

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge $=\frac{2}{3}$ e Top =+1A REVIEW GOES HERE – Check our WWW List of Reviews

t-Quark Mass in $p\overline{p}$ Collisions

The t quark has been observed. Its mass is sufficiently high that decay is expected to occur before hadronization. OUR EVALUATION is an AVERAGE which incorporates correlations between systematic errors of the five different measurements. The average was done by a joint CDF/DØ working group and is reported in DEMOR-TIER 99, an FNAL Technical Memo. They report $174.3 \pm 3.2 \pm 4.0$ GeV, which yields "OUR EVALUATION" when statistical and systematic errors are combined. When the most recent CDF lepton + jets result is combined with the other CDF and DØ results, the combined result given as "OUR EVALUATION" is unchanged from the DEMORTIER 99 result after rounding.

For earlier search limits see the Review of Particle Physics, Phys. Rev. **D54**,1 (1996).

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
174.3± 5.1 OUR EVALUATION	N		
$176.1\pm \ 5.1\pm \ 5.3$	¹ AFFOLDER	01 CDF	lepton + jets
$167.4 \pm 10.3 \pm 4.8$	^{2,3} ABE	99B CDF	dilepton
$168.4 \pm 12.3 \pm 3.6$	⁴ ABBOTT	98D D0	dilepton
$173.3 \pm 5.6 \pm 5.5$	⁴ ABBOTT	98F D0	lepton + jets
$186 \pm 10 \pm 5.7$	^{2,5} ABE	97R CDF	6 or more jets
• • • We do not use the following	ng data for average	s, fits, limits	, etc. • • •
176.1± 6.6	⁶ AFFOLDER -	01 CDF	$lepton + jets, dileptons, \\ all-jets$
$172.1\pm \ 5.2\pm \ 4.9$	⁷ ABBOTT	99G D0	$di ext{-}lepton,lepton ext{+}jets$
176.0± 6.5	3,8 ABE	99в CDF	dilepton, lepton+jets, and all jets
$175.9 \pm 4.8 \pm 5.3$	^{2,9} ABE	98E CDF	lepton + jets
$161 \pm 17 \pm 10$	² ABE	98F CDF	dilepton
$172.1\pm 5.2\pm 4.9$	¹⁰ внат	98B RVUE	dilepton and lepton+jets
173.8± 5.0	¹¹ BHAT	98B RVUE	dilepton, lepton+jets, and all jets
$173.3 \pm 5.6 \pm 6.2$	⁴ ABACHI	97E D0	lepton + jets
$199 \begin{array}{c} +19 \\ -21 \end{array} \pm 22$	ABACHI	95 D0	lepton + jets
$176 \pm 8 \pm 10$	ABE	95F CDF	lepton + b-jet
174 $\pm 10 \begin{array}{c} +13 \\ -12 \end{array}$	ABE	94E CDF	lepton + b-jet

 $^{^1}$ AFFOLDER 01 result uses lepton + jets topology. It is based on $\sim 106~{\rm pb}^{-1}$ of data

² Result is based on $109 \pm 7 \, \mathrm{pb}^{-1}$ of data at $\sqrt{s} = 1.8 \, \mathrm{TeV}$.

 $^{^3\}mathrm{See}$ AFFOLDER 01 for details of systematic error re-evaluation.

⁴ Result is based on 125 \pm 7 pb⁻¹ of data at \sqrt{s} = 1.8 TeV.

⁵ ABE 97R result is based on the first observation of all hadronic decays of $t\bar{t}$ pairs. Single b-quark tagging with jet-shape variable constraints was used to select signal enriched multi-jet events. The updated systematic error is listed. See AFFOLDER 01, appendix C.

 $^{^6}$ AFFOLDER 01 is obtained by combining the measurements in the lepton + jets [AF-FOLDER 01], all-jets [ABE 97R, ABE 99B], and dilepton [ABE 99B] decay topologies.

 7 ABBOTT 99G result is obtained by combining the D0 result m_t (GeV) $= 168.4 \pm 12.3 \pm$ 3.6 from 6 di-lepton events (see also ABBOTT 98D) and m_t (GeV) = 173.3 \pm 5.6 \pm 5.5 from lepton+jet events (ABBOTT 98F).

