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QUARK MASSES

Revised April 2002 by A.V. Manohar (University of California,
San Diego) and C.T. Sachrajda (University of Southampton).

A. Introduction:

This note discusses some of the theoretical issues relevant

to the determination of quark masses, which are fundamental

parameters of the Standard Model of particle physics. Unlike

the leptons, quarks are confined inside hadrons and are not

observed as physical particles. Quark masses, therefore, can-

not be measured directly, but must be determined indirectly

through their influence on hadronic properties. Although one

often speaks loosely of quark masses as one would of the mass

of the electron or muon, any quantitative statement about

the value of a quark mass must make careful reference to the

particular theoretical framework that is used to define it. It is

important to keep this scheme dependence in mind when using

the quark mass values tabulated in the data Listings.

Historically, the first determinations of quark masses were

performed using quark models. The resulting masses only make

sense in the limited context of a particular quark model, and

cannot be related to the quark mass parameters of the Standard

Model. In order to discuss quark masses at a fundamental level,

definitions based on quantum field theory must be used, and

the purpose of this note is to discuss these definitions and the

corresponding determinations of the values of the masses.

B. Mass parameters and the QCD Lagrangian:

The QCD [1] Lagrangian for NF quark flavors is

L =

NF∑
k=1

qk (i /D −mk) qk − 1
4
GµνG

µν , (1)

where /D = (∂µ − igAµ) γµ is the gauge covariant derivative,

Aµ is the gluon field, Gµν is the gluon field strength, mk is

the mass parameter of the kth quark, and qk is the quark

Dirac field. After renormalization, the QCD Lagrangian Eq. (1)

gives finite values for physical quantities, such as scattering

amplitudes. Renormalization is a procedure that invokes a sub-

traction scheme to render the amplitudes finite, and requires
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the introduction of a dimensionful scale parameter µ. The mass

parameters in the QCD Lagrangian Eq. (1) depend on the renor-

malization scheme used to define the theory, and also on the

scale parameter µ. The most commonly used renormalization

scheme for QCD perturbation theory is the MS scheme.

The QCD Lagrangian has a chiral symmetry in the limit

that the quark masses vanish. This symmetry is spontaneously

broken by dynamical chiral symmetry breaking, and explicitly

broken by the quark masses. The nonperturbative scale of dy-

namical chiral symmetry breaking, Λχ, is around 1 GeV [2]. It

is conventional to call quarks heavy if m > Λχ, so that explicit

chiral symmetry breaking dominates (c, b, and t quarks are

heavy), and light if m < Λχ, so that spontaneous chiral sym-

metry breaking dominates (u, d, and s quarks are light). The

determination of light- and heavy-quark masses is considered

separately in sections D and E below.

At high energies or short distances, nonperturbative effects,

such as chiral symmetry breaking, become small, and one can, in

principle, determine quark masses by analyzing mass-dependent

effects using QCD perturbation theory. Such computations are

conventionally performed using the MS scheme at a scale

µ � Λχ, and give the MS “running” mass m(µ). We use

the MS scheme when reporting quark masses; one can readily

convert these values into other schemes using perturbation

theory.

The µ dependence of m(µ) at short distances can be

calculated using the renormalization group equation,

µ2 dm (µ)

dµ2
= −γ(αs (µ)) m (µ) , (2)

where γ is the anomalous dimension which is now known to

four-loop order in perturbation theory [3,4]. αs is the coupling

constant in the MS scheme. Defining the expansion coefficients

γr by

γ (αs) ≡
∞∑

r=1

γr

(
αs

4π

)r

,
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the first four coefficients are given by

γ1 = 4,

γ2 =
202

3
− 20NL

9
,

γ3 = 1249 +

(
−2216

27
− 160

3
ζ (3)

)
NL − 140

81
N2

L,

γ4 =
4603055

162
+

135680

27
ζ (3) − 8800ζ (5)

+

(
−91723

27
− 34192

9
ζ (3) + 880ζ (4) +

18400

9
ζ (5)

)
NL

+

(
5242

243
+

800

9
ζ (3) − 160

3
ζ (4)

)
N2

L

+

(
−332

243
+

64

27
ζ (3)

)
N3

L,

where NL is the number of active light quark flavors at the

scale µ, i.e., flavors with masses < µ, and ζ is the Riemann

zeta function (ζ(3) ' 1.2020569, ζ(4) ' 1.0823232, and ζ(5) '
1.0369278).

