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20. BIG-BANG NUCLEOSYNTHESIS

Revised October 2003 by B.D. Fields (Univ. of Illinois) and S. Sarkar (Univ. of Oxford).

Big-bang nucleosynthesis (BBN) offers the deepest reliable probe of the early
universe, being based on well-understood Standard Model physics [1]. Predictions of
the abundances of the light elements, D, 3He, 4He, and 7Li, synthesized at the end of
the “first three minutes” are in good overall agreement with the primordial abundances
inferred from observational data, thus validating the standard hot big-bang cosmology
(see [5] for a recent review). This is particularly impressive given that these abundances
span nine orders of magnitude — from 4He/H ∼ 0.08 down to 7Li/H ∼ 10−10 (ratios
by number). Thus BBN provides powerful constraints on possible deviations from the
standard cosmology [2], and on new physics beyond the Standard Model [3].

20.1. Big-bang nucleosynthesis theory

The synthesis of the light elements is sensitive to physical conditions in the early
radiation-dominated era at temperatures T <∼ 1 MeV, corresponding to an age t >∼ 1 s.
At higher temperatures, weak interactions were in thermal equilibrium, thus fixing
the ratio of the neutron and proton number densities to be n/p = e−Q/T , where
Q = 1.293 MeV is the neutron-proton mass difference. As the temperature dropped,
the neutron-proton inter-conversion rate, Γn↔p ∼ G2

FT 5, fell faster than the Hubble
expansion rate, H ∼ √

g∗GN T 2, where g∗ counts the number of relativistic particle
species determining the energy density in radiation. This resulted in departure from
chemical equilibrium (“freeze-out”) at Tfr ∼ (g∗GN/G4

F )1/6 ' 1 MeV. The neutron
fraction at this time, n/p = e−Q/Tfr ' 1/6, is thus sensitive to every known physical
interaction, since Q is determined by both strong and electromagnetic interactions while
Tfr depends on the weak as well as gravitational interactions. Moreover the sensitivity
to the Hubble expansion rate affords a probe of e.g. the number of relativistic neutrino
species [6]. After freeze-out the neutrons were free to β-decay so the neutron fraction
dropped to ' 1/7 by the time nuclear reactions began. A useful semi-analytic description
of freeze-out has been given [7].

The rates of these reactions depend on the density of baryons (strictly speaking,
nucleons), which is usually expressed normalized to the blackbody photon density as
η ≡ nB/nγ . As we shall see, all the light-element abundances can be explained with
η10 ≡ η×1010 in the range 3.4–6.9 (95% CL). Equivalently, this can be stated as the allowed
range for the baryon mass density today, ρB = (2.3–4.7)×10−31 g cm−3, or as the baryonic
fraction of the critical density: ΩB = ρB/ρcrit ' η10h

−2/274 = (0.012–0.025)h−2, where
h ≡ H0/100 km s−1 Mpc−1 = 0.72 ± 0.08 is the present Hubble parameter (see
Cosmological Parameters review).

The nucleosynthesis chain begins with the formation of deuterium in the process
p(n, γ)D. However, photo-dissociation by the high number density of photons delays
production of deuterium (and other complex nuclei) well after T drops below the binding
energy of deuterium, ∆D = 2.23 MeV. The quantity η−1e−∆D/T , i.e. the number of
photons per baryon above the deuterium photo-dissociation threshold, falls below unity at
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2 20. Big-Bang nucleosynthesis

T ' 0.1 MeV; nuclei can then begin to form without being immediately photo-dissociated
again. Only 2-body reactions such as D(p, γ)3He, 3He(D, p)4He, are important because
the density has become rather low by this time.

