\times}10^{-3}~{\rm eV}^2$. In addition, FUKUDA 98C gave the 99% confidence interval, $\sin^22\theta > 0.73$ and $3{\times}10^{-4} < \Delta(m^2) < 8.5{\times}10^{-3}~{\rm eV}^2$. FUKUDA 98C also tested the $\nu_{\mu} \rightarrow \nu_e$ hypothesis, and concluded that it is not favored.
- ¹³⁴ HATAKEYAMA 98 obtained this result from a total of 2456 live days of upwardgoing muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muon is $(1.94 \pm 0.10^{+0.07}_{-0.06}) \times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. This is compared to the expected flux of (2.46 ± 0.54 (theoretical error)) $\times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. For the $\nu_{\mu} \rightarrow$ ν_{τ} hypothesis, the best fit inside the physical region was obtained at sin²2 θ =1.0 and

 $\Delta(m^2)=3.2 \times 10^{-3} \text{ eV}^2$.

- ¹³⁵ HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande's contained events (FUKUDA 94) and upward-going muon events. The best fit was obtained at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 1.3 \times 10^{-2} \text{ eV}^2$.
- 136 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cerenkov detector with visible energy > 0.95 GeV.
- ¹³⁷ FUKUDA 94 obtained this result by a combined analysis of sub-and multi-GeV atmospheric neutrino events in Kamiokande.
- 138 BECKER-SZENDY 92 uses upward-going muons to search for atmospheric ν_{μ} oscillations. The fraction of muons which stop in the detector is used to search for deviations in the expected spectrum. No evidence for oscillations is found.
- ¹³⁹ BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antinuetrino oscillations.

$\Delta(m^2)$ for $\sin^2(2\theta) = 1 \ (\nu_{\mu} \leftrightarrow \nu_{\tau})$

$VALUE (10^{-5} \text{ eV}^2)$	CL%		DOCUMENT ID		TECN
$\bullet \bullet \bullet$ We do not use the	followi	ng da	ata for averages,	fits,	limits, etc. • •
$60 < \Delta(m^2) < 1500$	90			01	MCRO
$100 < \Delta(m^2) < 600$	90			01	MCRO
> 35	90		AMBROSIO	00	MCRO
$100 < \Delta(m^2) < 5000$	90			99C	SKAM
$150 < \Delta(m^2) < 1500$	90				SKAM
$50 < \Delta(m^2) < 600$	90			98	MCRO
$50 < \Delta(m^2) < 600$	90				SKAM
$55 < \Delta(m^2) < 5000$	90	147	HATAKEYAMA	98	KAMI
$400 < \Delta(m^2) < 2300$	90	148	HATAKEYAMA	98	KAMI
<1500		149	CLARK	97	IMB
$500 < \Delta(m^2) < 2500$	90			94	KAMI
< 350	90	151	BERGER	90 B	FREJ

 140 AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits.

- ¹⁴¹ AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. See the previous footnote.
- ¹⁴² AMBROSIO 00 obtained this result by using the upgoing partially contained event sample and the combined samples of downgoing partially contained events and upgoing stopping events. These data came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to these samples is 4 GeV. The maximum of the χ^2 probability (97%) occurs at maximal mixing and $\Delta(m^2) = (1 \sim 20) \times 10^{-3} \, {\rm eV}^2$.
- ¹⁴³ FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muon is $(1.74 \pm 0.07 \pm 0.02) \times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. The zenith-angle dependence of the flux does not agree with no-oscillation predictions. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99C obtained the best fit at sin²2 θ =0.95 and $\Delta(m^2)$ =5.9 × 10⁻³ eV². FUKUDA 99C also reports 68% and 99% confidence-level allowed regions for the same hypothesis.
- ¹⁴⁴ FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is $(0.39 \pm 0.04 \pm 0.02) \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. This is compared to the expected flux of $(0.73 \pm 0.16 \text{ (theoretical error)}) \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. The flux of upward through-going muons is taken from FUKUDA 99C. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99D obtained the best fit in the physical region at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.9 \times 10^{-3} \text{ eV}^2$. FUKUDA 99D also reports 68% and 99% confidence-level allowed regions for the same hypothesis. FUKUDA 99D further reports the result of the oscillation analysis using the
- zenith-angle dependence of upward-stopping/through-going flux ratio. The best fit in the physical region is obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.1 \times 10^{-3} \text{ eV}^2$.
- ¹⁴⁵ AMBROSIO 98 result is only 17% probable at maximum because of relatively low flux for $\cos\theta < -0.8$.
- ¹⁴⁶ FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric-neutrino data which include the 25.5 kton yr data used by FUKUDA 98 (sub-GeV) and FUKUDA 98E (multi-GeV). Inside the physical region, the best fit was obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 2.2 \times 10^{-3} \text{ eV}^2$. In addition, FUKUDA 98C gave the 99% confidence interval, $\sin^2 2\theta > 0.73$ and $3 \times 10^{-4} < \Delta(m^2) < 8.5 \times 10^{-3} \text{ eV}^2$. FUKUDA 98C also tested the $\nu_{\mu} \rightarrow \nu_e$ hypothesis, and concluded that it is not favored.
- ¹⁴⁷ HATAKEYAMA 98 obtained this result from a total of 2456 live days of upwardgoing muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muon is $(1.94 \pm 0.10^{+0.07}_{-0.06}) \times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. This is compared to the expected flux of $(2.46 \pm 0.54$ (theoretical error)) $\times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. For the $\nu_{\mu} \rightarrow$ ν_{τ} hypothesis, the best fit inside the physical region was obtained at sin²2 θ =1.0 and $\Delta(m^2)$ =3.2 $\times 10^{-3}$ eV².
- ¹⁴⁸ HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande's contained events (FUKUDA 94) and upward-going muon events. The best fit was obtained at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 1.3 \times 10^{-2} \text{ eV}^2$.
- 149 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cerenkov detector with visible energy > 0.95 GeV.
- ¹⁵⁰ FUKUDA 94 obtained this result by a combined analysis of sub-and multi-GeV atmospheric neutrino events in Kamiokande.
- ¹⁵¹ BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antinuetrino oscillations.

HTTP://PDG.LBL.GOV Page 19

Created: 12/17/2002 10:45

Citation: K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: http://pdg.lbl.gov)

$\Delta(m^2) \text{ for } \sin^2(2\theta) = 1 \ (\nu_{\mu} \rightarrow \nu_s)$ $\nu_s \text{ means } \nu_{\tau} \text{ or any sterile (noninteracting) } \nu.$							
<u>VALUE</u> (10^{-5} eV^2)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ $ullet$							
<3000 (or <550)	90	¹⁵² ОҮАМА	89	KAMI	Water Cerenkov		
ν_s means ν_{τ} or any sterile (noninteracting) ν . <u>VALUE (10⁻⁵ eV²)</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> • • • We do not use the following data for averages, fits, limits, etc. • • •							
					and $\overline{\nu}_e$		

 152 OYAMA 89 gives a range of limits, depending on assumptions in their analysis. They argue that the region $\Delta(m^2) = (100\text{--}1000) \times 10^{-5} \text{ eV}^2$ is not ruled out by any data for large mixing.

Search for $\nu_{\mu} \rightarrow \nu_{s}$

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	ing data for average	s, fits	s, limits,	etc. • • •
	¹⁵³ AMBROSIO	01	MCRO	matter effects
	¹⁵⁴ FUKUDA	00	SKAM	neutral currents $+$ mat-
				ter effects
	0.0			

- ¹⁵³ AMBROSIO 01 tested the pure 2-flavor $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis using matter effects which change the shape of the zenith-angle distribution of upward through-going muons. With maximum mixing and $\Delta(m^2)$ around 0.0024 eV², the $\nu_{\mu} \rightarrow \nu_{s}$ oscillation is disfavored with 99% confidence level with respect to the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis.
- 154 FUKUDA 00 tested the pure 2-flavor $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis using three complementary atmospheric-neutrino data samples. With this hypothesis, zenith-angle distributions are expected to show characteristic behavior due to neutral currents and matter effects. In the $\Delta(m^{2})$ and $\sin^{2}2\theta$ region preferred by the Super-Kamiokande data, the $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis is rejected at the 99% confidence level, while the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis consistently fits all of the data sample.

(D) Solar ν Experiments

SOLAR NEUTRINOS

Revised April 2002 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan).

1. Introduction

The Sun is a main-sequence star at a stage of stable hydrogen burning. It produces an intense flux of electron neutrinos as a consequence of nuclear fusion reactions whose combined effect is

$$4p \to {}^{4}\text{He} + 2e^{+} + 2\nu_{e}.$$
 (1)

Positrons annihilate with electrons. Therefore, when considering the solar thermal energy generation, a relevant expression is

$$4p + 2e^- \rightarrow {}^{4}\text{He} + 2\nu_e + 26.73 \text{ MeV} - E_{\nu} ,$$
 (2)

where E_{ν} represents the energy taken away by neutrinos, with an average value being $\langle E_{\nu} \rangle \sim 0.6$ MeV. The neutrinoproducing reactions which are at work inside the Sun are enumerated in the first column in Table 1. The second column in Table 1 shows abbreviation of these reactions. The energy spectrum of each reaction is shown in Fig. 1.

A pioneering solar neutrino experiment by Davis and collaborators using 37 Cl started in the late 1960's. Since then, chlorine and gallium radiochemical experiments and water Čerenkov experiments with light and heavy water targets have made successful solar-neutrino observations.

Observation of solar neutrinos directly addresses the theory of stellar structure and evolution, which is the basis of the standard solar model (SSM). The Sun as a well-defined neutrino source also provides extremely important opportunities to investigate nontrivial neutrino properties such as nonzero mass and mixing, because of the wide range of matter density and the very long distance from the Sun to the Earth.