C. Lattice Gauge Theory:

The use of the lattice simulations for ab initio determi-

nations of the fundamental parameters of QCD, including the

coupling constant and quark masses (except for the top-quark

mass), is a very active area of research, with the current em-

phasis being on the reduction and control of the systematic

uncertainties. We now briefly review some of the features of

lattice QCD. In this approach, space-time is approximated by

a finite, discrete lattice of points, and multi-local correlation

functions are computed by the numerical evaluation of the

corresponding functional integrals. To determine quark masses,

one computes a convenient and appropriate set of physical

quantities (frequently chosen to be a set of hadronic masses)

using lattice QCD for a variety of input values of the quark

masses. The true (physical) values of the quark masses are

those which correctly reproduce the set of physical quantities

being used for calibration.
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The values of the quark masses obtained directly in lattice

simulations are bare quark masses, with the lattice spacing a

as the ultraviolet cut-off. In order for the lattice results to be

useful in phenomenology, it is, therefore, necessary to relate

the bare quark masses in a lattice formulation of QCD to

renormalized masses in some standard renormalization scheme

such as MS. Provided that both the ultraviolet cut-off a−1

and the renormalization scale are much greater than ΛQCD,

the bare and renormalized masses can be related in perturba-

tion theory (this is frequently facilitated by the use of chiral

Ward identities). However, the coefficients in lattice perturba-

tion theory are often found to be large, and our ignorance

of higher-order terms is generally a significant source of sys-

tematic uncertainty (although techniques exist which help to

resum some of the large higher-order effects). Increasingly, non-

perturbative renormalization is used to calculate the relation

between the bare and renormalized masses, circumventing the

need for lattice perturbation theory.

The precision with which quark masses can be determined

in lattice simulations is limited by the available computing

resources. There are a number of sources of systematic un-

certainty, and there has been considerable progress in recent

years in reducing a number of these. Currently, the difficulty of

performing a standard error analysis for lattice simulations is

due predominantly to two sources of systematic uncertainty:

Quenching: Until recently most of the simulations have been

performed in the “quenched” approximation, in which quark

vacuum polarization effects are neglected. It is not possible, in

general, to quantify the effects of quenching, although there is a

folklore that they are of the order of 10 – 15%. Such an estimate

is based on a comparison of results from quenched simulations,

with experimental measurements for those quantities where this

is possible, and with some (partially) unquenched calculations.

Extrapolation towards the Chiral Limit: Increasingly un-

quenched simulations are being performed, most often with two

flavors of sea quarks. The difficulty, however, is that the masses

of the u and d quarks (both valence and sea) used in these

simulations are much larger than their physical values. The
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lattice results have, therefore, to be extrapolated as functions

of mu and md. Ideally such an extrapolation would be guided

by the predictions of chiral perturbation theory, and there are

some indications that this may be possible before too long. In

general, however, it is likely that the values of mu and md

currently used in simulations are too large for the predictions

of chiral perturbation theory to be useful. The results quoted

below were obtained assuming there will be no major surprises

when mu and md are reduced.

In addition, one has to consider the uncertainties due to

the fact that the lattice spacing is non-zero (lattice artifacts),

and that the volume is not infinite. The former are studied

by observing the stability of the results as a is varied, or by

using “improved” formulations of lattice QCD. By varying the

volume of the lattice one checks that finite-volume effects are

indeed small.

