THE $\rho(1450)$ AND THE $\rho(1700)$

Updated December 2003 by S. Eidelman (Novosibirsk) and J. Hernandez (Valencia).

In our 1988 edition, we replaced the $\rho(1600)$ entry with two new ones, the $\rho(1450)$ and the $\rho(1700)$, because there was emerging evidence that the 1600-MeV region actually contains two ρ -like resonances. ERKAL 86 had pointed out this possibility with a theoretical analysis on the consistency of 2π and 4π electromagnetic form factors and the $\pi\pi$ scattering length. DONNACHIE 87, with a full analysis of data on the 2π and 4π final states in e^+e^- annihilation and photoproduction reactions, had also argued that in order to obtain a consistent picture, two resonances were necessary. The existence of $\rho(1450)$ was supported by the analysis of $\eta\rho^0$ mass spectra obtained in photoproduction and e^+e^- annihilation (DONNACHIE 87B), as well as that of $e^+e^- \to \omega\pi$ (DONNACHIE 91).

The analysis of DONNACHIE 87 was further extended by CLEGG 88, 94 to include new data on 4π systems produced in e^+e^- annihilation, and in τ decays (τ decays to 4π and e^+e^- annihilation to 4π can be related by the Conserved Vector Current assumption). These systems were successfully analyzed using interfering contributions from two ρ -like states, and from the tail of the $\rho(770)$ decaying into two-body states. While specific conclusions on $\rho(1450) \to 4\pi$ were obtained, little could be said about the $\rho(1700)$.

Independent evidence for two 1⁻ states is provided by KILLIAN 80 in 4π electroproduction at $\langle Q^2 \rangle = 1~({\rm GeV}/c)^2$, and by FUKUI 88 in a high-statistics sample of the $\eta\pi\pi$ system in π^-p charge exchange.

This scenario with two overlapping resonances is supported by other data. BISELLO 89 measured the pion form factor in the interval 1.35–2.4 GeV, and observed a deep minimum around 1.6 GeV. The best fit was obtained with the hypothesis of ρ -like resonances at 1420 and 1770 MeV, with widths of about 250 MeV. ANTONELLI 88 found that the $e^+e^- \to \eta \pi^+ \pi^-$ cross section is better fitted with two fully interfering Breit-Wigners, with parameters in fair agreement with those of

DONNACHIE 87 and BISELLO 89. These results can be considered as a confirmation of the $\rho(1450)$.

Decisive evidence for the $\pi\pi$ decay mode of both $\rho(1450)$ and $\rho(1700)$ came from recent results in $\overline{p}p$ annihilation at rest (ABELE 97). It was shown that these resonances also possess a $K\overline{K}$ decay mode (ABELE 98, BERTIN 98B, ABELE 99D). High statistics studies of the decays $\tau \to \pi\pi\nu_{\tau}$ (BARATE 97M, URHEIM 97), and $\tau \to 4\pi\nu_{\tau}$ (EDWARDS 00), also require the $\rho(1450)$, but are not sensitive to the $\rho(1700)$, because it is too close to the τ mass.

The structure of these ρ states is not yet completely clear. BARNES 97 and CLOSE 97C claim that $\rho(1450)$ has a mass consistent with radial 2S, but its decays show characteristics of hybrids, and suggest that this state may be a 2S-hybrid mixture. DONNACHIE 99 argues that hybrid states could have a 4π decay mode dominated by the $a_1\pi$. Such behavior has recently been observed by AKHMETSHIN 99E in $e^+e^- \rightarrow 4\pi$ in the energy range 1.05–1.38 GeV, and by EDWARDS 00 in $\tau \to 4\pi$ decays. ALEXANDER 01B observed the $\rho(1450) \to \omega \pi$ decay mode in B-meson decays, however, didn't find $\rho(1700) \to \omega \pi^0$. A similar conclusion is made by AKHMETSHIN 03B who studied the process $e^+e^- \to \omega \pi^0$. Various decay modes of the $\rho(1450)$ and $\rho(1700)$ were observed in $\overline{p}n$ and $\overline{p}p$ annihilation (ABELE 01B, BARGIOTTI 03B), but no definite conclusions could be drawn. More data should be collected to clarify the nature of the ρ states, particularly in the energy range above 1.6 GeV.

We also list under the $\rho(1450)$ the $\phi\pi$ state with $J^{PC}=1^{--}$ or C(1480) observed by BITYUKOV 87. While ACHASOV 96B shows that it may be a threshold effect, CLEGG 88 and LANDSBERG 92 suggest two independent vector states with this decay mode. Note, however, that C(1480) in its $\phi\pi$ decay mode was not confirmed by e^+e^- (DOLINSKY 91, BISELLO 91C) and $\overline{p}p$ (ABELE 97H) experiments.

Several observations on the $\omega\pi$ system in the 1200-MeV region (FRENKIEL 72, COSME 76, BARBER 80C, ASTON 80C, ATKINSON 84C, BRAU 88, AMSLER 93B) may be interpreted in terms of either $J^P=1^ \rho(770)\to\omega\pi$ production (LAYSSAC 71), or $J^P=1^+$ $b_1(1235)$ production (BRAU 88, AMSLER 93B). We

argue that no special entry for a $\rho(1250)$ is needed. The LASS amplitude analysis (ASTON 91B) showing evidence for $\rho(1270)$ is preliminary and needs confirmation. For completeness, the relevant observations are listed under the $\rho(1450)$.

Evidence for ρ -like mesons decaying into 6π states was first noted by CLEGG 90 in the analysis of 6π mass spectra from e^+e^- annihilation (BISELLO 81, CASTRO 88) and diffractive photoproduction (ATKINSON 85). CLEGG 90 argued that two states at about 2.1 and 1.8 GeV exist: while the former is a candidate for a new resonance ($\rho(2150)$), the latter could be a manifestation of the $\rho(1700)$ distorted by threshold effects. Recently, the E687 Collaboration at Fermilab reported an observation of a narrow dip structure at 1.9 GeV/c² in the $3\pi^{+}3\pi^{-}$ diffractive photoproduction (FRABETTI 01). A similar effect of the dip in the cross section of $e^+e^- \to 6\pi$ around 1.9 GeV has been earlier reported by DM2 (CASTRO 88), where 6π included both $3\pi^{+}3\pi^{-}$ and $2\pi^{+}2\pi^{-}2\pi^{0}$. Later the dip in the R value (the total cross section of $e^+e^- \rightarrow$ hadrons divided by the cross section of $e^+e^- \rightarrow \mu^+\mu^-$) was observed by ANTONELLI 96, again around 1.9 GeV. This energy is close to the $N\overline{N}$ threshold, which hints to the possible relation between the dip and $N\overline{N}$, e.g., the frequently discussed narrow $N\overline{N}$ resonance or just a threshold effect. Such behaviour is also characteristic of exotic objects like vector $q\overline{q}$ hybrids. Note that AGNELLO 02 failed to find this state in the reaction $\overline{n}p \to 3\pi^+ 2\pi^- \pi^0$. Recent reanalysis of the E687 data by FRABETTI 04 shows that a dip may arise due to interference of a narrow object with a broad $\rho(1700)$ independently of the nature of the former. We list these observations under a separate particle $\rho(1900)$, which needs confirmation.