

A REVIEW GOES HERE - Check our WWW List of Reviews

(A) Accelerator neutrino experiments

$$-- \nu_e \rightarrow \nu_{\tau}$$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$								
VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT			
< 0.77	90	¹ ARMBRUSTER	898	KARM				
\bullet \bullet \bullet We do not use the	following	data for averages,	, fits	, limits,	etc. • • •			
< 5.9	90	² ASTIER	01 B	NOMD	CERN SPS			
< 7.5	90	³ ESKUT	01	CHRS	CERN SPS			
<17	90	NAPLES	99	CCFR	FNAL			
<44	90	TALEBZADEH	87	HLBC	BEBC			
< 9	90	USHIDA	86 C	EMUL	FNAL			
1.00.0000000000000000000000000000000000			~					

¹ ARMBRUSTER 98 use KARMEN detector with ν_e from muon decay at rest and observe ${}^{12}C(\nu_e, e^-){}^{12}N_{gs}$. This is a disappearance experiment which is almost insensitive to $\nu_e \rightarrow \nu_{\mu}$ oscillation. Results are presented as limits to $\nu_e \rightarrow \nu_{\tau}$ oscillation, although the (non)oscillation could be to a non-visible flavor. A three-flavor analysis is also presented. ² ASTIER 01B searches for the appearance of ν_{τ} with the NOMAD detector at CERN's SPS. The limit is based on an oscillation probability $< 0.74 \times 10^{-2}$, whereas the quoted sensitivity was 1.1×10^{-2} . The limit was obtained following the statistical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01.

of FELDMAN 98. See also the footnote to ESKUT 01. ³ESKUT 01 searches for the appearance of the ν_{τ} with the CHORUS detector at CERN's SPS. The limit is obtained following the statistical prescriptions in JUNK 99. The limit would have been 6 eV^2 if the prescriptions in FELDMAN 98 had been followed, as they were in ASTIER 01B.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.015	90	⁴ ASTIER	01 B	NOMD	CERN SPS
\bullet \bullet \bullet We do not use the	following	data for averages	, fits	, limits,	etc. • • •
<0.052	90	⁵ ESKUT	01	CHRS	CERN SPS
<0.21	90	NAPLES	99	CCFR	FNAL
<0.338	90	⁶ ARMBRUSTEF	898	KARM	
<0.36	90	TALEBZADEH	87	HLBC	BEBC
<0.25	90	⁷ USHIDA	86C	EMUL	FNAL

 4 ASTIER 01B limit is based on an oscillation probability $< 0.74 \times 10^{-2}$, whereas the quoted sensitivity was 1.1×10^{-2} . The limit was obtained following the statistical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01.

⁵ ESKUT 01 limit obtained following the statistical prescriptions in JUNK 99. The limit would have been 0.03 if the prescriptions in FELDMAN 98 had been followed, as they were in ASTIER 01B.

⁶See footnote in preceding table (ARMBRUSTER 98) for further details, and see the paper for a plot showing allowed regions. A three-flavor analysis is also presented here.

⁷ USHIDA 86C published result is $\sin^2 2\theta < 0.12$. The quoted result is corrected for a numerical mistake incurred in calculating the expected number of ν_e CC events, normalized to the total number of neutrino interactions (3886) rather than to the total number of ν_μ CC events (1870).

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		
<0.7	90	⁸ FRITZE	80	HYBR	BEBC CERN SPS		
⁸ Authors give P($ u_{e} ightarrow u_{ au}$) <0.35, equivalent to above limit.							
		$\nu_e \not\rightarrow \nu_e$					
$\Delta(m^2)$ for sin ² (2)	2 heta) = 1						
VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT		
< 0.18	90	⁹ HAMPEL	98	GALX	⁵¹ Cr source		
• • • We do not u	se the followir	ng data for average	s, fits	, limits,	etc. ● ● ●		
<33	90	BATUSOV	04	CNTR	IHEP-JINR detector		
<14.9	90	BRUCKER	86	HLBC	15-ft FNAL		
< 8	90	BAKER	81	HLBC	15-ft FNAL		
<56	90	DEDEN	81	HLBC	BEBC CERN SPS		
<10	90	ERRIQUEZ	81	HLBC	BEBC CERN SPS		
<2.3 OR >8	90	NEMETHY	81 B	CNTR	LAMPF		
⁹ HAMPEL 98 a updates the BA < 0.2 and < 0.	nalyzed the G AHCALL 95 a 22, respective	ALLEX calibration nalysis result. The ly.	resul y also	ts with [!] o gave 9	⁵¹ Cr neutrino sources and 5% and 99% CL limits o		

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$									
VALUE		<u>CL%</u>	DOCUMENT ID		TECN	COMMENT			
<7	× 10 ⁻²	90	¹⁰ ERRIQUEZ	81	HLBC	BEBC CERN SPS			
• • •	We do not use t	he followi	ng data for average	s, fits	, limits,	etc. • • •			
< 0.19)	90	¹¹ BATUSOV	04	CNTR	IHEP-JINR detector			
< 0.4		90	¹² HAMPEL	98	GALX	⁵¹ Cr source			
<0.54	ł	90	BRUCKER	86	HLBC	15-ft FNAL			
<0.6		90	BAKER	81	HLBC	15-ft FNAL			
< 0.3		90	¹⁰ DEDEN	81	HLBC	BEBC CERN SPS			
10 01	atained from a C	aussian co	ntored in the upph	veical	rogion				

¹⁰ Obtained from a Gaussian centered in the unphysical region. ¹¹ The limit becomes 0.09 in their most sensitive region ($\Delta m^2 \sim 150 \text{ eV}^2$).

¹² HAMPEL 98 analyzed the GALLEX calibration results with ⁵¹Cr neutrino sources and updates the BAHCALL 95 analysis result. They also gave 95% and 99% CL limits of < 0.45 and < 0.56, respectively.</p>

$$---- \nu_e \rightarrow (\overline{\nu}_e)_L ----$$

This is a limit on lepton family-number violation and total lepton-number violation. $(\overline{\nu}_e)_L$ denotes a hypothetical left-handed $\overline{\nu}_e$. The bound is quoted in terms of Δ (m^2), sin(2 θ), and α , where α denotes the fractional admixture of (V+A) charged current.

HTTP://PDG.LBL.GOV

Created: 6/24/2005 17:12

¹³ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_{μ} , $\overline{\nu}_{\mu}$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$.

¹⁴COOPER 82 states that existing bounds on V+A currents require α to be small.

$\alpha^2 \sin^2(2\theta)$ for "Large" $\Delta(m^2)$								
VALUE	CL%	DOCUMENT ID	TECN	COMMENT				
<0.032	90	¹⁵ FREEDMAN 93	CNTR	LAMPF				
$\bullet \bullet \bullet$ We do not use the	ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
<0.05	90	¹⁶ COOPER 82	HLBC	BEBC CERN SPS				

¹⁵ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_{μ} , $\overline{\nu}_{\mu}$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$.

¹⁶COOPER 82 states that existing bounds on V+A currents require α to be small.

$$- \nu_{\mu} \rightarrow \nu_{e}$$

Δ(<i>m</i>)		(20) = 1				
VALUE (e	√ ²)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.0008	3	90	AHN	04	K2K	Water Cherenkov
• • • W	/e do not	use the following da	ata for averages,	, fits	, limits,	etc. • • •
<0.4		90	ASTIER	03	NOMD	CERN SPS
<2.4		90	AVVAKUNOV	02	NTEV	NUTEV FNAL
		17	AGUILAR	01	LSND	$ \nu \mu \rightarrow \nu_e \text{ osc.prob.}$
0.03	to 0.3	95 18	ATHANASSO	.98	LSND	$\nu_{\mu} \rightarrow \nu_{e}$
<2.3		90 19	LOVERRE	96		CHARM/CDHS
<0.9		90	VILAIN	9 4C	CHM2	CERN SPS
< 0.1		90	BLUMENFELD	89	CNTR	
<1.3		90	AMMOSOV	88	HLBC	SKAT at Serpukhov
<0.19		90	BERGSMA	88	CHRM	
		20	LOVERRE	88	RVUE	
<2.4		90	AHRENS	87	CNTR	BNL AGS
<1.8		90	BOFILL	87	CNTR	FNAL
< 0.09		90	ANGELINI	86	HLBC	BEBC CERN PS
<2.2		90 21	BRUCKER	86	HLBC	15-ft FNAL
< 0.43		90	AHRENS	85	CNTR	BNL AGS E734
< 0.20		90	BERGSMA	84	CHRM	
<1.7		90	ARMENISE	81	HLBC	GGM CERN PS
<0.6		90	BAKER	81	HLBC	15-ft FNAL
<1.7		90	ERRIQUEZ	81	HLBC	BEBC CERN PS
<1.2		95	BLIETSCHAU	78	HLBC	GGM CERN PS
<1.2		95	BELLOTTI	76	HLBC	GGM CERN PS

 17 AGUILAR 01 is the final analysis of the LSND full data set. Search is made for the $\nu_{\mu} \rightarrow \nu_{e}$ oscillations using ν_{μ} from π^{+} decay in flight by observing beam-on electron events from ν_{e} C $\rightarrow e^{-}$ X. Present analysis results in 8.1 \pm 12.2 \pm 1.7 excess events in the 60< E_{e} < 200 MeV energy range, corresponding to oscillation probability of 0.10 \pm 0.16 \pm 0.04%. This is consistent, though less significant, with the previous result of ATHANASSOPOULOS 98, which it supersedes. The present analysis uses selection criteria developed for the decay at rest region, and is less effective in removing the background above 60 MeV than ATHANASSOPOULOS 98.

HTTP://PDG.LBL.GOV

 $\Lambda(m^2)$ for $\sin^2(2\theta) = 1$

¹⁸ ATHANASSOPOULOS 98 is a search for the $\nu_{\mu} \rightarrow \nu_{e}$ oscillations using ν_{μ} from π^{+} decay in flight. The 40 observed beam-on electron events are consistent with $\nu_{e}C \rightarrow$

 e^-X ; the expected background is 21.9 \pm 2.1. Authors interpret this excess as evidence for an oscillation signal corresponding to oscillations with probability $(0.26 \pm 0.10 \pm 0.05)\%$. Although the significance is only 2.3σ , this measurement is an important and consistent cross check of ATHANASSOPOULOS 96 who reported evidence for $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillations

from μ^+ decay at rest. See also ATHANASSOPOULOS 98B.

- 19 LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.
- 20 LOVERRE 88 reports a less stringent, indirect limit based on theoretical analysis of neutral to charged current ratios.
- ²¹15ft bubble chamber at FNAL.

VALUE (units 10^{-3})	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
< 1.4	90		ASTIER	03	NOMD	CERN SPS
• • • We do not use the	following	g da	ata for averages,	fits,	limits,	etc. ● ● ●
<110	90	22	AHN	04	K2K	Water Cherenkov
< 1.6	90		AVVAKUNOV	02	NTEV	NUTEV FNAL
		23	AGUILAR	01	LSND	$ \nu \mu \rightarrow \nu_{e} \text{ osc.prob.} $
0.5 to 30	95	24	ATHANASSO	.98	LSND	$\nu_{\mu} \rightarrow \nu_{e}$
< 3.0	90	25	LOVERRE	96		CHARM/CDHS
< 9.4	90		VILAIN	94C	CHM2	CERN SPS
< 5.6	90	26	VILAIN	94C	CHM2	CERN SPS
< 16	90		BLUMENFELD	89	CNTR	
< 2.5	90		AMMOSOV	88	HLBC	SKAT at Serpukhov
< 8	90		BERGSMA	88	CHRM	$\Delta(m^2) \geq 30 \text{ eV}^2$
		27	LOVERRE	88	RVUE	
< 10	90		AHRENS	87	CNTR	BNL AGS
< 15	90		BOFILL	87	CNTR	FNAL
< 20	90	28	ANGELINI	86	HLBC	BEBC CERN PS
20 to 40		29	BERNARDI	86 B	CNTR	$\Delta(m^2) = 5 - 10$
< 11	90	30	BRUCKER	86	HLBC	15-ft FNAL
< 3.4	90		AHRENS	85	CNTR	BNL AGS E734
<240	90		BERGSMA	84	CHRM	
< 10	90		ARMENISE	81	HLBC	GGM CERN PS
< 6	90		BAKER	81	HLBC	15-ft FNAL
< 10	90		ERRIQUEZ	81	HLBC	BEBC CERN PS
< 4	95		BLIETSCHAU	78	HLBC	GGM CERN PS
< 10	95		BELLOTTI	76	HLBC	GGM CERN PS

 $\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

 22 The limit becomes sin $^22 heta~<0.15$ at $\Delta m^2=2.8 imes 10^{-3}$ eV 2 , the bets-fit value of the ν_{μ} disappearance analysis in K2K.

 23 AGUILAR 01 is the final analysis of the LSND full data set of the search for the $u_{\mu}
ightarrow$ $\nu_{\rm e}$ oscillations. See footnote in preceding table for further details.

 24 ATHANASSOPOULOS 98 report (0.26 \pm 0.10 \pm 0.05)% for the oscillation probability; the value of $\sin^2 2\theta$ for large Δm^2 is deduced from this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. If effect is due to oscillation, it is most likely to be intermediate $\sin^2 2\theta$ and Δm^2 . See also ATHANASSOPOULOS 98B.

²⁵LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

HTTP://PDG.LBL.GOV

Page 4 Created: 6/24/2005 17:12

- 26 VILAIN 94C limit derived by combining the u_{μ} and $\overline{
 u}_{\mu}$ data assuming CP conservation.
- ²⁷LOVERRE 88 reports a less stringent, indirect limit based on theoretical analysis of neutral to charged current ratios.
- 28 ANGELINI 86 limit reaches $13 imes 10^{-3}$ at $\Delta(m^2) \, pprox \, 2 \, {
 m eV}^2$.
- ²⁹ BERNARDI 86B is a typical fit to the data, assuming mixing between two species. As the authors state, this result is in conflict with earlier upper bounds on this type of neutrino oscillations.

³⁰15ft bubble chamber at FNAL.

 $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$							
VALUE (eV ²)	CL%		DOCUMENT ID		TECN	COMMENT	
<0.055	90	31	ARMBRUSTER	R02	KAR2	Liquid Sci. calor.	
\bullet \bullet \bullet We do not use the	followin	g da	ata for averages	, fits	, limits,	etc. ● ● ●	
<2.6	90		AVVAKUNOV	02	NTEV	NUTEV FNAL	
0.03–0.05		32	AGUILAR	01	LSND	LAMPF	
0.05–0.08	90	33	ATHANASSO	.96	LSND	LAMPF	
0.048-0.090	80	34	ATHANASSO	.95			
<0.07	90	35	HILL	95			
<0.9	90		VILAIN	94C	CHM2	CERN SPS	
<0.14	90	36	FREEDMAN	93	CNTR	LAMPF	
<3.1	90		BOFILL	87	CNTR	FNAL	
<2.4	90		TAYLOR	83	HLBC	15-ft FNAL	
<0.91	90	37	NEMETHY	81 B	CNTR	LAMPF	
<1	95		BLIETSCHAU	78	HLBC	GGM CERN PS	

³¹ ARMBRUSTER 02 is the final analysis of the KARMEN 2 data for 17.7 m distance from the ISIS stopped pion and muon neutrino source. It is a search for $\overline{\nu}_e$, detected by the inverse β -decay reaction on protons and ¹²C. 15 candidate events are observed, and 15.8 \pm 0.5 background events are expected, hence no oscillation signal is detected. The results exclude large regions of the parameter area favored by the LSND experiment.