D. Light quarks:

For light quarks, one can use the techniques of chiral

perturbation theory to extract quark mass ratios. The mass

term for light quarks is

ΨMΨ = ΨLMΨR + ΨRMΨL, (3)

where M is the light quark mass matrix M ,

M =

mu 0 0
0 md 0
0 0 ms

 , (4)

and Ψ = (u, d, s). The mass term ΨMΨ is the only term in the

QCD Lagrangian that mixes left- and right-handed quarks. In

the limit M → 0, there is an independent SU(3) × U(1) flavor

symmetry for the left- and right-handed quarks. The vector

U(1) symmetry is baryon number; the axial U(1) symmetry

of the classical theory is broken in the quantum theory, due

to the anomaly. The remaining Gχ = SU(3)L × SU(3)R chiral

symmetry of the QCD Lagrangian is spontaneously broken to

SU(3)V , which, in the limit M → 0, leads to eight massless

Goldstone bosons, the π’s, K’s, and η.
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The symmetry Gχ is only an approximate symmetry, since

it is explicitly broken by the quark mass matrix M . The

Goldstone bosons acquire masses which can be computed in

a systematic expansion in M , in terms of certain unknown

nonperturbative parameters of the theory. For example, to first

order in M , one finds that [5]

m2
π0 =B (mu +md) ,

m2
π± =B (mu +md) + ∆em ,

m2
K0 = m2

K
0 =B (md +ms) , (5)

m2
K± =B (mu +ms) + ∆em ,

m2
η =

1

3
B (mu +md + 4ms) ,

with two unknown parameters B and ∆em, the electromagnetic

mass difference. From Eq. (5), one can determine the quark

mass ratios [5]

mu

md
=

2m2
π0 −m2

π+ +m2
K+ −m2

K0

m2
K0 −m2

K+ +m2
π+

= 0.56 ,

ms

md
=
m2

K0 +m2
K+ −m2

π+

m2
K0 +m2

π+ −m2
K+

= 20.1 , (6)

to lowest order in chiral perturbation theory, with an error which

will be estimated below. Since the mass ratios extracted using

chiral perturbation theory use the symmetry transformation

property of M under the chiral symmetry Gχ, it is important to

use a renormalization scheme for QCD that does not change this

transformation law. Any mass-independent subtraction scheme,

such as MS, is suitable. The ratios of quark masses are scale-

independent in such a scheme, and Eq. (6) can be taken to

be the ratio of MS masses. Chiral perturbation theory cannot

determine the overall scale of the quark masses, since it uses

only the symmetry properties of M , and any multiple of M has

the same Gχ transformation law as M .

The second-order quark-mass term [9](
M †

)−1
detM † (7)
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(which can be generated by instantons) transforms in the

same way under Gχ as M . Chiral perturbation theory cannot

distinguish between M and
(
M †)−1

detM †; one can make the

replacement M → M(λ) = M + λM
(
M †M

)−1
detM † in the

chiral Lagrangian,

M(λ) = diag (mu(λ) , md(λ) , ms(λ))

= diag (mu + λmdms , md + λmums , ms + λmumd) , (8)

and leave all observables unchanged.

The combination(
mu

md

)2

+
1

Q2

(
ms

md

)2

= 1 (9)

where

Q2 =
m2

s − m̂2

m2
d −m2

u

, m̂ =
1

2
(mu +md) ,

is insensitive to the transformation in Eq. (8). Eq. (9) gives

an ellipse in the mu/md − ms/md plane. The ellipse is well-

determined by chiral perturbation theory, but the exact location

on the ellipse, and the absolute normalization of the quark

masses, has larger uncertainties. Q is determined to be in

the range 21–25 from η → 3π decay and the electromagnetic

contribution to the K+–K0 and π+–π0 mass differences [10].

Chiral perturbation theory is a systematic expansion in

powers of the light quark masses. The typical expansion param-

eter is m2
K/Λ

2
χ ∼ 0.25 if one uses SU(3) chiral symmetry, and

m2
π/Λ

2
χ ∼ 0.02 if one uses SU(2) chiral symmetry. Electromag-

netic effects at the few percent level also break SU(2) and SU(3)

symmetry. The mass formulæ Eq. (5) were derived using SU(3)

chiral symmetry, and are expected to have a 25% uncertainty

due to second-order corrections.

