$$=_{c}^{\prime+}$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

The $\Xi_c^{\prime+}$ and $\Xi_c^{\prime0}$ presumably complete the SU(3) sextet whose other members are the Σ_c^{++} , Σ_c^+ , Σ_c^0 , and Ω_c^0 : see Fig. 3 in the Note on Charmed Baryons just before the the Λ_c^+ Listings. The quantum numbers given above come from this presumption but have not been measured.

Ξ'+ MASS

The mass is obtained from the mass-difference measurement that follows.

VALUE (MeV)

DOCUMENT ID

2574.1±3.3 OUR FIT

 $\Xi_c^{\prime +} - \Xi_c^+$ MASS DIFFERENCE

VALUE (MeV) **EVTS**

DOCUMENT ID

TECN COMMENT

107.8 ± 3.0 OUR FIT 107.8 ± 1.7 ± 2.5

JESSOP 25

99 CLE2 $e^+e^-\approx \Upsilon(4S)$

$\Xi_c^{\prime+}$ DECAY MODES

The $\Xi_{c}^{\prime +} - \Xi_{c}^{+}$ mass difference is too small for any strong decay to occur.

Mode

Fraction (Γ_i/Γ)

 Γ_1

E'+ REFERENCES

JESSOP

PRL 82 492

C.P. Jessop et al.

(CLEO Collab.)

Created: 6/2/2004 14:08