- ³² AGUILAR 01 is the final analysis of the LSND full data set. It is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly for π^+ decay at rest. $\overline{\nu}_e$ are detected through $\overline{\nu}_e p \rightarrow e^+ n (20 < E_{e^+} < 60 \text{ MeV})$ in delayed coincidence with $np \rightarrow d\gamma$. AUthors observe 87.9 \pm 22.4 \pm 6.0 total excess events. The observation is attributed to $\overline{\nu}_\mu \rightarrow \overline{\nu}_e$ oscillations with the oscillation probability of 0.264 \pm 0.067 \pm 0.045%, consistent with the previously published result. Taking into account all constraints, the most favored allowed region of oscillation parameters is a band of $\Delta(m^2)$ from 0.2–2.0 eV². Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 96 is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos
- ³³ ATHANASSOPOULOS 96 is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly from π^+ decay at rest. $\overline{\nu}_e$ could come from either $\overline{\nu}_\mu \rightarrow \overline{\nu}_e$ or $\nu_e \rightarrow \overline{\nu}_e$; our entry assumes the first interpretation. They are detected through $\overline{\nu}_e p \rightarrow e^+ n$ (20 MeV $\langle E_{e^+} \rangle$ 40 MeV) in delayed coincidence with $np \rightarrow d\gamma$. Authors observe 51 ± 20 ± 8 total excess events over an estimated background 12.5 ± 2.9. ATHANASSOPOULOS 96B is a shorter version of this paper.
- 34 ATHANASSOPOULOS 95 error corresponds to the 1.6σ band in the plot. The expected background is 2.7 \pm 0.4 events. Corresponds to an oscillation probability of $(0.34^{+}_{-}0.18\ \pm\ 0.07)\%$. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96.

- ³⁵ HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ and obtains only upper limits.
- ³⁶ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_{μ} , $\overline{\nu}_{\mu}$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$. FREEDMAN 93 replaces DURKIN 88.
- ³⁷ In reaction $\overline{\nu}_e p \rightarrow e^+ n$.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
<0.0011	90		AVVAKUNOV	02	NTEV	NUTEV FNAL
\bullet \bullet \bullet We do not use the	followin	g d	ata for averages	, fits	, limits,	etc. ● ● ●
<0.0017	90	38	ARMBRUSTER	R02	KAR2	Liquid Sci. calor.
$0.0053 \pm 0.0013 \pm 0.009$		39	AGUILAR	01	LSND	LAMPF
$0.0062 \pm 0.0024 \pm 0.0010$		40	ATHANASSO	.96	LSND	LAMPF
0.003-0.012	80	41	ATHANASSO	.95		
<0.006	90	42	HILL	95		
<4.8	90		VILAIN	94C	CHM2	CERN SPS
<5.6	90	43	VILAIN	94C	CHM2	CERN SPS
<0.024	90	44	FREEDMAN	93	CNTR	LAMPF
<0.04	90		BOFILL	87	CNTR	FNAL
<0.013	90		TAYLOR	83	HLBC	15-ft FNAL
<0.2	90	45	NEMETHY	81 B	CNTR	LAMPF
< 0.004	95		BLIETSCHAU	78	HLBC	GGM CERN PS

³⁸ARMBRUSTER 02 is the final analysis of the KARMEN 2 data. See footnote in the preceding table for further details, and the paper for the exclusion plot.

³⁹ AGUILAR 01 is the final analysis of the LSND full data set. The deduced oscillation probability is $0.264 \pm 0.067 \pm 0.045\%$; the value of $\sin^2 2\theta$ for large $\Delta(m^2)$ is twice this probability (although these values are excluded by other constraints). See footnote in preceding table for further details, and the paper for a plot showing allowed regions. Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98.

- ⁴⁰ ATHANASSOPOULOS 96 reports $(0.31 \pm 0.12 \pm 0.05)$ % for the oscillation probability; the value of sin²2 θ for large $\Delta(m^2)$ should be twice this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions.
- ⁴¹ ATHANASSOPOULOS 95 error corresponds to the 1.6 σ band in the plot. The expected background is 2.7 \pm 0.4 events. Corresponds to an oscillation probability of $(0.34^{+0.20}_{-0.18} \pm 0.07)\%$. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96.
- ⁴² HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ and obtains only upper limits.

 43 VILAIN 94C limit derived by combining the u_{μ} and $\overline{
u}_{\mu}$ data assuming CP conservation.

⁴⁴ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_μ , $\overline{\nu}_\mu$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$. FREEDMAN 93 replaces DURKIN 88.

⁴⁵ In reaction $\overline{\nu}_{e} p \rightarrow e^{+} n$.

$$---- \nu_{\mu}(\overline{\nu}_{\mu}) \rightarrow \nu_{e}(\overline{\nu}_{e}) ----$$

$\Delta(m^2)$ for $\sin^2(2\theta)$	= 1						
VALUE (eV ²)	CL%	DOCUMENT ID TECN COMMENT					
<0.075	90	BORODOV 92 CNTR BNL E776					
$\bullet \bullet \bullet$ We do not use the	e follow	ing data for averages, fits, limits, etc. $ullet$ $ullet$					
<1.6	90	⁴⁶ ROMOSAN 97 CCFR FNAL					
⁴⁶ ROMOSAN 97 uses wideband beam with a 0.5 km decay region.							
$sin^2(2\theta)$ for "Large"	∆(<i>m</i> ²)					
VALUE (units 10^{-3})	CL%	DOCUMENT ID TECN COMMENT					
<1.8	90	⁴⁷ ROMOSAN 97 CCFR FNAL					
• • • We do not use th	e follow	ing data for averages, fits, limits, etc. $ullet$ $ullet$					
<3.8	90	⁴⁸ MCFARLAND 95 CCFR FNAL					
<3	90	BORODOV 92 CNTR BNL E776					
17							

⁴⁷ ROMOSAN 97 uses wideband beam with a 0.5 km decay region.

 $^{48}\,\mathrm{MCFARLAND}$ 95 state that "This result is the most stringent to date for 250< $\Delta(m^2) <$ 450 eV² and also excludes at 90%CL much of the high $\Delta(m^2)$ region favored by the recent LSND observation." See ATHANASSOPOULOS 95 and ATHANASSOPOU-LOS 96.

$$-- \nu_{\mu} \rightarrow \nu_{\tau}$$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
< 0.6	90	⁴⁹ ESKUT	01	CHRS	CERN SPS
$\bullet \bullet \bullet$ We do not use the	following	g data for averages,	fits,	limits, e	etc. • • •
< 0.7	90	⁵⁰ ASTIER	01 B	NOMD	CERN SPS
< 1.4	90	⁵¹ ALTEGOER	98 B	NOMD	CERN SPS
< 1.5	90	⁵² ESKUT	98	CHRS	CERN SPS
< 1.1	90	⁵³ ESKUT	98 B	CHRS	CERN SPS
< 3.3	90	⁵⁴ LOVERRE	96		CHARM/CDHS
< 1.4	90	MCFARLAND	95	CCFR	FNAL
< 4.5	90	BATUSOV	90 B	EMUL	FNAL
<10.2	90	BOFILL	87	CNTR	FNAL
< 6.3	90	BRUCKER	86	HLBC	15-ft FNAL
< 0.9	90	USHIDA	86C	EMUL	FNAL
< 4.6	90	ARMENISE	81	HLBC	GGM CERN SPS
< 3	90	BAKER	81	HLBC	15-ft FNAL
< 6	90	ERRIQUEZ	81	HLBC	BEBC CERN SPS
< 3	90	USHIDA	81	EMUL	FNAL

 49 ESKUT 01 limit obtained following the statistical prescriptions in JUNK 99. The limit would have been 0.5 eV^2 if the prescriptions in FELDMAN 98 had been followed, as they were in ASTIER 01B.

 50 ASTIER 01B limit is based on an oscillation probability $< 1.63 imes 10^{-4}$, whereas the quoted sensitivity was 2.5×10^{-4} . The limit was obtained following the statistical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01.

 51 ALTEGOER 98B is the NOMAD 1995 data sample result, searching for events with $\tau^- \rightarrow e^- \nu_\tau \overline{\nu}_e$, hadron ν_τ , or $\pi^- \pi^+ \pi^-$ decay modes using classical CL approach of FELDMAN 98.

- 52 ESKUT 98 search for events with one μ^- with indication of a kink from τ^- decay in the nuclear emulsion. No candidates were found in a 31,423 event subsample.
- ⁵³ESKUT 98B search for $\tau^- \rightarrow \mu^- \nu_\tau \overline{\nu}_\mu$ or $h^- \nu_\tau \overline{\nu}_\mu$, where h^- is a negatively charged hadron. The μ^- sample is somewhat larger than in ESKUT 98, which this result super-

sedes. Bayesian limit. $^{54}{\rm LOVERRE}$ 96 uses the charged-current to neutral-current ratio from the combined

CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

$sin^2(2\theta)$ for "Large"	$\Delta(m^2)$	
VALUE	<u>CL%</u>	DOCUMENT ID <u>TECN</u> COMMENT
<0.00033	90	⁵⁵ ASTIER 01B NOMD CERN SPS
\bullet \bullet \bullet We do not use th	e following	g data for averages, fits, limits, etc. 🔹 🔹
<0.00068	90	⁵⁶ ESKUT 01 CHRS CERN SPS
<0.0042	90	⁵⁷ ALTEGOER 98B NOMD CERN SPS
<0.0035	90	⁵⁸ ESKUT 98 CHRS CERN SPS
<0.0018	90	⁵⁹ ESKUT 98B CHRS CERN SPS
< 0.006	90	⁶⁰ LOVERRE 96 CHARM/CDHS
<0.0081	90	MCFARLAND 95 CCFR FNAL
<0.06	90	BATUSOV 90B EMUL FNAL
<0.34	90	BOFILL 87 CNTR FNAL
<0.088	90	BRUCKER 86 HLBC 15-ft FNAL
<0.004	90	USHIDA 86C EMUL FNAL
<0.11	90	BALLAGH 84 HLBC 15-ft FNAL
<0.017	90	ARMENISE 81 HLBC GGM CERN SPS
<0.06	90	BAKER 81 HLBC 15-ft FNAL
<0.05	90	ERRIQUEZ 81 HLBC BEBC CERN SPS
<0.013	90	USHIDA 81 EMUL FNAL

 55 ASTIER 01B limit is based on an oscillation probability $< 1.63 \times 10^{-4}$, whereas the quoted sensitivity was 2.5×10^{-4} . The limit was obtained following the statistical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01.

⁵⁶ ESKUT 01 limit obtained following the statistical prescriptions in JUNK 99. The limit would have been 0.00040 if the prescriptions in FELDMAN 98 had been followed, as they
⁵⁷ ALTEGOER 98B is the NOMAD 1995 data sample result, searching for events with

 $\tau^- \rightarrow e^- \nu_{\tau} \overline{\nu}_{e}$, hadron ν_{τ} , or $\pi^- \pi^+ \pi^-$ decay modes using classical CL approach of FELDMAN 98. 58 ESKUT 98 search for events with one μ^- with indication of a kink from τ^- decay in

³⁰ ESKUT 98 search for events with one μ^- with indication of a kink from τ^- decay in the nuclear emulsion. No candidates were found in a 31,423 event subsample. ⁵⁹ ESKUT 98B search for $\tau^- \rightarrow \mu^- \nu_\tau \overline{\nu}_\mu$ or $h^- \nu_\tau \overline{\nu}_\mu$, where h^- is a negatively charged

³⁹ ESKUT 98B search for $\tau^- \rightarrow \mu^- \nu_\tau \overline{\nu}_\mu$ or $h^- \nu_\tau \overline{\nu}_\mu$, where h^- is a negatively charged hadron. The μ^- sample is somewhat larger than in ESKUT 98, which this result supersedes. Bayesian limit.

⁶⁰LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

$$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$$
 —

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
<2.2	90	ASRATYAN	81	HLBC	FNAL
$\bullet \bullet \bullet$ We do not use the	following d	ata for averages	, fits	, limits,	etc. • • •
<1.4	90	MCFARLAND	95	CCFR	FNAL
<6.5	90	BOFILL	87	CNTR	FNAL
<7.4	90	TAYLOR	83	HLBC	15-ft FNAL
HTTP://PDG.LBL.G	OV	Page 8		Crea	ted: 6/24/2005 17:12

$\sin^2(2\theta)$ for "Large"	' Δ(<i>m</i> ²)				TECN	C	
VALUE	<u> </u>	<u>DC</u>		0.1		<u> </u>	
<4.4 × 10 -	90 ha fallowin	AS a data	For averages	81 fite	HLBC	, Fí	NAL
• • • vve do not use t		g uata	Tor averages	, IILS		, etc	
<0.0081	90	M	CFARLAND	95 07	CCFR		NAL
<0.15	90	BC		87		< FI	
<8.8 × 10 -	90	1 <i>F</i>		83 (_ \	HLBC	. 15	D-TT FINAL
		$\nu_{\mu}(\nu$	$\nu_{\mu}) \rightarrow \nu_{\tau}($	$\nu_{\tau})$			
$\Delta(m^2)$ for $\sin^2(2\theta)$	= 1						
VALUE (eV ²)	CL%	DC	CUMENT ID		TECN	СС	OMMENT
<1.5	90	⁶¹ GF	RUWE	93	CHM	2 CI	ERN SPS
⁶¹ GRUWE 93 is a s neutrino beam for <i>i</i>	earch usin $ u_\mu o \ u_ au$ a	g the and $\overline{ u}_{\mu}$	CHARM II $\phi \to \overline{ u}_{ au}$ oscil	deteo latio	tor in ns sign	the alled	CERN SPS wide-band by quasi-elastic ν_{τ} and
$\overline{ u}_{ au}$ interactions foll $(< 6.4 imes 10^{-3}$ at t	owed by t the 90% C	he dec L) is re	ay $ au o u_{ au}$ eached for Δ	π. ٦ (m ²)	The matrix ($^{-}$ he matrix ($^{-}$	ximı 0 eV	$m \text{ sensitivity in sin}^2 2\theta$
$sin^2(2\theta)$ for "Large"	$\Delta(m^2)$						
VALUE (units 10^{-3})	CL%	DC	CUMENT ID		TECN	<u> </u>	OMMENT
<8	90	62 GF	RUWE	93	CHM:	2 CI	ERN SPS
⁶² GRUWE 93 is a s neutrino beam for <i>i</i>	earch usin $ u_\mu o \ u_ au$;	g the and $\overline{ u}_{\mu}$	CHARM II $\to \overline{ u}_{ au}$ oscil	deteo latio	ctor in ns sign	the alled	CERN SPS wide-band by quasi-elastic ν_{τ} and
$\overline{ u}_{ au}$ interactions foll	lowed by t	, he dec	ay $ au o u_{ au}$	π. Τ	⁻ he ma	ximu	um sensitivity in sin $^22 heta$
$(<$ 6.4 $ imes$ 10^{-3} at 1	the 90% C	L) is re	eached for Δ	(m ²)) \simeq 5	0 eV	2.
			$ u_{\mu} \not\rightarrow u_{\mu}$				
$\Delta(m^2)$ for $\sin^2(2\theta)$	= 1						
VALUE (eV^2)	CL%		DOCUMENT	ID	TE	CN	COMMENT
> 0.0015 AND < 0.003	39 90	63	AHN		03 K2	2K	KEK to Super-K
• • • We do not use t	he followin	g data	for averages	, fits	, limits	s, etc	C. ● ● ●
< 0.29 OR >22	90		BERGSMA	:	88 CH	IRM	
<7	90		BELIKOV	:	85 CN	ITR	Serpukhov
<8.0 OR >1250	90		STOCKDAI	-E 3	85 CN	ITR	
<0.29 OR >22	90		BERGSMA	:	84 CH	IRM	
<0.23 OR >100	90		DYDAK	:	84 CN	ITR	
<13 OR >1500	90		STOCKDAI	E	84 CN	ITR	
<8.0	90		BELIKOV	:	83 CN	ITR	
⁶³ K2K is a 250 km lo oscillations. The m	ong-baselin easured os	e disap cillatio	pearance ex n parameters	perin are	nent. 7 consist	The r	result indicates neutrino with the ones suggested

$\sin^2(2\theta)$ for $\Delta(m^2) = 0.003 \text{ eV}^2$

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use the	following	data for averages	, fits,	limits,	etc. • • •
> 0.35	90 6	⁴ AHN	03	K2K	KEK to Super-K

⁶⁴ K2K is a 250 km long-baseline disappearance experiment. The result indicates neutrino oscillations. The measured oscillation parameters are consistent with the ones suggested by atmospheric neutrino observations.