From the very beginning of the solar-neutrino observation, it was recognized that the observed flux was significantly smaller than the SSM prediction provided nothing happens to the electron neutrinos after they are created in the solar interior. This deficit has been called "the solar-neutrino problem." The initial result from Sudbury Neutrino Observatory (SNO) on the solar neutrino flux measured via charged-current reaction $\nu_e d \rightarrow e^- pp$, combined with the Super-Kamiokande's highstatistics flux measurement via νe elastic scattering, provided

Table 1: Neutrino-producing reactions in the Sun (the first column) and their abbreviations (second column). The neutrino fluxes and event rates in chlorine and gallium solar-neutrino experiments predicted by Bahcall, Pinsonneault, and Basu [1] are listed in the third, fourth, and fifth columns respectively.

		BP2000 [1]					
Reaction	Abbr.	Flux $(cm^{-2} s^{-1})$	Cl (SNU [*])	Ga (SNU [*])			
$pp \to d e^+ \nu$	pp	$5.95(1.00^{+0.01}_{-0.01}) \times 10^{10}$		69.7			
$pe^-p \to d\nu$	pep	$1.40(1.00^{+0.015}_{-0.015}) \times 10^8$	0.22	2.8			
${}^{3}\mathrm{He}\;p \to {}^{4}\mathrm{He}\;e^{+}\nu$	hep	9.3×10^3	0.04	0.1			
$^{7}\mathrm{Be}\;e^{-} \rightarrow ^{7}\mathrm{Li}\;\nu + (\gamma)$	$^{7}\mathrm{Be}$	$4.77(1.00^{+0.10}_{-0.10}) \times 10^9$	1.15	34.2			
$^8{\rm B} \rightarrow {^8{\rm Be}}^* \ e^+ \nu$	$^{8}\mathrm{B}$	$5.05(1.00^{+0.20}_{-0.16}) \times 10^6$	5.76	12.1			
$^{13}\mathrm{N} \rightarrow ^{13}\mathrm{C} \ e^+ \nu$	$^{13}\mathrm{N}$	$5.48(1.00^{+0.21}_{-0.17}) \times 10^8$	0.09	3.4			
$^{15}\mathrm{O} \rightarrow ^{15}\mathrm{N} \ e^+ \nu$	$^{15}\mathrm{O}$	$4.80(1.00^{+0.25}_{-0.19}) \times 10^8$	0.33	5.5			
${}^{17}\mathrm{F} \rightarrow {}^{17}\mathrm{O} \ e^+ \nu$	$^{17}\mathrm{F}$	$5.63(1.00^{+0.25}_{-0.25}) \times 10^6$	0.0	0.1			
Total			$7.6^{+1.3}_{-1.1}$	128^{+9}_{-7}			

* 1 SNU (Solar Neutrino Unit) = 10^{-36} captures per atom per second.

direct evidence for flavor conversion of solar neutrinos. The most probable explanation is neutrino oscillation which can also solve the solar-neutrino problem. The recent SNO's result of the neutral-current measurement, $\nu d \rightarrow \nu pn$, and the updated charged-current result further strengthened this conclusion.

2. Solar Model Predictions

A standard solar model is based on the standard theory of stellar evolution. A variety of input information is needed in the evolutionary calculations. The most elaborate SSM, BP2000 [1], is presented by Bahcall *et al.* who define their SSM as the solar model which is constructed with the best available physics and input data. Though they used no helioseismological constraints in defining the SSM, the calculated sound speed as a function of

HTTP://PDG.LBL.GOV Page 22 Created: 12/17/2002 10:45

Figure 1: The solar neutrino spectrum predicted by the standard solar model. The neutrino fluxes from continuum sources are given in units of number $\text{cm}^{-2}\text{s}^{-1}\text{MeV}^{-1}$ at one astronomical unit, and the line fluxes are given in number $\text{cm}^{-2}\text{s}^{-1}$. Spectra for the *pp* chain, shown by the solid curves, are courtesy of J.N. Bahcall (2001). Spectra for the CNO chain are shown by the dotted curves, and are also courtesy of J.N. Bahcall (1995).

the solar radius shows an excellent agreement with the helioseismologically determined sound speed to a precision of 0.1% rms throughout essentially the entire Sun. This greatly strengthen confidence in the solar model. The BP2000 prediction [1] for the flux, contributions to the event rates in chlorine and gallium solar-neutrino experiments from each neutrino-producing

HTTP://PDG.LBL.GOV Page 23 Created: 12/17/2002 10:45

reaction is listed in Table 1. The solar-neutrino spectra shown in Fig. 1 also resulted from the BP2000 calculations [1].

Another recent solar-model predictions for solar-neutrino fluxes were given by Turck-Chieze *et al.* [2] Their model is based on the standard theory of stellar evolution where the best

physics available is adopted, but some fundamental inputs such as the p-p reaction rate and the heavy-element abundance in the Sun are seismically adjusted within the commonly estimated errors aiming at reducing the residual differences between the helioseismologically-determined and the model-calculated sound speeds. Their predictions for the event rates in chlorine and gallium solar-neutrino experiments as well as ⁸B solar-neutrino flux are shown in the last line in Table 2, where the BP2000 predictions [1] are also shown in the same format. As is apparent from this table, the predictions of the two models are remarkably consistent.

The SSM predicted ⁸B solar-neutrino flux is proportional to the low-energy cross section factor $S_{17}(0)$ for the ⁷Be(p, γ)⁸B reaction. The BP2000 [1] and Turck-Chieze *et al.* [2] models adopted $S_{17}(0) = 19^{+4}_{-2}$ eV·b. Inspired by the recent precise measurement of the low-energy cross section for the ⁷Be(p, γ)⁸B reaction by Junghans *et al.* [3], Bahcall *et al.* [4] calculated the (BP2000 + New ⁸B) SSM predictions using $S_{17}(0) =$ (22.3 ± 0.9) eV·b. The results are: the ⁸B solar-neutrino flux of 5.93(1.00^{+0.14}_{-0.15}) × 10⁶ cm⁻² s⁻¹, the chlorine capture rate of $8.59^{+1.1}_{-1.2}$ SNU, and the gallium capture rate of 130^{+9}_{-7} SNU.

3. Solar Neutrino Experiments

So far, seven solar-neutrino experiments have published results. The most recent published results on the average event

HTTP://PDG.LBL.GOV Page 24 Created: 12/17/2002 10:45

Table 2: Recent results from the seven solar-neutrino experiments and a comparison with standard solar-model predictions. Solar model calculations are also presented. The first and the second errors in the experimental results are the statistical and systematic errors, respectively.

	$^{37}\text{Cl}\rightarrow^{37}\text{Ar}$ (SNU)	$\begin{array}{c} ^{71}\mathrm{Ga}{\rightarrow}^{71}\mathrm{Ge} \\ \mathrm{(SNU)} \end{array}$	$^{8}\text{B} \ \nu \ \text{flux}$ $(10^{6} \text{cm}^{-2} \text{s}^{-1})$
Homestake			
(CLEVELAND 98)[5]	$2.56 \pm 0.16 \pm 0.16$	6 —	
GALLEX			
(HAMPEL 99)[6]		$77.5 \pm 6.2^{+4.3}_{-4.7}$	·
GNO			
(ALTMANN 00)[7]		$65.8^{+10.2+3.4}_{-9.6-3.6}$	
SAGE			
(ABDURASHI99B)[8]		$67.2^{+7.2+3.5}_{-7.0-3.0}$	
Kamiokande			
(FUKUDA 96)[9]			$2.80 \pm 0.19 \pm 0.33^{\circ}$
Super-Kamiokande			
(FUKUDA 01)[10]		_	$2.32\pm0.03^{+0.08}_{-0.07}{}^{\dagger}$
SNO			
(AHMAD 02)[11]			$1.76^{+0.06}_{-0.05}\pm0.09^{\ddagger}$
			$2.39^{+0.24}_{-0.23}\pm0.12^{\dagger}$
			$5.09_{-0.43}^{+0.44+0.46*}$
(BAHCALL 01)[1]	$7.6^{+1.3}_{-1.1}$	128^{+9}_{-7}	$5.05(1.00^{+0.20}_{-0.16})$
(TURCK-CHIEZE 01)[2]	7.44 ± 0.96	127.8 ± 8.6	4.95 ± 0.72

* Flux measured via the neutral-current reaction.

 † Flux measured via νe elastic scattering.

[‡] Flux measured via the charged-current reaction.

rates or flux from these experiments are listed in Table 2 and compared to the two recent solar-model predictions.

3.1. Radiochemical Experiments

Radiochemical experiments exploit electron neutrino absorption on nuclei followed by their decay through orbital electron capture. Produced Auger electrons are counted.

The Homestake chlorine experiment in USA uses the reaction

$$^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e^- \text{ (threshold 814 keV).}$$
 (3)

Three gallium experiments (GALLEX and GNO at Gran Sasso in Italy and SAGE at Baksan in Russia) use the reaction

$$^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^- \text{ (threshold 233 keV).}$$
 (4)

The produced ³⁷Ar and ⁷¹Ge atoms are both radioactive, with half lives ($\tau_{1/2}$) of 34.8 days and 11.43 days, respectively. After an exposure of the detector for two to three times $\tau_{1/2}$, the reaction products are chemically extracted and introduced into a low-background proportional counter, and are counted for a sufficiently long period to determine the exponentially decaying signal and a constant background.

Solar-model calculations predict that the dominant contribution in the chlorine experiment comes from ⁸B neutrinos, but ⁷Be, *pep*, ¹³N, and ¹⁵O neutrinos also contribute. At present, the most abundant *pp* neutrinos can be detected only in gallium experiments. Even so, according to the solar-model calculations almost half of the capture rate in the gallium experiments is due to other solar neutrinos.