⁸ ABE 99B result is obtained by combining the CDF results of m_t (GeV)=167.4 \pm 10.3 \pm 4.8 from 8 dilepton events, m_t (GeV)=175.9 \pm 4.8 \pm 5.3 from lepton+jet events (ABE 98E), and m_t (GeV)=186.0 \pm 10.0 \pm 5.7 from all-jet events (ABE 97R). The systematic errors in the latter two measurements are changed in this paper.

9 The updated systematic error is listed. See AFFOLDER 01, appendix C.

 10 BHAT 98B result is obtained by combining the DØ results of $m_t({
m GeV}){=}168.4\pm12.3\pm$ 3.6 from 6 dilepton events and $m_t(\text{GeV}) = 173.3 \pm 5.6 \pm 5.5$ from 77 lepton+jet events.

 11 BHAT 98B result is obtained by combining the DØ results from dilepton and lepton+jet events, and the CDF results (ABE 99B) from dilepton, lepton+jet events, and all-jet events.

Indirect t-Quark Mass from Standard Model Electroweak Fit

"OUR EVALUATION" below is from the fit to electroweak data described in the "Electroweak Model and Constraints on New Physics" section of this Review. This fit result does not include direct measurements of m_t .

The RVUE values are based on the data described in the footnotes. RVUE's published before 1994 and superseded analyses are now omitted. For more complete listings of earlier results, see the 1994 edition (Physical Review **D50** 1173 (1994)).

DOCUMENT ID TECN COMMENT

$178.1^{+\,10.4}_{-\,\,\,8.3}$ OUR EVALUATION

• • We do not use the following data for averages, fits, limits, etc. • •

• • • we do not use the followin	g data for averages	, IILS	, iiiiiits,	etc. • • •
$162 \pm 15 \begin{array}{c} +25 \\ -5 \end{array}$	¹² ABBIENDI	01A	OPAL	Z parameters
170.7± 3.8	¹³ FIELD	00	RVUE	Z parameters without $\emph{b} ext{-jet} + Direct$
$171.2 + 3.7 \\ 3.8$	¹⁴ FIELD	99	RVUE	Z parameters without b jet $+$ Direct
172.0^{+}_{-} $\begin{array}{c} 5.8 \\ 5.7 \end{array}$	¹⁵ DEBOER	97 B	RVUE	${\sf Electroweak} + {\sf Direct}$
$157 \begin{array}{c} +16 \\ -12 \end{array}$	¹⁶ ELLIS	96 C	RVUE	Z parameters, m_W , low energy
175 $\pm 11 \begin{array}{c} +17 \\ -19 \end{array}$	¹⁷ ERLER	95	RVUE	Z parameters, m_W , low energy
$180 \pm 9^{+19}_{-21} \mp 2.6 \pm 4.8$	¹⁸ MATSUMOTO	95	RVUE	5
$157 \begin{array}{ccc} +36 & +19 \\ -48 & -20 \end{array}$	¹⁹ ABREU	94	DLPH	Z parameters
158 $^{+32}_{-40}$ ± 19	²⁰ ACCIARRI	94	L3	Z parameters
$190 \begin{array}{ccc} +39 & +12 \\ -48 & -14 \end{array}$	²¹ ARROYO	94	CCFR	$ u_{\mu}$ iron scattering
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²² BUSKULIC	94	ALEP	Z parameters
153 ±15	²³ ELLIS	94 B	RVUE	Electroweak
$177 \pm 9 \begin{array}{c} +16 \\ -20 \end{array}$	²⁴ GURTU	94	RVUE	Electroweak
$174 \begin{array}{ccc} +11 & +17 \\ -13 & -18 \end{array}$	²⁵ MONTAGNA	94	RVUE	Electroweak
171 $\pm 12 \begin{array}{c} +15 \\ -21 \end{array}$	²⁶ NOVIKOV	94 B	RVUE	Electroweak
$160 \begin{array}{c} +50 \\ -60 \end{array}$	²⁷ ALITTI	92 B	UA2	m_W , m_Z