HTTP://PDG.LBL.GOV	
--------------------	--

Page 9 Created: 6/24/2005 17:12

$\sin^2(2\theta)$ for $\Delta(m^2)$	= 100e	V ²
ALUE	<u> </u>	DOCUMENT ID TECN COMMENT
<0.02	90 ha fallawi	STOCKDALE 85 CNTR FNAL
• • vve do not use t	ne tollowi	for a contraction of the contrac
< 0.17	90	⁶⁷ DELIKOV OF CNTD C
<0.07	90	60 PEDCEMA 85 CNTR Serpukhov
(U.27 <0.1	90	68 DVDAK 94 CHRM CERN PS
<0.1 <0.02	90	69 STOCKDALE 84 CNTR ENAL
< 0.1	90	⁷⁰ BELIKOV 83 CNTR Serpukhov
⁵⁵ This bound applies	for $\Delta(m^2)$	$(1) = 100 \text{ eV}^2$. Less stringent bounds apply for other $\Delta(m^2)$
these are nontrivial	for $8 < 4$	$\Delta(m^2) < 1250 \text{ eV}^2$.
⁶⁶ This bound applies	for $\Delta(n)$	p^{2} = 0.7–9. eV ² . Less stringent bounds apply for other
$\Delta(m^2)$; these are r	ontrivial	for $0.28 < \Delta(m^2) < 22 \text{ eV}^2$.
⁵⁷ This bound applies	for a wie	de range of $\Delta(m^2) > 7 \text{ eV}^2$. For some values of $\Delta(m^2)$, e least restrictive, nontrivial bound occurs approximately at
$\Delta(m^2) = 300 \text{ eV}^2$	where sir	$p^2(2\theta) < 0.13$ at CL = 90%.
⁵⁸ This bound applies	for $\Delta(n)$	p^2) = 110. eV ² . Less stringent bounds apply for other
$\Delta(m^2)$; these are r	ontrivial	for $0.23 < \Delta(m^2) < 90 \text{ eV}^2$.
⁶⁹ This bound applies	for $\Delta(m^2)$) = 110 eV ² . Less stringent bounds apply for other $\Delta(m^2)$
these are nontrivial	for $13 <$	$\Delta(m^2)$ <1500 eV ² .
70 Bound holds for Δ	$(m^2) = 2$	$0-1000 \text{ eV}^2$.
		- / -
		$\nu_{\mu} \not\rightarrow \nu_{\mu}$
$\Delta(m^2)$ for sin ² (2 θ)	= 1	
ALUE (eV ²)	CL%	DOCUMENT ID TECN
<7 OR >1200 OUR L	MIT	
; 7 OR > 1200	90	STOCKDALE 85 CNTR
in ² (2θ) for 190 eV	$^{2} < \Delta$	$(m^2) < 320 \text{ eV}^2$
ALUE	<u>CL%</u>	DOCUMENT ID TECN COMMENT
<0.02	90	⁷¹ STOCKDALE 85 CNTR FNAL
^{'1} This bound applies	for $\Delta(m^2)$) between 190 and 320 or $= 530 \text{ eV}^2$. Less stringent bounds
apply for other $\Delta($	m^2); thes	, e are nontrivial for 7 $<$ $\Delta(m^2)$ $<$ 1200 eV 2 .
		$- \nu_{\mu} \rightarrow (\overline{\nu}_{a})_{i}$
See wete abou		μ ($\overline{\nu}$) limit
See note abov	e for ν_e	$\rightarrow (\nu_e)L$ limit
$\alpha\Delta(m^2)$ for sin ² (26)) = 1	
/ALUE (eV ²)	CL%	DOCUMENT ID TECN COMMENT
<0.16	90	⁷² FREEDMAN 93 CNTR LAMPF
• • We do not use t	he followi	ng data for averages, fits, limits, etc. $ullet$ $ullet$
<0.7	90	73 COOPER 82 HLBC BEBC CERN SPS
⁷² FREEDMAN 93 is	a search a	at LAMPF for $\overline{ u}_{a}$ generated from any of the three neutrino
types ν_{μ} , $\overline{\nu}_{\mu}$, and	ν_e which	n come from the beam stop. The $\overline{ u}_e$'s would be detected
by the reaction $\overline{\nu}_{\rho}$	$p ightarrow e^+$	n. The limit on $\Delta(m^2)$ is better than the CERN BEBC
experiment, but th	e limit on	$\sin^2 \theta$ is almost a factor of 100 less sensitive.
73 COOPER 82 states	that exis	ting bounds on V+A currents require α to be small.

HTTP://PDG.LBL.GOV Page 10 Created: 6/24/2005 17:12

$\alpha^2 sin^2(2 heta)$ for "Large" $\Delta(m^2)$							
VALUE	CL%	DOCUMENT ID		TECN	COMMENT		
<0.001	90	⁷⁴ COOPER	82	HLBC	BEBC CERN SPS		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
<0.07	90	⁷⁵ FREEDMAN	93	CNTR	LAMPF		

⁷⁴COOPER 82 states that existing bounds on V+A currents require α to be small.

⁷⁵ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_{μ} , $\overline{\nu}_{\mu}$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$. The limit on $\Delta(m^2)$ is better than the CERN BEBC experiment, but the limit on $\sin^2\!\theta$

(B) Reactor $\overline{\nu}_e$ disappearance experiments

In most cases, the reaction $\overline{\nu}_e p \rightarrow e^+ n$ is observed at different distances from one or more reactors in a complex.

Events (Observed/Expected) from Reactor $\overline{\nu}_e$ Experiments

VALUE	DOCUMENT ID			<u>COMMENT</u>
• • • We do not use the follow	wing data for averages	, fits,	limits,	etc. • • •
$0.611\!\pm\!0.085\!\pm\!0.041$	⁷⁶ EGUCHI	03	KLND	Japanese react ~ 180
$1.01 \ \pm 0.024 \!\pm\! 0.053$	77 BOEHM	01		Palo Verde react. 0 75–0 89 km
$1.04 \pm 0.03 \pm 0.08$	⁷⁸ BOEHM	00 C		Palo Verde react. 0.75–0.89 km
$1.01 \ \pm 0.028 \!\pm\! 0.027$	⁷⁹ APOLLONIO	99	CHOZ	Chooz reactors 1 km
$0.987 \!\pm\! 0.006 \!\pm\! 0.037$	⁸⁰ GREENWOOD	96		Savannah River, 18.2 m
$0.988 \!\pm\! 0.004 \!\pm\! 0.05$	ACHKAR	95	CNTR	Bugey reactor, 15 m
$0.994 \!\pm\! 0.010 \!\pm\! 0.05$	ACHKAR	95	CNTR	Bugey reactor, 40 m
$0.915\!\pm\!0.132\!\pm\!0.05$	ACHKAR	95	CNTR	Bugey reactor, 95 m
$0.987 \!\pm\! 0.014 \!\pm\! 0.027$	⁸¹ DECLAIS	94	CNTR	Bugey reactor, 15 m
$0.985 \!\pm\! 0.018 \!\pm\! 0.034$	KUVSHINN	91	CNTR	Rovno reactor
$1.05 \pm 0.02 \pm 0.05$	VUILLEUMIER	82		Gösgen reactor
$0.955 \!\pm\! 0.035 \!\pm\! 0.110$	⁸² KWON	81		$\overline{\nu}_e p \rightarrow e^+ n$
0.89 ± 0.15	⁸² ВОЕНМ	80		$\overline{\nu}_e p \rightarrow e^+ n$
0.38 ± 0.21	^{83,84} REINES	80		·
0.40 ±0.22	^{83,84} REINES	80		

 76 EGUCHI 03 observe reactor neutrino disappearance at $\sim\,180\,$ km baseline to various Japanese nuclear power reactors. See the footnote in the following table for further details, and the paper for the inclusion/exclusion plot.

⁷⁷ BOEHM 01 search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors.

⁷⁸ BOEHM 00C search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors.

⁷⁹ APOLLONIO 99, APOLLONIO 98 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. They use $\overline{\nu}_e p \rightarrow e^+ n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98. See also APOLLONIO 03 for detailed description.

 80 GREENWOOD 96 search for neutrino oscillations at 18 m and 24 m from the reactor at Savannah River.

HTTP://PDG.LBL.GOV Page 11

- 81 DECLAIS 94 result based on integral measurement of neutrons only. Result is ratio of measured cross section to that expected in standard V-A theory. Replaced by ACHKAR 95.
- ⁸² KWON 81 represents an analysis of a larger set of data from the same experiment as **BOEHM 80.**
- ⁸³ REINES 80 involves comparison of neutral- and charged-current reactions $\overline{\nu}_e d \rightarrow n p \overline{\nu}_e$ and $\overline{\nu}_e d \rightarrow nne^+$ respectively. Combined analysis of reactor $\overline{\nu}_e$ experiments was performed by SILVERMAN 81.
- ⁸⁴ The two REINES 80 values correspond to the calculated $\overline{\nu}_e$ fluxes of AVIGNONE 80 and DAVIS 79 respectively.

$$\overline{\nu}_e \not\rightarrow \overline{\nu}_e$$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (e	√ ²)	CL%	DOCUMENT ID		TECN	COMMENT
>8	× 10 ⁻⁶	95	⁸⁵ EGUCHI	03	KLND	Japanese react ~ 180 km
• • • W	'e do not	use the	following data for a	avera	ges, fits,	limits, etc. • • •
< 0.0011		90	⁸⁶ BOEHM	01		Palo Verde react. 0.75–0.89 km
< 0.0011	_	90	⁸⁷ BOEHM	00		Palo Verde react. 0.8 km
< 0.0007	7	90	⁸⁸ APOLLONIO	99	CHOZ	Chooz reactors 1 km
< 0.01		90	⁸⁹ ACHKAR	95	CNTR	Bugey reactor
< 0.0075	5	90	⁹⁰ VIDYAKIN	94		Krasnoyarsk reactors
< 0.04		90	⁹¹ AFONIN	88	CNTR	Rovno reactor
< 0.014		68	⁹² VIDYAKIN	87		$\overline{\nu}_e p \rightarrow e^+ n$
< 0.019		90	⁹³ ZACEK	86		Gösgen reactor

- 85 EGUCHI 03 observe reactor neutrino disappearance at $\sim\,$ 180 km baseline to various Japanese nuclear power reactors. This is the lower limit on the mass difference spread, unlike all other entries in this table. Observation is consistent with neutrino oscillations, with mass-mixing and mixing-angle parameters in the Large Mixing Angle Solution region of the solar neutrino problem.
- ⁸⁶ BOEHM 01, a continuation of BOEHM 00, is a disappearance search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors. Result is less restrictive than APOLLONIO 99.
- ⁸⁷ BOEHM 00 is a disappearance search for neutrino oscillations at 0.75 and 0.89 km distance from Palo Verde reactors. The detection reaction is $\overline{\nu}_e p \rightarrow e^+ n$ in a segmented Gd loaded scintillator target. Result is less restrictive than APOLLONIO 99.
- $^{88}\operatorname{APOLLONIO}$ 99 search for neutrino oscillations at $1.1\,\mathrm{km}$ fixed distance from Chooz reactors. They use $\overline{\nu}_e p \rightarrow e^+ n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98. This is the most sensitive search in terms of $\Delta(m^2)$ for $\overline{\nu}_{\rho}$ disappearance. See also APOLLONIO 03 for detailed description.
- ⁸⁹ ACHKAR 95 bound is for L=15, 40, and 95 m.
- 90 VIDYAKIN 94 bound is for L=57.0 m, 57.6 m, and 231.4 m. Supersedes VIDYAKIN 90.
- 91 AFONIN 86 and AFONIN 87 also give limits on sin $^2(2 heta)$ for intermediate values of $\Delta(m^2)$. (See also KETOV 92). Supersedes AFONIN 87, AFONIN 86, AFONIN 85, AFONÍN 83, and BELENKII 83.
- 92 VIDYAKIN 87 bound is for L = 32.8 and 92.3 m distance from two reactors.
- 93 This bound is from data for L=37.9 m, 45.9 m, and 64.7 m.

$\sin^2(2\theta)$ for "L	_arge"	$\Delta(m^2)$			
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>0.4	95	⁹⁴ EGUCHI	03	KLND	Japanese react ~ 180 km
• • • We do not	use the	e following data for a	avera	nges, fits,	limits, etc. • • •
<0.17	90	⁹⁵ BOEHM	01		Palo Verde react. 0.75–0.89 km
<0.21	90	⁹⁶ BOEHM	00		Palo Verde react. 0.8 km
<0.10	90	⁹⁷ APOLLONIO	99	CHOZ	Chooz reactors 1 km
<0.24	90	⁹⁸ GREENWOOD	96		
<0.04	90	⁹⁸ GREENWOOD	96		For $\Delta(m^2)=1.0~{ m eV}^2$
<0.02	90	⁹⁹ ACHKAR	95	CNTR	For $\Delta(m^2) = 0.6 \text{ eV}^2$
<0.087	68	¹⁰⁰ VYRODOV	95	CNTR	For $\Delta(m^2) > 2 \text{ eV}^2$
<0.15	90	¹⁰¹ VIDYAKIN	94		For $\Delta(m^2) > 5.0 imes 10^{-2} ext{ eV}^2$
<0.2	90	¹⁰² AFONIN	88	CNTR	$\overline{\nu}_e p \rightarrow e^+ n$
<0.14	68	¹⁰³ VIDYAKIN	87		$\overline{\nu}_e p \rightarrow e^+ n$
<0.21	90	¹⁰⁴ ZACEK	86		$\overline{\nu}_e p \rightarrow e^+ n$
<0.19	90	¹⁰⁵ ZACEK	85		Gösgen reactor
<0.16	90	¹⁰⁶ GABATHULER	84		$\overline{\nu}_e p \rightarrow e^+ n$

 94 EGUCHI 03 observe reactor neutrino disappearance at ~ 180 km baseline to various Japanese nuclear power reactors. This is the lower limit on $\sin^2 2\theta$, unlike all other entries in this table. It is based on the observed rate only; consideration of the spectrum shape results in somewhat more restrictive limit. Observation is consistent with neutrino oscillations, with mass-mixing and mixing-angle parameters in the Large Mixing Angle Solution region of the solar neutrino problem.