The Homestake chlorine experiment was the first attempt to observe solar neutrinos. Initial results obtained in 1968 showed no events above background with upper limit of the solarneutrino flux of 3 SNU [13]. After introduction of an improved electronics system which discriminates signal from background by measuring the rise time of the pulses from proportional

counters, finite solar-neutrino flux has been observed since 1970. The solar-neutrino capture rate shown in Table 2 is a combined result of 108 runs between 1970 and 1994 [5]. It is only about 1/3 of the BP2000 prediction [1].

GALLEX presented the first evidence of pp solar-neutrino observation in 1992 [14]. Here also, the observed capture rate is significantly less than the SSM prediction. SAGE initially reported very low capture rate, $20^{+15}_{-20} \pm 32$ SNU, with a 90% confidence-level upper limit of 79 SNU [15]. Later, SAGE observed similar capture rate to that of GALLEX [16]. Both GALLEX and SAGE groups tested the overall detector response with intense man-made ⁵¹Cr neutrino sources, and observed good agreement between the measured ⁷¹Ge production rate and that predicted from the source activity, demonstrating the reliability of these experiments. The GALLEX Collaboration formally finished observations in early 1997. Since April, 1998, a newly defined collaboration, GNO (Gallium Neutrino Observatory) resumed the observations.

3.2 Kamiokande and Super-Kamiokande

Kamiokande and Super-Kamiokande in Japan are real-time experiments utilizing νe scattering

$$\nu_x + e^- \to \nu_x + e^- \tag{5}$$

in a large water-Čerenkov detector. It should be noted that the reaction Eq. (5) is sensitive to all active neutrinos, $x = e, \mu$, and τ . However, the sensitivity to ν_{μ} and ν_{τ} is much smaller than the sensitivity to $\nu_{e}, \sigma(\nu_{\mu,\tau}e) \approx 0.16 \sigma(\nu_{e}e)$. The solar-neutrino flux measured via νe scattering is deduced assuming no neutrino oscillations.

These experiments take advantage of the directional correlation between the incoming neutrino and the recoil electron. This

HTTP://PDG.LBL.GOV Page 27 Created: 12/17/2002 10:45

feature greatly helps the clear separation of the solar-neutrino signal from the background. Due to the high thresholds (7 MeV in Kamiokande and 5 MeV at present in Super-Kamiokande) the experiments observe pure ⁸B solar neutrinos because *hep* neutrinos contribute negligibly according to the SSM.

The Kamiokande-II Collaboration started observing the ⁸B solar neutrinos at the beginning of 1987. Because of the strong directional correlation of νe scattering, this result gave the first direct evidence that the Sun emits neutrinos [17](no directional information is available in radiochemical solar-neutrino experiments). The observed solar-neutrino flux was also significantly less than the SSM prediction. In addition, Kamiokande-II obtained the energy spectrum of recoil electrons and the fluxes separately measured in the daytime and nighttime. The Kamiokande-II experiment came to an end at the beginning of 1995.

Super-Kamiokande is a 50-kton second-generation solarneutrino detector, which is characterized by a significantly larger counting rate than the first-generation experiments. This experiment started observation in April 1996. The average solar-neutrino flux is smaller than, but consistent with, the Kamiokande-II result. The flux measured in the nighttime is slightly higher than the flux measured in the daytime, but it is only a 1.3σ effect [10]. Super-Kamiokande also observed the recoil-electron energy spectrum. Initially, its shape showed an excess at the high-energy end (> 13 MeV) compared to the SSM expectation, though its statistical significance was not very high [18]. More recent results indicate that the high-energy excess is reduced with the accumulation of statistics and it is concluded that the recoil electron spectrum is consistent with no spectral distortion [10].

HTTP://PDG.LBL.GOV Page 28 Created: 12/17/2002 10:45

3.3 SNO

In 1999, a new realtime solar-neutrino experiment, SNO (Sudbury Neutrino Observatory) in Canada started observation. This experiment uses 1000 tons of ultra-pure heavy water (D₂O) contained in a spherical acrylic vessel, surrounded by ultra-pure H_2O shield. SNO measures ⁸B solar neutrinos via the reactions

$$\nu_e + d \to e^- + p + p \tag{6}$$

and

$$\nu_x + d \to \nu_x + p + n,\tag{7}$$

as well as νe scattering, Eq. (5). The charged-current (CC) reaction, Eq. (6), is sensitive only to electron neutrinos, while the neutral-current (NC) reaction, Eq. (7), is sensitive to all active neutrinos.

The Q-value of the CC reaction is -1.4 MeV and the electron energy is strongly correlated with the neutrino energy. Thus, the CC reaction provides an accurate measure of the shape of the ⁸B solar-neutrino spectrum. The contributions from the CC reaction and νe scattering can be distinguished by using different $\cos \theta_{\odot}$ distributions where θ_{\odot} is the angle with respect to the direction from the Sun to the Earth. While the νe scattering events have a strong forward peak, CC events have an approximate angular distribution of $1 - 1/3 \cos \theta_{\odot}$.

The threshold of the NC reaction is 2.2 MeV. In the pure D_2O , the signal of the NC reaction is neutron capture in deuterium, producing a 6.25-MeV γ -ray. In this case, capture efficiency is low and the deposited energy is close to the detection threshold of 5 MeV. In order to enhance both the capture efficiency and the total γ -ray energy (8.6 MeV), 2.5 tons of NaCl has been added to the heavy water in the second phase of the experiment. In addition, installation of discrete

 3 He neutron counters is planned for the NC measurement in the third phase.

In 2001, the SNO Collaboration published the initial results on the measurement of the ⁸B solar-neutrino flux via CC reaction [12]. The electron energy spectrum and the $\cos\theta_{\odot}$ distribution have also been measured. The spectral shape of the electron energy is consistent with the expectations for no oscillation.

SNO also measured the ⁸B solar-neutrino flux via νe scattering. Though the latter result has poor statistics yet, it is consistent with the high-statistics Super-Kamiokande result. Thus, the SNO group compared their CC result with Super-Kamiokande's νe scattering result, and obtained evidence of an active non- ν_e component in the solar-neutrino flux, as further described in Sec. 3.5.

More recently, in April, 2002, the SNO Collaboration reported the first result on the ⁸B solar-neutrino flux measurement via NC reaction [11]. The total flux measured via NC reaction is consistent with the solar-model predictions (see Table 2).

Also, the SNO's CC and νe scattering results were updated [11]. These results are consistent with the earlier results [12].

3.4 Comparison of Experimental Results with Solar-Model Predictions

It is clear from Table 2 that the results from all the solarneutrino experiments, except the most recent SNO NC result, indicate significantly less flux than expected from the BP2000 SSM [1] and the Turck-Chieze *et al.* solar model [2].

There has been a consensus that a consistent explanation of all the results of solar-neutrino observations is unlikely within the framework of astrophysics using the solar-neutrino spectra given by the standard electroweak model. Many authors made solar model-independent analyses constrained by the observed solar luminosity [19–23], where they attempted to fit the measured solar-neutrino capture rates and ⁸B flux with normalization-free, undistorted energy spectra. All these attempts only obtained solutions with very low probabilities.

The data therefore suggest that the solution to the solarneutrino problem requires nontrivial neutrino properties.

3.5 Evidence for Solar Neutrino Oscillations

Denoting the ⁸B solar-neutrino flux obtained by the SNO CC measurement as $\phi_{\text{SNO}}^{\text{CC}}(\nu_e)$ and that obtained by the Super-Kamiokande νe scattering as $\phi_{\text{SK}}^{\text{ES}}(\nu_x)$, $\phi_{\text{SNO}}^{\text{CC}}(\nu_e) = \phi_{\text{SK}}^{\text{ES}}(\nu_x)$ is expected for the standard neutrino physics. However, SNO's initial data [12] indicate

$$\phi_{\rm SK}^{\rm ES}(\nu_x) - \phi_{\rm SNO}^{\rm CC}(\nu_e) = (0.57 \pm 0.17) \times 10^6 \ {\rm cm}^{-2} {\rm s}^{-1}.$$
 (8)

The significance of the difference is > 3σ , implying direct evidence for the existence of a non- ν_e active neutrino flavor component in the solar-neutrino flux. A natural and most probable explanation of neutrino flavor conversion is neutrino oscillation. Note that both the SNO [12] and Super-Kamiokande [10] flux results were obtained by assuming the standard ⁸B neutrino spectrum shape. This assumption is justified by the measured energy spectra in both of the experiments.

From the measured $\phi_{\text{SNO}}^{\text{CC}}(\nu_e)$ and $\phi_{\text{SK}}^{\text{ES}}(\nu_x)$, the flux of non- ν_e active neutrinos, $\phi(\nu_{\mu} \text{ or } \tau)$, and the total flux of active ⁸B solar neutrinos, $\phi(\nu_x)$, can be deduced [12]:

$$\phi(\nu_{\mu \text{ or } \tau}) = (3.69 \pm 1.13) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$$
 (9)

and

$$\phi(\nu_x) = (5.44 \pm 0.99) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}.$$
 (10)

HTTP://PDG.LBL.GOV Page 31 Created: 12/17/2002 10:45

Figure 2: Fluxes of ⁸B solar neutrinos, $\phi(\nu_e)$, and $\phi(\nu_{\mu \text{ or } \tau})$, deduced from the SNO's charged-current (CC), ν_e elastic scattering (ES), and neutral-current (NC) results. The standard solar model prediction [1] is also shown. The bands represent the 1 σ error. The contours show the 68%, 90%, and 97% joint probability for $\phi(\nu_e)$ and $\phi(\nu_{\mu \text{ or } \tau})$. This figures is courtesy of K.T. Lesko (LBNL).

Eq. (10) is a solar model-independent result and therefore tests solar models. It shows very good agreement with the ⁸B solar-neutrino flux predicted by the BP2000 SSM [1] and that predicted by Turck-Chieze *et al.* model [2].