HTTP://PDG.LBL.GOV

Page 2

- ¹² ABBIENDI 01A result is from fit with free α_s when m_H is fixed to 150 GeV. The second errors are for m_H = 90 GeV (lower) and 1000 GeV (upper). The fit also finds α_s = $0.125 \pm 0.005 ^{+0.004}_{-0.001}$.
- 13 FIELD 00 result updates FIELD 99 by using the 1998 EW data (CERN-EP/99-15). Only the lepton asymmetry data are used together with the direct measurement constraint $m_t{=}173.8 \pm 5.0$ GeV, $\alpha_s(m_Z) = 0.12$, and $1/\alpha(m_Z) = 128.896$. The result is from a two parameter fit with free m_t and m_H , yielding also $m_H{=}38.0^{+30.5}_{-19.8}$ GeV.
- ¹⁴ FIELD 99 result is from the two-parameter fit with free m_t and m_H , yielding also m_H = $47.2^{+29.8}_{-24.5}$ GeV. Only the lepton and charm-jet asymmetry data are used together with the direct measurement constraint m_t = 173.8 ± 5.0 GeV, and $1/\alpha(m_Z)$ = 128.896.
- ¹⁵ DEBOER 97B result is from the five-parameter fit which varies m_Z , m_t , m_H , α_s , and $\alpha(m_Z)$ under the contraints: m_t =175 \pm 6 GeV, $1/\alpha(m_Z)$ =128.896 \pm 0.09. They found m_H =141 $^+_{-77}$ GeV and $\alpha_s(m_Z)$ =0.1197 \pm 0.0031.
- ¹⁷ ERLER 95 result is from fit with free m_t and $\alpha_s(m_Z)$, yielding $\alpha_s(m_Z) = 0.127(5)(2)$.
- ¹⁸ MATSUMOTO 95 result is from fit with free m_t to Z parameters, M_W , and low-energy neutral-current data. The second error is for $m_H=300^{+700}_{-240}$ GeV, the third error is for $\alpha_S(m_Z)=0.116\pm0.005$, the fourth error is for $\delta\alpha_{\rm had}=0.0283\pm0.0007$.
- 19 ABREU 94 value is for $\alpha_{\rm S}(m_{\rm Z})$ constrained to 0.123 \pm 0.005. The second error corresponds to $m_{\rm H}=300^{+700}_{-240}$ GeV.
- ²⁰ ACCIARRI 94 value is for $\alpha_s(m_Z)$ constrained to 0.124 \pm 0.006. The second error corresponds to $m_H=300^{+700}_{-240}$ GeV.
- 21 ARROYO 94 measures the ratio of the neutral-current and charged-current deep inelastic scattering of ν_{μ} on an iron target. By assuming the SM electroweak correction, they obtain $1-m_W^2/m_Z^2=0.2218\pm0.0059,$ yielding the quoted m_t value. The second error corresponds to $m_H=300^{+700}_{-240}$ GeV.
- ²² BUSKULIC 94 result is from fit with free α_s . The second error is from m_H =300 $^{+700}_{-240}$ GeV.
- ELLIS 94B result is fit to electroweak data available in spring 1994, including the 1994 A_{LR} data from SLD. m_t and m_H are two free parameters of the fit for $\alpha_s(m_Z)=0.118\pm0.007$ yielding m_t above, and $m_H=35^{+70}_{-22}$ GeV. ELLIS 94B also give results for fits including constraints from CDF's direct measurement of m_t and CDF's and DØ 's production cross-section measurements. Fits excluding the A_{LR} data from SLD are also given.
- 24 GURTU 94 result is from fit with free m_t and $\alpha_s(m_Z)$, yielding m_t above and $\alpha_s(m_Z)$ = $0.125 \pm 0.005 ^{+0.003}_{-0.001}$. The second errors correspond to $m_H = 300 ^{+700}_{-240}$ GeV. Uses LEP, M_W , ν N, and SLD electroweak data available in spring 1994.
- 25 MONTAGNA 94 result is from fit with free m_t and $\alpha_s(m_Z)$, yielding m_t above and $\alpha_s(m_Z)=0.124$. The second errors correspond to $m_H=300^{+700}_{-240}$ GeV. Errors in $\alpha(m_Z)$ and m_b are taken into account in the fit. Uses LEP, SLC, and M_W/M_Z data available in spring 1994.
- 26 NOVIKOV 94B result is from fit with free m_t and $\alpha_s(m_Z)$, yielding m_t above and $\alpha_s(m_Z)=0.125\pm0.005\pm0.002$. The second errors correspond to $m_H=300^{+700}_{-240}$ GeV. Uses LEP and CDF electroweak data available in spring 1994.
- 27 ALITTI 92B assume $m_H=100$ GeV. The 95%CL limit is $m_t<250$ GeV for $m_H<1\,{\rm TeV}.$

t DECAY MODES

	Mode		Fraction (Γ	$_i/\Gamma)$	Confidence level
$\overline{\Gamma_1}$	Wq(q=b, s, d)				
Γ_2	W b				
Γ_3	ℓu_ℓ anything		$[a,b]$ (9.4 ± 2	.4) %	
Γ_4	$ au u_{ au} b$				
Γ_5	$\gamma q(q=u,c)$		[c] < 3.2	%	95%
	$\Delta T = 1$ weak	c neutral	current (T1)	modes	
Γ ₆	Zq(q=u,c)	T1	[d] < 13.7	%	95%

