

J = 1

A REVIEW GOES HERE - Check our WWW List of Reviews

Z MASS

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson"). The fit is performed using the Z mass and width, the Z hadronic pole cross section, the ratios of hadronic to leptonic partial widths, and the Z pole forward-backward lepton asymmetries. This set is believed to be most free of correlations.

The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. The value is 34 MeV greater than the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator. Also the LEP experiments have generally assumed a fixed value of the $\gamma-Z$ interferences term based on the standard model. Keeping this term as free parameter leads to a somewhat larger error on the fitted Z mass. See ACCIARRI 00Q and ABBIENDI 04G for a detailed investigation of both these issues.

VALUE (GeV)	EVTS	DOCUMENT ID	TECN	COMMENT
91.1876±0.0021 OUR FIT	•			
$91.1852\!\pm\!0.0030$	4.57M	¹ ABBIENDI 0	01A OPAL	$E_{\mathrm{cm}}^{ee} = 88-94 \; \mathrm{GeV}$
$91.1863\!\pm\!0.0028$	4.08M	² ABREU 0	OOF DLPH	Eee = 88–94 GeV
$91.1898\!\pm\!0.0031$	3.96M	³ ACCIARRI 0	00C L3	Eee = 88–94 GeV
$91.1885 \!\pm\! 0.0031$	4.57M	⁴ BARATE 0	OOC ALEP	Eee = 88–94 GeV
• • • We do not use the f	ollowing d	ata for averages, fits,	limits, etc.	• • •
$91.1872\!\pm\!0.0033$		⁵ ABBIENDI 0	04G OPAL	$E_{\rm cm}^{\rm ee} = {\sf LEP1} +$
$91.272 \ \pm 0.032 \ \pm 0.033$		⁶ ACHARD 0	04C L3	130-209 GeV $E_{cm}^{ee} = 183-209$
$91.1875\!\pm\!0.0039$	3.97M	⁷ ACCIARRI 0	00Q L3	GeV $E_{ m cm}^{ee} = {\sf LEP1} +$
91.151 ±0.008		⁸ MIYABAYASHI 9	95 TOPZ	130–189 GeV <i>E^{ee}</i> _{cm} = 57.8 GeV
91.74 ± 0.28 ± 0.93	156	⁹ ALITTI 9	92B UA2	$E_{cm}^{p\overline{p}} = 630 \; GeV$
90.9 ± 0.3 ± 0.2	188	¹⁰ ABE 8	B9c CDF	$E_{cm}^{p\overline{p}} = 1.8 \; TeV$
91.14 ± 0.12	480	¹¹ ABRAMS 8	39в MRK2	E ^{ee} _{cm} = 89–93 GeV
$93.1 \pm 1.0 \pm 3.0$	24	¹² ALBAJAR 8	89 UA1	$E_{\rm cm}^{p\overline{p}}=546,630~{\rm GeV}$

¹ ABBIENDI 01A error includes approximately 2.3 MeV due to statistics and 1.8 MeV due to LEP energy uncertainty.

²The error includes 1.6 MeV due to LEP energy uncertainty.

³The error includes 1.8 MeV due to LEP energy uncertainty.

⁴BARATE 00C error includes approximately 2.4 MeV due to statistics, 0.2 MeV due to experimental systematics, and 1.7 MeV due to LEP energy uncertainty.

 $^{^5}$ ABBIENDI 04G obtain this result using the S-matrix formalism for a combined fit to their cross section and asymmetry data at the Z peak and their data at 130–209 GeV.

- The authors have corrected the measurement for the 34 MeV shift with respect to the Breit–Wigner fits.
- ⁶ ACHARD 04C select $e^+e^- \to Z\gamma$ events with hard initial–state radiation. Z decays to $q\overline{q}$ and muon pairs are considered. The fit results obtained in the two samples are found consistent to each other and combined considering the uncertainty due to ISR modelling as fully correlated.
- 7 ACCIARRI 00Q interpret the s-dependence of the cross sections and lepton forward-backward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to Z-peak data (ACCIARRI 00C) as constraints. The 130–189 GeV data constrains the γ/Z interference term. The authors have corrected the measurement for the 34.1 MeV shift with respect to the Breit-Wigner fits. The error contains a contribution of ± 2.3 MeV due to the uncertainty on the γZ interference.
- ⁸ MIYABAYASHI 95 combine their low energy total hadronic cross-section measurement with the ACTON 93D data and perform a fit using an S-matrix formalism. As expected, this result is below the mass values obtained with the standard Breit-Wigner parametrization
- ⁹ Enters fit through W/Z mass ratio given in the W Particle Listings. The ALITTI 92B systematic error (± 0.93) has two contributions: one (± 0.92) cancels in m_W/m_Z and one (± 0.12) is noncancelling. These were added in quadrature.
- ¹⁰ First error of ABE 89 is combination of statistical and systematic contributions; second is mass scale uncertainty.
- 11 ABRAMS 89B uncertainty includes 35 MeV due to the absolute energy measurement.
- 12 ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.

Z WIDTH

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson").

VAI IIE	E (GeV)		EVTS	DOCUMENT ID		TECN	COMMENT
	2 ± 0.002	3 OUR F		DOCOMENT ID		TECH	COMMENT
	8 ± 0.004		4.57M	¹³ ABBIENDI	01A	OPAL	<i>E</i> ^{ee} _{cm} = 88−94 GeV
2.487	6±0.004	1	4.08M	¹⁴ ABREU	00F	DLPH	E _{cm} ^{ee} = 88–94 GeV
2.502	4 ± 0.004	-2	3.96M	¹⁵ ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
2.495	1 ± 0.004	3	4.57M	¹⁶ BARATE	00 C	ALEP	E _{cm} = 88–94 GeV
• • •	We do i	not use tl	he followii	ng data for average	s, fits	, limits,	etc. • • •
2.494	3 ± 0.004	1		¹⁷ ABBIENDI	04G	OPAL	$E_{cm}^{ee} = LEP1 + 130-209$
2.502	5 ± 0.004	1	3.97M	¹⁸ ACCIARRI	00Q	L3	GeV E ^{ee} _{cm} = LEP1 + 130–189 GeV
2.50	± 0.21	±0.06		¹⁹ ABREU	96 R	DLPH	$E_{\rm cm}^{\rm geV} = 91.2 {\rm GeV}$
3.8	± 0.8	± 1.0	188	ABE	89 C	CDF	$E_{cm}^{p\overline{p}} = 1.8 \; TeV$
2.42	$+0.45 \\ -0.35$		480	²⁰ ABRAMS	89 B	MRK2	<i>E</i> ^{ee} _{cm} = 89−93 GeV
2.7	$^{+1.2}_{-1.0}$	± 1.3	24	²¹ ALBAJAR	89	UA1	$E_{cm}^{p\overline{p}} = 546,630 \; GeV$
2.7	± 2.0	± 1.0	25	²² ANSARI	87	UA2	$E_{\rm cm}^{p\overline{p}} = 546,630 \; {\rm GeV}$

- 13 ABBIENDI 01A error includes approximately 3.6 MeV due to statistics, 1 MeV due to event selection systematics, and 1.3 MeV due to LEP energy uncertainty.
- ¹⁴ The error includes 1.2 MeV due to LEP energy uncertainty.
- 15 The error includes 1.3 MeV due to LEP energy uncertainty.
- 16 BARATE 00C error includes approximately 3.8 MeV due to statistics, 0.9 MeV due to experimental systematics, and 1.3 MeV due to LEP energy uncertainty.
- 17 ABBIENDI 04G obtain this result using the S-matrix formalism for a combined fit to their cross section and asymmetry data at the Z peak and their data at 130–209 GeV. The authors have corrected the measurement for the 1 MeV shift with respect to the Breit-Wigner fits.
- 18 ACCIARRI 00Q interpret the s-dependence of the cross sections and lepton forward-backward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to Z-peak data (ACCIARRI 00C) as constraints. The 130–189 GeV data constrains the γ/Z interference term. The authors have corrected the measurement for the 0.9 MeV shift with respect to the Breit-Wigner fits.
- ¹⁹ ABREU 96R obtain this value from a study of the interference between initial and final state radiation in the process $e^+e^- \rightarrow Z \rightarrow \mu^+\mu^-$.
- ²⁰ ABRAMS 89B uncertainty includes 50 MeV due to the miniSAM background subtraction error
- ²¹ ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.
- Quoted values of ANSARI 87 are from direct fit. Ratio of Z and W production gives either $\Gamma(Z)<(1.09\pm0.07)\times\Gamma(W)$, ${\rm CL}=90\%$ or $\Gamma(Z)=(0.82^{+0.19}_{-0.14}\pm0.06)\times\Gamma(W)$. Assuming Standard-Model value $\Gamma(W)=2.65$ GeV then gives $\Gamma(Z)<2.89\pm0.19$ or $=2.17^{+0.50}_{-0.37}\pm0.16$.

Z DECAY MODES

Scale factor/

Created: 6/24/2005 17:17

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ_1	e^+e^-	$(3.363 \pm 0.004)\%$	
Γ_2	$\mu^+\mu^-$	(3.366 ± 0.007) %	
Γ ₃	$ au^+ au^-$	(3.370 ± 0.008) %	
Γ_4	$\ell^+\ell^-$	[a] (3.3658 ± 0.0023) %	
Γ_5	invisible	(20.00 ± 0.06) %	
Γ_6	hadrons	(69.91 ± 0.06) %	
Γ_7	$(u\overline{u}+c\overline{c})/2$	(11.6 \pm 0.6) %	
Γ ₈	$(d\overline{d} + s\overline{s} + b\overline{b})/3$	$(15.6 \pm 0.4) \%$	
Γ_9	<u>c</u>	$(11.79 \pm 0.33)\%$	
Γ_{10}	<i>b</i> <u>−</u>	(15.13 ± 0.05) %	
Γ_{11}	$b\overline{b}b\overline{b}$	$(3.6 \pm 1.3) \times 1$	0^{-4}
Γ_{12}	ggg	< 1.1 %	CL=95%
Γ_{13}	$\pi^{0}\gamma$	< 5.2 × 1	.0 ⁻⁵ CL=95%
Γ_{14}	$\eta \gamma$.0 ⁻⁵ CL=95%
Γ_{15}	$\omega \gamma$		0^{-4} CL=95%
Γ_{16}	$\eta'(958)\gamma$.0 ⁻⁵ CL=95%
Γ_{17}	$\gamma \gamma$.0 ⁻⁵ CL=95%
Γ_{18}	$\gamma\gamma\gamma$ _		0^{-5} CL=95%
Γ_{19}	$\pi^{\pm} W^{\mp}$	[b] < 7	0^{-5} CL=95%

HTTP://PDG.LBL.GOV

Page 3

```
\Gamma_{20} \quad \rho^{\pm} W^{\mp}
                                                                [b] < 8.3
                                                                                                                   CL=95%
\Gamma_{21} J/\psi(1S)X
                                                                                                 ) \times 10^{-3}
                                                                        ( 3.51
                                                                                                                      S=1.1
\Gamma_{22}
       \psi(2S)X
                                                                                    \pm 0.29 ) × 10<sup>-3</sup>
                                                                        ( 1.60
                                                                                                ) \times 10^{-3}
         \chi_{c1}(1P)X
                                                                                     \pm 0.7
                                                                        ( 2.9
         \chi_{c2}(1P)X
                                                                                                 \times 10^{-3}
\Gamma_{24}
                                                                      < 3.2
                                                                                                                   CL=90%
         \Upsilon(1S) \times + \Upsilon(2S) \times
                                                                                                ) \times 10^{-4}
                                                                        ( 1.0
                                                                                     \pm 0.5
               +\Upsilon(3S) X
              \Upsilon(1S)X
\Gamma_{26}
                                                                                                   \times 10^{-5}
                                                                                                                   CL=95%
                                                                      < 4.4
              \Upsilon(2S)X
\Gamma_{27}
                                                                                                   \times 10^{-4}
                                                                      < 1.39
                                                                                                                   CL=95%
              \Upsilon(3S)X
                                                                                                   \times 10^{-5}
\Gamma_{28}
                                                                      < 9.4
                                                                                                                   CL=95%
          (D^0/\overline{D}^0) X
                                                                        (20.7)
                                                                                                ) %
                                                                                    \pm 2.0
          D^{\pm}X
\Gamma_{30}
                                                                                                ) %
                                                                        (12.2)
                                                                                    \pm 1.7
          D^*(2010)^{\pm}X
\Gamma_{31}
                                                                [b] (11.4
                                                                                                ) %
                                                                                     \pm\,1.3
          D_{s1}(2536)^{\pm} X
                                                                                                ) \times 10^{-3}
                                                                        ( 3.6
                                                                                     \pm 0.8
          D_{s,I}(2573)^{\pm} X
\Gamma_{33}
                                                                                                ) \times 10^{-3}
                                                                        (5.8
                                                                                     \pm 2.2
          D^{*'}(2629)^{\pm}X
\Gamma_{34}
                                                                     searched for
\Gamma_{35}
          BX
\Gamma_{36}
          B^*X
          B_{\epsilon}^{0}X
\Gamma_{37}
                                                                         seen
\Gamma_{38}
                                                                     searched for
                                                                                                   \times 10^{-3}
\Gamma_{39}
          anomalous \gamma + hadrons
                                                                [c] < 3.2
                                                                                                                   CL=95%
          e^+e^-\gamma
\Gamma_{40}
                                                                                                   \times 10^{-4}
                                                                                                                   CL=95%
                                                                [c] < 5.2
         \mu^+\mu^-\gamma
\Gamma_{41}
                                                                                                   \times 10^{-4}
                                                                [c] < 5.6
                                                                                                                   CL=95%
\Gamma_{42}
          \tau^+\tau^-\gamma
                                                                                                   \times 10^{-4}
                                                                                                                   CL=95%
                                                                [c] < 7.3
          \ell^+\ell^-\gamma\gamma
\Gamma_{43}
                                                                                                   \times 10^{-6}
                                                                [d] < 6.8
                                                                                                                   CL=95%
\Gamma_{44}
          q \overline{q} \gamma \gamma
                                                                [d] < 5.5
                                                                                                   \times 10^{-6}
                                                                                                                   CL=95%
                                                                                                   \times 10^{-6}
                                                                                                                   CL=95%
          \nu \overline{\nu} \gamma \gamma
                                                                [d] < 3.1
          e^{\pm} \mu^{\mp}
\Gamma_{46}
                                                                                                   \times 10^{-6}
                                                     LF
                                                                                                                   CL=95%
                                                                [b] < 1.7
\Gamma_{47}
          e^{\pm} \tau^{\mp}
                                                                                                   \times 10^{-6}
                                                     LF
                                                                          9.8
                                                                                                                   CL=95%
                                                                [b] <
          \mu^{\pm} \tau^{\mp}
\Gamma_{48}
                                                     LF
                                                                [b] < 1.2
                                                                                                   \times 10^{-5}
                                                                                                                   CL=95%
\Gamma_{49}
                                                                                                   \times 10^{-6}
                                                                                                                   CL=95%
          рe
                                                     L,B
                                                                         1.8
                                                                                                   \times 10^{-6}
\Gamma_{50}
                                                     L,B
                                                                      < 1.8
                                                                                                                   CL=95%
          p\mu
```

- [a] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [b] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [c] See the Particle Listings below for the γ energy range used in this measurement.
- [d] For $m_{\gamma\gamma}=(60\pm5)$ GeV.