The recently reported SNO's results [11] are

$$\phi_{\rm SNO}^{\rm CC}(\nu_e) = (1.76^{+0.06}_{-0.05} \pm 0.09) \times 10^6 \rm cm^{-2} \rm s^{-1} , \qquad (11)$$

HTTP://PDG.LBL.GOV Page 32 Created: 12/17/2002 10:45

$$\phi_{\rm SNO}^{\rm ES}(\nu_x) = (2.39^{+0.24}_{-0.23} \pm 0.12) \times 10^6 \rm cm^{-2} s^{-1} , \qquad (12)$$

$$\phi_{\text{SNO}}^{\text{NC}}(\nu_x) = (5.09^{+0.44+0.46}_{-0.43-0.43}) \times 10^6 \text{cm}^{-2} \text{s}^{-1} .$$
(13)

The fluxes $\phi(\nu_e)$ and $\phi(\nu_{\mu \text{ or } \tau})$ deduced from these results are remarkably consistent as can be seen in Fig. 2. The resultant $\phi(\nu_{\mu \text{ or } \tau})$ is

$$\phi(\nu_{\mu \text{ or } \tau}) = \left(3.41^{+0.66}_{-0.64}\right) \times 10^{6} \text{cm}^{-2} \text{s}^{-1}$$
(14)

where the statistical and systematic errors are added in quadrature. Now $\phi(\nu_{\mu \text{ or } \tau})$ is 5.3 σ above 0, providing stronger evidence for neutrino oscillation than Eq. (8).

4. Global Analyses of the Solar Neutrino Data

A number of pre-SNO global analyses of the solar-neutrino data in terms of two neutrino oscillations yielded various solutions. For example, Bahcall, Krastev, and Smirnov [24] found at 99.7% confidence level eight allowed discrete regions in two-neutrino oscillation space. These are five solutions for active neutrinos (LMA, SMA, LOW, VAC, and Just So²) and three separate solutions for sterile neutrinos (SMA(sterile), VAC(sterile), and Just So²(sterile)). LMA, SMA, LOW, VAC are abbreviations of large mixing angle, small mixing angle, low probability or low mass, and vacuum, respectively. The best-fit points for the five solutions for active neutrinos are shown below.

- LMA: $\Delta m^2 = 4.2 \times 10^{-5} \text{ eV}^2$, $\tan^2 \theta = 0.26$
- SMA: $\Delta m^2 = 5.2 \times 10^{-6} \text{ eV}^2$, $\tan^2 \theta = 5.5 \times 10^{-4}$
- LOW: $\Delta m^2 = 7.6 \times 10^{-8} \text{ eV}^2$, $\tan^2 \theta = 0.72$
- Just So²: $\Delta m^2 = 5.5 \times 10^{-12} \text{ eV}^2$, $\tan^2 \theta = 1.0$
- VAC: $\Delta m^2 = 1.4 \times 10^{-10} \text{ eV}^2$, $\tan^2 \theta = 0.38$.

For the three solutions for sterile neutrinos, the best-fit points are similar to the corresponding solutions for active neutrinos.

```
HTTP://PDG.LBL.GOV Page 33 Created: 12/17/2002 10:45
```

Immediately after the report of SNO's first result [12], many authors [25–28] presented the results of global analyses including the SNO's CC data. In most of these analyses, the total event rates from chlorine and gallium experiments, SNO's CC event rate, and Super-Kamiokande's day and night spectra are used. The total event rate from Super-Kamiokande is not used because it is not independent from the spectral data. The theoretical solar-neutrino fluxes are taken from BP2000 SSM [1].

A common feature of the analyses which include Super-Kamiokande's spectral data [10] are:

- The LMA solution is most favored.
- The LOW and VAC solutions are next or thirdly favored depending on the analysis detail.
- The SMA solution is a significantly less good solution than the LOW and VAC solutions.
- All other solutions generally give poor fits except that the VAC(sterile) solution sometimes gives as good a fit as the VAC or LOW solution.

It should be noted that all the favored solutions, LMA, LOW, and VAC, have large mixing angles.

5. Future Prospects

The SNO solar-neutrino measurement established solarneutrino oscillations at > 5σ level. The next step is to determine the solution uniquely. The forthcoming data from SNO and from new solar-neutrino experiments will provide important clues to discriminate the solutions.

Future SNO results will include the day-night flux asymmetry, more precise energy spectrum, and NC/CC ratio. SNO's expected day-night effect is substantially larger at the best-fit region of the LMA solution than at the best-fit region of the LOW solution. However, for both the LMA and LOW solutions, no spectrum distortion is expected. The SMA and VAC solutions will give detectable spectrum distortion. Very recently SNO announced a possible day-night asymmetry of $\phi(\nu_e)$, which favors the LMA solution [29].

An important task of the future solar neutrino experiments is the measurement of monochromatic ⁷Be solar neutrinos. If the VAC solution is correct, the flux of ⁷Be neutrinos shows larger seasonal variations than the flux of ⁸B neutrinos. In the LOW region, a strong day-night effect is expected. The ⁷Be neutrino flux will be measured by a new experiment, Borexino, at Gran Sasso *via* νe scattering in 300 tons of ultra-pure liquid scintillator with a detection threshold as low as 250 keV. The Borexino experiment is expected to turn on in 2002.

KamLAND is an experiment similar to, but larger than Borexino. It is located at Kamioka, and 1000 tons of ultra-pure liquid scintillator is used. This experiment will also observe ⁷Be neutrinos if the detection threshold can be lowered to a level similar to that of Borexino. However, one of the primary purposes of this experiment is the observation of oscillations of neutrinos produced by power reactors. The sensitivity region of KamLAND includes the LMA solution. Thus, the presently most-favored LMA solution may be proved or excluded by KamLAND. KamLAND is expected to turn on early in 2002.

References

- J.N. Bahcall, M.H. Pinsonneault, and S. Basu, Astrophys. J. 555, 990 (2001).
- 2. S. Turck-Chieze *et al.*, Astrophys. J. **555**, L69 (2001).
- 3. A.R. Junghans et al., Phys. Rev. Lett. 88, 041101 (2002).
- 4. J.N. Bahcall, M.C. Gonzalez-Garcia, and C. Pena-Garay, JHEP **0204**, 007 (2002).

- 5. B.T. Cleveland *et al.*, Ap. J. **496**, 505 (1998).
- 6. W. Hampel et al., Phys. Lett. B447, 127 (1999).
- 7. M. Altmann *et al.*, Phys. Lett. **B490**, 16 (2000).
- 8. J.N. Abdurashitov et al., Phys. Rev. C60, 0055801 (1999).
- 9. Y. Fukuda et al., Phys. Rev. Lett. 77, 1683 (1996).
- 10. Y. Fukuda et al., Phys. Rev. Lett. 86, 5651 (2001).
- 11. Q.R. Ahmad *et al.*, nucl-ex/0204008.
- 12. Q.R. Ahmad *et al.*, Phys. Rev. Lett. **87**, 071301 (2001).
- 13. R. Davis, Jr. *et al.*, Phys. Rev. Lett. **20**, 1205 (1968).
- 14. P. Anselmann *et al.*, Phys. Lett. **B285**, 376 (1994).
- 15. A.I. Abazov et al., Phys. Rev. Lett. 67, 3332 (1991).
- 16. J.N. Abdurashitov *et al.*, Phys. Lett. **B328**, 234 (1994).
- 17. K.S. Hirata *et al.*, Phys. Rev. Lett. **63**, 16 (1989).
- 18. Y. Fukuda *et al.*, Phys. Rev. Lett. **82**, 2430 (1999).
- N. Hata, S. Bludman, and P. Langacker, Phys. Rev. D49, 3622 (1994).
- 20. N. Hata and P. Langacker, Phys. Rev. D52, 420 (1995).
- 21. N. Hata and P. Langacker, Phys. Rev. D56, 6107 (1997).
- 22. S. Parke, Phys. Rev. Lett. 74, 839 (1995).
- K.M. Heeger and R.G.H. Robertson, Phys. Rev. Lett. 77, 3720 (1996).
- 24. J.N. Bahcall, P.I. Krastev, and A.Yu. Smirnov, JHEP 05, 015 (2001).
- 25. G.L. Fogli *et al.*, Phys. Rev. **D64**, 093007 (2001).
- 26. J.N. Bahcall, M.C. Gonzalez-Garcia, and C. Pena-Garay, JHEP 08, 014 (2001).
- 27. A. Bandyopadhyay et al., Phys. Lett. B519, 83 (2001).
- P.I. Krastev and A. Yu. Smirnov, Phys. Rev. D65, 073022 (2002).
- 29. Q.R. Ahmad *et al.*, nucl-ex/0204009.

ve Capture Rates from Radiochemical Experiments

1 SNU (Solar Neutrino Unit) = 10^{-36} captures per atom per second.

VALUE (SNU)	DOCUMENT ID		TECN	COMMENT
$65.8 \begin{array}{c} +10.2 \\ -9.6 \end{array} \begin{array}{c} +3.4 \\ -3.6 \end{array}$	¹⁵⁵ ALTMANN	00	GNO	$^{71}\text{Ga} \rightarrow ~^{71}\text{Ge}$
74.1 $\begin{array}{c} + & 6.7 \\ - & 6.8 \end{array}$	¹⁵⁶ ALTMANN	00	GNO	GNO + GALX combined
$67.2 \ \begin{array}{rrr} + & 7.2 \\ - & 7.0 \\ \end{array} \begin{array}{rrr} + 3.5 \\ - 3.0 \end{array}$	¹⁵⁷ ABDURASHI	. 99 B	SAGE	$^{71}\text{Ga} \rightarrow ^{71}\text{Ge}$
77.5 \pm 6.2 $^{+4.3}_{-4.7}$	¹⁵⁸ HAMPEL	99	GALX	$71_{Ga} \rightarrow 71_{Ge}$
$2.56 \pm \ 0.16 \pm 0.16$	¹⁵⁹ CLEVELAND	98	HOME	$^{37}\text{Cl} \rightarrow ^{37}\text{Ar}$

¹⁵⁵ ALTMANN 00 report the first result from the GNO solar-neutrino experiment (GNO I), which is the successor project of GALLEX. Experimental technique of GNO is essentially the same as that of GALLEX. The run data cover the period 20 May 1998 through 12 January 2000.

