Heavy Charged Lepton Searches

Charged Heavy Lepton MASS LIMITS

Sequential Charged Heavy Lepton (L^\pm) MASS LIMITS

These experiments assumed that a fourth generation L^\pm decayed to a fourth generation ν_L (or L^0) where ν_L was stable, or that L^\pm decays to a light ν_ℓ via mixing.

See the “Quark and Lepton Compositeness, Searches for” Listings for limits on radiatively decaying excited leptons, i.e. $\ell^* \rightarrow \ell \gamma$. See the “WIMPs and other Particle Searches” section for heavy charged particle search limits in which the charged particle could be a lepton.

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>100.8</td>
<td>95</td>
<td>ACHARD</td>
<td>01B</td>
<td>L3</td>
</tr>
<tr>
<td>>101.9</td>
<td>95</td>
<td>ACHARD</td>
<td>01B</td>
<td>L3</td>
</tr>
<tr>
<td>> 81.5</td>
<td>95</td>
<td>ACKERSTAFF</td>
<td>98C</td>
<td>OPAL</td>
</tr>
<tr>
<td>> 80.2</td>
<td>95</td>
<td>ACKERSTAFF</td>
<td>98C</td>
<td>OPAL</td>
</tr>
<tr>
<td>< 48 or > 61</td>
<td>95</td>
<td>ACCIARRI</td>
<td>96G</td>
<td>L3</td>
</tr>
<tr>
<td>> 63.9</td>
<td>95</td>
<td>ALEXANDER</td>
<td>96P</td>
<td>OPAL</td>
</tr>
<tr>
<td>> 63.5</td>
<td>95</td>
<td>BUSKULIC</td>
<td>96S</td>
<td>ALEP</td>
</tr>
<tr>
<td>> 65</td>
<td>95</td>
<td>BUSKULIC</td>
<td>96S</td>
<td>ALEP</td>
</tr>
<tr>
<td>none 10--225</td>
<td></td>
<td>2 AHMED</td>
<td>94</td>
<td>CNTR</td>
</tr>
<tr>
<td>none 12.6--29.6</td>
<td></td>
<td>KIM</td>
<td>91B</td>
<td>AMY</td>
</tr>
<tr>
<td>> 44.3</td>
<td>95</td>
<td>AKRAWY</td>
<td>90G</td>
<td>OPAL</td>
</tr>
<tr>
<td>none 0.5--10</td>
<td>95</td>
<td>RILES</td>
<td>90</td>
<td>MRK2</td>
</tr>
<tr>
<td>> 8</td>
<td>95</td>
<td>STOKER</td>
<td>89</td>
<td>MRK2</td>
</tr>
<tr>
<td>> 12</td>
<td>95</td>
<td>STOKER</td>
<td>89</td>
<td>MRK2</td>
</tr>
<tr>
<td>none 18.4--27.6</td>
<td></td>
<td>5 ABE</td>
<td>88</td>
<td>VNS</td>
</tr>
<tr>
<td>> 25.5</td>
<td>95</td>
<td>ADACHI</td>
<td>88B</td>
<td>TOPZ</td>
</tr>
<tr>
<td>none 1.5--22.0</td>
<td></td>
<td>BEHREND</td>
<td>88C</td>
<td>CELL</td>
</tr>
<tr>
<td>> 41</td>
<td>90</td>
<td>ALBAJAR</td>
<td>87B</td>
<td>UA1</td>
</tr>
<tr>
<td>> 22.5</td>
<td>95</td>
<td>ADEVA</td>
<td>85</td>
<td>MRKJ</td>
</tr>
<tr>
<td>> 18.0</td>
<td>95</td>
<td>BARTEL</td>
<td>83</td>
<td>JADE</td>
</tr>
<tr>
<td>none 4--14.5</td>
<td>95</td>
<td>BERGER</td>
<td>81B</td>
<td>PLUT</td>
</tr>
<tr>
<td>> 15.5</td>
<td>95</td>
<td>BRANDELIK</td>
<td>81</td>
<td>TASS</td>
</tr>
<tr>
<td>> 13.</td>
<td>95</td>
<td>AZIMOV</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>> 16.</td>
<td>95</td>
<td>BARBER</td>
<td>80B</td>
<td>CNTR</td>
</tr>
<tr>
<td>> 0.490</td>
<td></td>
<td>ROTEH</td>
<td>69</td>
<td>RVUE</td>
</tr>
</tbody>
</table>

1 ACCIARRI 96G assumes LEP result that the associated neutral heavy lepton mass > 40 GeV.
2 The AHMED 94 limits are from a search for neutral and charged sequential heavy leptons at HERA via the decay channels $L^- \rightarrow e\gamma$, $L^- \rightarrow \nu W^-$, $L^- \rightarrow eZ$; and $L^0 \rightarrow \nu\gamma$, $L^0 \rightarrow e^- W^+$, $L^- \rightarrow \nu Z$, where the W decays to $\ell\nu_\ell$, or to jets, and Z decays to $\ell^+\ell^-$ or jets.
3 RILES 90 limits were the result of a special analysis of the data in the case where the mass difference $m_{L^\pm} - m_{L^0}$ was allowed to be quite small, where L^0 denotes the neutrino.
into which the sequential charged lepton decays. With a slightly reduced $m_{L^{\pm}}$ range, the mass difference extends to about 4 GeV.