Nearly all the surviving neutrons when nucleosynthesis begins end up bound in the
most stable light element 4He. Heavier nuclei do not form in any significant quantity
both because of the absence of stable nuclei with mass number 5 or 8 (which impedes
nucleosynthesis via n4He, p4He or 4He4He reactions) and the large Coulomb barriers for
reactions such as T(4He, γ)7Li and 3He(4He, γ)7Be. Hence the primordial mass fraction of
4He, conventionally referred to as Yp, can be estimated by the simple counting argument

Yp =
2(n/p)
1 + n/p

' 0.25 . (20.1)

There is little sensitivity here to the actual nuclear reaction rates, which are however
important in determining the other “left-over” abundances: D and 3He at the level of a
few times 10−5 by number relative to H, and 7Li/H at the level of about 10−10 (when η10

is in the range 1–10). These values can be understood in terms of approximate analytic
arguments [8]. The experimental parameter most important in determining Yp is the
neutron lifetime, τn, which normalizes (the inverse of) Γn↔p. (This is not fully determined
by GF alone since neutrons and protons also have strong interactions, the effects of which
cannot be calculated very precisely.) The experimental uncertainty in τn used to be a
source of concern but has recently been reduced substantially: τn = 885.7 ± 0.8 s.

The elemental abundances, calculated using the (publicly available [9]) Wagoner
code [1,10], are shown in Fig. 20.1 as a function of η10. The 4He curve includes small
corrections due to radiative processes at zero and finite temperature [11], non-equilibrium
neutrino heating during e± annihilation [12], and finite nucleon mass effects [13]; the
range reflects primarily the 1σ uncertainty in the neutron lifetime. The spread in the
curves for D, 3He and 7Li corresponds to the 1σ uncertainties in nuclear cross sections
estimated by Monte Carlo methods [14–15]. Recently the input nuclear data have been
carefully reassessed [16–18], leading to improved precision in the abundance predictions.
Polynomial fits to the predicted abundances and the error correlation matrix have been
given [15,19]. The boxes in Fig. 20.1 show the observationally inferred primordial
abundances with their associated uncertainties, as discussed below.

20.2. Light Element Observations

BBN theory predicts the universal abundances of D, 3He, 4He, and 7Li, which are
essentially determined by t ∼ 180 s. Abundances are however observed at much later
epochs, after stellar nucleosynthesis has commenced. The ejected remains of this stellar
processing can alter the light element abundances from their primordial values, but also
produce heavy elements such as C, N, O, and Fe (“metals”). Thus one seeks astrophysical
sites with low metal abundances, in order to measure light element abundances which
are closer to primordial. For all of the light elements, systematic errors are an important
and often dominant limitation to the precision with which primordial abundances can be
inferred.
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Figure 20.1: The abundances of 4He, D, 3He and 7Li as predicted by the standard
model of big-bang nucleosynthesis. Boxes indicate the observed light element
abundances (smaller boxes: 2σ statistical errors; larger boxes: ±2σ statistical and
systematic errors added in quadrature). The narrow vertical band indicates the
CMB measure of the cosmic baryon density. See full-color version on color pages at
end of book.

In recent years, high-resolution spectra have revealed the presence of D in high-redshift,
low-metallicity quasar absorption systems (QAS), via its isotope-shifted Lyman-α
absorption [20–24]. These are the first measurements of light element abundances at
cosmological distances. It is believed that there are no astrophysical sources of deuterium
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[25], so any measurement of D/H provides a lower limit to primordial D/H and thus an
upper limit on η; for example, the local interstellar value of D/H = (1.5±0.1)×10−5 [26]
requires that η10 ≤ 9. In fact, local interstellar D may have been depleted by a factor of
2 or more due to stellar processing; however, for the high-redshift systems, conventional
models of galactic nucleosynthesis (chemical evolution) do not predict significant D/H
depletion [27].