Z PARTIAL WIDTHS

 $\Gamma(e^+e^-)$

For the LEP experiments, this parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.'

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
83.91 ± 0.12 OUR FIT				
83.66 ± 0.20	137.0K	ABBIENDI	01A OPAL	$E_{ m cm}^{\it ee}=$ 88–94 GeV
83.54 ± 0.27	117.8k	ABREU	00F DLPH	$E_{ m cm}^{\it ee}=$ 88–94 GeV
84.16 ± 0.22	124.4k	ACCIARRI	00C L3	$E_{ m cm}^{\it ee}=$ 88–94 GeV
83.88 ± 0.19		BARATE	00c ALEP	$E_{ m cm}^{\it ee}=$ 88–94 GeV
$82.89 \pm 1.20 \pm 0.89$	2	²³ ABE	95」SLD	$E_{\rm cm}^{ee} = 91.31 \; {\rm GeV}$

 $^{^{23}}$ ABE 95J obtain this measurement from Bhabha events in a restricted fiducial region to improve systematics. They use the values 91.187 and 2.489 GeV for the Z mass and total decay width to extract this partial width.

 $\Gamma(\mu^+\mu^-)$

This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.'

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
83.99±0.18 OUR FIT				
84.03 ± 0.30	182.8K	ABBIENDI	01A OPAL	E ^{ee} _{cm} = 88–94 GeV
84.48 ± 0.40	157.6k	ABREU	00F DLPH	E ^{ee} _{cm} = 88–94 GeV
83.95 ± 0.44	113.4k	ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
84.02 ± 0.28		BARATE	00C ALEP	E ^{ee} _{cm} = 88–94 GeV

 $\Gamma(\tau^+\tau^-)$ This parameter is not directly used in the overall fit but is derived using the fit results;

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
84.08±0.22 OUR FIT					
83.94 ± 0.41	151.5K	ABBIENDI	01A OPAL	$E_{ m cm}^{ee}=$ 88–94 GeV	
83.71 ± 0.58	104.0k	ABREU	00F DLPH	$E_{ m cm}^{ee}=$ 88–94 GeV	
84.23 ± 0.58	103.0k	ACCIARRI	00c L3	<i>E</i> ^{ee} cm = 88−94 GeV	
84.38 ± 0.31		BARATE	00C ALEP	$E_{cm}^{ee} = 88 – 94 \; GeV$	
$\Gamma(\ell^+\ell^-)$					Γ4

In our fit $\Gamma(\ell^+\ell^-)$ is defined as the partial Z width for the decay into a pair of massless charged leptons. This parameter is not directly used in the 5-parameter fit assuming lepton universality but is derived using the fit results. See the 'Note on the Z Boson.'

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
83.984±0.086 OUR FI	Т			
83.82 ± 0.15	471.3K	ABBIENDI	01A OPAL	E ^{ee} _{cm} = 88–94 GeV
83.85 ± 0.17	379.4k	ABREU	00F DLPH	E ^{ee} _{cm} = 88–94 GeV
84.14 ± 0.17	340.8k	ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
84.02 ± 0.15	500k	BARATE	00C ALEP	E ^{ee} _{cm} = 88–94 GeV

see the 'Note on the Z Boson.'

 Γ (invisible) Γ_5

We use only direct measurements of the invisible partial width using the single photon channel to obtain the average value quoted below. OUR FIT value is obtained as a difference between the total and the observed partial widths assuming lepton universality.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
499.0± 1.5 OUR FIT				
503 \pm 16 OUR AVER	RAGE Erro	r includes scale f	actor of 1.2.	
$498\pm12\pm12$	1791	ACCIARRI	98G L3	E ^{ee} _{cm} = 88–94 GeV
$539 \pm 26 \pm 17$	410	AKERS	95C OPAL	E ^{ee} _{cm} = 88–94 GeV
450 ± 34 ± 34	258	BUSKULIC	93L ALEP	E ^{ee} _{cm} = 88–94 GeV
540 ± 80 ± 40	52	ADEVA	92 L3	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use th	e following	data for averages	, fits, limits,	etc. • • •
498.1± 2.6	2	⁴ ABBIENDI	01A OPAL	E ^{ee} _{cm} = 88–94 GeV
498.1± 3.2	2	⁴ ABREU	00F DLPH	E ^{ee} _{cm} = 88–94 GeV
$499.1 \pm \ 2.9$	2	⁴ ACCIARRI	00C L3	<i>E</i> ^{ee} _{cm} = 88−94 GeV
499.1 ± 2.5	2	⁴ BARATE	00C ALEP	<i>E</i> ^{ee} _{cm} = 88−94 GeV

 $^{^{24}}$ This is an indirect determination of $\Gamma(\text{invisible})$ from a fit to the visible Z decay modes.

$\Gamma(hadrons)$

This parameter is not directly used in the 5-parameter fit assuming lepton universality, but is derived using the fit results. See the 'Note on the Z Boson.'

 Γ_6

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
1744.4±2.0 OUR FIT	-	•		
1745.4 ± 3.5	4.10M	ABBIENDI	01A OPAL	E ^{ee} _{cm} = 88–94 GeV
1738.1 ± 4.0	3.70M	ABREU	00F DLPH	E ^{ee} _{cm} = 88–94 GeV
1751.1 ± 3.8	3.54M	ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
1744.0 ± 3.4	4.07M	BARATE	00C ALEP	Eee = 88–94 GeV

Z BRANCHING RATIOS

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson").

$\Gamma(\text{hadrons})/\Gamma(e^+e^-)$				Γ_6/Γ_1
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
20.804± 0.050 OUR FIT				
$20.902 \pm \ 0.084$	137.0K	²⁵ ABBIENDI	01A OPAL	E ^{ee} _{cm} = 88–94 GeV
20.88 ± 0.12	117.8k	ABREU	00F DLPH	E ^{ee} _{cm} = 88–94 GeV
$20.816 \pm \ 0.089$	124.4k		00C L3	E ^{ee} _{cm} = 88–94 GeV
20.677 ± 0.075		²⁶ BARATE	00C ALEP	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use the fo	llowing d	ata for averages, fit	s, limits, etc.	• • •
$27.0 {+11.7 \atop -8.8}$	12	²⁷ ABRAMS	89D MRK2	<i>E</i> ^{ee} _{cm} = 89−93 GeV

$\Gamma(\text{hadrons})/\Gamma(\mu^+\mu^-)$

 Γ_6/Γ_2

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson").

VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
20.785±0.033 OUR FIT				
$20.811\!\pm\!0.058$	182.8K	²⁸ ABBIENDI	01A OPAL	E ^{ee} _{cm} = 88–94 GeV
20.65 ± 0.08	157.6k	ABREU	00F DLPH	E ^{ee} _{cm} = 88–94 GeV
$20.861\!\pm\!0.097$	113.4k	ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
20.799 ± 0.056		²⁹ BARATE	00c ALEP	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use the fo	ollowing da	ata for averages, fit	s, limits, etc.	• • •
$18.9 \begin{array}{c} +7.1 \\ -5.3 \end{array}$	13	³⁰ ABRAMS	89D MRK2	Eee = 89–93 GeV

 $^{^{28}}$ ABBIENDI 01A error includes approximately 0.050 due to statistics and 0.027 due to event selection systematics.

$\Gamma(\text{hadrons})/\Gamma(\tau^+\tau^-)$

 Γ_6/Γ_3

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson").

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
20.764±0.045 OUR FIT				
$20.832 \!\pm\! 0.091$	151.5K	³¹ ABBIENDI	01A OPAL	E ^{ee} _{cm} = 88–94 GeV
20.84 ± 0.13	104.0k	ABREU	00F DLPH	E ^{ee} _{cm} = 88–94 GeV
20.792 ± 0.133	103.0k	ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
20.707 ± 0.062		³² BARATE	00c ALEP	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use the fo	ollowing d	ata for averages, fit	ts, limits, etc.	. • • •
$15.2 \begin{array}{c} +4.8 \\ -3.9 \end{array}$	21	³³ ABRAMS	89D MRK2	E ^{ee} _{cm} = 89–93 GeV

 $^{^{31}}$ ABBIENDI 01A error includes approximately 0.055 due to statistics and 0.071 due to event selection systematics.

²⁵ ABBIENDI 01A error includes approximately 0.067 due to statistics, 0.040 due to event selection systematics, 0.027 due to the theoretical uncertainty in *t*-channel prediction, and 0.014 due to LEP energy uncertainty.

 $^{^{26}}$ BARATE 00C error includes approximately 0.062 due to statistics, 0.033 due to experimental systematics, and 0.026 due to the theoretical uncertainty in t-channel prediction.

²⁷ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.

²⁹ BARATE 00C error includes approximately 0.053 due to statistics and 0.021 due to experimental systematics.

³⁰ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.

³² BARATE 00C error includes approximately 0.054 due to statistics and 0.033 due to experimental systematics.

³³ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.

$\Gamma(\text{hadrons})/\Gamma(\ell^+\ell^-)$

 Γ_6/Γ_4

 ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.

Our fit result is obtained requiring lepton universality.

VALUE	EVTS	DOCUMENT ID	<u>TECN</u>	COMMENT
20.767 ± 0.025 OUF	R FIT			
$20.823\!\pm\!0.044$	471.3K	³⁴ ABBIENDI	01A OPAL	E ^{ee} _{cm} = 88–94 GeV
20.730 ± 0.060	379.4k	ABREU	00F DLPH	E ^{ee} _{cm} = 88–94 GeV
$20.810\!\pm\!0.060$	340.8k	ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
$20.725 \!\pm\! 0.039$	500k	³⁵ BARATE	00c ALEP	E ^{ee} _{cm} = 88–94 GeV
• • • We do not us	se the follo	wing data for avera	ges, fits, limi	ts, etc. • • •
$18.9 \begin{array}{r} +3.6 \\ -3.2 \end{array}$	46	ABRAMS	89B MRK2	E ^{ee} _{cm} = 89–93 GeV

 $^{^{34}}$ ABBIENDI 01A error includes approximately 0.034 due to statistics and 0.027 due to event selection systematics.

$\Gamma(\text{hadrons})/\Gamma_{\text{total}}$

 Γ_6/Γ

This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.'

VALUE (%)

DOCUMENT ID

69.911 ± 0.056 OUR FIT

 $\Gamma(e^+e^-)/\Gamma_{\text{total}}$

 Γ_1/Γ

This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.'

VALUE (%)

DOCUMENT ID

3.3632 ± 0.0042 OUR FIT

 $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$

 Γ_2/Γ

This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.'

VALUE (%)

DOCUMENT ID

3.3662 ± 0.0066 OUR FIT

 $\Gamma(\tau^+\tau^-)/\Gamma_{\text{total}}$

Гз/Г

This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.'

VALUE (%)

DOCUMENT ID

3.3696 ± 0.0083 OUR FIT

 $\Gamma(\ell^+\ell^-)/\Gamma_{\text{total}}$

 Γ_{Δ}/Γ

Created: 6/24/2005 17:17

 ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.

Our fit result assumes lepton universality.

This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.'

VALUE (%)

DOCUMENT ID

3.3658 ± 0.0023 OUR FIT

³⁵ BARATE 00C error includes approximately 0.033 due to statistics, 0.020 due to experimental systematics, and 0.005 due to the theoretical uncertainty in *t*-channel prediction.

 $\Gamma(\text{invisible})/\Gamma_{\text{total}}$

 Γ_5/Γ

See the data, the note, and the fit result for the partial width, Γ_5 , above.

DOCUMENT ID

20.000 ± 0.055 OUR FIT

 $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$

 Γ_2/Γ_1

This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.'

1.0009 ± 0.0028 OUR FIT

 $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-)$ This parameter is not directly used in the overall fit but is derived using the fit results; see the 'Note on the Z Boson.'

DOCUMENT ID

1.0019±0.0032 OUR FIT

 $\Gamma((u\overline{u}+c\overline{c})/2)/\Gamma(hadrons)$

 Γ_7/Γ_6

This quantity is the branching ratio of $Z \rightarrow$ "up-type" quarks to $Z \rightarrow$ hadrons. Except ACKERSTAFF 97T the values of $Z \rightarrow$ "up-type" and $Z \rightarrow$ "down-type" branchings are extracted from measurements of $\Gamma(\text{hadrons})$, and $\Gamma(Z \to \gamma + \text{jets})$ where γ is a highenergy (>5 or 7 GeV) isolated photon. As the experiments use different procedures and slightly different values of M_7 , $\Gamma(\text{hadrons})$ and α_s in their extraction procedures, our average has to be taken with caution.

<u>VALUE</u>	<u>DOCUMENT ID</u>		<u>TECN</u>	COMMENT
0.166±0.009 OUR AVERAGE				
$0.172 ^{igoplus 0.011}_{-0.010}$	³⁶ ABBIENDI	04E	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$0.160 \pm 0.019 \pm 0.019$	³⁷ ACKERSTAFF	97T	OPAL	Eee = 88-94 GeV
$0.137 {+0.038 \atop -0.054}$	³⁸ ABREU	95x	DLPH	E ^{ee} _{cm} = 88–94 GeV
0.137 ± 0.033	³⁹ ADRIANI	93	L3	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$

- 36 ABBIENDI 04E select photons with energy > 7 GeV and use Γ (hadrons) = 1744.4 \pm 2.0 MeV and $\alpha_s=0.1172\pm0.002$ to obtain $\Gamma_u=300^{+19}_{-18}$ MeV.
- 37 ACKERSTAFF 97T measure $\Gamma_{u\,\overline{u}}/(\Gamma_{d\,\overline{d}}+\Gamma_{u\,\overline{u}}+\Gamma_{s\,\overline{s}})=0.258\pm0.031\pm0.032.$ To obtain this branching ratio authors use $R_c+R_b=0.380\pm0.010.$ This measurement is fully negatively correlated with the measurement of $\Gamma_{d\,\overline{d},s\,\overline{s}}/(\Gamma_{d\,\overline{d}}+\Gamma_{u\,\overline{u}}+\Gamma_{s\,\overline{s}})$ given in the next data block.
- 38 ABREU 95X use $M_Z=91.187\pm0.009$ GeV, $\Gamma({
 m hadrons})=1725\pm12$ MeV and $lpha_S=0.009$ 0.123 ± 0.005 . To obtain this branching ratio we divide their value of $C_{2/3} = 0.91 + 0.25$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.66 \pm 0.05$.
- 39 ADRIANI 93 use $M_Z=$ 91.181 \pm 0.022 GeV, $\Gamma({
 m hadrons})=$ 1742 \pm 19 MeV and $lpha_{
 m S}=$ 0.125 ± 0.009 . To obtain this branching ratio we divide their value of $C_{2/3}=0.92\pm0.22$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.720 \pm 0.076$.