- 95 BOEHM 01 search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors. Continuation of BOEHM 00.
- 96 BOEHM 00 search for neutrino oscillations at 0.75 and 0.89 km distance from Palo Verde reactors.
- ⁹⁷ APOLLONIO 99 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. See also APOLLONIO 03 for detailed description.
- ⁹⁸ GREENWOOD 96 search for neutrino oscillations at 18 m and 24 m from the reactor at Savannah River by observing $\overline{\nu}_e p \rightarrow e^+ n$ in a Gd loaded scintillator target. Their region of sensitivity in $\Delta(m^2)$ and $\sin^2 2\theta$ is already excluded by ACHKAR 95.
- ⁹⁹ ACHKAR 95 bound is from data for L=15, 40, and 95 m distance from the Bugey reactor.
- ¹⁰⁰ The VYRODOV 95 bound is from data for L=15 m distance from the Bugey-5 reactor.
- 101 The VIDYAKIN 94 bound is from data for L=57.0 m, 57.6 m, and 231.4 m from three reactors in the Krasnoyarsk Reactor complex.
- ¹⁰² Several different methods of data analysis are used in AFONIN 88. We quote the most stringent limits. Different upper limits on $\sin^2 2\theta$ apply at intermediate values of $\Delta(m^2)$. Supersedes AFONIN 87, AFONIN 85, and BELENKII 83.
- $^{103}_{102}$ VIDYAKIN 87 bound is for L=32.8 and 92.3 m distance from two reactors.
- ¹⁰⁴ This bound is from data for L=37.9 m, 45.9 m, and 64.7 m distance from Gosgen reactor. ¹⁰⁵ ZACEK 85 gives two sets of bounds depending on what assumptions are used in the data analysis. The bounds in figure 3(a) of ZACEK 85 are progressively poorer for large $\Delta(m^2)$ whereas those of figure 3(b) approach a constant. We list the latter. Both sets of bounds use combination of data from 37.9, 45.9, and 64.7m distance from reactor. ZACEK 85 states "Our experiment excludes this area (the oscillation parameter region allowed by the Bugey data, CAVAIGNAC 84) almost completely, thus disproving the indications of neutrino oscillations of CAVAIGNAC 84 with a high degree of confidence."
- ¹⁰⁶ This bound comes from a combination of the VUILLEUMIER 82 data at distance 37.9m from Gosgen reactor and new data at 45.9m.

(C) Atmospheric neutrino observations

Neutrinos and antineutrinos produced in the atmosphere induce μ -like and e-like events in underground detectors. The ratio of the numbers of the two kinds of events is defined as μ/e . It has the advantage that systematic effects, such as flux uncertainty, tend to cancel, for both experimental and theoretical values of the ratio. The "ratio of the ratios" of experimental to theoretical μ/e , $R(\mu/e)$, or that of experimental to theoretical μ /total, $R(\mu/\text{total})$ with total = $\mu + e$, is reported below. If the actual value is not unity, the value obtained in a given experiment may depend on the experimental conditions.

$R(\mu/e) = (Measured Rac)$	tio $\mu/e)$ / (Expect	ed Ra	tio $\mu/$	e)
VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the foll	owing data for average	es, fits,	limits,	etc. • • •
$0.69 \pm 0.10 \pm 0.06$	¹⁰⁷ SANCHEZ	03	SOU2	Calorimeter raw data
$0.61\!\pm\!0.03\!\pm\!0.05$	¹⁰⁸ FUKUDA	98	SKAM	sub-GeV
$0.66 \pm 0.06 \pm 0.08$	¹⁰⁹ FUKUDA	98E	SKAM	multi-GeV
	¹¹⁰ FUKUDA	96 B	KAMI	Water Cherenkov
$1.00\!\pm\!0.15\!\pm\!0.08$	¹¹¹ DAUM	95	FREJ	Calorimeter
$0.60^{+0.06}_{-0.05}{\pm}0.05$	¹¹² FUKUDA	94	KAMI	sub-GeV
$0.57^{+0.08}_{-0.07} {\pm} 0.07$	¹¹³ FUKUDA	94	KAMI	multi-Gev
	¹¹⁴ BECKER-SZ.	92 в	IMB	Water Cherenkov

- 107 SANCHEZ 03 result is based on an exposure of 5.9 kton yr, and updates ALLISON 99 result. The analyzed data sample consists of fully-contained *e*-flavor and μ -flavor events having lepton momentum > 0.3 GeV/c.
- 108 FUKUDA 98 result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained e-like events with 0.1 GeV/c<p_e and μ -like events with $0.2 \,\text{GeV}/c < p_{\mu}$, both having a visible energy $< 1.33 \,\text{GeV}$. These criteria match the definition used by FUKUDA 94.
- 109 FUKUDA 98E result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained single-ring events with visible energy > 1.33 GeV and partially contained events. All partially contained events are classified as μ -like.
- $^{110}\,{
 m FUKUDA}$ 96B studied neutron background in the atmospheric neutrino sample observed in the Kamiokande detector. No evidence for the background contamination was found.
- 111 DAUM 95 results are based on an exposure of 2.0 kton yr which includes the data used by BERGER 90B. This ratio is for the contained and semicontained events. DAUM 95 also report $R(\mu/e) = 0.99 \pm 0.13 \pm 0.08$ for the total neutrino induced data sample which includes upward going stopping muons and horizontal muons in addition to the contained and semicontained events.
- 112 FUKUDA 94 result is based on an exposure of 7.7 kton yr and updates the HIRATA 92 result. The analyzed data sample consists of fully-contained e-like events with 0.1 < $p_e < 1.33 \text{ GeV}/c$ and fully-contained μ -like events with $0.2 < p_{\mu} < 1.5 \text{ GeV}/c$.
- 113 FUKUDA 94 analyzed the data sample consisting of fully contained events with visible energy > 1.33 GeV and partially contained μ -like events.
- 114 BECKER-SZENDY 92B reports the fraction of nonshowering events (mostly muons from atmospheric neutrinos) as 0.36 \pm 0.02 \pm 0.02, as compared with expected fraction 0.51 \pm 0.01 ± 0.05 . After cutting the energy range to the Kamiokande limits, BEIER 92 finds $R(\mu/e)$ very close to the Kamiokande value.

HTTP://PDG.LBL.GOV Page 14

$R(\nu_{\mu}) = (Measure)$	ed Flux of ν_{μ}) /	(Exp	bected	Flux of $ u_{\mu}$)
VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the following data	for a	/erages,	fits, limits, etc. • • •
$0.72\!\pm\!0.026\!\pm\!0.13$	¹¹⁵ AMBROSIO	01	MCRO	upward through-going
$0.57\!\pm\!0.05\ \pm0.15$	¹¹⁶ AMBROSIO	00	MCRO	upgoing partially contained
$0.71 {\pm} 0.05 {\pm} 0.19$	¹¹⁷ AMBROSIO	00	MCRO	downgoing partially contained + upgoing stopping
$0.74 \!\pm\! 0.036 \!\pm\! 0.046$	¹¹⁸ AMBROSIO	98	MCRO	Streamer tubes
	¹¹⁹ CASPER	91	IMB	Water Cherenkov
	¹²⁰ AGLIETTA	89	NUSX	
0.95 ± 0.22	¹²¹ BOLIEV	81		Baksan
0.62 ± 0.17	CROUCH	78		Case Western/UCI

- 115 AMBROSIO 01 result is based on the upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The first error is the statistical error, the second is the systematic error, dominated by the theoretical error in the predicted flux.
- ¹¹⁶ AMBROSIO 00 result is based on the upgoing partially contained event sample. It came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle.
- 117 AMBROSIO 00 result is based on the combined samples of downgoing partially contained events and upgoing stopping events. These two subsamples could not be distinguished due to the lack of timing information. The result came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle.
- ¹¹⁸ AMBROSIO 98 result is for all nadir angles and updates AHLEN 95 result. The lower cutoff on the muon energy is 1 GeV. In addition to the statistical and systematic errors, there is a Monte Carlo flux error (theoretical error) of ± 0.13 . With a neutrino oscillation hypothesis, the fit either to the flux or zenith distribution independently yields $\sin^2 2\theta = 1.0$ and $\Delta(m^2) \sim$ a few times 10^{-3} eV^2 . However, the fit to the observed zenith distribution gives a maximum probability for χ^2 of only 5% for the best oscillation hypothesis.
- ¹¹⁹CASPER 91 correlates showering/nonshowering signature of single-ring events with parent atmospheric-neutrino flavor. They find nonshowering ($\approx \nu_{\mu}$ induced) fraction is 0.41 ± 0.03 ± 0.02, as compared with expected 0.51 ± 0.05 (syst).
- ¹²⁰ AGLIETTA 89 finds no evidence for any anomaly in the neutrino flux. They define $\rho = (\text{measured number of } \nu_e's)/(\text{measured number of } \nu_\mu's)$. They report $\rho(\text{measured}) = \rho(\text{expected}) = 0.96 \substack{+0.32 \\ -0.28}$.
- 121 From this data BOLIEV 81 obtain the limit $\Delta(m^2) \leq 6 \times 10^{-3} \ {\rm eV}^2$ for maximal mixing, $\nu_\mu \not \rightarrow \ \nu_\mu$ type oscillation.

/. . I) / / E

$R(\mu/total) = (Measured Ratio \mu/total) / (Expected Ratio \mu/total)$							
VALUE	DOCUMENT ID		TECN	COMMENT			
\bullet \bullet We do not use the follow	ving data for averages,	fits,	limits,	etc. • • •			
$1.1^{+0.07}_{-0.12}{\pm}0.11$	¹²² CLARK	97	IMB	multi-GeV			
HTTP://PDG.LBL.GOV	Page 15		Crea	ated: 6/24/2005 17:1	2		

/. . IN

/ . .

. . .

 122 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy > 0.95 GeV.

$N_{ m up}(\mu)/N_{ m down}(\mu)$				
VALUE	DOCUMENT ID	TECN	COMMENT	
\bullet \bullet We do not use the follow	ving data for averages, fi	ts, limits,	etc. • • •	
$0.52^{+0.07}_{-0.06}{\pm}0.01$	¹²³ FUKUDA 98	Be SKAM	multi-GeV	

 123 FUKUDA 98E result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained single-ring μ -like events with visible energy > 1.33 GeV and partially contained events. All partially contained events are classified as μ -like. Upward-going events are those with $-1 < \cos$ (zenith angle) < -0.2 and downward-going events with those with 0.2 $< \cos$ (zenith angle) < 1. FUKUDA 98E result strongly deviates from an expected value of 0.98 \pm 0.03 \pm 0.02.

$N_{\rm up}(e)/N_{\rm down}(e)$

VALUE	<u>DOCUMENT ID</u>	TECN COMMENT	
\bullet \bullet We do not use the followi	ng data for averages	, fits, limits, etc. $ullet$ $ullet$	
$0.84^{+0.14}_{-0.12} \pm 0.02$	¹²⁴ FUKUDA	98E SKAM multi-GeV	

 124 FUKUDA 98E result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained single-ring e-like events with visible energy > 1.33 GeV. Upward-going events are those with $-1 < \cos$ (zenith angle) < -0.2 and downward-going events are those with 0.2 $< \cos$ (zenith angle) < 1. FUKUDA 98E result is compared to an expected value of $1.01 \pm 0.06 \pm 0.03$.

$\sin^2(2 heta)$ for given $\Delta(m^2)$ $(\nu_e \leftrightarrow \nu_\mu)$

For a revie	w see c	ANCALL 69.			
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not	use th	e following data for a	avera	ges, fits,	limits, etc. • • •
<0.6	90	¹²⁵ ОҮАМА	98	KAMI	$\Delta(m^2) > 0.1 \ \mathrm{eV}^2$
<0.5		¹²⁶ CLARK	97	IMB	$\Delta(m^2) > 0.1 \text{ eV}^2$
>0.55	90	¹²⁷ FUKUDA	94	KAMI	$\Delta(m^2) = 0.007 - 0.08 \text{ eV}^2$
<0.47	90	¹²⁸ BERGER	90 B	FREJ	$\Delta(m^2)>1~{ m eV}^2$
<0.14	90	LOSECCO	87	IMB	$\Delta(m^2) = 0.00011 \text{ eV}^2$

 125 OYAMA 98 obtained this result by an analysis of upward-going muons in Kamiokande. The data sample used is essentially the same as that used by HATAKEYAMA 98.

 126 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy > 0.95 GeV.

¹²⁷ FUKUDA 94 obtained this result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande.

¹²⁸ BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antineutrino oscillations.

$\Delta(m^2)$ for sin²(2 θ) = 1 ($\nu_e \leftrightarrow \nu_{\mu}$)

		•		
$VALUE (10^{-5} \text{ eV}^2)$	CL%	DOCUMENT ID		TECN
\bullet \bullet \bullet We do not use the	followin	ng data for averages,	fits,	limits, etc. • • •
$< 560 \ < 980 \ 700 < \Delta(m^2) < 7000 \ < 150$	90 90 90	129 OYAMA 130 CLARK 131 FUKUDA 132 BERGER	98 97 94 90в	KAMI IMB KAMI FREJ

- ¹²⁹ OYAMA 98 obtained this result by an analysis of upward-going muons in Kamiokande. The data sample used is essentially the same as that used by HATAKEYAMA 98.
- 130 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy > 0.95 GeV.
- ¹³¹ FUKUDA 94 obtained this result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande.
- ¹³² BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antineutrino oscillations.

$\begin{array}{c|c} \sin^{2}(2\theta) \text{ for given } \Delta(m^{2}) (\overline{\nu}_{e} \leftrightarrow \overline{\nu}_{\mu}) \\ \hline \underline{VALUE (10^{-5} \text{ eV}^{2})} & \underline{CL\%} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \bullet \bullet \text{ We do not use the following data for averages, fits, limits, etc. } \bullet \bullet \\ \hline <0.9 & 99 & \underline{133} \text{ SMIRNOV} & 94 & \text{THEO} & \Delta(m^{2}) > 3 \times 10^{-4} \text{ eV}^{2} \\ \hline <0.7 & 99 & \underline{133} \text{ SMIRNOV} & 94 & \text{THEO} & \Delta(m^{2}) < 10^{-11} \text{ eV}^{2} \end{array}$

<0.7 99 ¹³³ SMIRNOV 94 THEO $\Delta(m^2) < 10^{-11}$ eV² 133 SMIRNOV 04 analyzed the data from SN 1087A using stellar collarse models. They a

 $^{133}\,\text{SMIRNOV}$ 94 analyzed the data from SN 1987A using stellar-collapse models. They also give less stringent upper limits on $\sin^2 2\theta$ for $10^{-11} < \Delta(m^2) < 3 \times 10^{-7} \text{ eV}^2$ and $10^{-5} < \Delta(m^2) < 3 \times 10^{-4} \text{ eV}^2$. The same results apply to $\overline{\nu}_e \leftrightarrow \overline{\nu}_{\tau}$, ν_{μ} , and ν_{τ} .

