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Revised April 1998 by F. James (CERN); February 2000 by R. Cousins (UCLA); October
2001 by G. Cowan (RHUL).

A probability density function (p.d.f.) f(z;0) with known parameter 6 (or parameters
0 = (01,...,0y)) enables us to predict the frequency with which random data x will take
on a particular value (if discrete) or lie in a given range (if continuous). In statistics we
are concerned with the inverse problem, that of making inferences about the parameters
from observed data.

There are two main approaches to statistical inference, which we may call frequentist
and Bayesian. In frequentist statistics, probability is interpreted as the frequency of the
outcome of a repeatable experiment. Estimators are used to measure values for unknown
parameters, and confidence intervals can be constructed which contain the unknown true
value of a parameter with a specified probability. Statistical tests can be constructed
which, depending on the outcome of the experiment, accept or reject hypotheses. One
does not, however, define a probability for a parameter 8, which is treated as a constant
whose value may be unknown.

In Bayesian statistics, the interpretation of probability is more general and includes
degree of belief. One can then speak of a p.d.f. for a parameter 6, which expresses
one’s state of knowledge about where its true value lies. Bayesian methods allow for a
natural way to input additional information such as physical boundaries and subjective
information; in fact they require as input the prior p.d.f. for the parameters, i.e., the
degree of belief about the parameters’ values before carrying out the measurement. Using
Bayes’ theorem Eq. (30.4), the prior degree of belief is updated by the data from the
experiment.

For many inference problems, the frequentist and Bayesian approaches give the same
numerical answers, even though they are based on fundamentally different interpretations
of probability. For small data samples, however, and for measurements of a parameter
near a physical boundary, the different approaches may yield different results, so we are
forced to make a choice. For a discussion of Bayesian vs. non-Bayesian methods, see
References written by a statistician[1], by a physicist[2], or the more detailed comparison
in Ref. [3].

Frequentist statistics provides the usual tools for reporting objectively the outcome
of an experiment without needing to incorporate prior beliefs concerning the parameter
being measured or the theory being tested. Bayesian techniques, on the other hand, are
often used to treat systematic uncertainties, where the author’s subjective beliefs about,
say, the accuracy of the measuring device may enter. Bayesian statistics also provides a
useful framework for discussing the validity of different theoretical interpretations of the
data. This aspect of a measurement, however, will usually be treated separately from the
reporting of the result.
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2 31. Statistics

31.1. Parameter estimation

Here we review point estimation of parameters. An estimator ) (written with a hat) is
a function of the data whose value, the estimate, is intended as a meaningful guess for the
value of the parameter 6.

There is no fundamental rule dictating how an estimator must be constructed.
One tries therefore to choose that estimator which has the best properties. The most
important of these are (a) consistency, (b) bias, (c) efficiency, and (d) robustness.

(a) An estimator is said to be consistent if the estimate 7 converges to the true value 6
as the amount of data increases. This property is so important that it is possessed by all
commonly used estimators.

(b) The bias, b = E[6]—6, is the difference between the expectation value of the estimator
and the true value of the parameter. The expectation value is taken over a hypothetical
set of similar experiments in which 0 is constructed in the same way. When b = 0 the

estimator is said to be unbiased. The bias depends on the chosen metric, i.e., if 9 is an
unbiased estimator of ¢, then 2 is not in general an unbiased estimator for 82 If we

have an estimate b for the bias we can subtract it from  to obtain a new 8’ = @ — b. The
estimate b may, however, be subject to uncertainties that are larger than the bias itself.

(c) Efficiency is the inverse of the ratio of the variance V[#] to its minimum
possible value. Under rather general conditions, the minimum variance is given by the
Rao-Cramér-Frechet bound,

2
= (14 55 ) 110). 511

where

2
I(0)=FE (% Z In f(z;; 9)) (31.2)

is the Fisher information. The sum is over all data, assumed independent and distributed
according to the p.d.f. f(x;#), b is the bias, if any, and the allowed range of z must not
depend on 6.

The mean-squared error,

MSE = E[(6 — 6)%] = V[0] + b*, (31.3)

is a convenient quantity which combines the errors due to bias and variance.

(d) Robustness is the property of being insensitive to departures from assumptions in the
p.d.f. owing to factors such as noise.

For some common estimators the properties above are known exactly. More generally,
it is possible to evaluate them by Monte Carlo simulation. Note that they will often
depend on the unknown 6.
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31. Statistics 3

31.1.1. Estimators for mean, variance and median:

Suppose we have a set of NV independent measurements z; assumed to be unbiased
measurements of the same unknown quantity g with a common, but unknown, variance
2
o0“. Then

1 N
= Zmz (31.4)
=1
3 _ 2
0f =S Z;(:L’z 1t) (31.5)
1=

o~

are unbiased estimators of y and 2. The variance of fi is 02 /N and the variance of o2 is

> 1 N -3
20 _ . 4
V [0 } =¥ <m4 — ) , (31.6)

where my is the 4th central moment of x. For Gaussian distributed z; this becomes
204 /(N —1) for any N > 2, and for large N the standard deviation of & (the “error of
the error”) is o/v2N. Again if the z; are Gaussian, [ is an efficient estimator for x4 and

the estimators i and o2 are uncorrelated. Otherwise the arithmetic mean (31.4) is not
necessarily the most efficient estimator; this is discussed in more detail in [4] Sec. 8.7

If o2 is known, it does not improve the estimate fi, as can be seen from Eq. (31.4);
however, if p is known, substitute it for g in Eq. (31.5) and replace N — 1 by N to obtain
a somewhat better estimator of o2.

If the x; have different, known variances 02, then the weighted average

N

1
p=-— z;wle (31.7)
1=

is an unbiased estimator for  with a smaller variance than an unweighted average; here
w; = 1/0? and w = Y, w;. The standard deviation of fi is 1/y/w.

As an estimator for the median z,.q one can use the value Z,q such that half the
x; are below and half above (the sample median). If the sample median lies between
two observed values, it is set by convention halfway between them. If the p.d.f. of =
has the form f(x — p) and p is both mean and median, then for large N the variance
of the sample median approaches 1/[4N f2(0)], provided f(0) > 0. Although estimating
the median can often be more difficult computationally than the mean, the resulting
estimator is generally more robust, as it is insensitive to the exact shape of the tails of a
distribution.
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4 31. Statistics

31.1.2. The method of maximum likelihood:

“From a theoretical point of view, the most important general method of estimation
so far known is the method of mazimum likelihood” [5]. We suppose that a set of N
independently measured quantities x; came from a p.d.f. f(z;0), where 8 = (61,...,60,)
is set of n parameters whose values are unknown. The method of maximum likelihood
takes the estimators 8 to be those values of @ that maximize the likelihood function,

N

L(6) =[] f(=::6) . (31.8)

1=1

The likelihood function is the joint p.d.f. for the data, evaluated with the data obtained
in the experiment and regarded as a function of the parameters. Note that the likelihood
function is not a p.d.f. for the parameters 6; in frequentist statistics this is not defined.