- [a] ℓ means e or μ decay mode, not the sum over them.
- [b] Assumes lepton universality and W-decay acceptance.
- [c] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [d] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

t BRANCHING RATIOS

 Γ_2/Γ_1

 $\frac{\Gamma(Wb)/\Gamma(Wq(q=b,s,d))}{VALUE}$ $0.94^{+0.26+0.17}_{-0.21-0.12}$ $0.94^{+0.26+0.17}_{-0.21-0.12}$ $0.94^{+0.26+0.17}_{-0.21-0.12}$ $0.94^{+0.26+0.17}_{-0.21-0.12}$ $0.94^{+0.26+0.17}_{-0.21-0.12}$

$\Gamma(\ell\nu_{\ell} \text{ anything})/\Gamma_{\text{total}}$ VALUE0.094 \pm 0.024 VALUE0.095 ABF 0.096 \times CDF

 $\Gamma(au
u_{ au}b)/\Gamma_{ ext{total}}$

• • • We do not use the following data for averages, fits, limits, etc. • •

30 ABE 97V CDF $\ell \tau$ + jets

 $^{^{28}}$ AFFOLDER 01C measures the top-quark decay width ratio $R = \Gamma(W\,b)/\Gamma(W\,q)$, where q is a $d,\,s,$ or b quark, by using the number of events with multiple b tags. The first error is statistical and the second systematic. A numerical integration of the likelihood function gives R > 0.61 (0.56) at 90% (95%) CL. By assuming three generation unitarity, $|V_{t\,b}| = 0.97^{+0.16}_{-0.12}$ or $|V_{t\,b}| > 0.78$ (0.75) at 90% (95%) CL is obtained. The result is based on 109 pb $^{-1}$ of data at $\sqrt{s} = 1.8$ TeV.

 $^{^{29}\}ell$ means e or μ decay mode, not the sum. Assumes lepton universality and W-decay acceptance.

 $^{^{30}\,\}mathrm{ABE}$ 97V searched for $t\,\overline{t}\to(\ell\nu_\ell)\;(\tau\nu_\tau)\,b\,\overline{b}$ events in 109 pb $^{-1}$ of $p\,\overline{p}$ collisions at $\sqrt{s}=1.8$ TeV. They observed 4 candidate events where one expects ~ 1 signal and ~ 2 background events. Three of the four observed events have jets identified as b candidates.

$\Gamma(Zq(q=u,c))/\Gamma_{total}$

< 0.33

 Γ_6/Γ

Test for $\Delta T=1$ weak neutral current. Allowed by higher-order electroweak interaction.

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
< 0.137	95	³² ACHARD	02J L3	$e^+e^- ightarrow \overline{t} c { m or} \overline{t} u$
< 0.14	95	³³ HEISTER		$e^+e^- ightarrow \ \overline{t}c$ or $\overline{t}u$
<0.137	95	³⁴ ABBIENDI	01T OPAL	$e^+e^- ightarrow \ \overline{t}c$ or $\overline{t}u$
• • • We do i	not use the	following data for	averages, fits,	limits, etc. • • •
< 0.17	95	³⁵ BARATE	00s ALEP	$e^+e^- ightarrow \overline{t} c { m or} \overline{t} u$

³⁶ ABE

³² ACHARD 02J looked for single top production via FCNC in the reaction $e^+e^- \to \overline{t}\,c$ or $\overline{t}\,u$ in 634 pb $^{-1}$ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to a bound on the top-quark decay branching fraction B($Z\,q$), where q is a u or c quark. The bound assumes B($\gamma\,q$)=0 and is for m_t = 175 GeV; bounds for m_t =170 GeV and 180 GeV and B($\gamma\,q$) \neq 0 are given in Fig. 5 and Table 7. Table 6 gives constraints on t-c-e-e four-fermi contact interactions.