$\Gamma((d\overline{d}+s\overline{s}+b\overline{b})/3)/\Gamma(hadrons)$

 Γ_8/Γ_6

This quantity is the branching ratio of $Z \to$ "down-type" quarks to $Z \to$ hadrons. Except ACKERSTAFF 97T the values of $Z \to$ "up-type" and $Z \to$ "down-type" branchings are extracted from measurements of $\Gamma(\text{hadrons})$, and $\Gamma(Z \to \gamma + \text{jets})$ where γ is a high-energy (>5 or 7 GeV) isolated photon. As the experiments use different procedures and slightly different values of M_Z , $\Gamma(\text{hadrons})$ and α_S in their extraction procedures, our average has to be taken with caution.

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
0.223 ± 0.006 OUR AVERAGE			
0.218 ± 0.007	⁴⁰ ABBIENDI	04E OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$0.230 \pm 0.010 \pm 0.010$	⁴¹ ACKERSTAFF	97⊤ OPAL	E ^{ee} _{cm} = 88–94 GeV
$0.243 ^{+ 0.036}_{- 0.026}$	⁴² ABREU	95X DLPH	<i>E</i> _{cm} ^{ee} = 88–94 GeV
0.243 ± 0.022	⁴³ ADRIANI	93 L3	$E_{cm}^{ee} = 91.2 \; GeV$

- ⁴⁰ ABBIENDI 04E select photons with energy > 7 GeV and use Γ (hadrons) = 1744.4 \pm 2.0 MeV and $\alpha_{\rm S}=0.1172\pm0.002$ to obtain $\Gamma_{\rm d}=381\pm12$ MeV.
- ⁴¹ ACKERSTAFF 97T measure $\Gamma_{d\overline{d},s\overline{s}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})=0.371\pm0.016\pm0.016$. To obtain this branching ratio authors use $R_c+R_b=0.380\pm0.010$. This measurement is fully negatively correlated with the measurement of $\Gamma_{u\overline{u}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})$ presented in the previous data block.
- ⁴² ABREU 95X use $M_Z = 91.187 \pm 0.009$ GeV, Γ(hadrons) = 1725 ± 12 MeV and $\alpha_s = 0.123 \pm 0.005$. To obtain this branching ratio we divide their value of $C_{1/3} = 1.62 ^{+0.24}_{-0.17}$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.66 \pm 0.05$.
- ⁴³ ADRIANI 93 use $M_Z=91.181\pm0.022$ GeV, Γ(hadrons) = 1742 ± 19 MeV and $\alpha_s=0.125\pm0.009$. To obtain this branching ratio we divide their value of $C_{1/3}=1.63\pm0.15$ by their value of $(3C_{1/3}+2C_{2/3})=6.720\pm0.076$.

$R_c = \Gamma(c\overline{c})/\Gamma(\text{hadrons})$

 Γ_9/Γ_6

Created: 6/24/2005 17:17

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the "Note on the Z boson." As a cross check we have also performed a weighted average of the R_c measurements. Taking into account the various common systematic errors, we obtain $R_c=0.1686\pm0.0069$.

The Standard Model predicts $R_{C}=0.1723$ for $m_{t}=174.3$ GeV and $M_{H}=150$ GeV.

VALUE	DOCUMENT ID	TECN	COMMENT
0.1686 ± 0.0047 OUR FIT			
$0.1665\!\pm\!0.0051\!\pm\!0.0081$	⁴⁴ ABREU	00 DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.1698\!\pm\!0.0069$			E ^{ee} _{cm} = 88–94 GeV
$0.180\ \pm0.011\ \pm0.013$			E ^{ee} _{cm} = 88–94 GeV
$0.167\ \pm0.011\ \pm0.012$	⁴⁷ ALEXANDER	96R OPAL	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use the f	following data for a	verages, fits,	limits, etc. • • •
$0.1675 \pm 0.0062 \pm 0.0103$	⁴⁸ BARATE	98T ALEP	Repl. by BARATE 00B
$0.1689 \pm 0.0095 \pm 0.0068$	⁴⁹ BARATE	98T ALEP	Repl. by BARATE 00B
$0.1623 \pm 0.0085 \pm 0.0209$	⁵⁰ ABREU	95D DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.142\ \pm0.008\ \pm0.014$	⁵¹ AKERS	950 OPAL	Repl. by ACKERSTAFF 98E
$0.165 \pm 0.005 \pm 0.020$	⁵² BUSKULIC	94G ALEP	Repl. by BARATE 00B

- ⁴⁴ ABREU 00 obtain this result properly combining the measurement from the D^{*+} production rate ($R_c = 0.1610 \pm 0.0104 \pm 0.0077 \pm 0.0043$ (BR)) with that from the overall charm counting ($R_c = 0.1692 \pm 0.0047 \pm 0.0063 \pm 0.0074$ (BR)) in $c\overline{c}$ events. The systematic error includes an uncertainty of ± 0.0054 due to the uncertainty on the charmed hadron branching fractions.
- 45 BARATE 00B use exclusive decay modes to independently determine the quantities $R_c\times {\rm f}(c\to {\rm X}),~{\rm X}=D^0,~D^+,~D_S^+,~{\rm and}~\Lambda_c.$ Estimating $R_c\times {\rm f}(c\to \Xi_c/\Omega_c)=0.0034,$ they simply sum over all the charm decays to obtain $R_c=0.1738\pm0.0047\pm0.0088\pm0.0075({\rm BR}).$ This is combined with all previous ALEPH measurements (BARATE 98T and BUSKULIC 94G, $R_c=0.1681\pm0.0054\pm0.0062)$ to obtain the quoted value.
- ⁴⁶ ACKERSTAFF 98E use an inclusive/exclusive double tag. In one jet $D^{*\pm}$ mesons are exclusively reconstructed in several decay channels and in the opposite jet a slow pion (opposite charge inclusive $D^{*\pm}$) tag is used. The b content of this sample is measured by the simultaneous detection of a lepton in one jet and an inclusively reconstructed $D^{*\pm}$ meson in the opposite jet. The systematic error includes an uncertainty of ± 0.006 due to the external branching ratios.
- ⁴⁷ ALEXANDER 96R obtain this value via direct charm counting, summing the partial contributions from D^0 , D^+ , D_s^+ , and Λ_c^+ , and assuming that strange-charmed baryons account for the 15% of the Λ_c^+ production. An uncertainty of ± 0.005 due to the uncertainties in the charm hadron branching ratios is included in the overall systematics.

⁴⁸ BARATE 98T perform a simultaneous fit to the p and p_T spectra of electrons from hadronic Z decays. The semileptonic branching ratio B($c \rightarrow e$) is taken as 0.098 ± 0.005 and the systematic error includes an uncertainty of ± 0.0084 due to this.

- 49 BARATE 98T obtain this result combining two double-tagging techniques. Searching for a D meson in each hemisphere by full reconstruction in an exclusive decay mode gives $R_c = 0.173 \pm 0.014 \pm 0.0009$. The same tag in combination with inclusive identification using the slow pion from the $D^{*+} \rightarrow D^0 \pi^+$ decay in the opposite hemisphere yields $R_c = 0.166 \pm 0.012 \pm 0.009$. The R_b dependence is given by $R_c = 0.1689 0.023 \times (R_b 0.2159)$. The three measurements of BARATE 98T are combined with BUSKULIC 94G to give the average $R_c = 0.1681 \pm 0.0054 \pm 0.0062$.
- ⁵⁰ ABREU 95D perform a maximum likelihood fit to the combined p and p_T distributions of single and dilepton samples. The second error includes an uncertainty of ± 0.0124 due to models and branching ratios.
- ⁵¹ AKERS 950 use the presence of a $D^{*\pm}$ to tag $Z \to c\overline{c}$ with $D^* \to D^0\pi$ and $D^0 \to K\pi$. They measure $P_c * \Gamma(c\overline{c})/\Gamma(\text{hadrons})$ to be $(1.006 \pm 0.055 \pm 0.061) \times 10^{-3}$, where P_c is the product branching ratio $B(c \to D^*)B(D^* \to D^0\pi)B(D^0 \to K\pi)$. Assuming that P_c remains unchanged with energy, they use its value $(7.1 \pm 0.5) \times 10^{-3}$ determined at CESR/PETRA to obtain $\Gamma(c\overline{c})/\Gamma(\text{hadrons})$. The second error of AKERS 950 includes an uncertainty of ± 0.011 from the uncertainty on P_c .
- 52 BUSKULIC 94G perform a simultaneous fit to the p and p_T spectra of both single and dilepton events.

$R_b = \Gamma(b\overline{b})/\Gamma(\text{hadrons})$

 Γ_{10}/Γ_{6}

Created: 6/24/2005 17:17

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the "Note on the Z boson." As a cross check we have also performed a weighted average of the R_b measurements taking into account the various common systematic errors. For $R_c=0.1686$ (as given by OUR FIT above), we obtain $R_b=0.21635\pm0.00075$. For an expected Standard Model value of $R_c=0.1723$, our weighted average gives $R_b=0.21627\pm0.00075$.

The Standard Model predicts $R_b=0.21581$ for $m_t=174.3$ GeV and $M_H=150$ GeV.

TECN

COMMENT

DOCUMENT ID

VALUE			DOCUMENT ID		TECIV	COMMENT
0.21643	3±0.00072	OUR FIT				
0.2174	± 0.0015	± 0.0028	⁵³ ACCIARRI	00	L3	E ^{ee} _{cm} = 89–93 GeV
0.2178	± 0.0011	±0.0013	⁵⁴ ABBIENDI	99 B	OPAL	$E_{\rm cm}^{\rm ee}=$ 88–94 GeV
0.21634	1 ± 0.00067	7 ± 0.00060	⁵⁵ ABREU	99 B	DLPH	$E_{\rm cm}^{\rm ee} = 88 - 94 {\rm GeV}$
0.2142	± 0.0034	±0.0015	⁵⁶ ABE	98 D	SLD	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
0.2159	± 0.0009	±0.0011	⁵⁷ BARATE	97F	ALEP	E ^{ee} _{cm} = 88–94 GeV
• • • \	We do not	use the follow	wing data for avera	ges,	fits, limi	ts, etc. • • •
0.2175	± 0.0014	±0.0017	⁵⁸ ACKERSTAFF	97K	OPAL	Repl. by ABBIENDI 99B
0.2167	± 0.0011	± 0.0013	⁵⁹ BARATE	97E	ALEP	$E_{\rm cm}^{\rm ee} = 88-94 {\rm GeV}$
0.229	±0.011		⁶⁰ ABE	96E	SLD	Repl. by ABE 98D
0.2216	±0.0016	±0.0021	⁶¹ ABREU	96	DLPH	Repl. by ABREU 99B
0.2145	± 0.0089	± 0.0067	⁶² ABREU	95 D	DLPH	$E_{\rm cm}^{\rm ee} = 88-94 {\rm GeV}$
0.219	± 0.006	±0.005	⁶³ BUSKULIC	94G	ALEP	E ^{ee} _{cm} = 88–94 GeV
0.251	± 0.049	±0.030	⁶⁴ JACOBSEN	91	MRK2	Eee 91 GeV

- 53 ACCIARRI 00 obtain this result using a double-tagging technique, with a high p_T lepton tag and an impact parameter tag in opposite hemispheres.
- ⁵⁴ ABBIENDI 99B tag $Z \rightarrow b \, \overline{b}$ decays using leptons and/or separated decay vertices. The b-tagging efficiency is measured directly from the data using a double-tagging technique.
- ⁵⁵ ABREU 99B obtain this result combining in a multivariate analysis several tagging methods (impact parameter and secondary vertex reconstruction, complemented by event shape variables). For R_c different from its Standard Model value of 0.172, R_b varies as $-0.024 \times (R_c 0.172)$.
- 56 ABE 98D use a double tag based on 3D impact parameter with reconstruction of secondary vertices. The charm background is reduced by requiring the invariant mass at the secondary vertex to be above 2 GeV. The systematic error includes an uncertainty of ± 0.0002 due to the uncertainty on $R_{\rm C}$.
- ⁵⁷BARATE 97F combine the lifetime-mass hemisphere tag (BARATE 97E) with event shape information and lepton tag to identify $Z \rightarrow b\overline{b}$ candidates. They further use c- and $u\,d\,s$ -selection tags to identify the background. For R_{C} different from its Standard Model value of 0.172, R_{b} varies as $-0.019\times(R_{C}-0.172)$.
- ⁵⁸ ACKERSTAFF 97K use lepton and/or separated decay vertex to tag independently each hemisphere. Comparing the numbers of single- and double-tagged events, they determine the *b*-tagging efficiency directly from the data.
- 59 BARATE 97E combine a lifetime tag with a mass cut based on the mass difference between c hadrons and b hadrons. Included in BARATE 97F.
- ⁶⁰ ABE 96E obtain this value by combining results from three different *b*-tagging methods (2D impact parameter, 3D impact parameter, and 3D displaced vertex).
- ⁶¹ ABREU 96 obtain this result combining several analyses (double lifetime tag, mixed tag and multivariate analysis). This value is obtained assuming $R_c = \Gamma(c\overline{c})/\Gamma(\text{hadrons}) = 0.172$. For a value of R_c different from this by an amount ΔR_c the change in the value is given by $-0.087 \cdot \Delta R_c$.
- 62 ABREU 95D perform a maximum likelihood fit to the combined p and p_T distributions of single and dilepton samples. The second error includes an uncertainty of ± 0.0023 due to models and branching ratios.
- 63 BUSKULIC 94G perform a simultaneous fit to the p and p_T spectra of both single and dilepton events.
- ⁶⁴ JACOBSEN 91 tagged $b\overline{b}$ events by requiring coincidence of \geq 3 tracks with significant impact parameters using vertex detector. Systematic error includes lifetime and decay uncertainties (± 0.014).

VALUE

$\Gamma(b\overline{b}b\overline{b})/\Gamma(hadrons)$

 Γ_{11}/Γ_{6}

VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
5.2±1.9 OUR AVERAGE			
$3.6 \pm 1.7 \pm 2.7$	⁶⁵ ABBIENDI	01G OPAL	E ^{ee} _{cm} = 88–94 GeV
$6.0\pm1.9\pm1.4$	⁶⁶ ABREU	99∪ DLPH	$E_{cm}^{ee} = 88-94 \text{ GeV}$

 $^{^{65}}$ ABBIENDI 01G use a sample of four-jet events from hadronic Z decays. To enhance the $b \, \overline{b} \, b \, \overline{b}$ signal, at least three of the four jets are required to have a significantly detached secondary vertex.