$\sin^2(2\theta)$ for given $\Delta(m^2)$ ($\nu_{\mu} \leftrightarrow \nu_{\tau}$)

VALUE	<u>CL%</u>		DOCUMENT ID		<u>TECN</u>	COMMENT
• • • We do not	use the	foll	owing data for a	vera	ges, fits,	limits, etc. • • •
>0.8	90	134	AMBROSIO	04	MCRO	$\Delta(m^2) = 0.0006 - 0.008 \text{ eV}^2$
>0.9	90	135	ASHIE	04	SKAM	$\Delta(m^2) = 0.0019 - 0.003 \ { m eV}^2$
>0.45	90	136	AMBROSIO	03	MCRO	$\Delta(m^2) = 0.00025 - 0.009 \text{ eV}^2$
>0.77	90	137	AMBROSIO	03	MCRO	$\Delta(m^2) = 0.0006 - 0.007 \text{ eV}^2$
>0.5	90	138	SANCHEZ	03	SOU2	$\Delta(m^2) = 0.00015 - 0.02 \text{ eV}^2$
>0.8	90	139	AMBROSIO	01	MCRO	$\Delta(m^2) = 0.0006 - 0.015 \text{ eV}^2$
>0.82	90	140	AMBROSIO	01	MCRO	$\Delta(m^2) = 0.001 - 0.006 \text{ ev}^2$
>0.25	90	141	AMBROSIO	00	MCRO	$\Delta(m^2) > 3 imes 10^{-4} \ { m eV}^2$
>0.4	90	142	FUKUDA	99 C	SKAM	$\Delta(m^2) = 0.001 - 0.1 \text{ eV}^2$
>0.7	90	143	FUKUDA	99 D	SKAM	$\Delta(m^2) = 0.0015 - 0.015 \text{ eV}^2$
>0.82	90	144	AMBROSIO	98	MCRO	$\Delta(m^2)\sim 0.0025~{ m eV}^2$
>0.82	90	145	FUKUDA	98 C	SKAM	$\Delta(m^2) = 0.0005 - 0.006 \text{ eV}^2$
>0.3	90	146	HATAKEYAMA	98	KAMI	$\Delta(m^2) = 0.00055 - 0.14 \text{ eV}^2$
>0.73	90	147	HATAKEYAMA	98	KAMI	$\Delta(m^2) = 0.004 - 0.025 \text{ eV}^2$
<0.7		148	CLARK	97	IMB	$\Delta(m^2) > 0.1 \text{ eV}^2$
>0.65	90	149	FUKUDA	94	KAMI	$\Delta(m^2) = 0.005 - 0.03 \text{ eV}^2$
<0.5	90	150	BECKER-SZ	92	IMB	$\Delta(m^2) = 1 - 2 \times 10^{-4} \text{ eV}^2$
<0.6	90	151	BERGER	90 B	FREJ	$\Delta(m^2)>1~{ m eV}^2$

¹³⁴ AMBROSIO 04 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV, N_{low} and N_{high} , and the numbers of InDown + UpStop and InUp events. Here, N_{low} and N_{high} are the number of events with reconstructed neutrino energy <30 and >130 GeV, respectively. *InDown* and *InUp* represent events with downward-and upward-going tracks starting inside the detector due to neutrino interactions, while *UpStop* represents entering upward-going tracks which stop inside the detector.

 $^{135}\,{\rm ASHIE}$ 04 obtained this result from the L(flight length) / E(estimated neutrino energy) distribution of ν_{μ} disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data.

- ¹³⁶ AMBROSIO 03 obtained this result on the basis of the ratio $R=N_{low}/N_{high}$, where N_{low} and N_{high} are the number of upward through-going muon events with reconstructed neutrino energy <30 GeV and >130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits.
- ¹³⁷ AMBROSIO 03 obtained this result by using the ratio *R* and the angular distribution of the upward through-going muons. *R* is given by N_{low}/N_{high} , where N_{low} and N_{high} are the number of events with reconstructed neutrino energy <30 and >130 GeV, respectively. The angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits.
- ¹³⁸SANCHEZ 03 result is based on an exposure of 5.9 kton yr. The result is obtained using a likelihood analysis of the neutrino L/E distribution for a selected μ -flavor sample while the *e*-flavor sample provides flux normalization. The method of FELDMAN 98 is used to obtain the limits.
- ¹³⁹ AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits.
- ¹⁴⁰ AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. See the previous footnote.
- ¹⁴¹ AMBROSIO 00 obtained this result by using the upgoing partially contained event sample and the combined samples of downgoing partially contained events and upgoing stopping events. These data came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to these samples is 4 GeV. The maximum of the χ^2 probability (97%) occurs at maximal mixing and $\Delta(m^2) = (1 \sim 20) \times 10^{-3} \text{ eV}^2$.
- ¹⁴² FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muons is $(1.74 \pm 0.07 \pm 0.02) \times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. The zenith-angle dependence of the flux does not agree with no-oscillation predictions. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99C obtained the best fit at sin²2 θ =0.95 and $\Delta(m^2)$ =5.9 × 10⁻³ eV². FUKUDA 99C also reports 68% and 99% confidence-level allowed regions for the same hypothesis.
- ¹⁴³ FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is $(0.39 \pm 0.04 \pm 0.02) \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. This is compared to the expected flux of $(0.73 \pm 0.16 \text{ (theoretical error)}) \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. The flux of upward through-going muons is taken from FUKUDA 99C. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99D obtained the best fit in the physical region at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.9 \times 10^{-3} \text{ eV}^2$. FUKUDA 99D further reports the result of the oscillation analysis using the zenith-angle dependence of upward-stopping/through-going flux ratio. The best fit in the physical region is obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.1 \times 10^{-3} \text{ eV}^2$.
- ¹⁴⁴ AMBROSIO 98 result is only 17% probable at maximum because of relatively low flux for $\cos\theta < -0.8$.
- ¹⁴⁵ FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric-neutrino data which include the 25.5 kton yr data used by FUKUDA 98 (sub-GeV) and FUKUDA 98E (multi-GeV). Inside the physical region, the best fit was obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 2.2 \times 10^{-3} \text{ eV}^2$. In addition, FUKUDA 98C gave the 99% confidence interval, $\sin^2 2\theta > 0.73$ and $3 \times 10^{-4} < \Delta(m^2) < 8.5 \times 10^{-3} \text{ eV}^2$. FUKUDA 98C also tested the $\nu_{\mu} \rightarrow \nu_e$ hypothesis, and concluded that it is not favored.

- ¹⁴⁶ HATAKEYAMA 98 obtained this result from a total of 2456 live days of upwardgoing muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muon is $(1.94 \pm 0.10^{+0.07}_{-0.06}) \times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. This is compared to the expected flux of $(2.46 \pm 0.54$ (theoretical error)) $\times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. For the $\nu_{\mu} \rightarrow$ ν_{τ} hypothesis, the best fit inside the physical region was obtained at sin²2 θ =1.0 and $\Delta(m^2)$ =3.2 $\times 10^{-3}$ eV².
- ¹⁴⁷ HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande's contained events (FUKUDA 94) and upward-going muon events. The best fit was obtained at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 1.3 \times 10^{-2} \text{ eV}^2$.
- 148 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy > 0.95 GeV.
- ¹⁴⁹ FUKUDA 94 obtained this result by a combined analysis of sub-and multi-GeV atmospheric neutrino events in Kamiokande.
- ¹⁵⁰ BECKER-SZENDY 92 uses upward-going muons to search for atmospheric ν_{μ} oscillations. The fraction of muons which stop in the detector is used to search for deviations in the expected spectrum. No evidence for oscillations is found.
- ¹⁵¹ BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antineutrino oscillations.

$\Delta(m^2)$ for $\sin^2(2\theta) = 1 \ (\nu_{\mu} \leftrightarrow \nu_{\tau})$

VALUE (10^{-5} eV^2)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	followin	ng data for averages,	, fits,	limits,	etc. ● ● ●
$60 < \Delta(m^2) < 800$	90	¹⁵² AMBROSIO	04	MCRO	
$190 < \Delta(m^2) < 300$	90	¹⁵³ ASHIE	04	SKAM	L/E distribution
$25 < \Delta(m^2) < 900$	90	¹⁵⁴ AMBROSIO	03	MCRO	
$60 < \Delta(m^2) < 700$	90	¹⁵⁵ AMBROSIO	03	MCRO	
$15 < \Delta(m^2) < 1500$	90	¹⁵⁶ SANCHEZ	03	SOU2	
$60 < \Delta(m^2) < 1500$	90	¹⁵⁷ AMBROSIO	01	MCRO	
$100 < \Delta(m^2) < 600$	90	¹⁵⁸ AMBROSIO	01	MCRO	
> 35	90	¹⁵⁹ AMBROSIO	00	MCRO	
$100 < \Delta(m^2) < 5000$	90	¹⁶⁰ FUKUDA	99 C	SKAM	
$150 < \Delta(m^2) < 1500$	90	¹⁶¹ FUKUDA	99 D	SKAM	
$50 < \Delta(m^2) < 600$	90	¹⁶² AMBROSIO	98	MCRO	
$50 < \Delta(m^2) < 600$	90	¹⁶³ FUKUDA	98 C	SKAM	
$55 < \Delta(m^2) < 5000$	90	¹⁶⁴ HATAKEYAMA	98	KAMI	
$400 < \Delta(m^2) < 2300$	90	¹⁶⁵ HATAKEYAMA	98	KAMI	
<1500		¹⁶⁶ CLARK	97	IMB	
$500 < \Delta(m^2) < 2500$	90	¹⁶⁷ FUKUDA	94	KAMI	
< 350	90	¹⁶⁸ BERGER	90 B	FREJ	

- 152 AMBROSIO 04 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV, $N_{\rm low}$ and $N_{\rm high}$, and the numbers of InDown + UpStop and InUp events. Here, $N_{\rm low}$ and $N_{\rm high}$ are the number of events with reconstructed neutrino energy <30 and >130 GeV, respectively. InDown and InUp represent events with downward-and upward-going tracks starting inside the detector due to neutrino interactions,
- $^{153}\,{\rm ASHIE}$ 04 obtained this result from the L(flight length)/E(estimated neutrino energy) distribution of ν_{μ} disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data.

- ¹⁵⁴ AMBROSIO 03 obtained this result on the basis of the ratio $R=N_{low}/N_{high}$, where N_{low} and N_{high} are the number of upward through-going muon events with reconstructed neutrino energy <30 GeV and >130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits.
- ¹⁵⁵ AMBROSIO 03 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given by N_{low}/N_{high} , where N_{low} and N_{high} are the number of events with reconstructed neutrino energy <30 and >130 GeV, respectively. The angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits.
- 156 SANCHEZ 03 result is based on an exposure of 5.9 kton yr. The result is obtained using a likelihood analysis of the neutrino L/E distribution for a selected μ -flavor sample while the *e*-flavor sample provides flux normalization. The method of FELDMAN 98 is used to obtain the limits.
- ¹⁵⁷ AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits.
- ¹⁵⁸ AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. See the previous footnote.
- ¹⁵⁹ AMBROSIO 00 obtained this result by using the upgoing partially contained event sample and the combined samples of downgoing partially contained events and upgoing stopping events. These data came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to these samples is 4 GeV. The maximum of the χ^2 probability (97%) occurs at maximal mixing and $\Delta(m^2) = (1 \sim 20) \times 10^{-3} \text{ eV}^2$.
- ¹⁶⁰ FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muon is $(1.74 \pm 0.07 \pm 0.02) \times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. The zenith-angle dependence of the flux does not agree with no-oscillation predictions. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99C obtained the best fit at sin²2 θ =0.95 and $\Delta(m^2)$ =5.9 × 10⁻³ eV². FUKUDA 99C also reports 68% and 99% confidence-level allowed regions for the same hypothesis.
- ¹⁶¹ FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is $(0.39 \pm 0.04 \pm 0.02) \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. This is compared to the expected flux of $(0.73 \pm 0.16 \text{ (theoretical error)}) \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. The flux of upward through-going muons is taken from FUKUDA 99C. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99D obtained the best fit in the physical region at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.9 \times 10^{-3} \text{ eV}^2$. FUKUDA 99D further reports the result of the oscillation analysis using the zenith-angle dependence of upward-stopping/through-going flux ratio. The best fit in the physical region is obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.1 \times 10^{-3} \text{ eV}^2$.
- ¹⁶² AMBROSIO 98 result is only 17% probable at maximum because of relatively low flux for $\cos\theta < -0.8$.
- ¹⁶³ FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric-neutrino data which include the 25.5 kton yr data used by FUKUDA 98 (sub-GeV) and FUKUDA 98E (multi-GeV). Inside the physical region, the best fit was obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 2.2 \times 10^{-3} \text{ eV}^2$. In addition, FUKUDA 98C gave the 99% confidence interval, $\sin^2 2\theta > 0.73$ and $3 \times 10^{-4} < \Delta(m^2) < 8.5 \times 10^{-3} \text{ eV}^2$. FUKUDA 98C also tested the $\nu_{\mu} \rightarrow \nu_e$ hypothesis, and concluded that it is not favored.

- 164 HATAKEYAMA 98 obtained this result from a total of 2456 live days of upwardgoing muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muon is $(1.94 \pm 0.10^{+0.07}_{-0.06}) \times 10^{-13}$ cm⁻²s⁻¹sr⁻¹. This is compared to the expected flux of (2.46 \pm 0.54 (theoretical error)) \times 10⁻¹³ cm⁻² s⁻¹ sr⁻¹. For the ν_{μ} \rightarrow ν_{τ} hypothesis, the best fit inside the physical region was obtained at $\sin^2\!2\theta{=}1.0$ and $\Delta(m^2) = 3.2 \times 10^{-3} \text{ eV}^2$.
- ¹⁶⁵ HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande's contained events (FUKUDA 94) and upward-going muon events. The best fit was obtained at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 1.3 \times 10^{-2} \text{ eV}^2$.
- 166 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy > 0.95 GeV.
- 167 FUKUDA 94 obtained this result by a combined analysis of sub-and multi-GeV atmospheric neutrino events in Kamiokande.
- 168 BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antineutrino oscillations.

$\Delta(m^2) \text{ for } \sin^2(2\theta) = 1 \ (\nu_{\mu} \rightarrow \nu_{s})$ $\nu_{s} \text{ means } \nu_{\tau} \text{ or any sterile (noninteracting) } \nu.$

<u>VALUE (10⁻⁵ eV²)</u>	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for averages	, fits	, limits,	etc. ● ● ●
<3000 (or <550)	90 16	⁹ OYAMA	89	KAMI	Water Cherenkov
< 4.2 or > 54.	90	BIONTA	88	IMB	Flux has $ u_{\mu}$, $\overline{ u}_{\mu}$, $ u_{e}$,
					and $\overline{\nu}_e$

¹⁶⁹OYAMA 89 gives a range of limits, depending on assumptions in their analysis. They argue that the region $\Delta(m^2) = (100-1000) \times 10^{-5} \text{ eV}^2$ is not ruled out by any data for large mixing.