In Bayesian statistics one can obtain from the likelihood the posterior p.d.f. for 8, but

this requires multiplying by a prior p.d.f. (see Sec. 31.4.1).

It is usually easier to work with In L, and since both are maximized for the same
parameter values @, the maximum likelihood (ML) estimators can be found by solving
the likelihood equations,

OlnL

=1,...,n. 1.
802 07 ? ) ?n (3 9)

Maximum likelihood estimators are important because they are approximately unbiased
and efficient for large data samples, under quite general conditions, and the method has a
wide range of applicability.

In evaluating the likelihood function, it is important that any normalization factors in
the p.d.f. that involve 0 be included. However, we will only be interested in the maximum
of I and in ratios of L at different values of the parameters; hence any multiplicative
factors that do not involve the parameters that we want to estimate may be dropped,
including factors that depend on the data but not on 6.

Under a one-to-one change of parameters from 6 to n, the ML estimators 0 transform
to n(@). That is, the ML solution is invariant under change of parameter. However, other
properties of ML estimators, in particular the bias, are not invariant under change of

parameter.

The inverse V1 of the covariance matrix Vij = cov[é\i, @\J] for a set of ML estimators
can be estimated by using

~ 9%InL
~1y. . _ _
Vi 00,00; |5 '

(31.10)

For finite samples, however, Eq. (31.10) can result in an underestimate of the variances.
In the large sample limit (or in a linear model with Gaussian errors), L has a Gaussian
form and In L is (hyper)parabolic. In this case it can be seen that a numerically equivalent

October 18, 2002 14:51



31. Statistics 5

way of determining s-standard-deviation errors is from the contour given by the 6" such
that

InL(0") =1In Lipax — 52/2, (31.11)

where In L ax is the value of In L at the solution point (compare with Eq. (31.46)). The
extreme limits of this contour on the 6; axis give an approximate s-standard-deviation
confidence interval for ; (see Section 31.4.2.3).

In the case where the size n of the data sample x1,...,x, is small, the unbinned
maximum likelihood method is preferred, since binning can only result in a loss of
information. The sample size n can be regarded as fixed or the user can choose to treat
it as a Poisson-distributed variable; this latter option is sometimes called “extended
maximum likelihood” (see, e.g., [6, 7, 8]). If the sample is large it can be convenient to
bin the values in a histogram, so that one obtains a vector of data n = (n1,...,ny)
with expectation values v = E[n]| and probabilities f(n;v). Then one may maximize the
likelihood function based on the contents of the bins (so ¢ labels bins). This is equivalent
to maximizing the likelihood ratio A(@) = f(n;v(0))/f(n;n), or to minimizing the
quantity [9]

n;
vi(0)]

N
—2In\(0) =2) [yi(e) —ni +niln (31.12)
=1

where in bins where n; = 0, the last term in (31.12) is zero.

The reason for minimizing Eq. (31.12) defined in this way is that in the large sample
limit, the minimum of —2In\ follows a y? distribution and can be used in a test of
goodness-of-fit (see Sec. 31.3.2). If there are N bins and m fitted parameters, then the
number of degrees of freedom for the y? distribution is N — m — 1 if the data are treated
as multinomially distributed and N — m if the n; are Poisson variables with vtot = Y, ¥4
fixed. If the n; are Poisson distributed and 1ot is also fitted, then by minimizing
Eq. (31.12) one obtains that the area under the fitted function is equal to the sum of the
histogram contents, i.e., > ,v; = > .n;. This is not the case for parameter estimation
methods based on a least-squares procedure with traditional weights (see, e.g., Ref. [8]).

31.1.3. The method of least squares:

The method of least squares (LS) coincides with the method of maximum likelihood in
the following special case. Consider a set of N independent measurements y; at known
points ;. The measurement y; is assumed to be Gaussian distributed with mean F(x;; 0)
and known variance 022 . The goal is to construct estimators for the unknown parameters
0. The likelihood function contains the sum of squares

N
R 2
x3(0) = —21n L(6) + constant =Y (yi (;”“ ) (31.13)
i=1 i
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6 31. Statistics

The set of parameters 6 which maximize L is the same as those which minimize 2.

The minimum of Equation (31.13) defines the least-squares estimators 6 for the more
general case where the y; are not Gaussian distributed as long as they are independent.
If they are not independent but rather have a covariance matrix V;; = cov(y;,y;], then
the LS estimators are determined by the minimum of

X*(0)=(y—F()'V iy -F(), (31.14)

where y = (y1,...,yn) is the vector of measurements, F'(0) is the corresponding vector
of predicted values (understood as a column vector in (31.14)), and the superscript T
denotes transposed (i.e., row) vector.

In many practical cases one further restricts the problem to the situation where
F(x;;0) is a linear function of the parameters, i.e.,

m
F(xz'; 0) = Z thj(xi) . (31.15)
j=1
Here the h;(x) are m linearly independent functions, e.g., 1,z, z2,...,2™ 1 or Legendre

polynomials. We require m < N and at least m of the x; must be distinct.

Minimizing x? in this case with m parameters reduces to solving a system of m
linear equations. Defining H;; = h;(x;) and minimizing x? by setting its derivatives with
respect to the ; equal to zero gives the LS estimators,

6=H'V'H)'HT'V ly=Dy. (31.16)
The covariance matrix for the estimators U;; = cov[é\i, @\]] is given by

U=DvD" = @HTVIH)™ !, (31.17)

or equivalently, its inverse U~! can be found from

1 1 82X2 al 1
U= 53595 = 2 hilm) (V" D) (31.18)
PRIN0=0 k=1

The LS estimators can also be found from the expression

6=Ug, (31.19)
where the vector g is defined by
N
gi=Y_ yihilee) Ve . (31.20)
Jk=1
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31. Statistics 7

For the case of uncorrelated y;, for example, one can use (31.19) with

N
O hiy=> —hi(wki};j(xk) : (31.21)
k=1 k
N
9= %ﬁ“’k) : (31.22)
k=1 k

Expanding X2(0) about é\, one finds that the contour in parameter space defined by

~

X2(0) = x2(0) +1=x2, +1 (31.23)

has tangent planes located at plus or minus one standard deviation o from the LS

~

estimates 0.