4 STOKER 89 (Mark II at PEP) gives bounds on charged heavy lepton (L^{\pm}) mass for the generalized case in which the corresponding neutral heavy lepton (L^{0}) in the SU(2) doublet is not of negligible mass.

5 ABE 88 search for L^{+} and L^{-} → hadrons looking for acoplanar jets. The bound is valid for $m_{L^{\pm}} < 10$ GeV.

6 ADACHI 88b search for hadronic decays giving acoplanar events with large missing energy. $E_{cm} = 52$ GeV.

7 Assumes associated neutrino is approximately massless.

8 ADEVA 85 analyze one-isolated-muon data and sensitive to $\tau < 10$ nanosec. Assume $B(\text{lepton}) = 0.30$. $E_{cm} = 40$–47 GeV.

9 BARTEL 83 limit is from PETRA $e^{+}e^{-}$ experiment with average $E_{cm} = 34.2$ GeV.

10 BERGER 81 is DESY DORIS and PETRA experiment. Looking for $e^{+}e^{-} \rightarrow L^{+}L^{-}$.

11 BRANDELIK 81 is DESY-PETRA experiment. Looking for $e^{+}e^{-} \rightarrow L^{+}L^{-}$.

12 AZIMOV 80 estimated probabilities for $M + N$ type events in $e^{+}e^{-} \rightarrow L^{+}L^{-}$ deducing semi-hadronic decay multiplicities of L from $e^{+}e^{-}$ annihilation data at $E_{cm} = (2/3)m_{L}$.

Obtained above limit comparing these with $e^{+}e^{-}$ data (BRANDELIK 80).

13 BARBER 80 looks for $e^{+}e^{-} \rightarrow L^{+}L^{-}$, $L \rightarrow \nu_{L}X$ with MARK-J at DESY-PETRA.

14 ROTHE 69 examines previous data on μ pair production and π and K decays.

Stable Charged Heavy Lepton (L^{\pm}) MASS LIMITS

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
</tr>
</thead>
<tbody>
<tr>
<td>>102.6</td>
<td>95</td>
<td>ACHARD 01B L3</td>
<td></td>
</tr>
<tr>
<td>• • • We do not use the following data for averages, fits, limits, etc. • • •</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>28.2</td>
<td>95</td>
<td>ADACHI 90C TOPZ</td>
<td></td>
</tr>
<tr>
<td>none 18.5–42.8</td>
<td>95</td>
<td>AKRAWY 90O OPAL</td>
<td></td>
</tr>
<tr>
<td>>26.5</td>
<td>95</td>
<td>DECAMP 90f ALEP</td>
<td></td>
</tr>
<tr>
<td>none m_{μ}–36.3</td>
<td>95</td>
<td>SODERSTROM90 MRK2</td>
<td></td>
</tr>
</tbody>
</table>

15 ADACHI 90C put lower limits on the mass of stable charged particles with electric charge Q satisfying $2/3 < Q/e < 4/3$ and with spin 0 or 1/2. We list here the special case for a stable charged heavy lepton.

Charged Long-Lived Heavy Lepton MASS LIMITS

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>CHG</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• • • We do not use the following data for averages, fits, limits, etc. • • •</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>0.1</td>
<td>16</td>
<td>ANSORGE 73b HBC</td>
<td>–</td>
<td>Long-lived</td>
<td></td>
</tr>
<tr>
<td>none 0.55–4.5</td>
<td>17</td>
<td>BUSHNIN 73 CNTR</td>
<td>–</td>
<td>Long-lived</td>
<td></td>
</tr>
<tr>
<td>none 0.2–0.92</td>
<td>18</td>
<td>BARNA 68 CNTR</td>
<td>–</td>
<td>Long-lived</td>
<td></td>
</tr>
<tr>
<td>none 0.97–1.03</td>
<td>18</td>
<td>BARNA 68 CNTR</td>
<td>–</td>
<td>Long-lived</td>
<td></td>
</tr>
</tbody>
</table>

16 ANSORGE 73b looks for electron pair production and electron-like Bremsstrahlung.

17 BUSHNIN 73 is SERPUKOV 70 GeV p experiment. Masses assume mean life above 7×10^{-10} and 3×10^{-8} respectively. Calculated from cross section (see “Charged Quasi-Stable Lepton Production Differential Cross Section” below) and 30 GeV muon pair production data.