Search for $\nu_{\mu} \rightarrow \nu_{s}$

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	wing data for average	s, fits	, limits,	etc. ● ● ●
	¹⁷⁰ AMBROSIO	01	MCRO	matter effects
	¹⁷¹ FUKUDA	00	SKAM	neutral currents + mat-
				ter effects
	2 (l			

- AMBROSIO 01 tested the pure 2-flavor $\nu_{\mu} \rightarrow ~\nu_{s}$ hypothesis using matter effects which change the shape of the zenith-angle distribution of upward through-going muons. With maximum mixing and $\Delta(m^2)$ around 0.0024 eV², the $\nu_{\mu} \rightarrow \nu_s$ oscillation is disfavored with 99% confidence level with respect to the $u_{\mu}
 ightarrow \dot{
 u_{\tau}}$ hypothesis.
- $^{171}\,{\rm FUKUDA}$ 00 tested the pure 2-flavor ν_{μ} $\rightarrow~$ ν_{s} hypothesis using three complementary atmospheric-neutrino data samples. With this hypothesis, zenith-angle distributions are expected to show characteristic behavior due to neutral currents and matter effects. In the $\Delta(m^2)$ and sin $^22 heta$ region preferred by the Super-Kamiokande data, the u_{μ} ightarrow $\nu_{\it s}$ hypothesis is rejected at the 99% confidence level, while the $\nu_{\mu} \rightarrow ~\nu_{\tau}$ hypothesis consistently fits all of the data sample.

(D) Solar ν Experiments

A REVIEW GOES HERE – Check our WWW List of Reviews

ν_e Capture Rates from Radiochemical Experiments

1 SNU (Solar Neutrino Unit) = 10^{-36} captures per atom per second.

VALUE (SNU)	DOCUMENT ID		TECN	COMMENT
70.8 $+$ 5.3 $+$ 3.7 - 5.2 $-$ 3.2	¹⁷² ABDURASHI	02	SAGE	$^{71}\text{Ga} \rightarrow ~^{71}\text{Ge}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	¹⁷³ ALTMANN	00	GNO	$^{71}\text{Ga} \rightarrow ~^{71}\text{Ge}$
74.1 $+ 6.7 - 6.8$	¹⁷⁴ ALTMANN	00	GNO	GNO + GALX combined
77.5 \pm 6.2 $^{+4.3}_{-4.7}$	¹⁷⁵ HAMPEL	99	GALX	$^{71}\text{Ga} \rightarrow ~^{71}\text{Ge}$
$2.56 \pm 0.16 \pm 0.16$	¹⁷⁶ CLEVELAND	98	HOME	$37_{CI} \rightarrow 37_{Ar}$

 172 ABDURASHITOV 02 report a combined analysis of 92 runs of the SAGE solar-neutrino experiment during the period January 1990 through December 2001, and updates the ABDURASHITOV 99B result. A total of 406.4 ⁷¹Ge events were observed. No evidence was found for temporal variations of the neutrino capture rate over the entire observation period.

- 173 ALTMANN 00 report the first result from the GNO solar-neutrino experiment (GNO I), which is the successor project of GALLEX. Experimental technique of GNO is essentially the same as that of GALLEX. The run data cover the period 20 May 1998 through 12 January 2000.
- ¹⁷⁴ Combined result of GALLEX I+II+III+IV (HAMPEL 99) and GNO I. The indicated errors include systematic errors.
- 175 HAMPEL 99 report the combined result for GALLEX I+II+III+IV (65 runs in total), which update the HAMPEL 96 result. The GALLEX IV result (12 runs) is 118.4 \pm 17.8 ± 6.6 SNU. (HAMPEL 99 discuss the consistency of partial results with the mean.) The GALLEX experimental program has been completed with these runs. The total run data cover the period 14 May 1991 through 23 January 1997. A total of 300 ⁷¹Ge events were observed.
- ¹⁷⁶ CLEVELAND 98 is a detailed report of the ³⁷Cl experiment at the Homestake Mine. The average solar neutrino-induced ³⁷Ar production rate from 108 runs between 1970 and 1994 updates the DAVIS 89 result.

ϕ_{FS} (⁸B)

 8 B solar-neutrino flux measured via u e elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to $\nu_{\mu},~\nu_{\tau}$ due to the crosssection difference, $\sigma(\nu_{\mu,\tau}e) \sim 0.16\sigma(\nu_e e)$. If the ⁸B solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of ν_e .

$VALUE (10^{6} \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		ECN	COMMENT	_
\bullet \bullet \bullet We do not use the followi	ng data for averages,	fits, li	imits, e	etc. • • •	
$2.21^{+0.31}_{-0.26}{\pm}0.10$	¹⁷⁷ AHMED	04a SI	NO	Salty D ₂ O; ⁸ B shape not constrained	

HTTP://PDG.LBL.GOV Page 22

$2.13^{+0.29}_{-0.28}{}^{+0.15}_{-0.08}$	¹⁷⁷ AHMED	04A	SNO	Salty D ₂ O; ⁸ B shape constrained
$2.39^{+0.24}_{-0.23}{\pm}0.12$	¹⁷⁸ AHMAD	02	SNO	average flux
$2.35 \!\pm\! 0.03 \! \substack{+0.07 \\ -0.06}$	¹⁷⁹ FUKUDA	02	SKAM	average flux
$2.39 \!\pm\! 0.34 \! \substack{+0.16 \\ -0.14}$	¹⁸⁰ AHMAD	01	SNO	average flux
$2.80\!\pm\!0.19\!\pm\!0.33$	¹⁸¹ FUKUDA	96	KAMI	average flux
2.70 ± 0.27	¹⁸¹ FUKUDA	96	KAMI	day flux
$2.87 \substack{+0.27 \\ -0.26}$	¹⁸¹ FUKUDA	96	KAMI	night flux

- ¹⁷⁷ AHMED 04A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and October 10, 2002, corresponding to 254.2 live days. The CC, ES, and NC events were statistically separated. In one method, the spectral distributions of the ES and CC events were not constrained to the ⁸B shape. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results.
- ¹⁷⁸ AHMAD 02 reports the ⁸B solar-neutrino flux measured via νe elastic scattering above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results.
- ¹⁷⁹ FUKUDA 02 results are for 1496 live days with Super-Kamiokande between May 31, 1996 and July 15, 2001, and replace FUKUDA 01 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV).
- 180 AHMAD 01 reports the 8 B solar-neutrino flux measured via $\nu\,e$ elastic scattering above the kinetic energy threshold of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001.
- ¹⁸¹ FUKUDA 96 results are for a total of 2079 live days with Kamiokande II and III from January 1987 through February 1995, covering the entire solar cycle 22, with threshold $E_e > 9.3$ MeV (first 449 days), > 7.5 MeV (middle 794 days), and > 7.0 MeV (last 836 days). These results update the HIRATA 90 result for the average ⁸B solar-neutrino flux and HIRATA 91 result for the day-night variation in the ⁸B solar-neutrino flux. The total data sample was also analyzed for short-term variations: within experimental errors, no strong correlation of the solar-neutrino flux with the sunspot numbers was found.

φ_{CC} (⁸B)

 ^{8}B solar-neutrino flux measured with charged-current reaction which is sensitive exclusively to $\nu_{e}.$

$VALUE (10^{6} \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use the follow	ing data for averages	, fits,	limits,	etc. • • •
$1.59^{+0.08}_{-0.07}{}^{+0.06}_{-0.08}$	¹⁸² AHMED	04A	SNO	Salty D ₂ O; ⁸ B shape not constrained
$1.70\!\pm\!0.07^{+0.09}_{-0.10}$	¹⁸² AHMED	04A	SNO	Salty D ₂ O; ⁸ B shape constrained
$1.76^{+0.06}_{-0.05}{\pm}0.09$	¹⁸³ AHMAD	02	SNO	average flux
$1.75\pm0.07^{+0.12}_{-0.11}\pm0.05$	¹⁸⁴ AHMAD	01	SNO	average flux

HTTP://PDG.LBL.GOV

- ¹⁸² AHMED 04A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and October 10, 2002, corresponding to 254.2 live days. The CC, ES, and NC events were statistically separated. In one method, the spectral distributions of the ES and CC events were not constrained to the ⁸B shape. In the other method, the constraint of an undistorted ${}^{8}B$ energy spectrum was added for comparison with AHMAD 02 results.
- 183 AHMAD 02 reports the SNO result of the 8 B solar-neutrino flux measured with chargedcurrent reaction on deuterium, $\nu_e d \rightarrow ppe^-$, above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results.
- 184 AHMAD 01 reports the first SNO result of the 8 B solar-neutrino flux measured with the charged-current reaction on deuterium, $\nu_e d \rightarrow ppe^-$, above the kinetic energy threshold of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001.

 ϕ_{NC} (⁸B) ⁸B solar neutrino flux measured with neutral-current reaction, which is equally sensitive to ν_{ρ} , ν_{μ} , and ν_{τ} .

VALUE $(10^{6} \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	wing data for averages	s, fits,	, limits,	etc. ● ● ●
$5.21 \pm 0.27 \pm 0.38$	¹⁸⁵ AHMED	04A	SNO	Salty D ₂ O; ⁸ B shape not constrained
$4.90 \!\pm\! 0.24 \!+\! 0.29 \\ - 0.27$	¹⁸⁵ AHMED	04A	SNO	Salty D ₂ O; ⁸ B shape constrained
$5.09 \substack{+0.44 + 0.46 \\ -0.43 - 0.43}$	¹⁸⁶ AHMAD	02	SNO	average flux; ⁸ B shape constrained
$6.42{\pm}1.57{+}0.55{-}0.58$	¹⁸⁶ AHMAD	02	SNO	average flux; ⁸ B shape not constrained

 185 AHMED 04A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and October 10, 2002, corresponding to 254.2 live days. The CC, ES, and NC events were statistically separated. In one method, the spectral distributions of the ES and CC events were not constrained to the ⁸B shape. In the other method, the constraint of an undistorted $^{8}\mathrm{B}$ energy spectrum was added for comparison with AHMAD 02 results.

 $^{186}\mathrm{AHMAD}$ 02 reports the first SNO result of the $^8\mathrm{B}$ solar-neutrino flux measured with the neutral-current reaction on deuterium, $\nu_\ell d \rightarrow n p \nu_\ell$, above the neutral-current reaction threshold of 2.2 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001.

$\phi_{ u_{\mu}+ u_{ au}}$ (⁸B)

Nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the ⁸B solar-neutrino flux.

$VALUE (10^{6} \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT
$3.41 \!\pm\! 0.45 \!+\! 0.48 \\ - 0.45$	¹⁸⁷ AHMAD	02	SNO	Derived from SNO ϕ_{CC} , ϕ_{ES} , and ϕ_{NC}
\bullet \bullet \bullet We do not use the follow	ving data for average	s, fits	, limits,	etc. • • •
3.69±1.13	¹⁸⁸ AHMAD	01		Derived from SNO+SuperKam, water Cherenkov

 187 AHMAD 02 deduced the nonelectron-flavor active neutrino component (ν_{μ} and $\nu_{\tau})$ in the

 8 B solar-neutrino flux, by combining the charged-current result, the νe elastic-scattering result and the neutral-current result.

 188 AHMAD 01 deduced the nonelectron-flavor active neutrino component (ν_{μ} and $\nu_{\tau})$ in

the ${}^{8}B$ solar-neutrino flux, by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande νe elastic-scattering result (FUKUDA 01).

Total Flux of Active ⁸B Solar Neutrinos

Total flux of active neutrinos ($\nu_{e},\,\nu_{\mu}$, and ν_{τ}).

$VALUE (10^{6} \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID	TECN	COMMENT
\bullet \bullet \bullet We do not use	the following data fo	or averages,	fits, limits, etc. • • •
$5.21 \!\pm\! 0.27 \!\pm\! 0.38$	AHMED	04A SNO	From $\Phi_{NC}^{}$ ⁸ B shape not constrained
$4.90 \!\pm\! 0.24 \!+\! 0.29 \!-\! 0.27$	AHMED	04A SNO	From $\Phi_{NC}^{}$ ⁸ B shape constrained
$5.09 \substack{+0.44 + 0.46 \\ -0.43 - 0.43}$	¹⁸⁹ AHMAD	02 SNO	Direct measurement from $\phi_{\it NC}$
5.44 ± 0.99	¹⁹⁰ AHMAD	01	Derived from SNO+SuperKam, water Cherenkov

¹⁸⁹AHMAD 02 determined the total flux of active ⁸B solar neutrinos by directly measuring the neutral-current reaction, $\nu_\ell d \rightarrow n \rho \nu_\ell$, which is equally sensitive to ν_e , ν_μ , and ν_τ .

 190 AHMAD 01 deduced the total flux of active 8 B solar neutrinos by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande νe elastic-scattering result (FUKUDA 01).

Day-Night Asymmetry (⁸B)

 $A = (\phi_{night} - \phi_{dav}) / \phi_{average}$

VALUE	DOCUMENT ID		TECN	COMMENT
$0.14\ \pm 0.063 {+0.015\atop -0.014}$	¹⁹¹ AHMAD	02 B	SNO	Derived from SNO ϕ_{CC}
$0.021 \!\pm\! 0.020 \!+\! 0.013 \\ -\! 0.012$	¹⁹² FUKUDA	02	SKAM	Based on ϕ_{ES}
\bullet \bullet \bullet We do not use the followi	ng data for averages	, fits	, limits,	etc. ● ● ●
$0.018 \!\pm\! 0.016 \!+\! 0.013 \!-\! 0.012$	¹⁹³ SMY	04	SKAM	Fitted result in the LMA region
$0.07 \ \pm 0.049 {+0.013 \atop -0.012}$	¹⁹⁴ AHMAD	02 B	SNO	Constraint of no ϕ_{NC} asymmetry

 191 AHMAD 02B results are based on the charged-current interactions recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively.

 192 FUKUDA 02 results are for 1496 live days with Super-Kamiokande between May 31, 1996 and July 15, 2001, and replace FUKUDA 01 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV).

 $^{193}\,{
m SMY}$ 04 obtained this result for the best-fit LMA oscillation parameters determined by fitting the time variation of the solar neutrino flux measured via ν_e elastic scattering to the variations expected from neutrino oscillations. The directly measured result is given by FUKUDA 02.

¹⁹⁴AHMAD 02B results are derived from the charged-current interactions, neutral-current interactions, and νe elastic scattering, with the total flux of active neutrinos constrained

HTTP://PDG.LBL.GOV Page 25

to have no asymmetry. The data were recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively.

ϕ_{ES} (hep)

hep solar-neutrino flux measured via νe elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , ν_{τ} due to the crosssection difference, $\sigma(\nu_{\mu,\tau} e) \sim 0.16\sigma(\nu_e e)$. If the hep solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of ν_e .

<u>VALUE ($10^3 \text{ cm}^{-2}\text{s}^{-1}$)</u>	CL%	DOCUMENT ID		TECN
<40	90	¹⁹⁵ FUKUDA	01	SKAM

 195 FUKUDA 01 result is obtained from the recoil electron energy window of 18–21 MeV, and the obtained 90% confidence level upper limit is 4.3 times the BP2000 Standard-Solar-Model prediction.