¹⁵⁶ Combined result of GALLEX I+II+III+IV (HAMPEL 99) and GNO I. The indicated errors include systematic errors.

- ¹⁵⁷ ABDURASHITOV 99B is a detailed report of the SAGE solar-neutrino experiment during the period January 1990 through December 1997, and updates the ABDURASHITOV 94 result. However the data in the period November 1993 through June 1994 were not used in determining the neutrino capture rate due to some uncertainty with respect to experimental control. A total of 211 ⁷¹Ge events were observed.
- ¹⁵⁸ HAMPEL 99 report the combined result for GALLEX I+II+III+IV (65 runs in total), which update the HAMPEL 96 result. The GALLEX IV result (12 runs) is 118.4 \pm 17.8 \pm 6.6 SNU. (HAMPEL 99 discuss the consistency of partial results with the mean.) The GALLEX experimental program has been completed with these runs. The total run data cover the period 14 May 1991 through 23 January 1997. A total of 300 ⁷¹Ge events were observed.
- ¹⁵⁹ CLEVELAND 98 is a detailed report of the ³⁷Cl experiment at the Homestake Mine. The average solar neutrino-induced ³⁷Ar production rate from 108 runs between 1970 and 1994 updates the DAVIS 89 result.

ϕ_{ES} (⁸B)

 $^8{\rm B}$ solar-neutrino flux measured via $\nu\,e$ elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to $\nu_{\mu},\,\nu_{\tau}$ due to the cross-section difference, $\sigma(\nu_{\mu,\tau}\,e)\sim 0.16\sigma(\nu_e\,e)$. If the $^8{\rm B}$ solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of $\nu_e.$

$VALUE (10^{6} \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT
$2.33^{+0.08}_{-0.07}$ OUR AVERAGE				
$2.39^{+0.24}_{-0.23}{\pm}0.12$	¹⁶⁰ AHMAD	02	SNO	average flux
$2.32\!\pm\!0.03\!+\!0.08\\-0.07$	¹⁶¹ FUKUDA	01	SKAM	average flux

• • • We do not use the following data for averages, fits, limits, etc. • • •

$2.39 \!\pm\! 0.34 \! \substack{+0.16 \\ -0.14}$	¹⁶² AHMAD	01	SNO	average flux
$2.28 \!\pm\! 0.04 \! \substack{+ 0.08 \\ - 0.07}$	¹⁶¹ FUKUDA	01	SKAM	day flux
$2.36 \!\pm\! 0.04 \! \substack{+ 0.08 \\ - 0.07}$	¹⁶¹ FUKUDA	01	SKAM	night flux
$2.80\!\pm\!0.19\!\pm\!0.33$	¹⁶³ FUKUDA	96	KAMI	average flux
2.70 ± 0.27	¹⁶³ FUKUDA	96	KAMI	day flux
$2.87^{+0.27}_{-0.26}$	¹⁶³ FUKUDA	96	KAMI	night flux

- ¹⁶⁰AHMAD 02 reports the ⁸B solar-neutrino flux measured via νe elastic scattering above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results.
- ¹⁶¹ FUKUDA 01 results are for 1258 live days with Super-Kamiokande between May 31, 1996 and October 6, 2000, and replace FUKUDA 99 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV).
- 162 AHMAD 01 reports the 8 B solar-neutrino flux measured via νe elastic scattering above the kinetic energy threshold of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001.
- 163 FUKUDA 96 results are for a total of 2079 live days with Kamiokande II and III from January 1987 through February 1995, covering the entire solar cycle 22, with threshold $E_{
 m
 ho} > 9.3$ MeV (first 449 days), > 7.5 MeV (middle 794 days), and > 7.0 MeV (last 836 days). These results update the HIRATA 90 result for the average ⁸B solar-neutrino flux and HIRATA 91 result for the day-night variation in the ⁸B solar-neutrino flux. The total data sample was also analyzed for short-term variations: within experimental errors, no strong correlation of the solar-neutrino flux with the sunspot numbers was found.

 $\phi_{\textit{CC}}$ (⁸B) ^{8}B solar-neutrino flux measured with charged-current reaction which is sensitive exclusively to ν_{ρ} .

<u>VALUE $(10^6 \text{ cm}^{-2} \text{s}^{-1})$</u>	DOCUMENT ID		TECN	COMMENT
$1.76^{+0.06}_{-0.05}\!\pm\!0.09$	¹⁶⁴ AHMAD	02	SNO	average flux
$\bullet \bullet \bullet$ We do not use the follow	ing data for averages	s, fits	, limits,	etc. • • •
$1.75 \pm 0.07 {+0.12 \atop -0.11} \pm 0.05$	¹⁶⁵ AHMAD	01	SNO	average flux

¹⁶⁴ AHMAD 02 reports the SNO result of the ⁸B solar-neutrino flux measured with chargedcurrent reaction on deuterium, $\nu_e d \rightarrow ppe^-$, above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results.

¹⁶⁵ AHMAD 01 reports the first SNO result of the ⁸B solar-neutrino flux measured with the charged-current reaction on deuterium, $\nu_e d \rightarrow ppe^-$, above the kinetic energy threshold of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001.

 ϕ_{NC} (⁸B) ⁸B solar neutrino flux measured with neutral-current reaction, which is equally sensitive to ν_e , ν_μ , and ν_τ .

<u>VALUE $(10^{6} \text{ cm}^{-2} \text{s}^{-1})$</u>	DOCUMENT ID		TECN	COMMENT
$5.09^{+0.44}_{-0.43}{}^{+0.46}_{-0.43}$	¹⁶⁶ AHMAD	02	SNO	average flux
HTTP://PDG.LBL.GOV	Page 38		Creat	ed: 12/17/2002 10:45

Citation: K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: http://pdg.lbl.gov)

 166 AHMAD 02 reports the first SNO result of the 8 B solar-neutrino flux measured with the neutral-current reaction on deuterium, $\nu_{\ell} d \rightarrow n p \nu_{\ell}$, above the neutral-current reaction threshold of 2.2 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001.

$\phi_{ u_{\mu}+ u_{ au}}$ (⁸B)

Nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the ⁸B solar-neutrino flux.

$VALUE (10^{6} \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT		
$3.41 \!\pm\! 0.45 \!+\! 0.48 \\ - 0.45$	¹⁶⁷ AHMAD	02	SNO	Derived from SNO ϕ_{CC} , ϕ_{ES} , and ϕ_{NC}		
\bullet \bullet We do not use the follow	ing data for average	s, fits	s, limits,	etc. • • •		
3.69 ± 1.13	¹⁶⁸ AHMAD	01		Derived from SNO+SuperKam, water Cherenkov		
167 A HMAD 02 deduced the perpendiction flavor active poutring component (y_{1}) and y_{2}) in the						

AHMAD 02 deduced the nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the

 8 B solar-neutrino flux, by combining the charged-current result, the νe elastic-scattering result and the neutral-current result. 168 AHMAD 01 deduced the nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in

the ⁸B solar-neutrino flux, by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande νe elastic-scattering result (FUKUDA 01).

Total Flux of Active ⁸B Solar Neutrinos

Total flux of active neutrinos (ν_e , ν_μ , and ν_τ).

$VALUE (10^{6} \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT
$5.09^{+0.44}_{-0.43}{}^{+0.46}_{-0.43}$	¹⁶⁹ AHMAD	02	SNO	Direct measurement from ϕ_{NC}
5.44 ± 0.99	¹⁷⁰ AHMAD	01		Derived from SNO+SuperKam, water Cherenkov

¹⁶⁹ AHMAD 02 determined the total flux of active ⁸B solar neutrinos by directly measuring the neutral-current reaction, $\nu_{\ell}d \rightarrow n \rho \nu_{\ell}$, which is equally sensitive to ν_{e} , ν_{μ} , and ν_{τ} .

 170 AHMAD 01 deduced the total flux of active 8 B solar neutrinos by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande νe elastic-scattering result (FUKUDA 01).

Day-Night Asymmetry (⁸B)

 $A = (\phi_{\text{night}} - \phi_{\text{dav}}) / \phi_{\text{average}}$

VALUE	DOCUMENT ID		TECN	COMMENT
$0.14 \ \pm 0.063 {+} {0.015 \atop -} {0.014}$	¹⁷¹ AHMAD	02 B	SNO	Derived from SNO ϕ_{CC}
$0.07 \ \pm 0.049 {+0.013 \atop -0.012}$	¹⁷² AHMAD	02 B	SNO	Constraint of no ϕ_{NC} asymmetry
$0.033 {\pm} 0.022 {+} 0.013 \\ {-} 0.012$	¹⁷³ FUKUDA	01	SKAM	Based on ϕ_{ES}

- ¹⁷¹ AHMAD 02B results are based on the charged-current interactions recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively.
- ¹⁷² AHMAD 02B results are derived from the charged-current interactions, neutral-current interactions, and νe elastic scattering, with the total flux of active neutrinos constrained to have no asymmetry. The data were recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively.
- ¹⁷³ FUKUDA 01 results are for 1258 live days with the Super-Kamiokande between May 31, 1996 and October 6, 2000, and replace FUKUDA 99 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV).