The 5 most precise observations of deuterium in QAS give D/H = (2.78± 0.29)× 10−5

[20–21], where the error is statistical only. However there remains concern over systematic
errors, the dispersion between the values being much larger than is expected from the
individual measurement errors (χ2 = 12.4 for 4 d.o.f.). Other lower values have been
reported in different (damped Lyman-α) systems [22–23] and even the ISM value of
D/H now shows unexpected scatter of a factor of 2 [28]. We thus conservatively bracket
the observed values with an upper limit set by the non-detection of D in a high-redshift
system, D/H < 6.7 × 10−5 at 1σ [24], and a lower limit set by the local interstellar
value [26]. These appear on Fig. 20.1, where it is clear that despite the observational
uncertainties, the steep decrease of D/H with η makes it a sensitive probe of the baryon
density. We are optimistic that a larger sample of D/H in high-redshift, low-redshift, and
local systems will bring down systematic errors, and increase the precision with which η
can be determined.

We observe 4He in clouds of ionized hydrogen (H II regions), the most metal-poor
of which are in dwarf galaxies. There is now a large body of data on 4He and CNO
in these systems [29]. These data confirm that the small stellar contribution to helium
is positively correlated with metal production. Extrapolating to zero metallicity gives
the primordial 4He abundance [30] Yp = 0.238 ± 0.002 ± 0.005. Here the latter error
is an estimate of the systematic uncertainty; this dominates, and is based on the
scatter in different analyses of the physical properties of the H II regions [29,31]. Other
extrapolations to zero metallicity give Yp = 0.2443±0.0015 [29], and Yp = 0.2391±0.0020
[32]. These are consistent (given the systematic errors) with the above estimate [30],
which appears in Fig. 20.1.

The systems best suited for Li observations are metal-poor stars in the spheroid
(Pop II) of our Galaxy, which have metallicities going down to at least 10−4 and
perhaps 10−5 of the Solar value [33]. Observations have long shown [34–38] that Li does
not vary significantly in Pop II stars with metallicities <∼ 1/30 of Solar — the “Spite
plateau” [34]. Recent precision data suggest a small but significant correlation between
Li and Fe [35] which can be understood as the result of Li production from Galactic
cosmic rays [36]. Extrapolating to zero metallicity one arrives at a primordial value
[37] Li/H|p = (1.23 ± 0.06) × 10−10. One systematic error stems from the differences in
techniques to determine the physical parameters (e.g., the temperature) of the stellar
atmosphere in which the Li absorption line is formed. An alternative analysis [38] using a
different set of stars (in a globular cluster) and a method that gives systematically higher
temperatures yields Li/H|p = (2.19 ± 0.28) × 10−10; the difference with [37] indicates a
systematic uncertainty of about a factor ∼ 2. Another systematic error arises because it is
possible that the Li in Pop II stars has been partially destroyed, due to mixing of the outer
layers with the hotter interior [39]. Such processes can be constrained by the absence
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of significant scatter in Li-Fe [35], and by observations of the fragile isotope 6Li [36].
Nevertheless, depletions by a factor as large as ∼ 1.6 remain allowed [37,39]. Including
these systematics, we estimate a primordial Li range of Li/H|p = (0.59 − 4.1) × 10−10.

Finally, we turn to 3He. Here, the only observations available are in the Solar
system and (high-metallicity) H II regions in our Galaxy [40]. This makes inference
of the primordial abundance difficult, a problem compounded by the fact that stellar
nucleosynthesis models for 3He are in conflict with observations [41]. Consequently, it
is no longer appropriate to use 3He as a cosmological probe; instead, one might hope to
turn the problem around and constrain stellar astrophysics using the predicted primordial
3He abundance [42].

20.3. Concordance, Dark Matter, and the CMB

We now use the observed light element abundances to assess the theory. We first
consider standard BBN, which is based on Standard Model physics alone, so Nν = 3 and
the only free parameter is the baryon-to-photon ratio η. (The implications of BBN for
physics beyond the Standard Model will be considered below, §4). Thus, any abundance
measurement determines η, while additional measurements overconstrain the theory and
thereby provide a consistency check.