$\phi_{\overline{\nu}_e}$ (⁸B)

Searches are made for electron antineutrino flux from the Sun. Flux limits listed here are derived relative to the BP2000 Standard Solar Model $^8{\rm B}$ solar neutrino flux, with an assumption that solar $\overline{\nu}_e{\rm s}$ follow an unoscillated $^8{\rm B}$ neutrino spectrum.

VALUE (%)	CL%	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the	following d	ata for averages	, fits,	limits,	etc. • • •
<0.81	90	AHARMIM	04	SNO	$4.0 < E_{\overline{\mathcal{V}}_{o}} < 14.8 \; MeV$
<0.028	90	EGUCHI	04	KLND	$8.3 < E_{\overline{\nu}_{o}} < 14.8 \text{ MeV}$
<0.8	90	GANDO	03	SKAM	$8.0 < E_{\overline{ u}_e}^{c} < 20.0 \; MeV$

REFERENCES FOR Neutrino Mixing

AHARMIM	04	PR D70 093014	B. Aharmim <i>et al.</i>	(SNO	Collab.)
AHMED	04A	PRL 92 181301	S.N. Ahmed et al.	(SNO	Collab.)
AHN	04	PRL 93 051801	M.H. Ahn <i>et al.</i>		(K2K)
AMBROSIO	04	EPJ C36 323	M. Ambrosio <i>et al.</i>	(MACRO	Collab.)
ASHIE	04	PRL 93 101801	Y. Ashie <i>et al.</i>	(Super-Kamiokande	Collab.)
BATUSOV	04	PPNL 1 192	Yu. A. Batusov <i>et al.</i>		(CNTR)
EGUCHI	04	PRL 92 071301	K. Eguchi <i>et al.</i>	(KamLAND	Collab.)
SMY	04	PR D69 011104R	M.B. Smy et al.	(Super-Kamiokande	Collab.)
AHN	03	PRL 90 041801	M.H. Ahn et al.	(K2K	Collab.)
AMBROSIO	03	PL B566 35	M. Ambrosio <i>et al.</i>	(MACRO	Collab.)
APOLLONIO	03	EPJ C27 331	M. Apollonio <i>et al.</i>	(CHOOZ	Collab.)
ASTIER	03	PL B570 19	P. Astier et al.	(NOMAD	Collab.)
EGUCHI	03	PRL 90 021802	K. Eguchi <i>et al.</i>	(KamLAND	Collab.)
GANDO	03	PRL 90 171302	Y. Gando <i>et al.</i>	(Super-Kamiokande	Collab.)
SANCHEZ	03	PR D68 113004	M. Sanchez et al.	(Soudan 2	Collab.)
ABDURASHI	02	JETP 95 181	J.N. Abdurashitov <i>et al.</i>	(SAGE	Collab.)
		Translated from ZETF 12	2 211.		,
AHMAD	02	PRL 89 011301	Q.R. Ahmad <i>et al.</i>	(SNO	Collab.)
AHMAD	02B	PRL 89 011302	Q.R. Ahmad <i>et al.</i>	(SNO	Collab.)
ARMBRUSTER	02	PR D65 112001	B. Armbruster <i>et al.</i>	(KARMEN 2	Collab.)
AVVAKUNOV	02	PRL 89 011804	S. Avvakumov <i>et al.</i>	(NuTeV	Collab.)
FUKUDA	02	PL B539 179	S. Fukuda <i>et al.</i>	(Super-Kamiokande	Collab.)
AGUILAR	01	PR D64 112007	A. Aguilar <i>et al.</i>	(LSND	Collab.)
AHMAD	01	PRL 87 071301	Q.R. Ahmad et al.	(SNO	Collab.)
AMBROSIO	01	PL B517 59	M. Ambrosio <i>et al.</i>	(MACRO	Collab.)
ASTIER	01B	NP B611 3	P. Astier <i>et al.</i>	(NOMAD	Collab.)
BOEHM	01	PR D64 112001	F. Boehm <i>et al.</i>		
ESKUT	01	PL B497 8	E. Eskut <i>et al.</i>	(CHORUS	Collab.)
FUKUDA	01	PRL 86 5651	S. Fukuda <i>et al.</i>	(Super-Kamiokande	Collab.)
ALTMANN	00	PL B490 16	M. Altmann <i>et al.</i>	(GNO	Collab.)

HTTP://PDG.LBL.GOV Page 26

Created: 6/24/2005 17:12

BOEHM	00 00	PL B478 5 PRL 84 3764 PR D62 072002	M. Ambrosio <i>et al.</i> F. Boehm <i>et al.</i> E. Boehm <i>et al.</i>	(MACRO Collab.)
FUKUDA ABDURASHI ALLISON	00C 00 99B 99	PRL 85 3999 PR C60 055801 PL B449 137	S. Fukuda <i>et al.</i> J.N. Abdurashitov <i>et al.</i> W.W.M. Allison <i>et al.</i>	(Super-Kamiokande Collab.) (SAGE Collab.) (Soudan 2 Collab.)
APOLLONIO	99	PL B466 415	M. Apollonio <i>et al.</i>	(CHOOZ Collab.)
Also	00	PL B472 434 erratum	M. Apollonio <i>et al.</i>	(CHOOZ Collab.)
FUKUDA	99C	PRL 82 2644	Y. Fukuda <i>et al.</i>	(Super-Kamiokande Collab.)
	99D	PL B407 185 PL B447 127	Y. Fukuda <i>et al.</i>	(Super-Kamiokande Collab.)
	99 99	NIM A434 435	T lunk	(GALLEX COND.)
NAPLES	99	PR D59 031101	D. Naples <i>et al.</i>	(CCFR Collab.)
ALTEGOER	98B	PL B431 219	S. Altegoer <i>et al.</i>	(NÒMAD Collab.)
AMBROSIO	98	PL B434 451	M. Ambrosio <i>et al.</i>	(MACRO Collab.)
APOLLONIO	98	PL B420 397	M. Apollonio <i>et al.</i>	(CHOOZ Collab.)
ARMBRUSTER	98 08	PR C57 3414 DRI 91 1774	B. Armbruster <i>et al.</i>	(KARMEN Collab.)
ATHANASSO	90 98B	PR C58 2489	C Athanassopoulos <i>et al</i>	(LSND Collab.)
CLEVELAND	98	APJ 496 505	B.T. Cleveland <i>et al.</i>	(Homestake Collab.)
ESKUT	98	PL B424 202	E. Eskut <i>et al.</i>	(CHORUS Collab.)
ESKUT	98B	PL B434 205	E. Eskut <i>et al.</i>	(CHORUS Collab.)
FELDMAN	98	PR D57 3873	G.J. Feldman, R.D. Cousins	
	98 08C	PL B433 9	Y. Fukuda <i>et al.</i>	(Super-Kamiokande Collab.)
	98C 98F	PRL 81 1502 PL R436 33	Y. Fukuda <i>et al.</i> Y. Fukuda <i>et al</i>	(Super-Kamiokande Collab.)
HAMPEL	98	PL B420 114	W. Hampel <i>et al.</i>	(GALLEX Collab.)
HATAKEYAMA	98	PRL 81 2016	S. Hatakeyama <i>et al.</i>	(Kamiokande Collab.)
OYAMA	98	PR D57 R6594	Y. Oyama	,
CLARK	97	PRL 79 345	R. Clark <i>et al.</i>	(IMB Collab.)
ROMOSAN	97	PRL 78 2912	A. Romosan <i>et al.</i>	(CCFR Collab.)
ATHANASSO	96 06 D	PR C54 2685	C. Athanassopoulos <i>et al.</i>	(LSND Collab.)
	90B	PRL 77 3082 PRL 77 1683	C. Athanassopoulos <i>et al.</i>	(LSIND Collab.)
FUKUDA	96B	PI B388 397	Y Fukuda <i>et al</i>	(Kamiokande Collab.)
GREENWOOD	96	PR D53 6054	Z.D. Greenwood <i>et al.</i>	(UCI, SVR, SCUC)
HAMPEL	96	PL B388 384	W. Hampel <i>et al.</i>	(GALLEX Collab.)
LOVERRE	96	PL B370 156	P.F. Loverre	
ACHKAR	95	NP B434 503	B. Achkar <i>et al.</i> (SINC	G, SACLD, CPPM, CDEF+)
AHLEN	95 05	PL B357 481	S.P. Ahlen <i>et al.</i>	(MACRO Collab.)
		FRL 75 2050	C. Athanassopoulos et al.	(LSND Collab.)
RAHCALL	95 05	PL B348 121	IN Bahcall PI Krastev F	Lisi (IAS)
BAHCALL	95 95 95	PL B348 121 ZPHY C66 417	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i>	Lisi (IAS) (FREJUS Collab.)
BAHCALL DAUM HILL	95 95 95 95	PL B348 121 ZPHY C66 417 PRL 75 2654	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i> J.E. Hill	Lisi (IAS) (FREJUS Collab.) (PENN)
BAHCALL DAUM HILL MCFARLAND	95 95 95 95 95	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i> J.E. Hill K.S. McFarland <i>et al.</i>	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.)
BAHCALL DAUM HILL MCFARLAND VYRODOV	95 95 95 95 95 95	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i> J.E. Hill K.S. McFarland <i>et al.</i> V.N. Vyrodov <i>et al.</i>	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF)
BAHCALL DAUM HILL MCFARLAND VYRODOV	95 95 95 95 95 95 95	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i> J.E. Hill K.S. McFarland <i>et al.</i> V.N. Vyrodov <i>et al.</i> 61 161. Y Declais <i>et al</i>	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA	95 95 95 95 95 95 95 94 94	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i> J.E. Hill K.S. McFarland <i>et al.</i> V.N. Vyrodov <i>et al.</i> 61 161. Y. Declais <i>et al.</i> Y. Fukuda <i>et al.</i>	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV	95 95 95 95 95 95 94 94 94	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i> J.E. Hill K.S. McFarland <i>et al.</i> V.N. Vyrodov <i>et al.</i> 61 161. Y. Declais <i>et al.</i> Y. Fukuda <i>et al.</i> A.Y. Smirnov, D.N. Spergel, J	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) .N. Bahcall (IAS+)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN	95 95 95 95 95 95 94 94 94 94	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i> J.E. Hill K.S. McFarland <i>et al.</i> V.N. Vyrodov <i>et al.</i> 61 161. Y. Declais <i>et al.</i> Y. Fukuda <i>et al.</i> A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin <i>et al.</i>	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) .N. Bahcall (IAS+) (KIAE)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN	95 95 95 95 95 95 95 94 94 94 94	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 520	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i> J.E. Hill K.S. McFarland <i>et al.</i> V.N. Vyrodov <i>et al.</i> 61 161. Y. Declais <i>et al.</i> Y. Fukuda <i>et al.</i> A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin <i>et al.</i> 59 364. P. Viliain <i>et al.</i>	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) .N. Bahcall (IAS+) (KIAE)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN EREEDMAN	95 95 95 95 95 95 95 94 94 94 94 94 94 94	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i> J.E. Hill K.S. McFarland <i>et al.</i> V.N. Vyrodov <i>et al.</i> 61 161. Y. Declais <i>et al.</i> Y. Fukuda <i>et al.</i> A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin <i>et al.</i> 59 364. P. Vilain <i>et al.</i> S. L. Freedman <i>et al.</i>	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) .N. Bahcall (IAS+) (KIAE) (CHARM II Collab.) (LAMPE E645 Collab.)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE	95 95 95 95 95 95 95 94 94 94 94 94 94 94 94 94 93 93	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i> J.E. Hill K.S. McFarland <i>et al.</i> V.N. Vyrodov <i>et al.</i> 61 161. Y. Declais <i>et al.</i> Y. Fukuda <i>et al.</i> A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin <i>et al.</i> 59 364. P. Vilain <i>et al.</i> S.J. Freedman <i>et al.</i> M. Gruwe <i>et al.</i>	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) .N. Bahcall (IAS+) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ	95 95 95 95 95 95 95 94 94 94 94 94 94 94 93 93 92	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010	J.N. Bahcall, P.I. Krastev, E. K. Daum <i>et al.</i> J.E. Hill K.S. McFarland <i>et al.</i> V.N. Vyrodov <i>et al.</i> 61 161. Y. Declais <i>et al.</i> Y. Fukuda <i>et al.</i> A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin <i>et al.</i> 59 364. P. Vilain <i>et al.</i> S.J. Freedman <i>et al.</i> M. Gruwe <i>et al.</i> R.A. Becker-Szendy <i>et al.</i>	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) .N. Bahcall (IAS+) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BECKER-SZ	95 95 95 95 95 95 94 94 94 94 94 94 94 94 93 93 92 92B	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. Y. Fukuda et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al.	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) .N. Bahcall (IAS+) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BECKER-SZ BEIER	95 95 95 95 95 95 94 94 94 94 94 94 94 94 93 93 92 92 892 92 92	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720 PL B283 446	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. Y. Fukuda et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. E.W. Beier et al.	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) (N. Bahcall (IAS+) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.) (KAM2 Collab.)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BEIER Also DODDOV	95 95 95 95 95 95 94 94 94 94 94 94 94 93 92 92 92 92 92 92 92	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720 PL B283 446 PTRSL A346 63	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. Y. Fukuda et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. E.W. Beier et al. E.W. Beier, E.D. Frank	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) .N. Bahcall (IAS+) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.) (KAM2 Collab.) (PENN)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BEIER Also BORODOV HIPATA	95 95 95 95 95 95 95 94 94 94 94 94 94 93 92 92 92 92 92 92 92 92 92 92 92 92 92	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720 PL B283 446 PTRSL A346 63 PRL 68 274 PL B280 146	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. Y. Fukuda et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. E.W. Beier et al. E.W. Beier et al. E.W. Beier, E.D. Frank L. Borodovsky et al.	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) .N. Bahcall (IAS+) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.) (KAM2 Collab.) (PENN) (COLU, JHU, ILL) (Kamiokanda U, Collab.)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BEIER Also BORODOV HIRATA KETOV	95 95 95 95 95 94 94 94 94 94 94 94 93 92 92 92 92 92 92 92 92 92 92 92 92 92	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720 PL B283 446 PTRSL A346 63 PRL 68 274 PL B280 146 JETPL 55 564	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. Y. Fukuda et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. E.W. Beier et al. E.W. Beier et al. E.W. Beier, E.D. Frank L. Borodovsky et al. K.S. Hirata et al. S.N. Ketov, et al.	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) (KIAE, LAPP, CDEF) (KIAE) (CHARM II Collab.) (CHARM II Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.) (KAM2 Collab.) (PENN) (COLU, JHU, ILL) (Kamiokande II Collab.) (KIAE)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BEIER Also BORODOV HIRATA KETOV	95 95 95 95 95 94 94 94 94 94 94 94 94 92 92 92 92 92 92 92 92 92	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720 PL B283 446 PTRSL A346 63 PRL 68 274 PL B280 146 JETPL 55 564 Translated from ZETFP	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. Y. Fukuda et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. E.W. Beier et al. E.W. Beier et al. E.W. Beier, E.D. Frank L. Borodovsky et al. K.S. Hirata et al. S.N. Ketov et al. 55 544.	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (KIAE, LAPP, CDEF) (KIAE, LAPP, CDEF) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.) (KAM2 Collab.) (PENN) (COLU, JHU, ILL) (Kamiokande II Collab.) (KIAE)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BEIER Also BORODOV HIRATA KETOV CASPER	95 95 95 95 95 94 94 94 94 94 94 94 94 94 94 92 92 92 92 92 92 92 92 92 92	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720 PL B283 446 PTRSL A346 63 PRL 68 274 PL B280 146 JETPL 55 564 Translated from ZETFP PRL 66 2561	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. E.W. Beier et al. E.W. Beier, E.D. Frank L. Borodovsky et al. K.S. Hirata et al. S.N. Ketov et al. 55 544. D. Casper et al.	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) (KIAE, LAPP, CDEF) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.) (KAM2 Collab.) (COLU, JHU, ILL) (Kamiokande II Collab.) (KIAE) (IMB Collab.)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BEIER Also BORODOV HIRATA KETOV CASPER HIRATA	95 95 95 95 95 94 94 94 94 94 94 94 94 94 94 92 92 92 92 92 92 92 92 92	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720 PL B283 446 PTRSL A346 63 PRL 68 274 PL B280 146 JETPL 55 564 Translated from ZETFP PRL 66 2561 PRL 66 9 JETPL 54 272	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. Y. Fukuda et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. E.W. Beier et al. E.W. Beier, E.D. Frank L. Borodovsky et al. K.S. Hirata et al. S.N. Ketov et al. 55 544. D. Casper et al. K.S. Hirata et al.	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (KIAE, LAPP, CDEF) (KIAE, LAPP, CDEF) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.) (COLU, JHU, ILL) (KAM2 Collab.) (COLU, JHU, ILL) (Kamiokande II Collab.) (KIAE)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BEIER Also BORODOV HIRATA KETOV CASPER HIRATA KUVSHINN BATUSOV	95 95 95 95 95 94 94 94 94 94 94 94 94 94 94 92 92 92 92 92 92 91 91 91 90 90 90 90 91	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720 PL B283 446 PTRSL A346 63 PRL 68 274 PL B280 146 JETPL 55 564 Translated from ZETFP PRL 66 2561 PRL 66 9 JETPL 54 253 ZPHY C48 200	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. Y. Fukuda et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. E.W. Beier et al. E.W. Beier, E.D. Frank L. Borodovsky et al. K.S. Hirata et al. S.N. Ketov et al. 55 544. D. Casper et al. K.S. Hirata et al. A.A. Kuvshinnikov et al.	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (Kamiokande Collab.) (KIAE, LAPP, CDEF) (KAMI (IAS+) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.) (COLU, JHU, ILL) (KAM2 Collab.) (KIAE) (IMB Collab.) (KIAE) (IMB Collab.) (KIAE) (IMB Collab.) (KIAE)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BEIER Also BORODOV HIRATA KETOV CASPER HIRATA KUVSHINN BATUSOV BERGER	95 95 95 95 95 94 94 94 94 94 94 94 94 94 94 93 92 92 92 92 92 92 91 91 90 8 90 8 90 8 90 90 90 90 90 90 90 90 95 95 95 95 95 95 95 95 95 95 95 95 95	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720 PL B283 446 PTRSL A346 63 PRL 68 274 PL B280 146 JETPL 55 564 Translated from ZETFP PRL 66 2561 PRL 66 9 JETPL 54 253 ZPHY C48 209 PL B245 305	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. Y. Fukuda et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. E.W. Beier et al. E.W. Beier, E.D. Frank L. Borodovsky et al. K.S. Hirata et al. S.N. Ketov et al. 55 544. D. Casper et al. K.S. Hirata et al. A.A. Kuvshinnikov et al. Y.A. Batusov et al. C. Bererer et al.	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (KIAE, LAPP, CDEF) (Kamiokande Collab.) (IAS+) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.) (COLU, JHU, ILL) (Kamiokande II Collab.) (KIAE) (IMB Collab.) (KIAE) (IMB Collab.) (KIAE) (IMB Collab.) (KIAE) (JINR, ITEP, SERP) (FRE IUS Collab.)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BEIER Also BORODOV HIRATA KETOV CASPER HIRATA KUVSHINN BATUSOV BERGER HIRATA	95 95 95 95 95 94 94 94 94 94 94 94 94 94 94 92 92 92 92 92 92 91 91 90 8 90 8 90	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720 PL B283 446 PTRSL A346 63 PRL 68 274 PL B280 146 JETPL 55 564 Translated from ZETFP PRL 66 2561 PRL 66 9 JETPL 54 253 ZPHY C48 209 PL B245 305 PRL 65 1297	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. Y. Fukuda et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. E.W. Beier et al. E.W. Beier, E.D. Frank L. Borodovsky et al. K.S. Hirata et al. S.N. Ketov et al. 55 544. D. Casper et al. K.S. Hirata et al. A.A. Kuvshinnikov et al. Y.A. Batusov et al. C. Berger et al. K.S. Hirata et al.	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (KIAE, LAPP, CDEF) (Kamiokande Collab.) (N. Bahcall (IAS+) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.) (KAM2 Collab.) (COLU, JHU, ILL) (Kamiokande II Collab.) (KIAE) (JINR, ITEP, SERP) (FREJUS Collab.) (Kamiokande II Collab.)
BAHCALL DAUM HILL MCFARLAND VYRODOV DECLAIS FUKUDA SMIRNOV VIDYAKIN VILAIN FREEDMAN GRUWE BECKER-SZ BEIER Also BORODOV HIRATA KETOV CASPER HIRATA KUVSHINN BATUSOV BERGER HIRATA VIDYAKIN	95 95 95 95 95 94 94 94 94 94 94 94 94 94 94 93 92 92 92 92 92 92 91 91 90 89 90 90 90 90	PL B348 121 ZPHY C66 417 PRL 75 2654 PRL 75 3993 JETPL 61 163 Translated from ZETFP PL B338 383 PL B335 237 PR D49 1389 JETPL 59 390 Translated from ZETFP ZPHY C64 539 PR D47 811 PL B309 463 PRL 69 1010 PR D46 3720 PL B283 446 PTRSL A346 63 PRL 69 1010 PR D46 3720 PL B283 446 PTRSL A346 63 PRL 68 274 PL B280 146 JETPL 55 564 Translated from ZETFP PRL 66 2561 PRL 66 9 JETPL 54 253 ZPHY C48 209 PL B245 305 PRL 65 1297 JETP 71 424	J.N. Bahcall, P.I. Krastev, E. K. Daum et al. J.E. Hill K.S. McFarland et al. V.N. Vyrodov et al. 61 161. Y. Declais et al. Y. Fukuda et al. A.Y. Smirnov, D.N. Spergel, J G.S. Vidyakin et al. 59 364. P. Vilain et al. S.J. Freedman et al. M. Gruwe et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. R.A. Becker-Szendy et al. E.W. Beier et al. E.W. Beier, E.D. Frank L. Borodovsky et al. K.S. Hirata et al. S.N. Ketov et al. 55 544. D. Casper et al. K.S. Hirata et al. A.A. Kuvshinnikov et al. Y.A. Batusov et al. C. Berger et al. K.S. Hirata et al. G.S. Vidyakin et al.	Lisi (IAS) (FREJUS Collab.) (PENN) (CCFR Collab.) (KIAE, LAPP, CDEF) (KIAE, LAPP, CDEF) (Kamiokande Collab.) (N. Bahcall (IAS+) (KIAE) (CHARM II Collab.) (LAMPF E645 Collab.) (CHARM II Collab.) (IMB Collab.) (IMB Collab.) (KAM2 Collab.) (COLU, JHU, ILL) (Kamiokande II Collab.) (KIAE) (JINR, ITEP, SERP) (FREJUS Collab.) (Kamiokande II Collab.) (Kamiokande II Collab.) (KIAE)