ϕ_{ES} (hep)

hep solar-neutrino flux measured via νe elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , ν_{τ} due to the cross-section difference, $\sigma(\nu_{\mu,\tau} e) \sim 0.16\sigma(\nu_e e)$. If the hep solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of ν_e .

VALUE $(10^3 \text{ cm}^{-2} \text{s}^{-1})$	CL%	DOCUMENT ID		TECN
<40	90	¹⁷⁴ FUKUDA	01	SKAM

¹⁷⁴ FUKUDA 01 result is obtained from the recoil electron energy window of 18–21 MeV, and the obtained 90% confidence level upper limit is 4.3 times the BP2000 Standard-Solar-Model prediction.

REFERENCES FOR Neutrino Mixing

AHMAD	02	nucl-ex/0204008	Q.R. Ahmad <i>et al.</i>	(SNO	Collab.)
PRL (to be	publ.)			
AHMAD	02B	nucl-ex/0204009	Q.R. Ahmad <i>et al.</i>	(SNO	Collab.)
PRL (to be	publ.)			
AGUILAR	01	PR D64 112007	A. Aguilar <i>et al.</i>	(LSND	Collab.)
AHMAD	01	PRL 87 071301	Q.R. Ahmad <i>et al.</i>	(SNO	Collab.)
AMBROSIO	01	PL B517 59	M. Ambrosio <i>et al.</i>	(MACRO	Collab.)
ASTIER	01B	NP B611 3	P. Astier <i>et al.</i>	(NOMAD	Collab.)
BOEHM	01	PR D64 112001	F. Boehm <i>et al.</i>		
ESKUT	01	PL B497 8	E. Eskut <i>et al.</i>	(CHORUS	Collab.)
FUKUDA	01	PRL 86 5651	S. Fukuda <i>et al.</i>	(Super-Kamiokande	Collab.)
ALTMANN	00	PL B490 16	M. Altmann <i>et al.</i>	(GNO	Collab.)
AMBROSIO	00	PL B478 5	M. Ambrosio <i>et al.</i>	(MACRO	Collab.)
BOEHM	00	PRL 84 3764	F. Boehm <i>et al.</i>		,
BOEHM	00C	PR D62 072002	F. Boehm <i>et al.</i>		
FUKUDA	00	PRL 85 3999	S. Fukuda <i>et al.</i>	(Super-Kamiokande	Collab.)
ABDURASHI	99B	PR C60 055801	J.N. Abdurashitov et al.	(SAGE	Collab.)
ALLISON	99	PL B449 137	W.W.M. Allison <i>et al.</i>	(Soudan 2	Collab.)
APOLLONIO	99	PL B466 415	M. Apollonio <i>et al.</i>	(CHOOZ	Collab.)
Also	00	PL B472 434 erratum	M. Apollonio <i>et al.</i>	(CHOOZ	Collab.)
FUKUDA	99	PRL 82 1810	Y. Fukuda <i>et al.</i>	(Super-Kamiokande	Collab.)
FUKUDA	99C	PRL 82 2644	Y. Fukuda <i>et al.</i>	(Super-Kamiokande	Collab.)
FUKUDA	99D	PL B467 185	Y. Fukuda <i>et al.</i>	(Super-Kamiokande	Collab.)
HAMPEL	99	PL B447 127	W. Hampel <i>et al.</i>	(GALLEX	Collab.)
JUNK	99	NIM A434 435	T. Junk		
NAPLES	99	PR D59 031101	D. Naples <i>et al.</i>	(CCFR	Collab.)
ALTEGOER	98B	PL B431 219	S. Altegoer <i>et al.</i>	(NOMAD	Collab.)
AMBROSIO	98	PL B434 451	M. Ambrosio <i>et al.</i>	(MACRO	Collab.)
APOLLONIO	98	PL B420 397	M. Apollonio <i>et al.</i>	(CHOOZ	Collab.)
ARMBRUSTER	98	PR C57 3414	B. Armbruster <i>et al.</i>	(KARMEN	Collab.)
ATHANASSO	98	PRL 81 1774	C. Athanassopoulos et al.	(LSND	Collab.)
ATHANASSO	98B	PR C58 2489	C. Athanassopoulos et al.	(LSND	Collab.)
CLEVELAND	98	APJ 496 505	B.T. Cleveland et al.	(Homestake	Collab.)
ESKUT	98	PL B424 202	E. Eskut <i>et al.</i>	(CHORUS	
ESKUT	98B	PL B434 205	E. Eskut <i>et al.</i>	(CHORUS	Collab.)