In constructing the quantity x2(6), one requires the variances or, in the case of
correlated measurements, the covariance matrix. Often these quantities are not known
a priori and must be estimated from the data; an important example is where the
measured value y; represents a counted number of events in the bin of a histogram.
If, for example, y; represents a Poisson variable, for which the variance is equal to the
mean, then one can either estimate the variance from the predicted value, F(z;;0), or
from the observed number itself, ;. In the first option, the variances become functions
of the fitted parameters, which may lead to calculational difficulties. The second option
can be undefined if y; is zero, and in both cases for small y; the variance will be poorly
estimated. In either case one should constrain the normalization of the fitted curve to
the correct value, e.g., one should determine the area under the fitted curve directly from
the number of entries in the histogram (see [8] Section 7.4). A further alternative is to
use the method of maximum likelihood; for binned data this can be done by minimizing
Eq. (31.12)

As the minimum value of the y? represents the level of agreement between the

measurements and the fitted function, it can be used for assessing the goodness-of-fit; this
is discussed further in Section 31.3.2.

31.2. Propagation of errors

Consider a set of n quantities 8 = (61,...,0,) and a set of m functions n(0) =
(m(0),...,mm(0)). Suppose we have estimates 0 = (51, - .,@\n), using, say, maximum
likelihood or least squares, and we also know or have estimated the covariance matrix
Vij = cov|f;,0;]. The goal of error propagation is to determine the covariance matrix for

the functions, U;; = cov|[n;,7;], where = 7)(5 ). In particular, the diagonal elements
U;; = V[n;] give the variances. The new covariance matrix can be found by expanding the

functions (@) about the estimates 6 to first order in a Taylor series. Using this one finds
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8 31. Statistics

Vi - (31.24)

This can be written in matrix notation as U ~ AV AL where the matrix of derivatives A
is

Ay = Oni (31.25)

_%

0
and AT is its transpose. The approximation is exact if () is linear (it holds, for
example, in equation (31.17)). If this is not the case the approximation can break down
if, for example, 1(0) is significantly nonlinear close to 0 in a region of a size comparable
to the standard deviations of 6.

31.3. Statistical tests

In addition to estimating parameters, one often wants to assess the validity of certain
statements concerning the data’s underlying distribution. Hypothesis tests provide a rule
for accepting or rejecting hypotheses depending on the outcome of a measurement. In
goodness-of-fit tests one gives the probability to obtain a level of incompatibility with a
certain hypothesis that is greater than or equal to the level observed with the actual data.

31.3.1. Hypothesis tests:

Consider an experiment whose outcome is characterized by a vector of data x. A
hypothesis is a statement about the distribution of @. It could, for example, define
completely the p.d.f. for the data (a simple hypothesis) or it could specify only the
functional form of the p.d.f., with the values of one or more parameters left open (a
composite hypothesis).

A statistical test is a rule that states for which values of & a given hypothesis (often
called the null hypothesis, Hg) should be rejected. This is done by defining a region of
x-space called the critical region; if the outcome if the experiment lands in this region,
Hy is rejected. Equivalently one can say that the hypothesis is accepted if @ is observed
in the acceptance region, i.e., the complement of the critical region. Here ‘accepted’ is
understood to mean simply that the test did not reject Hy.

Rejecting Hy if it is true is called an error of the first kind. The probability for this
to occur is called the significance level of the test, o, which is often chosen to be equal
to some pre-specified value. It can also happen that H is false and the true hypothesis
is given by some alternative, Hj. If Hy is accepted in such a case, this is called an
error of the second kind. The probability for this to occur, 3, depends on the alternative
hypothesis, say, Hi, and 1 — 3 is called the power of the test to reject Hj.

In High Energy Physics the components of  might represent the measured properties
of candidate events, and the acceptance region is defined by the cuts that one imposes in
order to select events of a certain desired type. That is, Hy could represent the signal
hypothesis, and various alternatives, Hy, Ho, etc., could represent background processes.
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31. Statistics 9

Often rather than using the full data sample « it is convenient to define a test statistic,
t, which can be a single number or in any case a vector with fewer components than
x. Each hypothesis for the distribution of  will determine a distribution for ¢, and
the acceptance region in x-space will correspond to a specific range of values of ¢. In
constructing ¢ one attempts to reduce the volume of data without losing the ability to
discriminate between different hypotheses.

In particle physics terminology, the probability to accept the signal hypothesis, Hy,
is the selection efficiency, i.e., one minus the significance level. The efficiencies for the
various background processes are given by one minus the power. Often one tries to
construct a test to minimize the background efficiency for a given signal efficiency. The
Neyman—Pearson lemma states that this is done by defining the acceptance region such
that, for @ in that region, the ratio of p.d.f.s for the hypotheses Hy and H1,

Ax) = S| Ho) (31.26)

f(x|Hy) '

is greater than a given constant, the value of which is chosen to give the desired signal
efficiency. This is equivalent to the statement that (31.26) represents the test statistic

with which one may obtain the highest purity sample for a given signal efficiency. It can
be difficult in practice, however, to determine A(x), since this requires knowledge of the
joint p.d.f.s f(x|Hp) and f(x|H1). Instead, test statistics based on neural networks or

Fisher discriminants are often used (see [10]).

31.3.2. Goodness-of-fit tests:

Often one wants to quantify the level of agreement between the data and a hypothesis
without explicit reference to alternative hypotheses. This can be done by defining a
goodness-of-fit statistic, t, which is a function of the data whose value reflects in some
way the level of agreement between the data and the hypothesis. The user must decide
what values of the statistic correspond to better or worse levels of agreement with the
hypothesis in question; for many goodness-of-fit statistics there is an obvious choice.

The hypothesis in question, say, Hg, will determine the p.d.f. g(¢|Hp) for the statistic.
The goodness-of-fit is quantified by giving the p-value, defined as the probability to find
t in the region of equal or lesser compatibility with Hy than the level of compatibility
observed with the actual data. For example, if ¢ is defined such that large values
correspond to poor agreement with the hypothesis, then the p-value would be

p:/too o(t| Ho) dt | (31.27)

obs

where t,s is the value of the statistic obtained in the actual experiment. The p-value
should not be confused with the significance level of a test or the confidence level of a
confidence interval (Section 31.4), both of which are pre-specified constants.