First we note that the overlap in the η ranges spanned by the larger boxes in Fig. 20.1
indicates overall concordance. More quantitatively, when we account for theoretical
uncertainties as well as the statistical and systematic errors in observations, there is
acceptable agreement among the abundances when

3.4 ≤ η ≤ 6.9 (95% CL). (20.2)

However the agreement is much less satisfactory if we use only the quoted statistical
errors in the observations. In particular, as seen in Fig. 20.1, 4He and 7Li are consistent
with each other but favour a value of η which is lower by ∼ 2σ from that indicated by the
D abundance. Additional studies are required to clarify if this discrepancy is real.

Even so the overall concordance is remarkable: using well-established microphysics we
have extrapolated back to an age of ∼ 1 s to correctly predict light element abundances
spanning 9 orders of magnitude. This is a major success for the standard cosmology, and
inspires confidence in extrapolation back to still earlier times.

This concordance provides a measure of the baryon content of the universe. With
nγ fixed by the present CMB temperature (see CMB Review), the baryon density is
ΩB = 3.65 × 10−3h−2η10, so that

0.012 ≤ ΩBh2 ≤ 0.025 (95% CL) , (20.3)

a result that plays a key role in our understanding of the matter budget of the universe.
First we note that ΩB � 1, i.e., baryons cannot close the universe [43]. Furthermore,
the cosmic density of (optically) luminous matter is Ωlum ' 0.0024h−1 [44], so that
ΩB � Ωlum: most baryons are optically dark, probably in the form of a ∼ 106 K X-ray
emitting intergalactic medium [45]. Finally, given that ΩM ∼ 0.3 (see Dark Matter,
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Cosmological Parameter Review), we infer that most matter in the universe is not only
dark but also takes some non-baryonic (more precisely, non-nucleonic) form.

The BBN prediction for the cosmic baryon density can be tested through precision
observations of CMB temperature fluctuations (see CMB Review). One can determine η
from the amplitudes of the acoustic peaks in the CMB angular power spectrum, making
it possible to compare two measures of η using very different physics, at two widely
separated epochs [46]. In the standard cosmology, there is no change in η between BBN
and CMB decoupling, thus, a comparison of ηBBN and ηCMB is a key test. Agreement
would endorse the standard picture, and would open the way to sharper understanding of
particle physics and astrophysics [54]. Disagreement could point to new physics during
or between the BBN and CMB epochs.

The release of the first-year WMAP results are a landmark event in this test of BBN.
As with other cosmological parameter determinations from CMB data, the derived ηCMB
depends on the adopted priors [47], in particular the form assumed for the power
spectrum of primordial density fluctuations. If this is taken to be a scale-free power-law,
the WMAP data implies ΩBh2 = 0.024 ± 0.001 or η10 = 6.58 ± 0.27, while allowing for a
“running” spectral index lowers the value to ΩBh2 = 0.0224± 0.0009 or η10 = 6.14± 0.25
[48]; this latter range appears in Fig. 20.1. Other assumptions for the shape of the power
spectrum can lead to baryon densities as low as ΩBh2 = 0.019 [49]. Thus outstanding
uncertainties regarding priors are a source of systematic error which presently exceeds the
statistical error in the prediction for η.

Even so, the CMB estimate of the baryon density is not inconsistent with the BBN
range quoted in Eq. (20.3), and is in fact in good agreement with the value inferred from
recent high-redshift D/H measurements [20]. However note that both 4He and 7Li are
inconsistent with the CMB (as they are with D) given the error budgets we have quoted.
The question then becomes more pressing as to whether this mismatch come from
systematic errors in the observed abundances, and/or uncertainties in stellar astrophysics,
or whether there might be new physics at work. Inhomogeneous nucleosynthesis can alter
abundandances for a given ηBBN but will overproduce 7Li [50]. However a small excess
of electron neutrinos over antineutrinos will lower the 4He abundance below the standard
BBN prediction without affecting the other elements [1]. Note that entropy generation
by some non-standard process could have decreased η between the BBN era and CMB
decoupling, however the lack of spectral distortions in the CMB rules out any significant
energy injection upto a redshift z ∼ 107 [51]. Interestingly, the CMB itself offers the
promise of measuring 4He [52] and possibly 7Li [53] directly at z ∼ 300 − 1000.