HTTP://PDG.LBL.GOV Page 27 Created: 6/24/2005 17:12

AGLIETTA BAHCALL Combridge	89 89 Univer	EPL 8 611 Neutrino Astroph	M. Aglietta <i>et al.</i> (FR sics J.N. Bahcall	EJUS Collab.) (IAS)
BLUMENFELD	89	PRL 62 2237	B.J. Blumenfeld <i>et al.</i> (COL	U. ILL. JHU)
DAVIS	89	ARNPS 39 467	R. Davis, A.K. Mann, L. Wolfenstein (E	SNL, PENN+)
OYAMA	89	PR D39 1481	Y. Oyama <i>et al.</i> (Kamiokar	ide II Collab.)
AFONIN	88	JETP 67 213	A.I. Áfonin <i>et al.</i>	(KIAE)
		Translated from	ETF 94 1, issue 2.	()
AMMOSOV	88	ZPHY C40 487	V.V. Ammosov <i>et al.</i> (S	SKAT Collab.)
BERGSMA	88	ZPHY C40 171	F. Bergsma <i>et al.</i> (CH	ARM Collab.)
BIONTA	88	PR D38 768	R.M. Bionta <i>et al.</i>	(IMB Collab.)
DURKIN	88	PRL 61 1811	L.S. Durkin <i>et al.</i> (OSU,	ANL, $CII+$
LOVERRE	88	PL B206 /11	P.F. Loverre	
AFONIN	87	JETPL 45 247 Translated from	A.I. Afonin <i>et al.</i>	(KIAE)
AHRENS	87	PR D36 702	I A Ahrens <i>et al</i> (BNI P	ROW UCI+)
BOFILL	87	PR D36 3309	J. Bofill <i>et al.</i> (MIT.	FNAL MSU)
LOSECCO	87	PL B184 305	J.M. LoSecco <i>et al.</i>	(IMB Collab.)
TALEBZADEH	87	NP B291 503	M. Talebzadeh <i>et al.</i> (BEBC \	NA66 Collab.)
VIDYAKIN	87	JETP 66 243	G.S. Vidyakin <i>et al.</i>	(KIAE)
		Translated from	ETF 93 424.	
ABRAMOWICZ	86	PRL 57 298	H. Abramowicz <i>et al.</i> (C	DHS Collab.)
AFONIN	86	JETPL 44 142	A.I. Afonin <i>et al.</i>	(KIAE)
	86	DI R177 446	$ \begin{array}{c} \text{EIFP 44 III.} \\ \text{IV Allaby at al} \end{array} $	ARM Collab)
	86	PL B170 307	C Angelini et al (PISA AT	HII PADO \pm)
RERNARDI	86B	PL B181 173	G Bernardi et al. (LIBIN IN	$IEN (DEE_)$
BRIICKER	86	PR D3/ 2183	E B Brucker et al. (RUTC	RNI COLLI
	86C	PRI 57 2807	N Ushida et al. (FNA)	E531 Collab
	86	PR D3/ 2621	G Zacek et al. (CIT-SIN-	TIM Collab.)
	85	IFTPI 11 135	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(KIAE)
ALONIN	05	Translated from	FTFP 41 355	
Also	85B	JETPL 42 285	A.I. Afonin <i>et al.</i>	(KIAE)
		Translated from	ETFP 42 230.	()
AHRENS	85	PR D31 2732	L.A. Ahrens <i>et al.</i> (BNL, BI	ROW, KEK+)
BELIKOV	85	SJNP 41 589	S.V. Belikov <i>et al.</i>	(SERP)
	OF	I ranslated from	AF 41 919. LE Staalidala at al. (DOCH CI	
	00 0E	ZPHY C27 55	I.E. Stockdale <i>et al.</i> (RUCH, CI	$\Pi(C, COLO+)$
	00	PL 104D 195	V. Začek <i>el al.</i> (NO	$\frac{NI}{PI} = \frac{NI}{FNAL}$
	04	PR DSU 2271	E Barrama at al	DL, FNAL+)
	04 07	PL 142D 103 DI 140D 207	F. Dergsma et al.	ARIVI COILAD.)
	04 04	FL 140D 307	E Dudale at al (CEDN DOPT HE	DU SACI +)
	04 Q/	PL 134D 201 DI 139B 440	F. Dyuak et al. (CLKN, DOKT, TL K. Gabathular at al. (CLK	SIN MUNI
STOCKDALE	04 Q/	DDI 52 1384	LE Stockdolo et al. (BOCH CI	-100000
	83	IFTPI 38 /36	$\Delta \perp \Delta for in et al$	$(K \Delta F)$
ALONIN	05	Translated from	ETFP 38 361.	
BELENKII	83	JETPL 38 493	S.N. Belenky et al.	(KIAE)
		Translated from	ETFP 38 406.	
BELIKOV	83	JETPL 38 661	S.V. Belikov <i>et al.</i>	(SERP)
	02	I ranslated from	EIFP 38 547.	
	03 07	PR D20 2705 DI 1120 07	G.N. Taylor <i>et al.</i> ($\Pi AVVA$, ΛM Cooper et al.	LDL, FINAL)
	02 02	FL 112D 97	A.M. Cooper et al.	
	02	FL 114D 290 DI 100D 100	J.L. Vulleutilet <i>et al.</i> (CIT	SIN, WONT)
	01	PL 100D 102	A E Acception at al (ITED EN	$\Delta I (I = C = D +)$
RAKER	01 Q1	PE 1056 501	N L Baker et al	(RNI COLL)
Also	78	PRL 47 1570	A M Chops et al.	(BNL, COLU)
BOLIEV	81	SINP 34 787	M M Boliev et al	(INRM)
DOLLEV	01	Translated from	AF 34 1418.	(((((((()))))))))))))))))))))))))))))))
DEDEN	81	PL 98B 310	H. Deden <i>et al.</i> (E	BEBC Collab.)
ERRIQUEZ	81	PL 102B 73	O. Erriquez <i>et al.</i> (BARI, BI	RM, BRUX+)
KWON	81	PR D24 1097	H. Kwon <i>et al.</i> (CIT,	ISNG, MUNI)
NEMETHY	81B	PR D23 262	P. Nemethy <i>et al.</i> (YALE,	LBL, LASL+Ĵ
SILVERMAN	81	PRL 46 467	D. Silverman, A. Soni	(UCI, UCLA)
USHIDA	81	PRL 47 1694	N. Ushida <i>et al.</i> (AICH, FNAL, KC	BE, SEOU+)
AVIGNONE	80	PR C22 594	F.T. Avignone, Z.D. Greenwood	(SCUC)
BOEHM	80	PL 97B 310	F. Boehm <i>et al.</i> (ILLG, CIT,	ISNG, MUNI)
FRITZE	80	PL 96B 427	P. Fritze (AACH3, BONN, CERN,	LOIC, OXF+)
REINES	80	PRL 45 1307	F. Reines, H.W. Sobel, E. Pasierb	(UCI)
Also	59	PR 113 273	F. Reines, C.L. Cowan	(LASL)
A 1		B B 4 5 5		/ _ ·
Also	66	PR 142 852	F.A. Nezrick, F. Reines	(CASE)

HTTP://PDG.LBL.GOV Page 28

Created: 6/24/2005 17:12

Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) and 2005 partial update for edition 2006 (URL: http://pdg.lbl.gov)

DAVIS	79	PR C19 2259	R. Davis <i>et al.</i>	(CIT)
BLIETSCHAU	78	NP B133 205	J. Blietschau <i>et al.</i>	(Gargamelle Collab.)
CROUCH	78	PR D18 2239	M.F. Crouch <i>et al.</i>	(CASE, UCI, WITW)
BELLOTTI	76	LNC 17 553	E. Bellotti <i>et al.</i>	(MILA)

HTTP://PDG.LBL.GOV Page 29