The p-value is a function of the data and is therefore itself a random variable. If
the hypothesis used to compute the p-value is true, then for continuous data, p will be
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10 31. Statistics

uniformly distributed between zero and one. Note that the p-value is not the probability
for the hypothesis; in frequentist statistics this is not defined. Rather, the p-value is
the probability, under the assumption of a hypothesis Hy, of obtaining data at least as
incompatible with Hy as the data actually observed.

When estimating parameters using the method of least squares, one obtains the
minimum value of the quantity x? (31.13), which can be used as a goodness-of-fit
statistic. It may also happen that no parameters are estimated from the data, but that
one simply wants to compare a histogram, e.g., a vector of Poisson distributed numbers
n = (n1,...,ny), with a hypothesis for their expectation values v; = E[n;]. As the

distribution is Poisson with variances 012 = v;, the x? (31.13) becomes Pearson’s x>
statistic,
N 2
2 (ni — i)
= —_— 31.28
=) (31.28)
1=1
If the hypothesis v = (v1,...,vy) is correct and if the measured values n; in (31.28) are

sufficiently large (in practice, this will be a good approximation if all n; > 5), then the
x? statistic will follow the x? p.d.f. with the number of degrees of freedom equal to the
number of measurements [N minus the number of fitted parameters. The same holds for
the minimized x? from Eq. (31.13) if the y; are Gaussian.

Alternatively one may fit parameters and evaluate goodness-of-fit by minimizing
—2In A from Eq. (31.12). One finds that the distribution of this statistic approaches the
asymptotic limit faster than does Pearson’s y2 and thus computing the p-value with the
x? p.d.f. will in general be better justified (see [9] and references therein).

Assuming the goodness-of-fit statistic follows a x? p.d.f., the p-value for the hypothesis
is then

p= /X I(zna)dz, (31.29)

where f(z;nq) is the x? p.d.f. and nq is the appropriate number of degrees of freedom.
Values can be obtained from Fig. 31.1 or from the CERNLIB routine PROB. If the
conditions for using the x? p.d.f. do not hold, the statistic can still be defined as before,
but its p.d.f. must be determined by other means in order to obtain the p-value, e.g.,
using a Monte Carlo calculation.

Since the mean of the y? distribution is equal to ng, one expects in a “reasonable”
experiment to obtain x? ~ ng. Hence the quantity x? /nq is sometimes reported. Since
the p.d.f. of x? /nq depends on ng, however, one must report ngq as well in order to make
a meaningful statement. The p-values obtained for different values of x2/nq are shown in
Fig. 31.2.
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Figure 31.1: One minus the x? cumulative distribution, 1 — F(x?;n), for n degrees
of freedom. This gives the p-value for the y2 goodness-of-fit test as well as one
minus the coverage probability for confidence regions (see Sec. 31.4.2.3).
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Figure 31.2: The ‘reduced’ x?, equal to x? /n, for n degrees of freedom. The
curves show as a function of n the y? /m that corresponds to a given p-value.
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12 31. Statistics

31.4. Confidence intervals and limits

When the goal of an experiment is to determine a parameter 6, the result is usually
expressed by quoting, in addition to the point estimate, some sort of interval which
reflects the statistical precision of the measurement. In the simplest case this can be given
by the parameter’s estimated value 6 plus or minus an estimate of the standard deviation
of 0, - If, however, the p.d.f. of the estimator is not Gaussian or if there are physical
boundaries on the possible values of the parameter, then one usually quotes instead an
interval according to one of the procedures described below.

In reporting an interval or limit, the experimenter may wish to

e communicate as objectively as possible the result of the experiment;

e provide an interval that is constructed to cover the true value of the parameter with
a specified probability;

e provide the information needed by the consumer of the result to draw conclusions
about the parameter or to make a particular decision;

e draw conclusions about the parameter that incorporate the author’s prior beliefs.

With a sufficiently large data sample, the point estimate and standard deviation (or
for the multiparameter case, the parameter estimates and covariance matrix) satisfy
essentially all of these goals. For finite data samples, no single method for quoting an
interval will achieve all of them. In particular, drawing conclusions about the parameter
in the framework of Bayesian statistics necessarily requires subjective input.

In addition to the goals listed above, the choice of method may be influenced by
practical considerations such as ease of producing an interval from the results of several
measurements. Of course the experimenter is not restricted to quoting a single interval
or limit; one may choose, for example, first to communicate the result with a confidence
interval having certain frequentist properties, and then in addition to draw conclusions
about a parameter using Bayesian statistics. It is recommended, however, that there be a
clear separation between these two aspects of reporting a result. In the remainder of this
section we assess the extent to which various types of intervals achieve the goals stated
here.

31.4.1. The Bayestian approach:

Suppose the outcome of the experiment is characterized by a vector of data x, whose
probability distribution depends on an unknown parameter (or parameters) 6 that we
wish to determine. In Bayesian statistics, all knowledge about 6 is summarized by the
posterior p.d.f. p(@|x), which gives the degree of belief for 8 to take on values in a certain
region given the data x. It is obtained by using Bayes’ theorem,

P 1 [)L:()

~ [ L(z|6")x(6") d6’ ’ (31.30)

where L(x|@) is the likelihood function, i.e., the joint p.d.f. for the data given a certain
value of 6, evaluated with the data actually obtained in the experiment, and 7(0) is the
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31. Statistics 13

prior p.d.f. for 8. Note that the denominator in (31.30) serves simply to normalize the
posterior p.d.f. to unity.

Bayesian statistics supplies no fundamental rule for determining 7(€); this reflects the
experimenter’s subjective degree of belief about 6 before the measurement was carried
out. By itself, therefore, the posterior p.d.f. is not a good way to report objectively
the result of an observation, since it contains both the result (through the likelihood
function) and the experimenter’s prior beliefs. Without the likelihood function, someone
with different prior beliefs would be unable to substitute these to determine his or her
own posterior p.d.f. This is an important reason, therefore, to publish wherever possible
the likelihood function or an appropriate summary of it. Often this can be achieved by
reporting the ML estimate and one or several low order derivatives of L evaluated at the
estimate.