98G CDF $t\overline{t} \rightarrow (Wb)(Zc \text{ or } Zu)$

- 33 HEISTER 02Q looked for single top production via FCNC in the reaction $e^+e^- \to \overline{t}\,c$ or $\overline{t}\,u$ in 214 pb $^{-1}$ of data at \sqrt{s} = 204–209 GeV. No deviation from the SM is found, which leads to a bound on the branching fraction B(Zq), where q is a u or c quark. The bound assumes B(γq)=0 and is for m_t = 174 GeV. Bounds on the effective t- (c or u)- γ and t- (c or u)-z couplings are given in their Fig. 2.
- ³⁴ ABBIENDI 01T looked for single top production via FCNC in the reaction $e^+e^- \to \overline{t}\,c$ or $\overline{t}\,u$ in 600 pb $^{-1}$ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to bounds on the branching fractions B(Zq) and B(γq), where q is a u or c quark. The result is obtained for m_t = 174 GeV. The upper bound becomes 9.7% (20.6%))) for m_t = 169 (179) GeV. Bounds on the effective t- (c or u)- γ and t- (c or u)-v couplings are given in their Fig. 4.
- 35 BARATE 00s looked for single top production via FCNC in the reaction $e^+e^- \to \overline{t}\,c$ or $\overline{t}\,u$ in 411 pb $^{-1}$ of data at c.m. energies between 189 and 202 GeV. No deviation from the SM is found, which leads to a bound on the branching fraction. The bound assumes B($\gamma\,q$)=0. Bounds on the effective t^- (c or u)- γ and t^- (c or u)-Z couplings are given in their Fig. 4.
- ³⁶ ABE 98G looked for $t\bar{t}$ events where one t decays into three jets and the other decays into qZ with $Z \to \ell\ell$. The quoted bound is for $\Gamma(Zq)/\Gamma(Wb)$.

t Decay Vertices

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	owing data for average	s, fits, limits,	, etc. • • •
$0.91\!\pm\!0.37\!\pm\!0.13$	37 AFFOLDER	00в CDF	$F_0 = W_I / (W_I + W_T)$
0.11 ± 0.15	³⁷ AFFOLDER	00B CDF	$B(t \rightarrow W_{\perp} b)$

³¹ ABE 98G looked for $t\bar{t}$ events where one t decays into $q\gamma$ while the other decays into bW. The quoted bound is for $\Gamma(\gamma q)/\Gamma(Wb)$.

 37 AFFOLDER 00B studied the angular distribution of leptonic decays of W bosons in t oWb events. The ratio F_0 is the fraction of the helicity zero (longitudinal) W bosons in the decaying top quark rest frame. The first error is statistical and the second systematic. $B(t \to W_+ b)$ is the fraction of positive helicity (right-handed) positive charge W bosons in the top quark decays. It is obtained by assuming the Standard Model value of F_0 .

Single t-Quark Production Cross Section in $p\bar{p}$ Collisions

Direct probes of the tbW coupling and possible new physics

VALUE (pb)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use t	he follov	ving data for average	es, fits, limits	s, etc. • • •
<18	95	³⁸ ACOSTA	02 CDF	$p\overline{p} \rightarrow tb + X$
<13	95	³⁹ ACOSTA	02 CDF	$p\overline{p} ightarrow tqb+X$
<17		^{40,41} ABAZOV	01c D0	$p\overline{p} ightarrow tb + X$
<22	95	^{41,42} ABAZOV	01c D0	$p\overline{p} ightarrow tqb+X$
<39	95	⁴⁰ ABBOTT	01B D0	$ ho \overline{ ho} ightarrow \ t b + \ X$
<58	95	⁴² ABBOTT	01B D0	$p\overline{p} \rightarrow tqb + X$

- 38 ACOSTA 02 bounds the cross section for single top-quark production via the s-channel W-exchange process, $q' \overline{q} \rightarrow t \overline{b}$. It is based on $\sim 106 \, \mathrm{pb}^{-1}$ of data at $\sqrt{s} = 1.8 \, \mathrm{TeV}$.
- 39 ACOSTA 02 bounds the cross section for single top-quark production via the t-channel W-exchange process, $q'g \rightarrow qt\overline{b}$. It is based on $\sim 106 \, \mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.8 \, \mathrm{TeV}$.
- 40 Result bounds the cross section for single top-quark production via the s-channel process $q'\overline{q} \rightarrow W' \rightarrow tb$. It is based on \sim 90 pb $^{-1}$ of data at \sqrt{s} = 1.8 TeV. 41 ABAZOV 01C results updates those of ABBOTT 01B by making use of arrays of neural
- networks to separate signals from backgrounds.
- 42 Result bounds the cross section for single top-quark production via the *t*-channel Wexchange process $q'g \rightarrow qtb$. It is based on $\sim 90 \text{ pb}^{-1}$ of data at $\sqrt{s}=1.8 \text{ TeV}$.