$\Gamma(ggg)/\Gamma(hadrons)$

 Γ_{12}/Γ_{6}

VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
$<1.6 \times 10^{-2}$	95	67 ABREU	96s DLPH	Eee = 88–94 GeV	

 $^{^{67}}$ This branching ratio is slightly dependent on the jet-finder algorithm. The value we quote is obtained using the JADE algorithm, while using the DURHAM algorithm ABREU 96S obtain an upper limit of $1.5\times 10^{-2}\,.$

Γ ₁₃ /Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$< 5.2 \times 10^{-5}$	95	68 ACCIARRI	95G L3	Eee = 88–94 GeV
$< 5.5 \times 10^{-5}$	95	ABREU	94B DLPH	E ^{ee} _{cm} = 88–94 GeV
$< 2.1 \times 10^{-4}$	95	DECAMP	92 ALEP	E ^{ee} _{cm} = 88–94 GeV
$< 1.4 \times 10^{-4}$	95	AKRAWY	91F OPAL	E ^{ee} _{cm} = 88–94 GeV

⁶⁸ This limit is for both decay modes $Z \to \pi^0 \gamma/\gamma \gamma$ which are indistinguishable in ACCIARRI 95G.

$\Gamma(\eta\gamma)/\Gamma_{total}$				Γ ₁₄ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
$< 7.6 \times 10^{-5}$	95	ACCIARRI	95G L3	E ^{ee} _{cm} = 88–94 GeV
$< 8.0 \times 10^{-5}$	95	ABREU	94B DLPH	E ^{ee} _{cm} = 88–94 GeV
$< 5.1 \times 10^{-5}$	95	DECAMP	92 ALEP	E ^{ee} _{cm} = 88–94 GeV

$\Gamma(\omega\gamma)/\Gamma_{ ext{total}}$					Γ ₁₅ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	<u>COMMENT</u>	

AKRAWY

95

91F OPAL $E_{cm}^{ee} = 88-94 \text{ GeV}$

Created: 6/24/2005 17:17

$<6.5 \times 10^{-4}$	95	ABREU	94B DLPH	$E_{\rm cm}^{ee} = 88-94$	GeV
$\Gamma(\eta'(958)\gamma)/\Gamma_{total}$					Γ ₁₆ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	

 $< 2.0 \times 10^{-4}$

⁶⁶ ABREU 990 force hadronic Z decays into 3 jets to use all the available phase space and require a b tag for every jet. This decay mode includes primary and secondary 4b production, e.g., from gluon splitting to $b\overline{b}$.

 $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ This decay would violate the Landau-Yang theorem.

e Landau-Tang theorem.							
	DOCUMENT ID		TECN	COMMENT			
69	ACCIARRI	95G	L3	E ^{ee} _{cm} = 88–94 GeV			
	ABREU	94 B	DLPH	E ^{ee} _{cm} = 88–94 GeV			

91F OPAL E_{cm}^{ee} = 88–94 GeV

AKRAWY

 $\Gamma(\gamma\gamma\gamma)/\Gamma_{\text{total}}$

 $< 5.2 \times 10^{-5}$

 $< 5.5 \times 10^{-5}$

 $< 1.4 \times 10^{-4}$

 Γ_{18}/Γ

 Γ_{17}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$< 1.0 \times 10^{-5}$	95	⁷⁰ ACCIARRI	95C L3	E ^{ee} _{cm} = 88–94 GeV
$< 1.7 \times 10^{-5}$	95	⁷⁰ ABREU	94B DLPH	E ^{ee} _{cm} = 88–94 GeV
$< 6.6 \times 10^{-5}$	95	AKRAWY	91F OPAL	<i>E</i> ^{ee} _{cm} = 88−94 GeV

 $^{^{70}}$ Limit derived in the context of composite Z model.

 $\Gamma(\pi^{\pm}W^{\mp})/\Gamma_{\text{total}}$

 Γ_{19}/Γ

The value is for the sum of the charge states indicated.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 7 \times 10^{-5}$	95	DECAMP	92	ALEP	E ^{ee} _{cm} = 88–94 GeV

 $\Gamma(\rho^{\pm}W^{\mp})/\Gamma_{\text{total}}$

 Γ_{20}/Γ

The value is for the sum of the charge states indicated.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 8.3 \times 10^{-5}$	95	DECAMP	92	ALEP	$E_{\rm cm}^{ee} = 88-94 {\rm GeV}$

$\Gamma(J/\psi(1S)X)/\Gamma_{\text{total}}$

 Γ_{21}/Γ

Created: 6/24/2005 17:17

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT
	·			

$3.51^{+0.23}_{-0.25}$ **OUR AVERAGE** Error includes scale factor of 1.1.

$3.21 \pm 0.21 ^{+0.19}_{-0.28}$	553	⁷¹ ACCIARRI	99F L3	E ^{ee} _{cm} = 88–94 GeV
$3.9 \pm 0.2 \pm 0.3$	511	⁷² ALEXANDER	96B OPAL	<i>E</i> ^{ee} _{cm} = 88–94 GeV
$3.73 \pm 0.39 \pm 0.36$	153	⁷³ ABREU	94P DLPH	$E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $3.40\pm0.23\pm0.27$ 441 ⁷⁴ ACCIARRI 97J L3 Repl. by ACCIARRI 99F

⁶⁹ This limit is for both decay modes $Z \to \pi^0 \gamma/\gamma \gamma$ which are indistinguishable in ACCIA-RRI 95G

 $^{^{71}}$ ACCIARRI 99F combine $\mu^+\,\mu^-$ and $e^+\,e^-\,J/\psi(1S)$ decay channels. The branching ratio for prompt $J/\psi(1S)$ production is measured to be $(2.1\pm0.6\pm0.4^{+0.4}_{-0.2}(\text{theor.}))\times10^{-4}$.

 $^{^{72}}$ ALEXANDER 96B identify $J/\psi(1S)$ from the decays into lepton pairs. (4.8 \pm 2.4)% of this branching ratio is due to prompt $J/\psi(1S)$ production (ALEXANDER 96N).

⁷³ Combining $\mu^+\mu^-$ and e^+e^- channels and taking into account the common systematic errors. $(7.7^{+6.3}_{-5.4})\%$ of this branching ratio is due to prompt $J/\psi(1S)$ production.

⁷⁴ ACCIARRI 97J combine $\mu^+\mu^-$ and $e^+e^ J/\psi(1S)$ decay channels and take into account the common systematic error.