In the single parameter case, for example, an interval (called a Bayesian or credible
interval) [0}, f0up] can be determined which contains a given fraction 1 — a of the
probability, i.e.,

eup
1—a:/ p(0]z) do . (31.31)
0

lo

Sometimes an upper or lower limit is desired, i.e., 0}, can be set to zero or 0y, to infinity.
In other cases one might choose 6, and 6y such that p(f|x) is higher everywhere inside
the interval than outside; these are called highest posterior density (HPD) intervals. Note
that HPD intervals are not invariant under a nonlinear transformation of the parameter.

The main difficulty with Bayesian intervals is in quantifying the prior beliefs.
Sometimes one attempts to construct 7(€) to represent complete ignorance about the
parameters by setting it equal to a constant. A problem here is that if the prior p.d.f. is
flat in @, then it is not flat for a nonlinear function of 8, and so a different parametrization
of the problem would lead in general to a different posterior p.d.f. In fact, one rarely
chooses a flat prior as a true expression of degree of belief about a parameter; rather, it is
used as a recipe to construct an interval, which in the end will have certain frequentist
properties.

If a parameter is constrained to be non-negative, then the prior p.d.f. can simply be
set to zero for negative values. An important example is the case of a Poisson variable
n which counts signal events with unknown mean s as well as background with mean b,
assumed known. For the signal mean s one often uses the prior

0 <0
m(s) = { 1 s3>0 - (31.32)
As mentioned above, this is regarded as providing an interval whose frequentist properties
can be studied, rather than as representing a degree of belief. In the absence of a clear
discovery, (e.g., if n = 0 or if in any case n is compatible with the expected background),
one usually wishes to place an upper limit on s. Using the likelihood function for Poisson
distributed n,
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b n
Linls) = @e—(%b) , (31.33)
n!
along with the prior (31.32) in (31.30) gives the posterior density for s. An upper limit
sup at confidence level 1 — « can be obtained by requiring

. p(sln)ds = > Linfs)n(s)ds (31.34)

where the lower limit of integration is effectively zero because of the cut-off in 7(s). By
relating the integrals in Eq. (31.34) to incomplete gamma functions, the equation reduces
to

l—a= /Sup fj?)g L(n|s) m(s) ds

m=0 :

a =e€

This must be solved numerically for the limit syp. For the special case of b = 0, the
sums can be related to the quantile FX_21 of the x? distribution (inverse of the cumulative

distribution) to give

Sup = %Fx_Ql(l —a;ng) , (31.36)
where the number of degrees of freedom is nq = 2(n + 1). The quantile of the 2
distribution can be obtained using the CERNLIB routine CHISIN. It so happens that for
the case of b = 0, the upper limits from Eq. (31.36) coincide numerically with the values
of the frequentist upper limits discussed in Section 31.4.2.4. Values for 1 — a = 0.9 and
0.95 are given by the values vyp in Table 31.3. The frequentist properties of confidence
intervals for the Poisson mean obtained in this way are discussed in Refs. [2] and [11].

Bayesian statistics provides a framework for incorporating systematic uncertainties
into a result. Suppose, for example, that a model depends not only on parameters of
interest @ but on nuisance parameters v, whose values are known with some limited
accuracy. For a single nuisance parameter v, for example, one might have a p.d.f. centered
about its nominal value with a certain standard deviation o,. Often a Gaussian p.d.f.
provides a reasonable model for one’s degree of belief about a nuisance parameter; in
other cases more complicated shapes may be appropriate. The likelihood function, prior
and posterior p.d.f.s then all depend on both 8 and v and are related by Bayes’ theorem
as usual. One can obtain the posterior p.d.f. for 8 alone by integrating over the nuisance
parameters, i.e.,

p(6]a) = / (6, v|z) dv . (31.37)

If the prior joint p.d.f. for @ and v factorizes, then integrating the posterior p.d.f. over v
is equivalent to replacing the likelihood function by (see Ref. [12]),
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L'(z|0) = /L(w|0, v)r(v)dv . (31.38)

The function L'(x|0) can also be used together with frequentist methods that employ
the likelihood function such as ML estimation of parameters. The results then have a
mixed frequentist/Bayesian character, where the systematic uncertainty due to limited
knowledge of the nuisance parameters is built in. Although this may make it more
difficult to disentangle statistical from systematic effects, such a hybrid approach may
satisfy the objective of reporting the result in a convenient way.

Even if the subjective Bayesian approach is not used explicitly, Bayes’ theorem
represents the way that people evaluate the impact of a new result on their beliefs. One
of the criteria in choosing a method for reporting a measurement, therefore, should be the
ease and convenience with which the consumer of the result can carry out this exercise.

31.4.2. Frequentist confidence intervals:

The unqualified phrase “confidence intervals” refers to frequentist intervals obtained
with a procedure due to Neyman [13], described below. These are intervals (or in the
multiparameter case, regions) constructed so as to include the true value of the parameter
with a probability greater than or equal to a specified level, called the coverage probability.
In this section we discuss several techniques for producing intervals that have, at least
approximately, this property.

31.4.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(z;0) where x represents the outcome of the experiment and 6 is the
unknown parameter for which we want to construct a confidence interval. The variable
x could (and often does) represent an estimator for 6. Using f(z;6) we can find for a
pre-specified probability 1 — « and for every value of 6 a set of values z1(0, «) and x2(0, «)
such that

2
Plzi<z<z9;0)=1—a= / f(x;0)dx . (31.39)
T

This is illustrated in Fig. 31.3: a horizontal line segment [z1(0, «), x2(0, «)] is drawn
for representative values of #. The union of such intervals for all values of 6, designated
in the figure as D(«), is known as the confidence belt. Typically the curves z1(6, ) and
x2(0, ) are monotonic functions of #, which we assume for this discussion.

Upon performing an experiment to measure x and obtaining a value xqg, one draws
a vertical line through xg. The confidence interval for 6 is the set of all values of 6 for
which the corresponding line segment [21(0, ), z2(0, )] is intercepted by this vertical
line. Such confidence intervals are said to have a confidence level (CL) equal to 1 — a.