It is particularly important to determine the quark mass

ratio mu/md, since there is no strong CP problem if mu =

0. The chiral symmetry Gχ of the QCD Lagrangian is not

enhanced even if mu = 0. [The possible additional axial u-

quark number symmetry is anomalous. The only additional

symmetry when mu = 0 is CP .] As a result, mu = 0 is not a

special value for chiral perturbation theory. One can try and
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extend the chiral perturbation expansion Eq. (5) to second order

in the quark masses M , to get a more accurate determination

of the quark mass ratios. However, as we have seen, due to

the ambiguity Eq. (8) at second order, one cannot accurately

determine mu/md, only the combination Eq. (9).

The absolute normalization of the quark masses can be

determined by using methods that go beyond chiral perturba-

tion theory, such as spectral function sum rules for hadronic

correlation functions or lattice simulations. In the former ap-

proach, one computes a hadron spectral function using QCD

perturbation theory, and compares the result with the exper-

imental data. The comparison must necessarily take place at

large q2, where QCD perturbation theory is valid. Quark mass

effects are of order m/q, so that the spectral functions are not

very sensitive to m at large q2. The extraction of the abso-

lute value of quark masses is very sensitive to theoretical and

experimental uncertainties. The strange quark mass has been

extracted from hadronic tau decays using this procedure, since

the relevant scale mτ is large enough for perturbation theory to

be valid [11].

Lattice simulations allow for detailed studies of the be-

havior of hadronic masses and matrix elements as functions

of the quark masses. Moreover, the quark masses do not have

to take their physical values, but can be varied freely, and

chiral perturbation theory applies also for unphysical masses,

provided that they are sufficiently light. From such recent stud-

ies of pseudoscalar masses and decay constants, the relevant

higher-order couplings in the chiral Lagrangian have been esti-

mated, strongly suggesting that mu 6= 0 [6–8]. In order to make

this evidence conclusive, the lattice systematic errors must be

reduced; in particular, the range of light quark masses should

be increased, and the validity of chiral perturbation theory for

this range established.

There have been numerous quenched-lattice determinations

of the light quark masses, using a variety of formulations of

lattice QCD (see, for example, the recent set of results in

Refs. [12–22]). Given the different systematic errors in these

determinations (e.g., the different lattice formulations of QCD,
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the use of perturbative and non-perturbative renormalization),

the level of agreement is satisfying. There have also been a

number of unquenched studies with two flavors of sea quarks,

Refs. [16,23,24,25] and results from the APE and MILC Col-

laborations cited in the review article Ref. 26.

In current lattice simulations, it is the combination (mu +

md)/2 which can be determined. In the evaluation of ms, one

gets a result which is about 20–25% larger if the φ meson is

used as input rather than the K meson. This is evidence that

the errors due to quenching are significant. It is reassuring that

this difference is eliminated or reduced significantly in the cited

unquenched studies.

The quark masses for light quarks discussed so far are often

referred to as current quark masses. Nonrelativistic quark mod-

els use constituent quark masses, which are of order 350MeV

for the u and d quarks. Constituent quark masses model the

effects of dynamical chiral symmetry breaking, and are not re-

lated to the quark mass parameters mk of the QCD Lagrangian

Eq. (1). Constituent masses are only defined in the context of

a particular hadronic model.

E. Heavy quarks:

The masses and decay rates of hadrons containing a single

heavy quark, such as the B and D mesons, can be deter-

mined using the heavy quark effective theory (HQET) [37].

The theoretical calculations involve radiative corrections com-

puted in perturbation theory with an expansion in αs(mQ),

and non-perturbative corrections with an expansion in pow-

ers of ΛQCD/mQ. Due to the asymptotic nature of the QCD

perturbation series, the two kinds of corrections are intimately

related; renormalon effects in the perturbative expansion are

an example of this, which are associated with non-perturbative

corrections.