HTTP://PDG.LBL.GOV

Page 40

Created: 12/17/2002 10:45

FELDMAN	98	PR D57 3873	G.J. Feldman, R.D. Cousin	
FUKUDA	98	PL B433 9	Y. Fukuda <i>et al.</i>	(Super-Kamiokande Collab.)
FUKUDA	98C	PRL 81 1562	Y. Fukuda <i>et al.</i>	(Super-Kamiokande Collab.)
FUKUDA	98E	PL B436 33	Y. Fukuda <i>et al.</i>	(Super-Kamiokande Collab.)
HAMPEL	98	PL B420 114	W. Hampel <i>et al.</i>	(GALLEX Collab.)
HATAKEYAMA		PRL 81 2016	S. Hatakeyama <i>et al.</i>	(Kamiokande Collab.)
OYAMA	98	PR D57 R6594	Y. Oyama	
ALLISON	97	PL B391 491	W.W.M. Allison <i>et al.</i>	(Soudan 2 Collab.)
CLARK	97	PRL 79 345	R. Clark <i>et al.</i>	(IMB Collab.)
ROMOSAN	97 06	PRL 78 2912	A. Romosan <i>et al.</i>	(CCFR Collab.)
ATHANASSO ATHANASSO		PR C54 2685 PRL 77 3082	C. Athanassopoulos <i>et al.</i>	(LSND Collab.)
	90D 96	PL B369 39	C. Athanassopoulos <i>et al.</i> A.A. Borisov <i>et al.</i>	(LSND Collab.) (SERP, JINR)
BORISOV FUKUDA	90 96	PRL 77 1683	Y. Fukuda <i>et al.</i>	(Kamiokande Collab.)
FUKUDA	90 96B	PL B388 397	Y. Fukuda <i>et al.</i>	(Kamiokande Collab.)
GREENWOOD		PR D53 6054	Z.D. Greenwood <i>et al.</i>	(UCI, SVR, SCUC)
HAMPEL	96	PL B388 384	W. Hampel <i>et al.</i>	(GALLEX Collab.)
LOVERRE	96	PL B370 156	P.F. Loverre	(GREEER Conab.)
ACHKAR	95	NP B434 503		SING, SACLD, CPPM, CDEF+)
AHLEN	95	PL B357 481	S.P. Ahlen <i>et al.</i>	(MACRO Collab.)
ATHANASSO		PRL 75 2650	C. Athanassopoulos <i>et al.</i>	(LSND Collab.)
BAHCALL	95	PL B348 121	J.N. Bahcall, P.I. Krastev,	
DAUM	95	ZPHY C66 417	K. Daum <i>et al.</i>	(FREJUS Collab.)
HILL	95	PRL 75 2654	J.E. Hill	(PENN)
MCFARLAND	95	PRL 75 3993	K.S. McFarland <i>et al.</i>	(CCFR Collab.)
VYRODOV	95	JETPL 61 163	V.N. Vyrodov <i>et al.</i>	(KIAE, LAPP, CDEF)
		Translated from Z		
ABDURASHI	94	PL B328 234	J.N. Abdurashitov <i>et al.</i>	(SAGE Collab.)
DECLAIS	94	PL B338 383	Y. Declais <i>et al.</i>	
FUKUDA	94	PL B335 237	Y. Fukuda <i>et al.</i>	(Kamiokande Collab.)
SMIRNOV	94	PR D49 1389	A.Y. Smirnov, D.N. Sperge	
VIDYAKIN	94	JETPL 59 390	G.S. Vidyakin <i>et al.</i>	(KIAE)
VILAIN	94C	Translated from Z ZPHY C64 539	.ETFP 59 304. P. Vilain <i>et al.</i>	(CHARM II Collab.)
FREEDMAN	94C 93	PR D47 811	S.J. Freedman <i>et al.</i>	(LAMPF E645 Collab.)
GRUWE	93 93	PL B309 463	M. Gruwe <i>et al.</i>	(CHARM II Collab.)
BECKER-SZ	93 92	PRL 69 1010	R.A. Becker-Szendy <i>et al.</i>	(IMB Collab.)
BECKER-SZ	92 92B	PR D46 3720	R.A. Becker-Szendy <i>et al.</i>	(IMB Collab.)
BEIER	92D 92	PL B283 446	E.W. Beier <i>et al.</i>	(KAM2 Collab.)
Also	94	PTRSL A346 63	E.W. Beier, E.D. Frank	(PENN)
BORODOV	92	PRL 68 274	L. Borodovsky <i>et al.</i>	(COLU, JHU, ILL)
HIRATA	92	PL B280 146	K.S. Hirata <i>et al.</i>	(Kamiokande II Collab.)
KETOV	92	JETPL 55 564	S.N. Ketov <i>et al.</i>	(KIAE)
		Translated from Z		(
CASPER	91	PRL 66 2561	D. Casper et al.	(IMB Collab.)
HIRATA	91	PRL 66 9	K.S. Hirata <i>et al.</i>	(Kamiokande II Collab.)
KUVSHINN	91	JETPL 54 253	A.A. Kuvshinnikov <i>et al.</i>	(KIAE)
BATUSOV	90B	ZPHY C48 209	Y.A. Batusov et al.	(JINR, ITEP, SERP)
BERGER	90B	PL B245 305	C. Berger <i>et al.</i>	(FREJUS Collab.)
HIRATA	90	PRL 65 1297	K.S. Hirata <i>et al.</i>	
				(Kamiokande II Collab.)
VIDYAKIN	90	JETP 71 424	G.S. Vidyakin et al.	(Kamiokande II Collab.) (KIAE)
		Translated from Z	G.S. Vidyakin <i>et al.</i> ETF 98 764.	(KIAE)
AGLIETTA	89	Translated from Z EPL 8 611	G.S. Vidyakin <i>et al.</i> ETF 98 764. M. Aglietta <i>et al.</i>	(KIAE) (FREJUS Collab.)
AGLIETTA BAHCALL	89 89	Translated from Z EPL 8 611 Neutrino Astrophy	G.S. Vidyakin <i>et al.</i> ETF 98 764. M. Aglietta <i>et al.</i>	(KIAE)
AGLIETTA BAHCALL Cambridge	89 89 Unive	Translated from Z EPL 8 611 Neutrino Astrophy sity Press	G.S. Vidyakin <i>et al.</i> IETF 98 764. M. Aglietta <i>et al.</i> /sics J.N. Bahcall	(KIAE) (FREJUS Collab.) (IAS)
AGLIETTA BAHCALL Cambridge BLUMENFELD	89 89 Unive 89	Translated from Z EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237	G.S. Vidyakin <i>et al.</i> ETF 98 764. M. Aglietta <i>et al.</i> /sics J.N. Bahcall B.J. Blumenfeld <i>et al.</i>	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS	89 89 Unive 89 89	Translated from Z EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467	G.S. Vidyakin <i>et al.</i> 2ETF 98 764. M. Aglietta <i>et al.</i> rsics J.N. Bahcall B.J. Blumenfeld <i>et al.</i> R. Davis, A.K. Mann, L. V	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA	89 89 Unive 89 89 89	Translated from Z EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481	G.S. Vidyakin <i>et al.</i> ETF 98 764. M. Aglietta <i>et al.</i> rsics J.N. Bahcall B.J. Blumenfeld <i>et al.</i> R. Davis, A.K. Mann, L. V Y. Oyama <i>et al.</i>	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS	89 89 Unive 89 89	Translated from Z EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213	G.S. Vidyakin <i>et al.</i> 2ETF 98 764. M. Aglietta <i>et al.</i> rsics J.N. Bahcall B.J. Blumenfeld <i>et al.</i> R. Davis, A.K. Mann, L. V	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA	89 89 Unive 89 89 89	Translated from Z EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213	G.S. Vidyakin <i>et al.</i> 2ETF 98 764. M. Aglietta <i>et al.</i> rsics J.N. Bahcall B.J. Blumenfeld <i>et al.</i> R. Davis, A.K. Mann, L. V Y. Oyama <i>et al.</i> A.I. Afonin <i>et al.</i>	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA AFONIN	89 89 Unive 89 89 89 89 88	Translated from Z EPL 8 611 Neutrino Astrophy rsity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213 Translated from Z	G.S. Vidyakin <i>et al.</i> 2ETF 98 764. M. Aglietta <i>et al.</i> rsics J.N. Bahcall B.J. Blumenfeld <i>et al.</i> R. Davis, A.K. Mann, L. V Y. Oyama <i>et al.</i> A.I. Afonin <i>et al.</i> 2ETF 94 1, issue 2.	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.) (KIAE)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA AFONIN AMMOSOV	89 89 Unive 89 89 89 88 88	Translated from Z EPL 8 611 Neutrino Astrophy rsity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213 Translated from Z ZPHY C40 487	G.S. Vidyakin et al. 2ETF 98 764. M. Aglietta et al. sics J.N. Bahcall B.J. Blumenfeld et al. R. Davis, A.K. Mann, L. V Y. Oyama et al. A.I. Afonin et al. 2ETF 94 1, issue 2. V.V. Ammosov et al.	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.) (KIAE) (SKAT Collab.)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA AFONIN AMMOSOV BERGSMA	89 89 89 89 89 89 88 88 88	Translated from Z EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213 Translated from Z ZPHY C40 487 ZPHY C40 171 PR D38 768 PRL 61 1811	G.S. Vidyakin et al. 2ETF 98 764. M. Aglietta et al. sics J.N. Bahcall B.J. Blumenfeld et al. R. Davis, A.K. Mann, L. V Y. Oyama et al. A.I. Afonin et al. 2ETF 94 1, issue 2. V.V. Ammosov et al. F. Bergsma et al.	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.) (KIAE) (SKAT Collab.) (CHARM Collab.)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA AFONIN AMMOSOV BERGSMA BIONTA	89 89 89 89 89 89 88 88 88 88 88	Translated from Z EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213 Translated from Z ZPHY C40 487 ZPHY C40 171 PR D38 768	G.S. Vidyakin et al. ETF 98 764. M. Aglietta et al. rsics J.N. Bahcall B.J. Blumenfeld et al. R. Davis, A.K. Mann, L. V Y. Oyama et al. A.I. Afonin et al. ETF 94 1, issue 2. V.V. Ammosov et al. F. Bergsma et al. R.M. Bionta et al.	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.) (KIAE) (SKAT Collab.) (CHARM Collab.) (IMB Collab.)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA AFONIN AMMOSOV BERGSMA BIONTA DURKIN	89 89 Unive 89 89 89 88 88 88 88 88 88 88	Translated from 2 EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213 Translated from 2 ZPHY C40 487 ZPHY C40 487 ZPHY C40 171 PR D38 768 PRL 61 1811 PL B206 711 JETPL 45 247	G.S. Vidyakin et al. 2ETF 98 764. M. Aglietta et al. sics J.N. Bahcall B.J. Blumenfeld et al. R. Davis, A.K. Mann, L. V Y. Oyama et al. A.I. Afonin et al. 2ETF 94 1, issue 2. V.V. Ammosov et al. F. Bergsma et al. R.M. Bionta et al. L.S. Durkin et al. P.F. Loverre A.I. Afonin et al.	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.) (KIAE) (SKAT Collab.) (CHARM Collab.) (IMB Collab.) (OSU, ANL, CIT+)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA AFONIN AMMOSOV BERGSMA BIONTA DURKIN LOVERRE AFONIN	89 89 Unive 89 89 88 88 88 88 88 88 88 88 88 88 88	Translated from Z EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213 Translated from Z ZPHY C40 487 ZPHY C40 487 ZPHY C40 171 PR D38 768 PRL 61 1811 PL B206 711 JETPL 45 247 Translated from Z	G.S. Vidyakin et al. 2ETF 98 764. M. Aglietta et al. prices J.N. Bahcall B.J. Blumenfeld et al. R. Davis, A.K. Mann, L. V Y. Oyama et al. A.I. Afonin et al. 2ETF 94 1, issue 2. V.V. Ammosov et al. F. Bergsma et al. R.M. Bionta et al. L.S. Durkin et al. P.F. Loverre A.I. Afonin et al. 2ETFP 45 201.	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.) (KIAE) (SKAT Collab.) (CHARM Collab.) (IMB Collab.) (OSU, ANL, CIT+) (INFN) (KIAE)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA AFONIN AMMOSOV BERGSMA BIONTA DURKIN LOVERRE AFONIN AHRENS	89 89 89 89 88 88 88 88 88 88 88 88 88 8	Translated from Z EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213 Translated from Z ZPHY C40 487 ZPHY C40 487 ZPHY C40 487 ZPHY C40 171 PR D38 768 PRL 61 1811 PL B206 711 JETPL 45 247 Translated from Z PR D36 702	G.S. Vidyakin et al. ETF 98 764. M. Aglietta et al. rsics J.N. Bahcall B.J. Blumenfeld et al. R. Davis, A.K. Mann, L. V Y. Oyama et al. A.I. Afonin et al. ETF 94 1, issue 2. V.V. Ammosov et al. F. Bergsma et al. R.M. Bionta et al. L.S. Durkin et al. P.F. Loverre A.I. Afonin et al. ETFP 45 201. L.A. Ahrens et al.	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.) (KIAE) (SKAT Collab.) (CHARM Collab.) (IMB Collab.) (OSU, ANL, CIT+) (INFN) (KIAE) (BNL, BROW, UCI+)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA AFONIN AMMOSOV BERGSMA BIONTA DURKIN LOVERRE AFONIN AHRENS BOFILL	89 89 89 89 88 88 88 88 88 88 88 88 88 8	Translated from Z EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213 Translated from Z ZPHY C40 487 ZPHY C40 487 ZPHY C40 487 ZPHY C40 171 PR D38 768 PRL 61 1811 PL B206 711 JETPL 45 247 Translated from Z PR D36 702 PR D36 3309	G.S. Vidyakin et al. ETF 98 764. M. Aglietta et al. rsics J.N. Bahcall B.J. Blumenfeld et al. R. Davis, A.K. Mann, L. V Y. Oyama et al. A.I. Afonin et al. ETF 94 1, issue 2. V.V. Ammosov et al. F. Bergsma et al. R.M. Bionta et al. L.S. Durkin et al. P.F. Loverre A.I. Afonin et al. ETFP 45 201. L.A. Ahrens et al. J. Bofill et al.	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.) (KIAE) (SKAT Collab.) (CHARM Collab.) (IMB Collab.) (OSU, ANL, CIT+) (INFN) (KIAE) (BNL, BROW, UCI+) (MIT, FNAL, MSU)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA AFONIN AMMOSOV BERGSMA BIONTA DURKIN LOVERRE AFONIN AHRENS BOFILL LOSECCO	89 89 89 89 88 88 88 88 88 88 88 88 88 8	Translated from 2 EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213 Translated from 2 ZPHY C40 487 ZPHY C40 487 ZPHY C40 487 ZPHY C40 171 PR D38 768 PRL 61 1811 PL B206 711 JETPL 45 247 Translated from 2 PR D36 702 PR D36 3309 PL B184 305	G.S. Vidyakin et al. ETF 98 764. M. Aglietta et al. rsics J.N. Bahcall B.J. Blumenfeld et al. R. Davis, A.K. Mann, L. V Y. Oyama et al. A.I. Afonin et al. ETF 94 1, issue 2. V.V. Ammosov et al. F. Bergsma et al. R.M. Bionta et al. L.S. Durkin et al. P.F. Loverre A.I. Afonin et al. 2ETFP 45 201. L.A. Ahrens et al. J. Bofill et al. J.M. LoSecco et al.	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.) (KIAE) (SKAT Collab.) (CHARM Collab.) (IMB Collab.) (OSU, ANL, CIT+) (INFN) (KIAE) (BNL, BROW, UCI+) (MIT, FNAL, MSU) (IMB Collab.)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA AFONIN AMMOSOV BERGSMA BIONTA DURKIN LOVERRE AFONIN AHRENS BOFILL LOSECCO TALEBZADEH	89 89 89 89 88 88 88 88 88 88 88 88 88 8	Translated from 2 EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213 Translated from 2 ZPHY C40 487 ZPHY C40 487 ZPHY C40 171 PR D38 768 PRL 61 1811 PL B206 711 JETPL 45 247 Translated from 2 PR D36 702 PR D36 3309 PL B184 305 NP B291 503	G.S. Vidyakin et al. ETF 98 764. M. Aglietta et al. rsics J.N. Bahcall B.J. Blumenfeld et al. R. Davis, A.K. Mann, L. V Y. Oyama et al. A.I. Afonin et al. ETF 94 1, issue 2. V.V. Ammosov et al. F. Bergsma et al. R.M. Bionta et al. L.S. Durkin et al. P.F. Loverre A.I. Afonin et al. P.F. Loverre A.I. Afonin et al. J. Bofill et al. J. Bofill et al. J.M. LoSecco et al. M. Talebzadeh et al.	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.) (KIAE) (SKAT Collab.) (CHARM Collab.) (IMB Collab.) (OSU, ANL, CIT+) (INFN) (KIAE) (BNL, BROW, UCI+) (MIT, FNAL, MSU) (IMB Collab.) (BEBC WA66 Collab.)
AGLIETTA BAHCALL Cambridge BLUMENFELD DAVIS OYAMA AFONIN AMMOSOV BERGSMA BIONTA DURKIN LOVERRE AFONIN AHRENS BOFILL LOSECCO	89 89 89 89 88 88 88 88 88 88 88 88 88 8	Translated from 2 EPL 8 611 Neutrino Astrophy sity Press PRL 62 2237 ARNPS 39 467 PR D39 1481 JETP 67 213 Translated from 2 ZPHY C40 487 ZPHY C40 487 ZPHY C40 487 ZPHY C40 171 PR D38 768 PRL 61 1811 PL B206 711 JETPL 45 247 Translated from 2 PR D36 702 PR D36 3309 PL B184 305	G.S. Vidyakin et al. 2ETF 98 764. M. Aglietta et al. rsics J.N. Bahcall B.J. Blumenfeld et al. R. Davis, A.K. Mann, L. V. Y. Oyama et al. A.I. Afonin et al. 2ETF 94 1, issue 2. V.V. Ammosov et al. F. Bergsma et al. R.M. Bionta et al. L.S. Durkin et al. P.F. Loverre A.I. Afonin et al. P.F. Loverre A.I. Afonin et al. J. Bofill et al. J. M. LoSecco et al. M. Talebzadeh et al. G.S. Vidyakin et al.	(KIAE) (FREJUS Collab.) (IAS) (COLU, ILL, JHU) Volfenstein (BNL, PENN+) (Kamiokande II Collab.) (KIAE) (SKAT Collab.) (CHARM Collab.) (IMB Collab.) (OSU, ANL, CIT+) (INFN) (KIAE) (BNL, BROW, UCI+) (MIT, FNAL, MSU) (IMB Collab.)