Now suppose that the true value of 6 is j, indicated in the figure. We see from the
figure that 6p lies between 61(x) and 02(z) if and only if x lies between x1(6g) and z2(6p).
The two events thus have the same probability, and since this is true for any value 6, we
can drop the subscript 0 and obtain
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Ebe=

= %y(6), 8,(x)

X,(6), 8,(4)

=

parameter 0

Xl(:eo) Xz:(eo)

Possible experimental values x

Figure 31.3: Construction of the confidence belt (see text).

l—a= P(l‘l(@) <r< 11:2(9)) = P(@Q(l‘) <f< 91(1,‘)) . (31.40)

In this probability statement 1 (z) and 62(x), i.e., the endpoints of the interval, are the
random variables and 6 is an unknown constant. If the experiment were to be repeated

a large number of times, the interval [0, 03] would vary, covering the fixed value € in a
fraction 1 — « of the experiments.

The condition of coverage Eq. (31.39) does not determine z; and xo uniquely and
additional criteria are needed. The most common criterion is to choose central intervals
such that the probabilities excluded below 1 and above z2 are each «/2. In other cases
one may want to report only an upper or lower limit, in which case the probability
excluded below x1 or above x9 can be set to zero. Another principle based on likelihood

ratio ordering for determining which values of x should be included in the confidence belt
is discussed in Sec. 31.4.2.2

When the observed random variable x is continuous, the coverage probability obtained
with the Neyman construction is 1 — «, regardless of the true value of the parameter. If
x is discrete, however, it is not possible to find segments [z1(6, ), z2(0, )] that satisfy
(31.39) exactly for all values of #. By convention one constructs the confidence belt
requiring the probability P(x1 < x < x2) to be greater than or equal to 1 — .. This gives

confidence intervals that include the true parameter with a probability greater than or
equal to 1 — a.
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31.4.2.2. Relationship between intervals and tests:

An equivalent method of constructing confidence intervals is to consider a test (see
Sec. 31.3) of the hypothesis that the parameter’s true value is 6. One then excludes all
values of # where the hypothesis would be rejected at a significance level less than a. The
remaining values constitute the confidence interval at confidence level 1 — a.

In this procedure one is still free to choose the test to be used; this corresponds to the
freedom in the Neyman construction as to which values of the data are included in the
confidence belt. One possibility is use a test statistic based on the likelihood ratio,

(31.41)

where 8 is the value of the parameter which, out of all allowed values, maximizes f(z;6).
This results in the intervals described in [14] by Feldman and Cousins. The same intervals
can be obtained from the Neyman construction described in the previous section by
including in the confidence belt those values of  which give the greatest values of .

Another technique that can be formulated in the language of statistical tests has been
used to set limits on the Higgs mass from measurements at LEP [15]. For each value of
the Higgs mass, a statistic called CLg is determined from the ratio

_ p-value of signal plus background hypothesis

CLs (31.42)

p-value of hypothesis of background only

The p-values in (31.42) are themselves based on a goodness-of-fit statistic which depends
in general on the signal being tested, i.e., on the hypothesized Higgs mass. Smaller CLg
corresponds to a lesser level of agreement with the signal hypothesis.

In the usual procedure for constructing confidence intervals, one would exclude the
signal hypothesis if the probability to obtain a value of CLg less than the one actually
observed is less than . The LEP Higgs group has in fact followed a more conservative
approach and excludes the signal at a confidence level 1 — « if CLg itself (not the
probability to obtain a lower CLg value) is less than a. This results in a coverage
probability that is in general greater than 1 — «.. The interpretation of such intervals is
discussed in [15].

31.4.2.3. Gaussian distributed measurements:

An important example of constructing a confidence interval is when the data consists
of a single random variable = that follows a Gaussian distribution; this is often the case
when x represents an estimator for a parameter and one has a sufficiently large data
sample. If there is more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known o,

JISR)
1—a= 1 / e_(x_/i)2/2‘72 dx = erf <L) (3143)
2no Jpu—s V2o
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is the probability that the measured value x will fall within +4 of the true value pu. From
the symmetry of the Gaussian with respect to x and p, this is also the probability for

the interval x £ ¢ to include p. Fig. 31.4 shows a § = 1.640 confidence interval unshaded.
The choice § = o gives an interval called the standard error which has 1 — a = 68.27% if
o is known. Values of « for other frequently used choices of § are given in Table 31.1.

f(x; 1,0)

al2 al2

Figure 31.4: Illustration of a symmetric 90% confidence interval (unshaded) for
a measurement of a single quantity with Gaussian errors. Integrated probabilities,
defined by «, are as shown.

Table 31.1: Area of the tails o outside ¢ from the mean of a Gaussian
distribution.

a (%) 5 a (%) 5
31.73 lo 20 1.28¢

4.55 20 10 1.640

0.27 30 5 1.960
6.3x1073 4o 1 2.58¢0
5.7x107° | 50 0.1 3.290
2.0x10~7 | 60 0.01 3.890

We can set a one-sided (upper or lower) limit by excluding above z + § (or below
x — 0). The values of « for such limits are half the values in Table 31.1.

In addition to Eq. (31.43), a and ¢ are also related by the cumulative distribution
function for the y? distribution,

a=1-F(x%n), (31.44)

for x? = (§/0)? and n = 1 degree of freedom. This can be obtained from Fig. 31.1 on the
n = 1 curve or by using the CERNLIB routine PROB.
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For multivariate measurements of, say, n parameter estimates 0 = (51, cee gn), one
requires the full covariance matrix V;; = cov[é\i, /9\]-], which can be estimated as described
in Sections 31.1.2 and 31.1.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the estimators will be
distributed according to a multivariate Gaussian centered about the true (unknown)
values 0, and furthermore the likelihood function itself takes on a Gaussian shape.

The standard error ellipse for the pair (@,@\]) is shown in Fig. 31.5, corresponding
to a contour Y2 = X?nin + 1 orInL =InLpax — 1/2. The ellipse is centered about the

estimated values 5, and the tangents to the ellipse give the standard deviations of the
estimators, o; and 0. The angle of the major axis of the ellipse is given by

tan 2 = 4700 (31.45)

where p;; = cov[gi, @\J] /o;0; is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the distance o; from the
ellipse’s horizontal centerline at which the ellipse becomes tangent to vertical, i.e. at the
distance p;jo; below the centerline as shown. As p;; goes to +1 or —1, the ellipse thins
to a diagonal line.

It could happen that one of the parameters, say, 6;, is known from previous
measurements to a precision much better than o; so that the current measurement
contributes almost nothing to the knowledge of ;. However, the current measurement of
of f; and its dependence on 6; may still be important. In this case, instead of quoting
both parameter estimates and their correlation, one sometimes reports the value of 6;
which minimizes x? at a fixed value of 0, such as the PDG best value. This 60; value lies
along the dotted line between the points where the ellipse becomes tangent to vertical,
and has statistical error ojnper as shown on the figure. Instead of the correlation p;;, one

reports the dependency d@\i /df; which is the slope of the dotted line. This slope is related

to the correlation coefficient by df; /dO; = pij X ot

gy

0

»J/

Y

Figure 31.5: Standard error ellipse for the estimators @ and 5] In this case the
correlation is negative.