Bearing in mind the importance of priors, the promise of precision determinations
of the baryon density using the CMB motivates using this value as an input to
BBN calculations. Within the context of the Standard Model, BBN then becomes a
zero-parameter theory, and the light element abundances are completely determined to
within the uncertainties in ηCMB and the BBN theoretical errors. Comparison with the
observed abundances then can be used to test the astrophysics of post-BBN light element
evolution [54]. Alternatively, one can consider possible physics beyond the Standard
Model (e.g., which might change the expansion rate during BBN) and then use all of the
abundances to test such models; this is the subject of our final section.
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20.4. Beyond the Standard Model

Given the simple physics underlying BBN, it is remarkable that it still provides the
most effective test for the cosmological viability of ideas concerning physics beyond the
Standard Model. Although baryogenesis and inflation must have occurred at higher
temperatures in the early universe, we do not as yet have ‘standard models’ for these so
BBN still marks the boundary between the established and the speculative in big bang
cosmology. It might appear possible to push the boundary back to the quark-hadron
transition at T ∼ ΛQCD or electroweak symmetry breaking at T ∼ 1/

√
GF; however

so far no observable relics of these epochs have been identified, either theoretically or
observationally. Thus although the Standard Model provides a precise description of
physics up to the Fermi scale, cosmology cannot be traced in detail before the BBN era.

Limits on particle physics beyond the Standard Model come mainly from the
observational bounds on the 4He abundance. This is proportional to the n/p ratio which
is determined when the weak-interaction rates fall behind the Hubble expansion rate at
Tfr ∼ 1 MeV. The presence of additional neutrino flavors (or of any other relativistic
species) at this time increases g∗, hence the expansion rate, leading to a larger value of Tfr,
n/p, and therefore Yp [6,55]. In the Standard Model, the number of relativistic particle
species at 1 MeV is g∗ = 5.5 + 7

4Nν , where 5.5 accounts for photons and e±, and Nν is
the number of (nearly massless) neutrino flavors (see Big Bang Cosmology Review). The
helium curves in Fig. 20.1 were computed taking Nν = 3; the computed abundance scales
as ∆ YBBN ' 0.013∆Nν [7]. Clearly the central value for Nν from BBN will depend on
η, which is independently determined (with little sensitivity to Nν) by the adopted D or
7Li abundance. For example, if the best value for the observed primordial 4He abundance
is 0.238, then, for η10 ∼ 2, the central value for Nν is very close to 3. A maximum
likelihood analysis on η and Nν based on 4He and 7Li [56] finds the (correlated) 95%
CL ranges to be 1.7 ≤ η10 ≤ 4.3, and 1.4 ≤ Nν ≤ 4.9. Similar results were obtained in
another study [57] which presented a simpler method (FastBBN [9]) to extract such
bounds based on χ2 statistics, given a set of input abundances. Tighter bounds are
obtained if less conservative assumptions are made concerning primordial abundances,
e.g. adopting the ‘low’ D abundance [21] fixes η10 = 5.6 ± 0.6 (ΩBh2 = 0.02 ± 0.002) at
95% CL, and requires Nν < 3.2 [58] even if the ‘high’ 4He abundance [29] is used. Using
the CMB determination of η yields even tighter constraints, with Nν = 3 barely allowed
at 2σ [59]! However if the discrepancy between the 4He and D abundances is indeed due
to a νe chemical potential, then Nν can range up to 7.1 at 2σ [60].

It is clear that just as one can use the measured helium abundance to place limits
on g∗ [55], any changes in the strong, weak, electromagnetic, or gravitational coupling
constants, arising e.g. from the dynamics of new dimensions, can be similarly constrained
[61].