$\Gamma(\psi(2S)X)/\Gamma_{total}$					Γ ₂₂ /Γ		
VALUE (units 10^{-3})	EVTS	DOCUMENT II	TECN	COMMENT	. 22/ .		
1.60±0.29 OUR AVER	AGE	75					
$1.6 \pm 0.5 \pm 0.3$	39	⁷⁵ ACCIARRI		<i>E</i> ee 88–94 Ge			
$1.6 \pm 0.3 \pm 0.2$	46.9	⁷⁶ ALEXANDEI		E ^{ee} _{cm} = 88–94 Ge			
$1.60\pm0.73\pm0.33$	5.4	⁷⁷ ABREU	94P DLPF	<i>E</i> ee	V		
75 ACCIARRI 97J means $=\mu$, e). 76 ALEXANDER 96B $J/\psi\pi^+\pi^-$, with J/ψ ABREU 94P measur $J/\psi \rightarrow \mu^+\mu^-$.	measure $/\psi ightarrow \ell^-$	this branching $+\ell^-$.	ratio via the	decay channel ψ	(2 <i>S</i>) →		
$\Gamma(\chi_{c1}(1P)X)/\Gamma_{total}$					Γ ₂₃ /Γ		
VALUE (units 10 ⁻³) 2.9±0.7 OUR AVERAGE	EVTS	DOCUMENT IL	TECN	COMMENT			
$2.7 \pm 0.6 \pm 0.5$	33	⁷⁸ ACCIARRI	97」L3	<i>E</i> _{cm} = 88–94 Ge	V		
$5.0\pm2.1^{+1.5}_{-0.9}$	6.4	⁷⁹ ABREU		<i>Eee</i> = 88–94 Ge			
78 ACCIARRI 97J measure this branching ratio via the decay channel $\chi_{c1} \rightarrow J/\psi + \gamma$, with $J/\psi \rightarrow \ell^+\ell^-$ ($\ell=\mu$, e). The $M(\ell^+\ell^-\gamma)$ – $M(\ell^+\ell^-)$ mass difference spectrum is fitted with two gaussian shapes for χ_{c1} and χ_{c2} . 79 This branching ratio is measured via the decay channel $\chi_{c1} \rightarrow J/\psi + \gamma$, with $J/\psi \rightarrow \mu^+\mu^-$.							
• •							
$\Gamma(\chi_{c2}(1P)X)/\Gamma_{total}$					Γ ₂₄ /Γ		
VALUE	<u>CL%</u>						
<u>VALUE</u> <3.2 × 10 ^{−3}	<u>CL%</u> 90	⁸⁰ ACCIARRI	97J L3	<i>E</i> ee/cm= 88−94 Ge	V		
VALUE	$\frac{\mathit{CL\%}}{90}$ ye this lin	80 ACCIARRI mit via the decay $(\ell^+\ell^-\gamma)$ – $M(\ell^+\ell^-)$	97J $$ L3 channel $\chi_{c2}^{}$ -	$E_{ extsf{cm}}^{ extit{ee}} =$ 88–94 Ge $ ightarrow$ J/ψ $+$ γ , with	V $J/\psi ightarrow$		
VALUE $<3.2 \times 10^{-3}$ 80 ACCIARRI 97J deriv $\ell^+\ell^-$ ($\ell=\mu,\ e$). two gaussian shapes	$\frac{\mathit{CL\%}}{90}$ ye this lind The $\mathit{M}(\ell)$ is for χ_{c1}	80 ACCIARRI mit via the decay of $\ell^+\ell^-\gamma$)- $M(\ell^+\ell^-)$ and χ_{c2} .	97J L3 channel χ_{c2} -) mass differen	$E_{ extsf{cm}}^{ extit{ee}} =$ 88–94 Ge $ ightarrow$ J/ψ $+$ γ , with	V $J/\psi ightarrow $ ted with		
VALUE <3.2 × 10 ⁻³ 80 ACCIARRI 97J deriv $\ell^{+}\ell^{-} (\ell = \mu, e).$ two gaussian shapes $\Gamma(\Upsilon(15) X + \Upsilon(25))$	$\frac{CL\%}{90}$ We this limit The $M(\ell)$ of for χ_{c1}	80 ACCIARRI mit via the decay $(1+\ell-\gamma)-M(\ell+\ell-1)$ and χ_{c2} .	97J L3 channel χ_{c2}) mass differe Γ_{25}	$E_{ m cm}^{ee}=88-94~{ m Ge}$ $ ightarrow~J/\psi~+~\gamma$, with ence spectrum is fit	$J/\psi ightarrow ext{ted with}$		
VALUE <3.2 × 10 ⁻³ 80 ACCIARRI 97J deriv $\ell^{+}\ell^{-} (\ell = \mu, e).$ two gaussian shapes $\Gamma(\Upsilon(15) X + \Upsilon(25))$	$\frac{CL\%}{90}$ We this limit The $M(\ell)$ of for χ_{c1}	80 ACCIARRI mit via the decay $(1+\ell-\gamma)-M(\ell+\ell-1)$ and χ_{c2} .	97J L3 channel χ_{c2}) mass differe Γ_{25}	$E_{ m cm}^{ee}=88-94~{ m Ge}$ $ ightarrow~J/\psi~+~\gamma$, with ence spectrum is fit	$J/\psi ightarrow ext{ted with}$		
VALUE $<3.2 \times 10^{-3}$ 80 ACCIARRI 97J deriv $\ell^+\ell^-$ ($\ell=\mu,\ e$). two gaussian shapes	$\frac{CL\%}{90}$ We this ling The $M(\ell)$ of for χ_{c1} $\mathbf{X} + \mathbf{T}(\mathbf{EVTS})$ 6.4 $\mathbf{X} + \mathbf{C}(\mathbf{EVTS})$ $\mathbf{C}(\mathbf{EVTS})$ $\mathbf{C}(\mathbf{C}(\mathbf{EVTS})$ $\mathbf{C}(\mathbf{C}(\mathbf{EVTS})$ $\mathbf{C}(\mathbf{C}(\mathbf{EVTS})$ $\mathbf{C}(\mathbf{C}(\mathbf{C}(\mathbf{EVTS}))$ $\mathbf{C}(\mathbf{C}(\mathbf{C}(\mathbf{C}(\mathbf{C}(\mathbf{C}(\mathbf{C}(\mathbf{C}($	and χ_{c2} . 35) X)/ Γ_{total} $\rho = \gamma$ $\rho $	97J L3 channel χ_{c2}) mass difference Γ_{25} $\frac{T_{ECN}}{R}$ R 96F OPAL	$E_{\text{Cm}}^{ee} = 88-94 \text{ Ge}$ $\rightarrow J/\psi + \gamma$, with ence spectrum is fit $ \sqrt{\Gamma = (\Gamma_{26} + \Gamma_{27} + COMMENT)} $ $ E_{\text{Cm}}^{ee} = 88-94 \text{ Ge} $ et three lowest bound	V $J/\psi ightharpoonup ext{ted with}$ F_{28}/Γ V V V		
$VALUE$ <3.2 × 10 ⁻³ 80 ACCIARRI 97J derive $\ell^+\ell^-$ ($\ell=\mu, e$). two gaussian shapes $\Gamma(\Upsilon(1S) X + \Upsilon(2S))$ $VALUE \text{ (units } 10^{-4})$ 1.0±0.4±0.22 81 ALEXANDER 96F is through its decay in of ±0.2 due to the $\Gamma(\Upsilon(1S) X)/\Gamma_{\text{total}}$	$\frac{CL\%}{90}$ We this ling The $M(\ell)$ of for χ_{c1} $\mathbf{X} + \mathbf{T}(\mathbf{EVTS})$ 6.4 dentify that to e^+e^- production	80 ACCIARRI mit via the decay $(r+\ell-\gamma)-M(\ell+\ell-\gamma)$ and χ_{c2} . 83 X)/ Γ_{total} 81 ALEXANDER ALEXANDER on Γ (which refers and $\mu^+\mu^-$. The on mechanism.	97J L3 channel χ_{c2}) mass difference $\Gamma_{25,0}$ $R = 96F OPAL$ Is to any of the esystematic es	$E_{\rm cm}^{ee} = 88-94 {\rm Ge}$ $\rightarrow J/\psi + \gamma$, with ence spectrum is fit $ \sqrt{\Gamma = (\Gamma_{26} + \Gamma_{27} + COMMENT)} $ $ E_{\rm cm}^{ee} = 88-94 {\rm Ge} $ In three lowest bound error includes an uncorrection.	V $J/\psi \rightarrow \text{ted with}$ F_{28}/Γ V V d states) certainty		
$VALUE$ <3.2 × 10 ⁻³ 80 ACCIARRI 97J derive $\ell^+\ell^-$ ($\ell=\mu, e$). two gaussian shapes $\Gamma(\Upsilon(1S) X + \Upsilon(2S))$ $VALUE \text{ (units } 10^{-4})$ 1.0±0.4±0.22 81 ALEXANDER 96F is through its decay in of ±0.2 due to the $\Gamma(\Upsilon(1S) X)/\Gamma_{\text{total}}$	$\frac{CL\%}{90}$ We this ling The $M(\ell)$ of for χ_{c1} $\mathbf{X} + \mathbf{T}(\mathbf{EVTS})$ 6.4 dentify that to e^+e^- production	80 ACCIARRI mit via the decay $(r+\ell-\gamma)-M(\ell+\ell-\gamma)$ and χ_{c2} . 83 X)/ Γ_{total} 81 ALEXANDER ALEXANDER on Γ (which refers and $\mu^+\mu^-$. The on mechanism.	97J L3 channel χ_{c2}) mass difference $\Gamma_{25,0}$ $R = 96F OPAL$ Is to any of the esystematic es	$E_{\rm cm}^{ee} = 88-94 {\rm Ge}$ $\rightarrow J/\psi + \gamma$, with ence spectrum is fit $ \sqrt{\Gamma = (\Gamma_{26} + \Gamma_{27} + COMMENT)} $ $ E_{\rm cm}^{ee} = 88-94 {\rm Ge} $ In three lowest bound error includes an uncorrection.	V $J/\psi \rightarrow \text{ted with}$ F_{28}/Γ V V d states) certainty		
**NALUE* <3.2 × 10 ⁻³ **NACCIARRI 97J derive $\ell^+\ell^-$ ($\ell=\mu,e$). two gaussian shapes $\Gamma(\Upsilon(1S) \times + \Upsilon(2S))$ **NALUE* (units 10^{-4}) 1.0±0.4±0.22 **NALUE* (units 10^{-4}) through its decay in of ± 0.2 due to the	$\frac{CL\%}{90}$ We this ling The $M(\ell)$ of for χ_{c1} $\mathbf{X} + \mathbf{T}(\mathbf{EVTS})$ 6.4 dentify that to e^+e^- production	80 ACCIARRI mit via the decay $(r+\ell-\gamma)-M(\ell+\ell-\gamma)$ and χ_{c2} . 83 X)/ Γ_{total} 81 ALEXANDER ALEXANDER on Γ (which refers and $\mu^+\mu^-$. The on mechanism.	97J L3 channel χ_{c2}) mass difference $\Gamma_{25,0}$ $R = 96F OPAL$ Is to any of the esystematic es	$E_{\rm cm}^{ee} = 88-94 {\rm Ge}$ $\rightarrow J/\psi + \gamma$, with ence spectrum is fit $ \sqrt{\Gamma = (\Gamma_{26} + \Gamma_{27} + COMMENT)} $ $ E_{\rm cm}^{ee} = 88-94 {\rm Ge} $ In three lowest bound error includes an uncorrection.	V $J/\psi \rightarrow \text{ted with}$ F_{28}/Γ V V d states) certainty		
$VALUE$ <3.2 × 10 ⁻³ 80 ACCIARRI 97J derive $\ell^+\ell^-$ ($\ell=\mu, e$). two gaussian shapes $\Gamma(\Upsilon(1S) X + \Upsilon(2S))$ $VALUE \text{ (units } 10^{-4})$ 1.0±0.4±0.22 81 ALEXANDER 96F is through its decay in of ±0.2 due to the $\Gamma(\Upsilon(1S) X)/\Gamma_{\text{total}}$	$\frac{CL\%}{90}$ We this lire $M(\ell)$ of for χ_{c1} $\mathbf{X} + 7$ $\frac{EVTS}{6.4}$ $\mathbf{dentify the to } e^+e^ \mathbf{production } \frac{CL\%}{95}$	80 ACCIARRI mit via the decay of $\ell^+\ell^-\gamma$)- $M(\ell^+\ell^-)$ and χ_{c2} . 35) X)/ Γ_{total} $\frac{DOCUMENT\ II}{ALEXANDEING ALEXANDEING ALEXAN$	97J L3 channel χ_{c2}) mass difference Γ_{25} 0 TECN R 96F OPAL to any of the expectation of the ex	$E_{\rm cm}^{ee} = 88-94 {\rm Ge}$ $\rightarrow J/\psi + \gamma$, with ence spectrum is fit $/\Gamma = (\Gamma_{26} + \Gamma_{27} + COMMENT)$ $E_{\rm cm}^{ee} = 88-94 {\rm Ge}$ e three lowest bound error includes an unconstruction of $E_{\rm cm}^{ee} = 88-94 {\rm Ge}$ $E_{\rm cm}^{ee} = 88-94 {\rm Ge}$	V $J/\psi \rightarrow \text{ted with}$ F_{28}/Γ V V d states) certainty		
	$\frac{CL\%}{90}$ ye this ling. The $M(\ell)$ of for χ_{c1} : $\frac{EVTS}{6.4}$ dentify that to $e^{+}e^{-}$ production. $\frac{CL\%}{95}$ ch for $\Upsilon(\ell)$	mit via the decay of $\ell^+\ell^-\gamma$)- $M(\ell^+\ell^-)$ and χ_{c2} . 35) X)/ Γ_{total} $\frac{DOCUMENT\ II}{ALEXANDER on \mu^+\mu^-. The on mechanism. \frac{DOCUMENT\ II}{B^2} 82 ACCIARRI (15) through its discontinuous control of \mu^+\mu^-.$	97J L3 channel χ_{c2}) mass difference $\frac{\Gamma_{25}}{N}$ R 96F OPAL to any of the experiment of $\frac{TECN}{N}$ 99F L3 ecay into ℓ^{+}	$E_{\rm cm}^{ee} = 88-94 {\rm Ge}$ $\rightarrow J/\psi + \gamma$, with ence spectrum is fit $/\Gamma = (\Gamma_{26} + \Gamma_{27} + \frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 {\rm Ge}$ e three lowest bound error includes an unconstruction of $E_{\rm cm}^{ee} = 88-94 {\rm Ge}$	V $J/\psi \rightarrow$ ted with Γ_{28}/Γ V d states) certainty Γ_{26}/Γ V		
	$\frac{CL\%}{90}$ ye this ling. The $M(\ell)$ of for χ_{c1} : $\frac{EVTS}{6.4}$ dentify that to $e^{+}e^{-}$ production. $\frac{CL\%}{95}$ ch for $\Upsilon(\ell)$	mit via the decay of $\ell^+\ell^-\gamma$)- $M(\ell^+\ell^-)$ and χ_{c2} . 35) X)/ Γ_{total} $\frac{DOCUMENT\ II}{ALEXANDER on \mu^+\mu^-. The on mechanism. \frac{DOCUMENT\ II}{B^2} 82 ACCIARRI (15) through its discontinuous control of \mu^+\mu^-.$	97J L3 channel χ_{c2}) mass difference $\frac{\Gamma_{25}}{N}$ R 96F OPAL to any of the experiment of $\frac{TECN}{N}$ 99F L3 ecay into ℓ^{+}	$E_{\rm cm}^{ee} = 88-94 {\rm Ge}$ $\rightarrow J/\psi + \gamma$, with ence spectrum is fit $/\Gamma = (\Gamma_{26} + \Gamma_{27} + \frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 {\rm Ge}$ e three lowest bound error includes an unconstruction of $E_{\rm cm}^{ee} = 88-94 {\rm Ge}$	V $J/\psi \rightarrow$ ted with Γ_{28}/Γ V d states) certainty Γ_{26}/Γ V		
$VALUE$ <3.2 × 10 ⁻³ 80 ACCIARRI 97J derive $\ell^+\ell^-$ ($\ell=\mu, e$). two gaussian shapes Γ($\Upsilon(1S)$ X + $\Upsilon(2S)$) $VALUE$ (units 10 ⁻⁴) 1.0±0.4±0.22 81 ALEXANDER 96F in through its decay in of ±0.2 due to the $\Gamma(\Upsilon(1S)$ X)/ Γ_{total} $VALUE$ <4.4 × 10 ⁻⁵ 82 ACCIARRI 99F search $\Gamma(\Upsilon(2S)$ X)/ Γ_{total} $VALUE$ <13.9 × 10 ⁻⁵	$\frac{CL\%}{90}$ We this lir. The $M(\ell)$ of for χ_{c1} $\frac{EVTS}{6.4}$ dentify that to $e^{+}e^{-}$ production $\frac{CL\%}{95}$ ch for $\Upsilon(\ell)$	mit via the decay of $\gamma + \ell - \gamma$ — $M(\ell^+ \ell^-)$ and χ_{c2} . 35) X)/ Γ_{total} DOCUMENT III ALEXANDER and $\mu^+ \mu^-$. The on mechanism. DOCUMENT III 82 ACCIARRI (15) through its design and $\mu^+ \mu^-$ and	97J L3 channel χ_{c2} -) mass difference F25, $TECN$ R 96F OPAL to any of the experiment of t	$E_{\rm cm}^{ee} = 88-94 {\rm Ge}$ $\rightarrow J/\psi + \gamma$, with ence spectrum is fit. $/\Gamma = (\Gamma_{26} + \Gamma_{27} + COMMENT)$ $E_{\rm cm}^{ee} = 88-94 {\rm Ge}$	V $J/\psi \rightarrow$ ted with Γ_{28}/Γ V d states) certainty Γ_{26}/Γ V		
VALUE <3.2 × 10 ⁻³ 80 ACCIARRI 97J derive $\ell^+\ell^-$ ($\ell=\mu$, e). two gaussian shapes $\Gamma(\Upsilon(1S) X + \Upsilon(2S) \times (2S) \times$	$\frac{CL\%}{90}$ We this lir. The $M(\ell)$ of for χ_{c1} $\frac{EVTS}{6.4}$ dentify that to $e^{+}e^{-}$ production $\frac{CL\%}{95}$ ch for $\Upsilon(\ell)$	mit via the decay of $\gamma + \ell - \gamma$ — $M(\ell^+ \ell^-)$ and χ_{c2} . 35) X)/ Γ_{total} DOCUMENT III ALEXANDER and $\mu^+ \mu^-$. The on mechanism. DOCUMENT III 82 ACCIARRI (15) through its design and $\mu^+ \mu^-$ and	97J L3 channel χ_{c2} -) mass difference F25, $TECN$ R 96F OPAL to any of the experiment of t	$E_{\rm cm}^{ee} = 88-94 {\rm Ge}$ $\rightarrow J/\psi + \gamma$, with ence spectrum is fit. $/\Gamma = (\Gamma_{26} + \Gamma_{27} + COMMENT)$ $E_{\rm cm}^{ee} = 88-94 {\rm Ge}$	V $J/\psi \rightarrow$ ted with Γ_{28}/Γ V d states) certainty Γ_{26}/Γ V		

HTTP://PDG.LBL.GOV Page 15 Created: 6/24/2005 17:17

$\Gamma(\Upsilon(3S)X)/\Gamma_{\text{total}}$							Γ ₂₈ /Γ
			DOCUMENT ID		<u>TECN</u>	COMMENT	
$< 9.4 \times 10^{-5}$	95	84	ACCIARRI	97 R	L3	Eee = 88–94 Ge\	/
⁸⁴ ACCIARRI 97R sear	ch for Υ ((3 <i>S</i>)	through its de	ecay in	ito $\ell^+\ell^-$	$^-$ ($\ell=e$ or μ).	
$\Gamma((D^0/\overline{D}^0)X)/\Gamma(h$							₂₉ /Γ ₆
VALUE						COMMENT	
$0.296 \pm 0.019 \pm 0.021$						E _{cm} = 88-94 Ge\	
85 The (D^0/\overline{D}^0) stat corrected result (see	es in AB the erra	REl tum	J 931 are detection of ABREU 93	cted by	y the <i>K</i>	π decay mode. T	his is a
$\Gamma(D^{\pm}X)/\Gamma(\text{hadrons})$	5)		DOCUMENT ID		TECN	COMMENT	₃₀ /Г ₆
0.174±0.016±0.018		86	ADDELL	021	DI DII	$\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ Ge}$	
86 The D^{\pm} states in A result (see the errat	BREU 93 um of AE	l are BRE	e detected by t U 931).	he $K\pi$	π decay	mode. This is a co	orrected
$\Gamma(D^*(2010)^{\pm}X)/\Gamma($ The value is for the value in the value is for the value in the value in the value is for the value in the v			e charge states	indica	ated.	Г	$_{31}/\Gamma_6$
VALUE	EVTS		DOCUMENT ID		TECN		
0.163±0.019 OUR AVE							
$0.155 \pm 0.010 \pm 0.013$						Ecm= 88-94 Ge\	
0.21 ± 0.04	362	88	DECAMP	91 J	ALEP	Eee = 88–94 GeV	/
$87D^*(2010)^\pm$ in ABF new CLEO II measu corrected result (see $88\mathrm{DECAMP}$ 91J repo $/$ $\Gamma(\mathrm{hadrons}) = (5\mathrm{B}(D^0 \to K^-\pi^+) = \mathrm{We}$ have rescaled the II branching ratio B	rement of the error $B(D^*)$ and $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ and $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ are $B(D^*)$ a	f B(tum 2010 34) : 0.34 al re	$(D^{*\pm} \rightarrow D^{0}\tau)$ of ABREU 93 0) $^{+} \rightarrow D^{0}\pi^{-}$ \times 10 ⁻³ . They $4\pm0.44)\%$ and esult of 0.26 \pm	r [±]) = 1). ⁺) B(<i>I</i> y obta B(<i>D</i> * 0.05 t	(68.1 ± 0.00) ined the $(2010)^{+}$	$(K^-\pi^+)$ $(D^*(2010))$ is used. The short of $(E^-\pi^+)$ $(D^*(2010))$ is above number as $(E^-\pi^+)$ $(E^-\pi^+)$ $(E^-\pi^+)$ is used. The short of $(E^-\pi^+)$ is used.	This is a $(10)^{\pm}X$) ssuming $(\pm 4)\%$.
$\Gamma(D_{s1}(2536)^{\pm}X)/\Gamma$	(hadron	s)				Г	Γ_{32}/Γ_{6}
$D_{s1}(2536)^{\pm}$ is a	n expecte	d or	bitally-excited	state	of the \mathcal{L}	θ_s meson.	
VALUE (%)						$\frac{COMMENT}{E_{cm}^{ee} = 88-94 \text{ Ge}}$	
$0.52\pm0.09\pm0.06$	92	89	HEISTER	02в	ALEP	Eee = 88–94 Ge\	/
89 HEISTER 02B recor	struct th	is m	eson in the dec	av mo	des D_{c1}	$(2536)^{\pm} \rightarrow D^{*\pm}$	K^0 and
$D_{s1}(2536)^\pm ightarrow~D^{s}$ the $D_{s1}(2536)$ is sa	*0 K^{\pm} . To turated b	he o	quoted branchi le two measure	ng rati	io assum ay mode	nes that the decay was.	vidth of
$\Gamma(D_{sJ}(2573)^{\pm}X)/\Gamma$	•	,					₃₃ /Г ₆
D_{sJ} (2573) $^{\pm}$ is a <u>VALUE (%)</u>							
$0.83\pm0.29^{f +0.07}_{f -0.13}$						Eee = 88-94 Ge\	/
90 HEISTER 02B record quoted branching radecay width.	nstruct th Itio assum	is m ies t	eson in the declaration	cay mo	ode <i>D_{s2}</i> ay mode	$(2573)^{\pm} \rightarrow D^0 K$ e represents 45% of	±. The the full

HTTP://PDG.LBL.GOV Page 16 Created: 6/24/2005 17:17

$\Gamma(D^{*\prime}(2629)^{\pm}X)/\Gamma(hadrons)$

 Γ_{34}/Γ_{6}

 $D^{*\prime}(2629)^{\pm}$ is a predicted radial excitation of the $D^*(2010)^{\pm}$ meson.