October 18, 2002 14:51



20 31. Statistics

Table 31.2: Ayx? or 2A1n L corresponding to a coverage probability 1 — « in the
large data sample limit, for joint estimation of m parameters.

(1—-a) (%) m=1 m=2 m=3
68.27 1.00 2.30 3.53
90. 2.71 4.61 6.25
95. 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99. 6.63 9.21 11.34
99.73 9.00 11.83 14.16

As in the single-variable case, because of the symmetry of the Gaussian function
between 6 and 0, one finds that contours of constant In L or x2 cover the true values with
a certain, fixed probability. That is, the confidence region is determined by

InL(0) >1InLypax —Aln L, (31.46)

or where a y? has been defined for use with the method of least squares,

X2(0) < X2 + AxE. (31.47)

Values of Ax? or 2AInL are given in Table 31.2 for several values of the coverage
probability and number of fitted parameters.

For finite data samples, the probability for the regions determined by Equations
(31.46) or (31.47) to cover the true value of @ will depend on 6, so these are not exact
confidence regions according to our previous definition. Nevertheless, they can still have
a coverage probability only weakly dependent on the true parameter and approximately
as given in Table 31.2. In any case the coverage probability of the intervals or regions
obtained according to this procedure can in principle be determined as a function of the
true parameter(s), for example, using a Monte Carlo calculation.

One of the practical advantages of intervals that can be constructed from the
log-likelihood function or 2 is that it is relatively simple to produce the interval
for the combination of several experiments. If N independent measurements result in
log-likelihood functions In L;(0), then the combined log-likelihood function is simply the
sum,

N
InL(0) =) InLi(6) . (31.48)
=1

This can then be used to determine an approximate confidence interval or region with
Equation (31.46), just as with a single experiment.
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31.4.2.4. Poisson or binomial data:

Another important class of measurements consists of counting a certain number of
events n. In this section we will assume these are all events of the desired type, i.e.,
there is no background. If n represents the number of events produced in a reaction
with cross section o, say, in a fixed integrated luminosity £, then it follows a Poisson
distribution with mean v = o L. If, on the other hand, one has selected a larger sample of
N events and found n of them to have a particular property, then n follows a binomial
distribution where the parameter p gives the probability for the event to possess the
property in question. This is appropriate, e.g., for estimates of branching ratios or
selection efficiencies based on a given total number of events.

For the case of Poisson distributed n, the upper and lower limits on the mean value v
can be found from the Neyman procedure to be

Vo = %Fxgl(alo; on) , (31.49a)
Vup = %Fx_zl(l —aup;2(n+1)), (31.49b)

where the upper and lower limits are at confidence levels of 1 — ), and 1 — ayp,
respectively, and FX_21 is the quantile of the x? distribution (inverse of the cumulative
distribution). The quantiles FX_21 can be obtained from standard tables or from the
CERNLIB routine CHISIN. For central confidence intervals at confidence level 1 — «, set

It happens that the upper limit from (31.49a) coincides numerically with the Bayesian
upper limit for a Poisson parameter using a uniform prior p.d.f. for v. Values for
confidence levels of 90% and 95% are shown in Table 31.3.

For the case of binomially distributed n successes out of N trials with probability of
success p, the upper and lower limits on p are found to be

nFEl[alo; 2n,2(N —n + 1)]
N-n+1+ nFEl[alo;Qn,Q(N—n—kl)] 7
(n+ 1) Fp'[l — aup; 2(n + 1), 2(N — n)]

Pap = (N =n) + (n+ 1) Fp'[l — aup; 2(n +1),2(N —n)] (31.500)

Dlo = (31.50a)

Here Fp 1is the quantile of the F' distribution (also called the Fisher—Snedecor
distribution; see Ref. [4]).
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Table 31.3: Lower and upper limits for the mean v of a Poisson variable given n
observed events in the absence of background, for confidence levels of 90% and 95%.

1 —a=90% 1—a=95%

n Yo Vup Yo Vup
0 - 2.30 — 3.00
1 0.105 3.89 0.051 4.74
2 0.532 5.32 0.355 6.30
3 1.10 6.68 0.818 7.75
4 1.74 7.99 1.37 9.15
5 2.43 9.27 1.97 10.51
6 3.15 10.53 2.61 11.84
7 3.89 11.77 3.29 13.15
8 4.66 12.99 3.98 14.43
9 5.43 14.21 4.70 15.71

10 6.22 15.41 5.43 16.96

31.4.2.5. Difficulties with intervals near a boundary:

A number of issues arise in the construction and interpretation of confidence intervals
when the parameter can only take on values in a restricted range. An important example
is where the mean of a Gaussian variable is constrained on physical grounds to be
non-negative. This arises, for example, when the square of the neutrino mass is estimated
from m? = E% — p%, where E and p are independent, Gaussian distributed estimates of
the energy and momentum. Although the true m? is constrained to be positive, random

errors in F and p can easily lead to negative values for the estimate m?2.

If one uses the prescription given above for Gaussian distributed measurements, which
says to construct the interval by taking the estimate plus or minus one standard deviation,
then this can give intervals that are partially or entirely in the unphysical region. In fact,
by following strictly the Neyman construction for the central confidence interval, one
finds that the interval is truncated below zero; nevertheless an extremely small or even a
zero-length interval can result.

An additional important example is where the experiment consists of counting a
certain number of events, n, which is assumed to be Poisson distributed. Suppose the
expectation value E[n| = v is equal to s + b, where s and b are the means for signal and
background processes, and assume further that b is a known constant. Then s =n — b
is an unbiased estimator for s. Depending on true magnitudes of s and b, the estimate
s can easily fall in the negative region. Similar to the Gaussian case with the positive
mean, the central confidence interval or even the upper limit for s may be of zero length.
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The confidence interval is in fact designed not to cover the parameter with a probability
of at most «, and if a zero-length interval results, then this is evidently one of those
experiments. So although the construction is behaving as it should, a null interval is an
unsatisfying result to report and several solutions to this type of problem are possible.