t-Quark REFERENCES

ACHARD	02J	PL B549 290	P. Achard et al.	(L3 Collab.)
ACOSTA	02	PR D65 091102	D. Acosta et al.	(CDF Collab.)
HEISTER	02Q	PL B543 173	A. Heister <i>et al.</i>	(ALEPH Collab.)
ABAZOV	01C	PL B517 282	V.M. Abazov et al.	(D0 Collab.)
ABBIENDI	01A	EPJ C19 587	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	01T	PL B521 181	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBOTT	01B	PR D63 031101	B. Abbott et al.	(D0 Collab.)
AFFOLDER	01	PR D63 032003	T. Affolder et al.	(CDF Collab.)
AFFOLDER	01C	PRL 86 3233	T. Affolder et al.	(CDF Collab.)
AFFOLDER	00B	PRL 84 216	T. Affolder et al.	(CDF Collab.)
BARATE	00S	PL B494 33	S. Barate <i>et al.</i>	(ALEPH Collab.)
FIELD	00	PR D61 013010	J.H. Field	
ABBOTT	99G	PR D60 052001	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	99B	PRL 82 271	F. Abe <i>et al.</i>	(CDF Collab.)
Also	99G	PRL 82 2808 (erratum)	F. Abe <i>et al.</i>	(CDF Collab.)
DEMORTIER	99	FNAL-TM-2084	L. Demortier <i>et al.</i>	(CDF/D0 Working Group)
FIELD	99	MPL A14 1815	J.H. Field	
ABBOTT	98D	PRL 80 2063	B. Abbott <i>et al.</i>	(D0 Collab.)
ABBOTT	98F	PR D58 052001	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	98E	PRL 80 2767	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98F	PRL 80 2779	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98G	PRL 80 2525	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98X	PRL 80 2773	F. Abe <i>et al.</i>	(CDF Collab.)
BHAT	98B	IJMP A13 5113	P.C. Bhat, H.B. Prosper, S.S.	
ABACHI	97E	PRL 79 1197	S. Abachi <i>et al.</i>	(D0 Collab.)
ABE	97R	PRL 79 1992	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	97V	PRL 79 3585	F. Abe <i>et al.</i>	(CDF Collab.)

DEBOER	97B	ZPHY C75 627	W. de Boer <i>et al.</i>	
ELLIS	96C	PL B389 321	J. Ellis, G.L. Fogli, E. Lisi	(CERN, BARI)
ABACHI	95	PRL 74 2632	S. Abachi <i>et al.</i>	` (D0 Collab.)
ABE	95F	PRL 74 2626	F. Abe <i>et al.</i>	(CDF Collab.)
ERLER	95	PR D52 441	J. Erler, P. Langacker	` (PENN)
MATSUMOTO	95	MPL A10 2553	S. Matsumoto	`(KEK)
ABE	94E	PR D50 2966	F. Abe <i>et al.</i>	(CDF Collab.)
Also	94F	PRL 73 225	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	94	NP B418 403	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	94	ZPHY C62 551	M. Acciarri et al.	(L3 Collab.)
ARROYO	94	PRL 72 3452	C.G. Arroyo et al.	(COLU, CHIC, $FNAL+$)
BUSKULIC	94	ZPHY C62 539	D. Buskulic et al.	(ALEPH Collab.)
ELLIS	94B	PL B333 118	J. Ellis, G.L. Fogli, E. Lisi	(CERN, BARI)
GURTU	94	MPL A9 3301	A. Gurtu	(TATA)
MONTAGNA	94	PL B335 484	G. Montagna <i>et al.</i>	(INFN, PAVI, CÈRN+)
NOVIKOV	94B	MPL A9 2641	V.A. Novikov et al.	(GUEL, CERN, ITEP)
PDG	94	PR D50 1173	L. Montanet <i>et al.</i>	(ČERN, LBL, BOST+)
ALITTI	92B	PL B276 354	J. Alitti <i>et al.</i>	` (UA2 Collab.)