Systems containing two heavy quarks, such as the Υ or

J/ψ, are treated using NRQCD [38]. The typical momentum

and energy transfers in these systems are αsmQ, and α2
smQ,

respectively, so these bound states are sensitive to scales much

smaller than mQ. However, smeared observables, such as the

cross-section for e+e− → bb, averaged over some range of s that
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includes several bound state energy levels, are better behaved

and only sensitive to scales near mQ. For this reason, most de-

terminations of the b quark mass using perturbative calculations

compare smeared observables with experiment [39,40,41].

Lattice simulations of heavy-quark systems have been per-

formed using effective theories, including HQET and NRQCD,

as well as directly in QCD. The systematic uncertainties in

the two cases are different, so both approaches contribute to

the final results. Simulating the effective theory requires lattice

spacings to be fine enough to resolve the size of the hadron,

whereas simulating QCD requires much finer lattice spacings,

of order the inverse quark mass. For this reason, and because

available computing resources limit the lattice spacings which

can be used (a−1 ' 2 – 3GeV), simulations for the b quark using

the QCD action are currently done at quark mass values near

the c quark, and then extrapolated to the physical b-quark

mass. On the other hand, in effective theories, when evaluating

non-leading terms in 1/mb, one encounters power divergences

in 1/a which have to be subtracted.

For an observable particle such as the electron, the position

of the pole in the propagator is the definition of the particle

mass. In QCD, this definition of the quark mass is known as

the pole mass. It is known that the on-shell quark propagator

has no infrared divergences in perturbation theory [27,28], so

this provides a perturbative definition of the quark mass. The

pole mass cannot be used to arbitrarily high accuracy because

of nonperturbative infrared effects in QCD. The full quark

propagator has no pole because the quarks are confined, so that

the pole mass cannot be defined outside of perturbation theory.

The relation between the pole mass mQ and the MS mass mQ

is known to three loops [29–33]

mQ = mQ(mQ)

{
1 +

4αs(mQ)

3π

+

[
−1.0414

∑
k

(
1 − 4

3

mQk

mQ

)
+ 13.4434

][
αs(mQ)

π

]2

+
[
0.6527N2

L − 26.655NL + 190.595
] [
αs(mQ)

π

]3
}
, (10)
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where αs(µ) is the strong interaction coupling constants in the

MS scheme, and the sum over k extends over the NL flavors Qk

lighter than Q. The complete mass dependence of the α2
s term

can be found in Ref. 29; the mass dependence of the α3
s term is

not known. For the b quark, Eq. (10) reads

mb = mb (mb) [1 + 0.09 + 0.05 + 0.03] , (11)

where the contributions from the different orders in αs are shown

explicitly. The two- and three-loop corrections are comparable

in size, and have the same sign as the one-loop term. This is

a signal of the asymptotic nature of the perturbation series

[there is a renormalon in the pole mass]. Such a badly behaved

perturbation expansion can be avoided by directly extracting

the MS mass from data without extracting the pole mass as an

intermediate step.

F. Numerical values and caveats:

The quark masses in the Particle Data Group’s Listings

have been obtained by using a wide variety of methods. Each

method involves its own set of approximations and errors. In

most cases, the errors are a best guess at the size of neglected

higher-order corrections or other uncertainties. The expansion

parameters for some of the approximations are not very small

(for example, they are m2
K/Λ

2
χ ∼ 0.25 for the chiral expansion,

and ΛQCD/mb ∼ 0.1 for the heavy-quark expansion), so an

unexpectedly large coefficient in a neglected higher-order term

could significantly alter the results. It is also important to note

that the quark mass values can be significantly different in the

different schemes.

The heavy quark masses obtained using HQET, QCD sum

rules, or lattice gauge theory are consistent with each other if

they are all converted into the same scheme. When using the

data listings, it is important to remember that the numerical

value for a quark mass is meaningless without specifying the

particular scheme in which it was obtained.