An additional difficulty arises when a parameter estimate is not significantly far away
from the boundary, in which case it is natural to report a one-sided confidence interval
(often an upper limit). It is straightforward to force the Neyman prescription to produce
only an upper limit by setting xo2 = oo in Eq. 31.39. Then z7 is uniquely determined and
the upper limit can be obtained. If, however, the data come out such that the parameter
estimate is not so close to the boundary, one might wish to report a central (i.e.,
two-sided) confidence interval. As pointed out by Feldman and Cousins [14], however, if
the decision to report an upper limit or two-sided interval is made by looking at the data
(“flip-flopping”), then the resulting intervals will not in general cover the parameter with
the probability 1 — a.

With the confidence intervals suggested in [14], the prescription determines whether the
interval is one- or two-sided in a way which preserves the coverage probability. Intervals
with this property are said to be unified. Furthermore, the Feldman—Cousins prescription
is such that null intervals do not occur. For a given choice of 1 — «, if the parameter
estimate is sufficiently close to the boundary, then the method gives a one-sided limit.
In the case of a Poisson variable in the presence of background, for example, this would
occur if the number of observed events is compatible with the expected background. For
parameter estimates increasingly far away from the boundary, i.e., for increasing signal
significance, the interval makes a smooth transition from one- to two-sided, and far away
from the boundary one obtains a central interval.

The intervals according to this method for the mean of Poisson variable in the absence
of background are given in Table 31.4. (Note that « in [14] is defined following Neyman
[13] as the coverage probability; this is opposite the modern convention used here in which
the coverage probability is 1 — «.) The values of 1 — « given here refer to the coverage of
the true parameter by the whole interval [v1,15]. In Table 31.3 for the one-sided upper
and lower limits, however, 1 — a refers to the probability to have individually vp > v or
Vo S .

A potential difficulty with unified intervals arises if, for example, one constructs such
an interval for a Poisson parameter s of some yet to be discovered signal process with,
say, 1 —a = 0.9. If the true signal parameter is zero, or in any case much less than the
expected background, one will usually obtain a one-sided upper limit on s. In a certain
fraction of the experiments, however, a two-sided interval for s will result. Since, however,
one typically chooses 1 — « to be only 0.9 or 0.95 when searching for a new effect, the
value s = 0 may be excluded from the interval before the existence of the effect is well
established. It must then be communicated carefully that in excluding s = 0 from the
interval, one is not necessarily claiming to have discovered the effect.

The intervals constructed according to the unified procedure in [14] for a Poisson
variable n consisting of signal and background have the property that for n = 0
observed events, the upper limit decreases for increasing expected background. This is
counter-intuitive, since it is known that if n = 0 for the experiment in question, then no
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Table 31.4: Unified confidence intervals [vq, v5] for a the mean of a Poisson variable
given n observed events in the absence of background, for confidence levels of 90%
and 95%.

1—a=90% 1—a=95%

n v V9 141 1%
0 0.00 2.44 0.00 3.09
1 0.11 4.36 0.05 5.14
2 0.53 5.91 0.36 6.72
3 1.10 7.42 0.82 8.25
4 1.47 8.60 1.37 9.76
) 1.84 9.99 1.84 11.26
6 221  11.47 221  12.75
7 3.56 12.53 2.58 13.81
8 3.96  13.99 294  15.29
9 4.36 15.30 4.36 16.77
10 5.50 16.50 4.75  17.82

background was observed, and therefore one may argue that the expected background
should not be relevant. The extent to which one should regard this feature as a drawback
is a subject of some controversy (see, e.g., Ref. [17]).

Another possibility is to construct a Bayesian interval as described in Section 31.4.1.
The presence of the boundary can be incorporated simply by setting the prior density
to zero in the unphysical region. Priors based on invariance principles (rather than
subjective degree of belief) for the Poisson mean are rarely used in high energy physics;
they diverge for the case of zero events observed, and they give upper limits which
undercover when evaluated by the frequentist definition of coverage [2]. Rather, priors
uniform in the Poisson mean have been used, although as previsouly mentioned, this is
generally not done to reflect the experimenter’s degree of belief but rather as a procedure
for obtaining an interval with certain frequentist properties. The resulting upper limits
have a coverage probability that depends on the true value of the Poisson parameter and
is everywhere greater than the stated probability content. Lower limits and two-sided
intervals for the Poisson mean based on flat priors undercover, however, for some values
of the parameter, although to an extent that in practical cases may not be too severe
[2, 11]. Intervals constructed in this way have the advantage of being easy to derive; if
several independent measurements are to be combined then one simply multiplies the
likelihood functions (cf. Eq. (31.48)).

An additional alternative is presented by the intervals found from the likelihood
function or x? using the prescription of Equations (31.46) or (31.47). As in the case of
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the Bayesian intervals, the coverage probability is not, in general, independent of the true
parameter. Furthermore, these intervals can for some parameter values undercover. The
coverage probability can of course be determined with some extra effort and reported
with the result.

Also as in the Bayesian case, intervals derived from the value of the likelihood function
from a combination of independent experiments can be determined simply by multiplying
the likelihood functions. These intervals are also invariant under transformation of the
parameter; this is not true for Bayesian intervals with a conventional flat prior, because
a uniform distribution in, say, # will not be uniform if transformed to 2. Use of the
likelihood function to determine approximate confidence intervals is discussed further in
[16].

In any case it is important always to report sufficient information so that the result can
be combined with other measurements. Often this means giving an unbiased estimator
and its standard deviation, even if the estimated value is in the unphysical region.

Regardless of the type of interval reported, the consumer of that result will almost
certainly use it to derive some impression about the value of the parameter. This will
inevitably be done, either explicitly or intuitively, with Bayes’ theorem,

p(O|result) o< L(result|d)m(0) , (31.51)

where the reader supplies his or her own prior beliefs 7(#) about the parameter, and the
‘result’ is whatever sort of interval or other information the author has reported. For all
of the intervals discussed, therefore, it is not sufficient to know the result; one must also
know the probability to have obtained this result as a function of the parameter, i.e., the
likelihood. Contours of constant likelihood, for example, provide this information, and so
an interval obtained from In L = In Ly,x — Aln L already takes one step in this direction.

It can also be useful with a frequentist interval to calculate its subjective probability
content using the posterior p.d.f. based on one or several reasonable guesses for the prior
p.d.f. If it turns out to be significantly less than the stated confidence level, this warns
that it would be particularly misleading to draw conclusions about the parameter’s value
without further information from the likelihood.
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