VALUE	DOCUMENTID	ILCIV	COMMENT	
searched for	⁹¹ ABBIENDI	01N OPAL	Eee = 88-94 GeV	
91 ABBIENDI 01N searched for	or the decay mode	D*/(2629)=	$^{\pm}$ \rightarrow $D^{*\pm}\pi^{+}\pi^{-}$ with	

⁹¹ ABBIENDI 01N searched for the decay mode $D^{*\prime}(2629)^{\pm} \rightarrow D^{*\pm}\pi^{+}\pi^{-}$ with $D^{*+} \rightarrow D^{0}\pi^{+}$, and $D^{0} \rightarrow K^{-}\pi^{+}$. They quote a 95% CL limit for $Z \rightarrow D^{*\prime}(2629)^{\pm} \times B(D^{*\prime}(2629)^{+} \rightarrow D^{*+}\pi^{+}\pi^{-}) < 3.1 \times 10^{-3}$.

$\Gamma(B_s^0 X)/\Gamma(hadrons)$

 Γ_{37}/Γ_6

VALUE	DOCUMENT ID	TECN	COMMENT
seen	⁹² ABREU	92м DLPH	E ^{ee} _{cm} = 88–94 GeV
seen	⁹³ ACTON	92N OPAL	<i>E</i> ^{ee} _{cm} = 88−94 GeV
seen	⁹⁴ BUSKULIC	92E ALEP	E ^{ee} _{cm} = 88–94 GeV

- ⁹² ABREU 92M reported value is $\Gamma(B_s^0 X)*B(B_s^0 \to D_s \mu \nu_\mu X)*B(D_s \to \phi \pi)/\Gamma(hadrons)$ = $(18 \pm 8) \times 10^{-5}$.
- ⁹³ ACTON 92N find evidence for B_s^0 production using D_s - ℓ correlations, with $D_s^+ \to \phi \pi^+$ and $K^*(892)K^+$. Assuming R_b from the Standard Model and averaging over the e and μ channels, authors measure the product branching fraction to be $f(\overline{b} \to B_s^0) \times B(B_s^0 \to D_s^- \ell^+ \nu_\ell X) \times B(D_s^- \to \phi \pi^-) = (3.9 \pm 1.1 \pm 0.8) \times 10^{-4}$.
- ⁹⁴ BUSKULIC 92E find evidence for B_s^0 production using D_s - ℓ correlations, with $D_s^+ \to \phi \pi^+$ and $K^*(892)K^+$. Using B($D_s^+ \to \phi \pi^+$) = (2.7 ± 0.7)% and summing up the e and μ channels, the weighted average product branching fraction is measured to be B($\overline{b} \to B_s^0$)×B($B_s^0 \to D_s^- \ell^+ \nu_\ell X$) = 0.040 ± 0.011 $_{-0.012}^{+0.010}$.

$\Gamma(B_c^+X)/\Gamma(hadrons)$

 Γ_{38}/Γ_{6}

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
<u>VALUE</u>	DOCUMENT ID TEC	CNCOMMENT
searched for	95 ACKERSTAFF 980 OP	PAL
searched for	⁹⁶ ABREU 97E DL	PH <i>E^{ee}</i> _{cm} = 88–94 GeV
searched for	⁹⁷ BARATE 97H AL	EP $E_{cm}^{ee} = 88-94 \text{ GeV}$

- 95 ACKERSTAFF 980 searched for the decay modes $B_c \to J/\psi \pi^+$, $J/\psi a_1^+$, and $J/\psi \ell^+ \nu_\ell$, with $J/\psi \to \ell^+ \ell^-$, $\ell = e, \mu$. The number of candidates (background) for the three decay modes is 2 (0.63 ± 0.2) , 0 (1.10 ± 0.22) , and 1 (0.82 ± 0.19) respectively. Interpreting the 2 $B_c \to J/\psi \pi^+$ candidates as signal, they report $\Gamma(B_c^+ X) \times B(B_c \to J/\psi \pi^+)/\Gamma(\text{hadrons}) = (3.8^{+5.0}_{-2.4} \pm 0.5) \times 10^{-5}$. Interpreted as background, the 90% CL bounds are $\Gamma(B_c^+ X) * B(B_c \to J/\psi \pi^+)/\Gamma(\text{hadrons}) < 1.06 \times 10^{-4}$, $\Gamma(B_c^+ X) * B(B_c \to J/\psi a_1^+)/\Gamma(\text{hadrons}) < 5.29 \times 10^{-4}$, $\Gamma(B_c^+ X) * B(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma(\text{hadrons}) < 6.96 \times 10^{-5}$.
- ABREU 97E searched for the decay modes $B_c \to J/\psi \pi^+$, $J/\psi \ell^+ \nu_\ell$, and $J/\psi (3\pi)^+$, with $J/\psi \to \ell^+ \ell^-$, $\ell = e, \mu$. The number of candidates (background) for the three decay modes is 1 (1.7), 0 (0.3), and 1 (2.3) respectively. They report the following 90% CL limits: $\Gamma(B_c^+ X)*B(B_c \to J/\psi \pi^+)/\Gamma(\text{hadrons}) < (1.05-0.84) \times 10^{-4}$, $\Gamma(B_c^+ X)*B(B_c \to J/\psi \ell \nu_\ell)/\Gamma(\text{hadrons}) < (5.8-5.0) \times 10^{-5}$, $\Gamma(B_c^+ X)*B(B_c \to J/\psi (3\pi)^+)/\Gamma(\text{hadrons}) < 1.75 \times 10^{-4}$, where the ranges are due to the predicted B_c lifetime (0.4–1.4) ps.

97 BARATE 97H searched for the decay modes $B_C \to J/\psi \pi^+$ and $J/\psi \ell^+ \nu_\ell$ with $J/\psi \to \ell^+ \ell^-$, $\ell = e,\mu$. The number of candidates (background) for the two decay modes is 0 (0.44) and 2 (0.81) respectively. They report the following 90% CL limits: $\Gamma(B_c^+ X)*B(B_C \to J/\psi \pi^+)/\Gamma(\text{hadrons}) < 3.6 \times 10^{-5}$ and $\Gamma(B_c^+ X)*B(B_C \to J/\psi \ell^+ \nu_\ell)/\Gamma(\text{hadrons}) < 5.2 \times 10^{-5}$.

$\Gamma(B^*X)/[\Gamma(BX)+\Gamma(B^*X)]$

 $\Gamma_{36}/(\Gamma_{35}+\Gamma_{36})$

As the experiments assume different values of the b-baryon contribution, our average should be taken with caution. If we assume a common baryon production fraction of $(11.8 \pm 2.0)\%$ as given in the 2002 edition of this *Review* OUR AVERAGE becomes 0.75 ± 0.04 .

<u>VALUE</u>	EVTS	DOCUMENT ID	TECN	COMMENT
0.75 ±0.04 OUR AVE	RAGE			
$0.760 \pm 0.036 \pm 0.083$		⁹⁸ ACKERSTAFF	97м OPAL	E ^{ee} _{cm} = 88–94 GeV
$0.771 \pm 0.026 \pm 0.070$		⁹⁹ BUSKULIC	96D ALEP	E ^{ee} _{cm} = 88–94 GeV
$0.72 \ \pm 0.03 \ \pm 0.06$		¹⁰⁰ ABREU	95R DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.76\ \pm0.08\ \pm0.06$	1378	¹⁰¹ ACCIARRI	95B L3	$E_{\rm cm}^{\rm ee} = 88-94 \; {\rm GeV}$

 $^{^{98}}$ ACKERSTAFF 97M use an inclusive B reconstruction method and assume a (13.2 \pm 4.1)% b-baryon contribution. The value refers to a b-flavored meson mixture of B_u , B_d , and B_s .

$\Gamma(\text{anomalous } \gamma + \text{hadrons})/\Gamma_{\text{total}}$

 Γ_{39}/Γ

Created: 6/24/2005 17:17

Limits on additional sources of prompt photons beyond expectations for final-state bremsstrahlung.

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$< 3.2 \times 10^{-3}$	95	¹⁰² AKRAWY	90J OPAL	$E_{cm}^{ee} = 88-94 \text{ GeV}$

 102 AKRAWY 90J report $\Gamma(\gamma {
m X}) < 8.2$ MeV at 95%CL. They assume a three-body $\gamma q \overline{q}$ distribution and use E $(\gamma) > 10$ GeV.

 $103\,\mathrm{ACTON}$ 91B looked for isolated photons with $E{>}2\%$ of beam energy (> 0.9 GeV).

$$\Gamma(\mu^+\mu^-\gamma)/\Gamma_{\text{total}}$$
 $VALUE$
 $CL\%$

95

 $CL\%$

95

 $DOCUMENT ID$
 $TECN$
 $COMMENT$
 $COMM$

⁹⁹ BUSKULIC 96D use an inclusive reconstruction of B hadrons and assume a (12.2 \pm 4.3)% b-baryon contribution. The value refers to a b-flavored mixture of B_u , B_d , and B_s .

 $^{^{100}}$ ABREU 95R use an inclusive *B*-reconstruction method and assume a $(10\pm4)\%$ *b*-baryon contribution. The value refers to a *b*-flavored meson mixture of B_{u} , B_{d} , and B_{s} .

 $^{^{101}}$ ACCIARRI 95B assume a 9.4% *b*-baryon contribution. The value refers to a *b*-flavored mixture of B_u , B_d , and B_s .

 $^{^{104}}$ ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).

$\Gamma(au^+ au^-\gamma)/\Gamma_{ m total}$						Γ ₄₂ /Γ
<i>VALUE</i> <7.3 × 10 ^{−4}	<u>CL%</u>	105	DOCUMENT ID		<u>TECN</u>	COMMENT
						$E_{cm}^{ee} = 91.2 \; GeV$
105 ACTON 91B looke	d for isola	ted p	photons with E	>2%	of beam	n energy (> 0.9 GeV).
$\Gamma(\ell^+\ell^-\gamma\gamma)/\Gamma_{ ext{total}}$ The value is the	sum over	· l =	е. и. т.			Γ ₄₃ /Γ
VALUE	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
VALUE <6.8 × 10⁻⁶	95	106	ACTON	93E	OPAL	E ^{ee} _{cm} = 88–94 GeV
$^{106}\mathrm{For}\;m_{\gamma\gamma}=60\pm 9$	5 GeV.					
$\Gamma(q \overline{q} \gamma \gamma) / \Gamma_{total}$						Γ ₄₄ /Γ
VALUE	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
$< 5.5 \times 10^{-6}$	95	107	ACTON	93E	OPAL	$\frac{COMMENT}{E_{CM}^{ee}} = 88-94 \text{ GeV}$
107 For $m_{\gamma\gamma}=$ 60 \pm 5	ō GeV.					
$\Gamma(u\overline{ u}\gamma\gamma)/\Gamma_{total}$						Γ ₄₅ /Γ
VALUE	CL%		DOCUMENT ID		TECN	COMMENT
$< 3.1 \times 10^{-6}$	95	108	ACTON	93E	OPAL	COMMENT Eee = 88-94 GeV
108 For $m_{\gamma\gamma}=$ 60 \pm 9						
$\Gamma(e^{\pm}\mu^{\mp})/\Gamma(e^{+}e^{-}$ Test of lepton far states indicated.		nber	conservation.	The v	alue is	Γ_{46}/Γ_{1} for the sum of the charge
<u>VALUE</u>	CL%	DO	CUMENT ID	TE	CN CO	OMMENT
<0.07	90	AL	BAJAR 89	9 U <i>A</i>	\1 E	<i>p</i> p cm= 546,630 GeV
states indicated.						Γ_{46}/Γ for the sum of the charge
VALUE			DOCUMENT ID			
_						$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$
						$E_{cm}^{ee} = 88-94 \text{ GeV}$ $E_{cm}^{ee} = 88-94 \text{ GeV}$
$<0.6 \times 10^{-5}$ $<2.6 \times 10^{-5}$	95		ΔΙΙΚΙΔΙΝΙ			F 55 - 88-44 (-61/
<2.6 × 10 3	0.5		ADRIANI			•
	95		DECAMP			Eee = 88–94 GeV
		nber	DECAMP	92	ALEP	$E_{\text{cm}}^{ee} = 88-94 \text{ GeV}$
		nber	DECAMP	92 The v	ALEP	$E_{\rm cm}^{ee}=88$ –94 GeV Γ_{47}/Γ_{60} for the sum of the charge
Test of lepton fa states indicated.	amily nun	nber	DECAMP	92 The v	ALEP value is	$E_{\rm cm}^{ee}=88$ –94 GeV Γ_{47}/Γ_{60} for the sum of the charge
Test of lepton fastates indicated. VALUE $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-6}$	amily nun	nber	DECAMP conservation.	92 The v	ALEP value is <u>TECN</u> DLPH	$E_{\text{cm}}^{ee} = 88-94 \text{ GeV}$ Γ_{47}/Γ for the sum of the charge
Test of lepton fa states indicated. $\frac{VALUE}{<2.2\times10^{-5}}$	amily nun <u>CL%</u> 95	nber	DECAMP conservation. DOCUMENT ID ABREU	92 The v 97C 95W	value is TECN DLPH OPAL	$E_{\text{cm}}^{ee} = 88-94 \text{ GeV}$ Γ_{47}/Γ for the sum of the charge $\frac{COMMENT}{E_{\text{cm}}^{ee}} = 88-94 \text{ GeV}$

Created: 6/24/2005 17:17

 $\Gamma(\mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$ Γ_{48}/Γ

Test of lepton family number conservation. The value is for the sum of the charge states indicated.

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
$< 1.2 \times 10^{-5}$	95	ABREU	97C DLPH	E ^{ee} _{cm} = 88–94 GeV
$< 1.7 \times 10^{-5}$	95	AKERS	95W OPAL	E ^{ee} _{cm} = 88–94 GeV
$< 1.9 \times 10^{-5}$	95	ADRIANI	93ı L3	E ^{ee} _{cm} = 88–94 GeV
$< 1.0 \times 10^{-4}$	95	DECAMP	92 ALEP	$E_{\rm cm}^{\rm ee} = 88-94 \; {\rm GeV}$

 $\Gamma(pe)/\Gamma_{\text{total}}$ Γ_{49}/Γ

Test of baryon number and lepton number conservations. Charge conjugate states are implied.