We have specified all masses in the MS scheme. For light

quarks, the renormalization scale has been chosen to be µ =

2GeV, and for heavy quarks, the quark mass itself (i.e., we

quote m(µ = m)). If necessary, we have converted the values in
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the original papers using the two-loop formulæ. The light quark

masses at 1GeV are significantly different from those at 2GeV,

m(1 GeV)/m(2 GeV) = 1.35.

From the spread of results, and taking into account the

treatment of systematic errors in each of the lattice simulations,

we quote as the current best results for the quark masses

renormalized in the MS scheme at a scale of 2GeV:

1

2
(mu +md)

∣∣∣
µ=2 GeV

= (4.2 ± 1.0) MeV [Lattice only],

and

ms

∣∣∣
µ=2 GeV

= (105 ± 25) MeV [Lattice only].

It should be noted that recent results from simulations with

two flavors of sea quarks suggest that the light-quark masses

may be in the lower parts of the ranges quoted above (for

example Refs. [16,25] find that ms ∼ 90 MeV, with an error

of about 7MeV, and (mu + md)/2 ∼ 3.5 MeV, with an error

of perhaps 0.3MeV). As such studies become more widespread,

and use a variety of approaches to study and reduce systematic

uncertainties, we can confidently expect that the errors quoted

above for the best results will decrease significantly.

Continuum determinations of the absolute values of light

quark masses have significant systematic uncertainties. The

values are consistent with the lattice extractions above. The u-

and d-quark masses are in the range

1.5 MeV ≤ mu

∣∣∣
µ=2 GeV

≤ 5 MeV [Excluding lattice],

5 MeV ≤ md

∣∣∣
µ=2 GeV

≤ 9 MeV [Excluding lattice].

The s-quark mass in more recent determinations tends to be

smaller than in older extractions. The newer calculations use

both better experimental data and perturbative calculations,

which tend to reduce ms. The continuum extractions give

80 MeV ≤ ms

∣∣∣
µ=2 GeV

≤ 155 MeV [Excluding lattice].
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Using the continuum determinations of the c-quark mass,

we quote

1 GeV ≤ mc (mc) ≤ 1.4 GeV [Excluding lattice]

as a best value. Recent determinations include at least two-

loop corrections, and give values consistent with this range.

The value mc (mc) is sensitive to higher-order perturbative

corrections, since αs starts to get large below the charm quark

scale.

There are rather few lattice determinations of mc, as the

charm quark is too light for comfortable use of HQET, and yet

heavy enough that one must be careful about lattice artifacts.

All the results are from quenched simulations, and most are

still preliminary. For the best result, we take

mc (mc) = (1.26 ± 0.13 ± 0.20) GeV [Lattice only],

which is consistent with continuum extractions. The second

error of 15% is our estimate of possible quenching effects.

There has been much recent work on the b-quark mass. As

a best value from continuum extractions, we quote

4 GeV ≤ mb (mb) ≤ 4.5 GeV [Excluding lattice],

which is consistent with continuum extractions. The dominant

uncertainties in the b-quark mass are the non-perturbative

corrections in the B and Υ systems.

As the current best lattice result for mb we take:

mb (mb) = (4.26 ± 0.15 ± 0.15) GeV [Lattice only].

The second error is our estimate of possible quenching effects

(15% on MB −mb).
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Figure 1: The allowed region (shown in white)
for up quark and down quark masses. This re-
gion was determined in part from papers report-
ing values for mu and md (data points shown),
and in part from analysis of the allowed ranges
of other mass parameters (see Fig. 2). The pa-
rameter (mu +md)/2 yields the two downward-
sloping lines, while mu/md yields the two rising
lines originating at (0,0).
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Figure 2. The values of each quark mass parameter taken from

the 2004 Data Listings. The most recent data points are at the

top of each plot. Points from papers reporting no error bars are

open circles. Arrows indicate limits reported. The grey regions

indicate values excluded by our evaluations; some regions were

determined in part through examination of Fig. 1.
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