18 BARNA 68 is SLAC photoproduction experiment.
Doubly-Charged Heavy Lepton MASS LIMITS

<table>
<thead>
<tr>
<th>VALUE (GeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>CHG</th>
</tr>
</thead>
<tbody>
<tr>
<td>none 1–9</td>
<td>90</td>
<td>19 CLARK</td>
<td>81 SPEC ++</td>
<td></td>
</tr>
</tbody>
</table>

19 CLARK 81 is FNAL experiment with 209 GeV muons. Bounds apply to \(\mu^p \) which couples with full weak strength to muon. See also section on “Doubly-Charged Lepton Production Cross Section.”

Doubly-Charged Lepton Production Cross Section

<table>
<thead>
<tr>
<th>VALUE ((\text{cm}^2))</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>CHG</th>
</tr>
</thead>
<tbody>
<tr>
<td><6. \times 10^{-38}</td>
<td>0</td>
<td>20 CLARK</td>
<td>81 SPEC ++</td>
<td></td>
</tr>
</tbody>
</table>

20 CLARK 81 is FNAL experiment with 209 GeV muon. Looked for \(\mu^+ + n \rightarrow P_{\mu}X, P^{0+} + P^{0+} \rightarrow 2\mu + \nu \). Above limits are for \(\sigma \times \text{BR} \) taken from their mass-dependence plot figure 2.

REFERENCES FOR Heavy Charged Lepton Searches

ACHARD 01B PL B517 75 P. Achard et al. (L3 Collab.)
ACKERSTAFF 98C EPJ C1 45 K. Ackerstaff et al. (OPAL Collab.)
ACCIARRI 96G PL B377 304 M. Acciarri et al. (L3 Collab.)
ALEXANDER 96P PL B385 433 G. Alexander et al. (OPAL Collab.)
BUSKULIC 96S PL B384 439 D. Buskulic et al. (ALEPH Collab.)
AHMED 94 PL B340 205 T. Ahmed et al. (H1 Collab.)
KIM 91B IJMP A6 2583 G.N. Kim et al. (AMY Collab.)
ADACHI 90C PL B244 352 I. Adachi et al. (TOPAZ Collab.)
AKRAWY 90G PL B240 250 M.Z. Akrawy et al. (OPAL Collab.)
AKRAWY 90O PL B252 290 M.Z. Akrawy et al. (OPAL Collab.)
DECAMP 90F PL B236 511 D. Decamp et al. (ALEPH Collab.)
RILES 90 PR D42 1 K. Riles et al. (Mark II Collab.)
SODERSTROM 90 PRL 64 2980 E. Soderstrom et al. (Mark II Collab.)
STOKER 89 PR D39 1811 D.P. Stoker et al. (Mark II Collab.)
ABE 88 PRL 61 915 K. Abe et al. (VENUS Collab.)
ADACHI 88B PR D37 1339 I. Adachi et al. (TOPAZ Collab.)
BEHRENDE 88C ZPHY C41 7 H.J. Behrend et al. (CELO Collab.)
ALBAJAR 87B PL B185 241 C. Albajar et al. (UA1 Collab.)
ADEVA 85 PL B152 439 B. Adeva et al. (Mark-J Collab.)
Also 84C PRPL 109 131 B. Adeva et al. (Mark-J Collab.)
BARTEL 83 PL B123B 353 W. Bartel et al. (JADE Collab.)
BERGER 81B PL B99B 489 C. Berger et al. (PLUTO Collab.)
BRANDELIK 81 PL B99B 163 R. Brandelik et al. (TASSO Collab.)
CLARK 81 PRL 64 2980 A.R. Clark et al. (UCB, LBL, FNAL+) (Mark II Collab.)
Also 82 PR D25 2762 W.H. Smith et al. (LBL, FNAL, PRIN)
AZIMOV 80 JETPL 32 664 Y.I. Azimov, V.A. Khoze (PNPI)
Translated from ZETF 32 677.
BARBER 80B PRL 45 1904 D.P. Barber et al. (Mark-J Collab.)
BRANDELIK 80 PRL 92B 199 R. Brandelik et al. (TASSO Collab.)
ANSORGE 73B PR D7 26 R.E. Ansonger et al. (CAVE)
BUSHNIN 73 NP B58 476 Y.B. Bushnin et al. (SERP)
Also 72 PL 42B 136 S.V. Golovkin et al. (SERP)
ROTHE 69 NP B10 241 K.W. Rothe, A.M. Wolsky (PENN)
BARN 68 PR 173 1391 A. Barna et al. (SLAC, STAN)

OTHER RELATED PAPERS

PERL 81 SLAC-PUB-2752 M.L. Perl (SLAC)

Physics in Collision Conference.