The limits on Nν can be translated into limits on other types of particles or particle
masses that would affect the expansion rate of the Universe during nucleosynthesis.
For example consider ‘sterile’ neutrinos with only right-handed interactions of strength
GR < GF. Such particles would decouple at higher temperature than (left-handed)
neutrinos, so their number density (∝ T 3) relative to neutrinos would be reduced
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by any subsequent entropy release, e.g. due to annihilations of massive particles that
become non-relativistic in between the two decoupling temperatures. Thus (relativistic)
particles with less than full strength weak interactions contribute less to the energy
density than particles that remain in equilibrium up to the time of nucleosynthesis
[62]. If we impose Nν < 4 as an illustrative constraint, then the three right-handed
neutrinos must have a temperature 3(TνR

/TνL
)4 < 1. Since the temperature of the

decoupled νR’s is determined by entropy conservation (see Big Bang Cosmology Review),
TνR

/TνL
= [(43/4)/g∗(Td)]1/3 < 0.76, where Td is the decoupling temperature of the

νR’s. This requires g∗(Td) > 24 so decoupling must have occurred at Td > 140 MeV.
The decoupling temperature is related to GR through (GR/GF)2 ∼ (Td/3 MeV)−3, where
3 MeV is the decoupling temperature for νLs. This yields a limit GR

<∼ 10−2GF. The
above argument sets lower limits on the masses of new Z ′ gauge bosons in superstring
models [63] or in extended technicolour models [64] to which such right-handed neutrinos
would be coupled. Similarly a Dirac magnetic moment for neutrinos, which would allow
the right-handed states to be produced through scattering and thus increase g∗, can
be significantly constrained [65], as can any new interactions for neutrinos which have
a similar effect [66]. Right-handed states can be populated directly by helicity-flip
scattering if the neutrino mass is large enough and this can be used to used to infer e.g. a
bound of mντ

<∼ 1 MeV taking Nν < 4 [67]. If there is mixing between active and sterile
neutrinos then the effect on BBN is more complicated [68].

The limit on the expansion rate during BBN can also be translated into bounds on
the mass/lifetime of particles which are non-relativistic during BBN resulting in an even
faster speed-up rate; the subsequent decays of such particles will typically also change
the entropy, leading to further constraints [69]. Even more stringent constraints come
from requiring that the synthesized light element abundances are not excessively altered
through photodissociations by the electromagnetic cascades triggered by the decays
[70,71], or by the effects of hadrons in the cascades [80]. Such arguments have been
applied to e.g. rule out a MeV mass ντ which decays during nucleosynthesis [73]; even if
the decays are to non-interacting particles (and light neutrinos), bounds can be derived
from considering their effects on BBN [74].

Such arguments have proved very effective in constraining supersymmetry. For example
if the gravitino is light and contributes to g∗, the illustrative BBN limit Nν < 4 requires
its mass to exceed ∼ 1 eV [75]. In models where supersymmetry breaking is gravity
mediated, the gravitino mass is usually much higher, of order the electroweak scale; such
gravitinos would be unstable and decay after BBN. The constraints on unstable particles
discussed above imply stringent bounds on the allowed abundance of such particles, which
in turn impose powerful constraints on supersymmetric inflationary cosmology [71,80].
These can be evaded only if the gravitino is massive enough to decay before BBN, i.e.
m3/2

>∼ 50 TeV [76] which would be unnatural, or if it is in fact the LSP and thus
stable [71,77]. Similar constraints apply to moduli — very weakly coupled fields in
supergravity/string models which obtain an electroweak-scale mass from supersymmetry
breaking [78].

Finally we mention that BBN places powerful constraints on the recently suggested
possibility that there are new large dimensions in nature, perhaps enabling the scale of
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20. Big-Bang nucleosynthesis 9

quantum gravity to be as low as the electroweak scale [79]. Thus Standard Model fields
may be localized on a ‘brane’ while gravity alone propagates in the ‘bulk’. It has been
further noted that the new dimensions may be non-compact, even infinite [80] and the
cosmology of such models has attracted considerable attention. The expansion rate in the
early universe can be significantly modified so BBN is able to set interesting constraints
on such possibilities [81].
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