HTTP://PDG.LBL.GOV Page 41

Created: 12/17/2002 10:45

ABRAMOWICZ AFONIN	2 86 86	PRL 57 298	H. Abramowicz <i>et al.</i> A.I. Afonin <i>et al.</i>	(CDHS Collab.)
AFONIN	00	JETPL 44 142 Translated from ZETF		(KIAE)
ALLABY	86	PL B177 446	J.V. Allaby <i>et al.</i>	(CHARM Collab.)
ANGELINI	86	PL B179 307	C. Angelini et al.	(PISA, `ATHU, PADO+́)
BERNARDI	86B	PL B181 173	G. Bernardi <i>et al.</i>	(CURIN, INFN, CDEF+)
BRUCKER	86	PR D34 2183	E.B. Brucker et al.	(RUTG, BNL, COLU)
USHIDA	86C	PRL 57 2897	N. Ushida <i>et al.</i>	(FNAL E531 Collab.)
ZACEK	86	PR D34 2621	G. Zacek <i>et al.</i>	(CÌT-SIN-TUM Collab.)
AFONIN	85	JETPL 41 435	A.I. Afonin <i>et al.</i>	` (KIAE)
		Translated from ZETF	P 41 355.	· · · · · · · · · · · · · · · · · · ·
Also	85B	JETPL 42 285	A.I. Afonin <i>et al.</i>	(KIAE)
	~-	Translated from ZETF		
AHRENS	85	PR D31 2732	L.A. Ahrens <i>et al.</i>	(BNL, BROW, KEK+)
BELIKOV	85	SJNP 41 589 Translated from YAF 4	S.V. Belikov <i>et al.</i>	(SERP)
STOCKDALE	85	ZPHY C27 53	I.E. Stockdale <i>et al.</i>	(ROCH, CHIC, COLU+)
ZACEK	85	PL 164B 193	V. Zacek <i>et al.</i>	(MUNI, CIT, SIN)
BALLAGH	84	PR D30 2271	H.C. Ballagh <i>et al.</i>	(UCB, LBL, FNAL+)
BERGSMA	84	PL 142B 103	F. Bergsma <i>et al.</i>	(CHARM Collab.)
CAVAIGNAC	84	PL 148B 387	J.F. Cavaignac <i>et al.</i>	(ISNG, LAPP)
DYDAK	84	PL 134B 281	F. Dydak <i>et al.</i>	(CERN, DORT, HEIDH, SACL+)
GABATHULER	-	PL 138B 449	K. Gabathuler <i>et al.</i>	(CIT, SIN, MUNI)
STOCKDALE	84	PRL 52 1384	I.E. Stockdale <i>et al.</i>	(ROCH, CHIC, COLU+)
AFONIN	83	JETPL 38 436	A.I. Afonin <i>et al.</i>	(KOCH, CHIC, COLOT) (KIAE)
	00	Translated from ZETF		((((,()))))
BELENKII	83	JETPL 38 493	S.N. Belenky et al.	(KIAE)
		Translated from ZETF	P 38 406.	· · · · · · · · · · · · · · · · · · ·
BELIKOV	83	JETPL 38 661	S.V. Belikov et al.	(SERP)
TN (1 O D	~~	Translated from ZETF		
TAYLOR	83	PR D28 2705	G.N. Taylor <i>et al.</i>	(HAWA, LBL, FNAL)
COOPER	82	PL 112B 97	A.M. Cooper <i>et al.</i>	(RL)
VUILLEUMIER		PL 114B 298	J.L. Vuilleumier <i>et al.</i>	(CIT, SIN, MUNI)
ARMENISE	81	PL 100B 182	N. Armenise <i>et al.</i>	(BARI, CERN, MILA+)
ASRATYAN	81	PL 105B 301	A.E. Asratyan <i>et al.</i>	(ITEP, FNAL, SERP+)
BAKER	81	PRL 47 1576	N.J. Baker <i>et al.</i>	(BNL, COLU)
Also	78	PRL 40 144	A.M. Cnops <i>et al.</i>	(BNL, COLU)
BOLIEV	81	SJNP 34 787 Translated from YAF 3	M.M. Boliev <i>et al.</i>	(INRM)
DEDEN	81	PL 98B 310	H. Deden <i>et al.</i>	(BEBC Collab.)
ERRIQUEZ	81	PL 102B 73	O. Erriquez <i>et al.</i>	(BARI, BIRM, BRUX+)
KWON	81	PR D24 1097	H. Kwon <i>et al.</i>	(CIT, ISNG, MUNI)
NEMETHY	81B	PR D23 262	P. Nemethy <i>et al.</i>	(YALE, LBL, LASL+)
SILVERMAN	81	PRL 46 467	D. Silverman, A. Soni	(UCI, UCLA)
USHIDA	81	PRL 47 1694	N. Ushida <i>et al.</i>	(AICH, FNAL, KOBE, SEOU+)
AVIGNONE	80	PR C22 594	F.T. Avignone, Z.D. G	
BOEHM	80	PL 97B 310	F. Boehm <i>et al.</i>	(ILLG, CIT, ISNG, MUNI)
FRITZE	80	PL 96B 427		CH3, BONN, CERN, LOIC, OXF+)
REINES	80	PRL 45 1307	F. Reines, H.W. Sobel,	
Also	59	PR 113 273	F. Reines, C.L. Cowan	(LASL)
Also	66	PR 142 852	F.A. Nezrick, F. Reines	í (ČASE)
Also	76	PRL 37 315	F. Reines, H.S. Gurr, H	
DAVIS	79	PR C19 2259	R. Davis <i>et al.</i>	(CIT)
BLIETSCHAU	78	NP B133 205	J. Blietschau <i>et al.</i>	(Gargamelle Collab.)
CROUCH	78	PR D18 2239	M.F. Crouch et al.	(ČASĚ, UCI, WITW)
BELLOTTI	76	LNC 17 553	E. Bellotti <i>et al.</i>	(MILA)