<u>VALUE</u>	CL%	<u>DOCUMENT ID</u>		TECN	COMMENT
$< 1.8 \times 10^{-6}$	95	¹⁰⁹ ABBIENDI	991	OPAL	$E_{\rm cm}^{\rm ee} = 88 - 94 {\rm GeV}$

¹⁰⁹ ABBIENDI 991 give the 95%CL limit on the partial width $\Gamma(Z^0 \to pe)$ < 4.6 KeV and we have transformed it into a branching ratio.

 $\Gamma(p\mu)/\Gamma_{\text{total}}$ Γ_{50}/Γ

Test of baryon number and lepton number conservations. Charge conjugate states are implied.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 1.8 \times 10^{-6}$	95	¹¹⁰ ABBIENDI	991	OPAL	$E_{\rm cm}^{\rm ee} = 88 - 94 {\rm GeV}$

¹¹⁰ ABBIENDI 99I give the 95%CL limit on the partial width $\Gamma(Z^0 \to p\mu)$ < 4.4 KeV and we have transformed it into a branching ratio.

AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAY

Summed over particle and antiparticle, when appropriate.

For topical interest the 95% CL limits on production rates, N, of pentaquarks per Z decay from a search by the ALEPH collaboration (SCHAEL 04) are given below. (See also the baryons section).

$$\begin{array}{l} {\sf N}_{\varTheta(1540)^+} \times {\sf B}(\varTheta(1540)^+ \to p\, {\sf K}_{\sf S}^0) < \ 6.2 \times 10^{-4} \\ {\sf N}_{\varTheta(1860)^{--}} \times {\sf B}(\varPhi(1860)^{--} \to \Xi^-\pi^-) < \ 4.5 \times 10^{-4} \\ {\sf N}_{\varPhi(1860)^0} \times {\sf B}(\varPhi(1860)^0 \to \Xi^-\pi^+) < \ 8.9 \times 10^{-4} \\ {\sf N}_{\varTheta_c(3100)} \times {\sf B}(\varTheta_c(3100) \to D^{*-}p) < \ 6.3 \times 10^{-4} \\ {\sf N}_{\varTheta_c(3100)} \times {\sf B}(\varTheta_c(3100) \to D^-p) < \ 31 \times 10^{-4} \end{array}$$

/	۸ı	١
١	$^{\prime\prime}\gamma$	1

VALUE	DOCUMENT ID	TECN	COMMENT
$20.97 \pm 0.02 \pm 1.15$	ACKERSTAFF 98A	OPAL	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$

$\langle N_{\pi^{\pm}} angle$

VALUE	DOCUMENT ID		TECN	COMMENT
17.03 ±0.16 OUR AVERAGE				
17.007 ± 0.209	ABE	04C S	SLD	$E_{cm}^{ee} = 91.2 \; GeV$
$17.26 \pm 0.10 \pm 0.88$	ABREU	98L D	OLPH	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$
17.04 ± 0.31	BARATE	98V A	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$
17.05 ± 0.43	AKERS	94P C	OPAL	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$

HTTP://PDG.LBL.GOV Page 20 Created: 6/24/2005 17:17

/	A I	١
1	$V_{\pi 0}$	7

VALUE	DOCUMENT ID		TECN	COMMENT
9.76±0.26 OUR AVERAGE				
$9.55 \pm 0.06 \pm 0.75$	ACKERSTAFF	98A	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$9.63 \pm 0.13 \pm 0.63$	BARATE	97J	ALEP	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$
$9.90\pm0.02\pm0.33$	ACCIARRI	96	L3	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
$9.2 \pm 0.2 \pm 1.0$	ADAM	96	DLPH	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$

$\langle N_{\eta} \rangle$

VALUE	DOCUMENT ID	TECN	COMMENT
1.01±0.08 OUR AVERAGE	Error includes scale fact	or of 1.3.	See the ideogram below.
$1.20\!\pm\!0.04\!\pm\!0.11$	HEISTER 0	2c ALEP	$E_{cm}^{ee} = 91.2 \; GeV$
$0.97\!\pm\!0.03\!\pm\!0.11$	ACKERSTAFF 9	98A OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
0.93 + 0.01 + 0.09	ACCIARRI 9	96 I.3	$F_{\rm cm}^{\rm ee} = 91.2 {\rm GeV}$

WEIGHTED AVERAGE 1.01±0.08 (Error scaled by 1.3)

 $\langle N_{
ho^{\pm}}
angle$

VALUEDOCUMENT IDTECNCOMMENT2.40 \pm 0.06 \pm 0.43ACKERSTAFF 98A OPAL $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$

 $\langle N_{\rho^0} \rangle$

<u>VALUE</u>	<u>DOCUMENT ID</u>	TECN	COMMENT
1.24±0.10 OUR AVERAGE	Error includes scale fa	ctor of 1.1.	
1.19 ± 0.10	ABREU	99」DLPH	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$
$1.45 \pm 0.06 \pm 0.20$	BUSKULIC	96H ALEP	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$

HTTP://PDG.LBL.GOV

Page 21

$\langle N_\omega angle$				
VALUE	DOCUMENT ID		TECN	COMMENT
1.02±0.06 OUR AVERAGE				
$1.00 \pm 0.03 \pm 0.06$				$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$
$1.04\pm0.04\pm0.14$	ACKERSTAFF	98A	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$1.17 \pm 0.09 \pm 0.15$	ACCIARRI	97 D	L3	E _{cm} = 91.2 GeV
$\langle N_{\eta'} angle$				
VALUE	DOCUMENT ID			
0.17 ± 0.05 OUR AVERAGE	Error includes scale f			
$0.14 \pm 0.01 \pm 0.02$				$E_{cm}^{ee} = 91.2 \; GeV$
0.25 ± 0.04	¹¹¹ ACCIARRI	97 D	L3	$E_{cm}^{ee} = 91.2 \; GeV$
• • • We do not use the follow	ng data for averages,	fits,	limits,	etc. • • •
$0.068\!\pm\!0.018\!\pm\!0.016$	¹¹² BUSKULIC	92 D	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$
111 ACCIARRI 97D obtain this value and $\eta' \to ~\rho^0 \gamma.$ 112 BUSKULIC 92D obtain this		he tv	vo decay	$\eta' o \pi^+ \pi^- \eta$
BOSKOLIC 92D Obtain tills	value for $x > 0.1$.			
$\langle N_{f_0(980)} \rangle$				
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
• • •				
VALUE				COMMENT Eee = 91.2 GeV
VALUE 0.147±0.011 OUR AVERAGE	ABREU	99J	DLPH	
<u>VALUE</u> 0.147±0.011 OUR AVERAGE 0.164±0.021	ABREU	99J	DLPH	E ^{ee} _{cm} = 91.2 GeV
VALUE 0.147±0.011 OUR AVERAGE 0.164±0.021 0.141±0.007±0.011	ABREU	99J 98Q	DLPH OPAL	E ^{ee} _{cm} = 91.2 GeV
$VALUE$ 0.147±0.011 OUR AVERAGE 0.164±0.021 0.141±0.007±0.011 $\langle N_{a_0(980)^{\pm}} \rangle$	ABREU ACKERSTAFF DOCUMENT ID	99J 98Q	DLPH OPAL	E ^{ee} _{cm} = 91.2 GeV E ^{ee} _{cm} = 91.2 GeV
0.147±0.011 OUR AVERAGE 0.164±0.021 0.141±0.007±0.011 (N _{a₀(980)} ±) VALUE	ABREU ACKERSTAFF DOCUMENT ID	99J 98Q	DLPH OPAL	$E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$ $E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$
$VALUE$ 0.147±0.011 OUR AVERAGE 0.164±0.021 0.141±0.007±0.011 $\langle N_{a_0(980)}^{} \pm \rangle$ $VALUE$ 0.27±0.04±0.10 $\langle N_{\phi} \rangle$ $VALUE$	ABREU ACKERSTAFF DOCUMENT ID ACKERSTAFF	99J 98Q 98A	DLPH OPAL <u>TECN</u> OPAL	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$ $E_{ m cm}^{\it ee}=91.2~{ m GeV}$ $\frac{\it COMMENT}{\it Ecm}=91.2~{ m GeV}$
$VALUE$ 0.147±0.011 OUR AVERAGE 0.164±0.021 0.141±0.007±0.011 $\langle N_{a_0(980)^{\pm}} \rangle$ $VALUE$ 0.27±0.04±0.10 $\langle N_{\phi} \rangle$ $VALUE$ 0.098±0.006 OUR AVERAGE	ABREU ACKERSTAFF DOCUMENT ID ACKERSTAFF DOCUMENT ID Error includes scale f	99J 98Q 98A	DLPH OPAL TECN OPAL TECN r of 2.0.	$E_{ m cm}^{ee}=91.2~{ m GeV}$ $E_{ m cm}^{ee}=91.2~{ m GeV}$ $\frac{COMMENT}{E_{ m cm}^{ee}}=91.2~{ m GeV}$ $\frac{COMMENT}{{ m See}}$ See the ideogram below.
$VALUE$ 0.147±0.011 OUR AVERAGE 0.164±0.021 0.141±0.007±0.011 $\langle N_{a_0(980)}^{} \pm \rangle$ $VALUE$ 0.27±0.04±0.10 $\langle N_{\phi} \rangle$ $VALUE$ 0.098±0.006 OUR AVERAGE 0.105±0.008	ABREU ACKERSTAFF DOCUMENT ID ACKERSTAFF DOCUMENT ID Error includes scale f	99J 98Q 98A 98A	DLPH OPAL TECN OPAL TECN r of 2.0. SLD	$E_{ m cm}^{ee}=91.2~{ m GeV}$ $E_{ m cm}^{ee}=91.2~{ m GeV}$ $\frac{COMMENT}{E_{ m cm}^{ee}}=91.2~{ m GeV}$ $\frac{COMMENT}{{ m See}~{ m the}~{ m ideogram}~{ m below}.}$ $E_{ m cm}^{ee}=91.2~{ m GeV}$
$VALUE$ 0.147±0.011 OUR AVERAGE 0.164±0.021 0.141±0.007±0.011 $\langle N_{a_0(980)^{\pm}} \rangle$ $VALUE$ 0.27±0.04±0.10 $\langle N_{\phi} \rangle$ $VALUE$ 0.098±0.006 OUR AVERAGE 0.105±0.008 0.091±0.002±0.003	ABREU ACKERSTAFF DOCUMENT ID ACKERSTAFF DOCUMENT ID Error includes scale f ABE ACKERSTAFF	99J 98Q 98A facto 99E 98Q	DLPH OPAL TECN OPAL TECN r of 2.0. SLD OPAL	$E_{ m cm}^{ee}=91.2~{ m GeV}$ $E_{ m cm}^{ee}=91.2~{ m GeV}$ $\frac{COMMENT}{E_{ m cm}^{ee}}=91.2~{ m GeV}$ $\frac{COMMENT}{E_{ m cm}^{ee}}=91.2~{ m GeV}$ $E_{ m cm}^{ee}=91.2~{ m GeV}$ $E_{ m cm}^{ee}=91.2~{ m GeV}$
$VALUE$ 0.147±0.011 OUR AVERAGE 0.164±0.021 0.141±0.007±0.011 $\langle N_{a_0(980)}^{} \pm \rangle$ $VALUE$ 0.27±0.04±0.10 $\langle N_{\phi} \rangle$ $VALUE$ 0.098±0.006 OUR AVERAGE 0.105±0.008	ABREU ACKERSTAFF DOCUMENT ID ACKERSTAFF DOCUMENT ID Error includes scale f ABE ACKERSTAFF ABREU	99J 98Q 98A 98A 99E 98Q 96U	DLPH OPAL TECN OPAL r of 2.0. SLD OPAL DLPH	$E_{ m cm}^{ee}=91.2~{ m GeV}$ $E_{ m cm}^{ee}=91.2~{ m GeV}$ $\frac{COMMENT}{E_{ m cm}^{ee}}=91.2~{ m GeV}$ $\frac{COMMENT}{{ m See}~{ m the}~{ m ideogram}~{ m below}.}$ $E_{ m cm}^{ee}=91.2~{ m GeV}$

$\langle N_{f_2(1270)} \rangle$

 0.012 ± 0.006

\'\\tau_1(1270)/			
VALUE	DOCUMENT ID	TECN	COMMENT
0.169±0.025 OUR AVERAGE	Error includes scale	factor of 1.4	
0.214 ± 0.038	ABREU	99J DLPH	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
$0.155 \pm 0.011 \pm 0.018$	ACKERSTAFF	98Q OPAL	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
$\langle N_{f_1(1285)} \rangle$			
VALUE	DOCUMENT ID	TECN	COMMENT
0.165±0.051	¹¹³ ABDALLAH	03н DLPH	$E_{cm}^{ee} = 91.2 \; GeV$
113 ABDALLAH 03H assume a	$K\overline{K}\pi$ branching ratio	o of (9.0 \pm 0	.4)%.
$\langle N_{f_1(1420)} \rangle$			
VALUE	DOCUMENT ID	TECN	<u>COMMENT</u>
0.056±0.012	114 ABDALLAH		
$^{114}\mathrm{ABDALLAH}$ 03H assume a	$K\overline{K}\pi$ branching ratio	o of 100%.	

DOCUMENT ID

ABREU

TECN COMMENT

99Ј DLPH $E_{\mathsf{cm}}^{ee} = 91.2 \; \mathsf{GeV}$

$\langle {\rm N}_{\rm K^{\pm}} \rangle$

VALUE	DOCUMENT ID		ECN	COMMENT
2.24 \pm 0.04 OUR AVERAGE				
$2.203\!\pm\!0.071$	ABE	04C S	LD	$E_{cm}^{ee} = 91.2 \; GeV$
$2.21\ \pm0.05\ \pm0.05$	ABREU	98L D)LPH	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
2.26 ± 0.12	BARATE	98V A	LEP	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
2.42 ± 0.13	AKERS	94P O	PAL	E ^{ee} _{cm} = 91.2 GeV

$\langle N_{K^0} \rangle$

VALUE	DOCUMENT ID	IECN	COMMENT
2.039±0.025 OUR AVERAGE	Error includes scale	factor of 1.3	See the ideogram below.
$2.093\!\pm\!0.004\!\pm\!0.029$	BARATE	000 ALEP	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
2.01 ± 0.08	ABE	99E SLD	$E_{cm}^{ee} = 91.2 \; GeV$
$2.024 \pm 0.006 \pm 0.042$	ACCIARRI	97L L3	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
$1.962\!\pm\!0.022\!\pm\!0.056$	ABREU	95L DLPH	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
$1.99 \pm 0.01 \pm 0.04$	AKERS	95∪ OPAL	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$

WEIGHTED AVERAGE 2.039±0.025 (Error scaled by 1.3)

$\langle N_{K^*(892)^{\pm}} \rangle$

<u>VALUE</u>	DOCUMENT ID	TEC	N <u>COMMENT</u>
0.72 ± 0.05 OUR AVERAGE			
$0.712 \pm 0.031 \pm 0.059$	ABREU	95L DLF	PH <i>E</i> ^{ee} _{cm} = 91.2 GeV
$0.72 \pm 0.02 \pm 0.08$	ACTON	93 OP/	$AL E_{cm}^{ee} = 91.2 \text{ GeV}$

$\langle N_{K^*(892)^0} \rangle$

DOCUMENT ID	TECN	COMMENT
ABE	99E SLD	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$
ACKERSTAFF	97s OPAL	$E_{ m cm}^{ee} = 91.2 \; { m GeV}$
ABREU	96∪ DLPH	$E_{ m cm}^{ m ee} = 91.2~{ m GeV}$
BUSKULIC	96H ALEP	$E_{ m cm}^{ m ee}=$ 91.2 GeV
ABREU	93 DLPH	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
	ABE ACKERSTAFF ABREU BUSKULIC	ABE 99E SLD ACKERSTAFF 97S OPAL ABREU 96U DLPH BUSKULIC 96H ALEP

$\langle N_{K_2^*(1430)} \rangle$

VALUEDOCUMENT IDTECNCOMMENT $\mathbf{0.073 \pm 0.023}$ ABREU99JDLPH $E^{ee}_{cm} = 91.2 \text{ GeV}$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

0.19 ± 0.04 ± 0.06 115 AKERS

95X OPAL E_{cm}^{ee} = 91.2 GeV

Created: 6/24/2005 17:17

$\langle N_{D^{\pm}} \rangle$

VALUEDOCUMENT IDTECNCOMMENT 0.187 ± 0.020 OUR AVERAGEError includes scale factor of 1.5. See the ideogram below. $0.170 \pm 0.009 \pm 0.014$ ALEXANDER 96R OPAL $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$ $0.251 \pm 0.026 \pm 0.025$ BUSKULIC 94J ALEP $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$ $0.199 \pm 0.019 \pm 0.024$ 116 ABREU 93I DLPH $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$ 116 See ABREU 95 (erratum).

HTTP://PDG.LBL.GOV

Page 25

 $^{^{115}\,\}mathrm{AKERS}$ 95X obtain this value for x< 0.3.

$\langle N_{D^0} \rangle$					
VALUE		DOCUMENT ID		TECN	COMMENT
0.462±0.026 OUR AVERAGE		ALEVANDED	065	ODAL	F66 01 0 C V
$0.465 \pm 0.017 \pm 0.027$					$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$
$0.518 \pm 0.052 \pm 0.035$	117	BUSKULIC ABREU			$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$
$0.403 \pm 0.038 \pm 0.044$		ADREU	931	DLPH	E _{cm} = 91.2 GeV
¹¹⁷ See ABREU 95 (erratum).					
$\langle N_{D_s^{\pm}} \rangle$					
VALUE		DOCUMENT ID		TECN	COMMENT
$0.131 \pm 0.010 \pm 0.018$		ALEXANDER	96 R	OPAL	$E_{\rm cm}^{\rm ee} = 91.2~{\rm GeV}$
$\langle N_{D^*(2010)^{\pm}} \rangle$					
VALUE		DOCUMENT ID		TECN	COMMENT
0.183 ± 0.008 OUR AVERAGE					
$0.1854 \pm 0.0041 \pm 0.0091$	110				$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$
$0.187 \pm 0.015 \pm 0.013$	110				$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$
$0.171 \pm 0.012 \pm 0.016$		_			E ^{ee} _{cm} = 91.2 GeV
118 ACKERSTAFF 98E systema branching ratios B($D^{*+} \rightarrow$	tic $e^{D^0\pi}$	error includes as $^+$) $=$ 0.683 \pm 0.	n un .014 a	certainty and B(<i>D</i>	κ of ± 0.0069 due to the $0 ightarrow K^-\pi^+) = 0.0383 \pm 0.000$
0.0012.		,		`	,
119 See ABREU 95 (erratum).					
¹¹⁹ See ABREU 95 (erratum). $\left\langle N_{D_{s1}(2536)^{+}} \right\rangle$		DOCUMENT ID		TECN	COMMENT
119 See ABREU 95 (erratum). $ \langle N_{D_{s1}(2536)^{+}} \rangle $ $ \underline{VALUE \text{ (units } 10^{-3}\text{)}} $		DOCUMENT ID			
¹¹⁹ See ABREU 95 (erratum). $\left\langle N_{D_{s1}(2536)^{+}} \right\rangle$	ing d	ata for averages	, fits	limits,	
119 See ABREU 95 (erratum). $ \langle N_{D_{s1}(2536)^{+}} \rangle $ $ \underline{VALUE \text{ (units } 10^{-3}\text{)}} $ • • • We do not use the following $2.9^{+0.7}_{-0.6} \pm 0.2$	ing d	ata for averages	fits 97W	limits,	etc. • • • E ^{ee} _{cm} = 91.2 GeV
119 See ABREU 95 (erratum). $ \langle N_{D_{s1}(2536)^{+}} \rangle $ $ \underline{VALUE \text{ (units } 10^{-3}\text{)}} $ • • • We do not use the following statements of the second se	ing d 120 :his v	ata for averages ACKERSTAFF alue for $x > 0.6$	fits 97W	limits,	etc. • • • E ^{ee} _{cm} = 91.2 GeV
119 See ABREU 95 (erratum). $\langle N_{D_{s1}(2536)} + \rangle$ VALUE (units 10^{-3}) • • • We do not use the following $2.9^{+0.7}_{-0.6} \pm 0.2$ 120 ACKERSTAFF 97W obtain the width is saturated by the D^{*}	120 his v	ata for averages ACKERSTAFF alue for $x > 0.6$ nal states.	97W	OPAL with the	etc. \bullet \bullet \bullet $E_{CM}^{ee} = 91.2 \; GeV$ assumption that its decay
119 See ABREU 95 (erratum). $\langle N_{D_{s1}(2536)} + \rangle$ VALUE (units 10^{-3}) • • • We do not use the following $2.9^{+0.7}_{-0.6} \pm 0.2$ 120 ACKERSTAFF 97W obtain the width is saturated by the D^{*}	120 his v	ata for averages ACKERSTAFF alue for $x > 0.6$ nal states.	97W	OPAL with the	etc. \bullet \bullet \bullet $E_{CM}^{ee} = 91.2 \; GeV$ assumption that its decay
119 See ABREU 95 (erratum). $\langle N_{D_{s1}(2536)} + \rangle$ VALUE (units 10^{-3}) • • • We do not use the following $2.9^{+0.7}_{-0.6} \pm 0.2$ 120 ACKERSTAFF 97W obtain the width is saturated by the D^{*}	ing d 120 his v K fi	ata for averages ACKERSTAFF alue for x> 0.6 nal states. DOCUMENT ID	97W and	OPAL with the	etc. • • • E ^{ee} _{cm} = 91.2 GeV
119 See ABREU 95 (erratum). ⟨N _{D_{\$1}(2536)+⟩ VALUE (units 10⁻³) • • • We do not use the following 2.9^{+0.7}_{-0.6}±0.2 120 ACKERSTAFF 97W obtain the width is saturated by the D³ ⟨N_{B*}⟩ VALUE}	ing d 120 this v * <i>K</i> fi	ata for averages ACKERSTAFF alue for x> 0.6 nal states. DOCUMENT ID ABREU	97W and v	OPAL with the	etc. \bullet \bullet \bullet $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ assumption that its decay $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$
119 See ABREU 95 (erratum). ⟨N _{D_{s1}(2536)+⟩} VALUE (units 10 ⁻³) • • • We do not use the following 2.9 ^{+0.7} _{-0.6} ±0.2 120 ACKERSTAFF 97W obtain the width is saturated by the D ³ ⟨N _{B*} ⟩ VALUE 0.28 ±0.01 ±0.03 121 ABREU 95R quote this value	ing d 120 this v * <i>K</i> fi	ata for averages ACKERSTAFF alue for x> 0.6 nal states. DOCUMENT ID ABREU	97W and v	OPAL with the	etc. \bullet \bullet \bullet $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ assumption that its decay $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$
119 See ABREU 95 (erratum). $ \langle N_{D_{s1}(2536)} + \rangle $ $ \frac{VALUE \text{ (units } 10^{-3})}{\bullet \bullet \bullet \text{ We do not use the following }} $ $ 2.9^{+0.7}_{-0.6} \pm 0.2 $ $ 120 \text{ ACKERSTAFF 97W obtain the width is saturated by the } D^{*} $ $ \langle N_{B^*} \rangle $ $ \frac{VALUE}{\text{0.28 } \pm 0.01 } \pm 0.03 $ $ 121 \text{ ABREU 95R quote this value} $ $ \langle N_{J/\psi(1S)} \rangle $	ing ding ding ding this view of the second s	ata for averages ACKERSTAFF alue for x> 0.6 nal states. DOCUMENT ID ABREU a flavor-average	97W and v	OPAL with the TECN DLPH cited sta	etc. • • • • $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ assumption that its decay $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ te.
119 See ABREU 95 (erratum). ⟨N _{Ds1} (2536)+⟩ VALUE (units 10 ⁻³) • • • We do not use the following 2.9 + 0.7 ± 0.2 120 ACKERSTAFF 97W obtain to width is saturated by the D ³ ⟨N _{B*} ⟩ VALUE 0.28 ±0.01 ±0.03 121 ABREU 95R quote this value ⟨N _J /ψ(15)⟩ VALUE	ing ding ding ding this view of the second s	ata for averages ACKERSTAFF alue for x> 0.6 nal states. DOCUMENT ID ABREU a flavor-average	97W and v	TECN TECN TECN	etc. • • • • $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ assumption that its decay $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ te.
119 See ABREU 95 (erratum). ⟨N _{Ds1} (2536)+⟩ VALUE (units 10 ⁻³) • • • We do not use the following 2.9 + 0.7 ± 0.2 120 ACKERSTAFF 97W obtain to width is saturated by the D ³ ⟨N _{B*} ⟩ VALUE 0.28 ±0.01 ±0.03 121 ABREU 95R quote this value ⟨N _J /ψ(15)⟩ VALUE 0.0056±0.0003±0.0004	120 this v k K fi 121 e for	ata for averages ACKERSTAFF alue for x> 0.6 nal states. DOCUMENT ID ABREU a flavor-average DOCUMENT ID ALEXANDER	97W 97W and v 95R ed exc	TECN DLPH cited sta	etc. • • • • $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ assumption that its decay $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ te. $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$
119 See ABREU 95 (erratum). ⟨N _{D_{s1}} (2536)+⟩ VALUE (units 10 ⁻³) • • • We do not use the following 2.9 ^{+0.7} _{-0.6} ±0.2 120 ACKERSTAFF 97W obtain the width is saturated by the D ³ ⟨N _{B*} ⟩ VALUE 0.28 ±0.01 ±0.03 121 ABREU 95R quote this value ⟨N _J /ψ(1S)⟩ VALUE 0.0056±0.0003±0.0004 122 ALEXANDER 96B identify J	120 this v k K fi 121 e for	ata for averages ACKERSTAFF alue for x> 0.6 nal states. DOCUMENT ID ABREU a flavor-average DOCUMENT ID ALEXANDER	97W 97W and v 95R ed exc	TECN DLPH cited sta	etc. • • • • $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ assumption that its decay $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ te. $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$
119 See ABREU 95 (erratum). ⟨N _{Ds1} (2536)+⟩ VALUE (units 10 ⁻³) • • • We do not use the following 2.9 + 0.7 ± 0.2 120 ACKERSTAFF 97W obtain to width is saturated by the D ³ ⟨N _{B*} ⟩ VALUE 0.28 ±0.01 ±0.03 121 ABREU 95R quote this value ⟨N _J /ψ(15)⟩ VALUE 0.0056±0.0003±0.0004	ing d. 120 this v *K find 121 e for 122 $I/\psi(1$	ata for averages ACKERSTAFF alue for x> 0.6 nal states. DOCUMENT ID ABREU a flavor-average DOCUMENT ID ALEXANDER LS) from the de	97W and v 95R ed exc	TECN DLPH cited sta	etc. • • • • • $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ assumption that its decay $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ te. $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ ton pairs.
119 See ABREU 95 (erratum). ⟨N _{D_{s1}} (2536)+⟩ VALUE (units 10 ⁻³) • • • We do not use the following 2.9 ^{+0.7} _{-0.6} ±0.2 120 ACKERSTAFF 97W obtain the width is saturated by the D ³ ⟨N _{B*} ⟩ VALUE 0.28 ±0.01 ±0.03 121 ABREU 95R quote this value ⟨N _J /ψ(1S)⟩ VALUE 0.0056±0.0003±0.0004 122 ALEXANDER 96B identify J	ing d. 120 this v $*K$ find 121 e for 122 $I/\psi(1)$	ata for averages ACKERSTAFF alue for x> 0.6 nal states. DOCUMENT ID ABREU a flavor-average DOCUMENT ID ALEXANDER LS) from the de	97W and v 95R ed exc	TECN OPAL TECN OPAL TECN TECN TECN TECN	etc. • • • • $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ assumption that its decay $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ te. $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$

(N	\langle
---	---	-----------

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
1.046±0.026 OUR AVERAGE				
1.054 ± 0.035	ABE	0 4C	SLD	$E_{cm}^{ee} = 91.2 \; GeV$
$1.08 \pm 0.04 \pm 0.03$	ABREU	98L	DLPH	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
1.00 ± 0.07	BARATE	98V	ALEP	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
$0.92\ \pm0.11$	AKERS	94 P	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$

$\langle N_{\Delta(1232)^{++}} \rangle$

VALUE	DOCUMENT ID	IECN	COMMENT	
0.087±0.033 OUR AVERAGE	Error includes scale	factor of 2.4		
$0.079 \pm 0.009 \pm 0.011$	ABREU	95W DLPH	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$	
$0.22 \pm 0.04 \pm 0.04$	ALEXANDER	95D OPAL	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	

$\langle N_A \rangle$

VALUE	DOCUMENT ID	TECN	COMMENT
0.388±0.009 OUR AVERAGE	Error includes scale	factor of 1.7	. See the ideogram below.
$0.404 \pm 0.002 \pm 0.007$	BARATE	000 ALEP	$E_{ m cm}^{ee} = 91.2 \; { m GeV}$
0.395 ± 0.022	ABE	99E SLD	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$0.364 \pm 0.004 \pm 0.017$	ACCIARRI	97L L3	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$0.374 \pm 0.002 \pm 0.010$	ALEXANDER	97D OPAL	$E_{ m cm}^{ee} = 91.2 \; { m GeV}$
$0.357 \pm 0.003 \pm 0.017$	ABREU	93L DLPH	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$

$\langle N_{\Lambda(1520)} \rangle$				
VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT	
0.0224±0.0027 OUR AVERA				
$0.029 \pm 0.005 \pm 0.005$	ABREU		$E_{cm}^{ee} = 91.2 \text{ GeV}$	
$0.0213 \pm 0.0021 \pm 0.0019$	ALEXANDER	97D OPAI	_ <i>E</i> ^{ee} _{cm} = 91.2 GeV	
$\langle N_{\mathbf{\Sigma}^+} angle$				
VALUE	<u>DOCUMENT ID</u>	<u>TECN</u>	COMMENT	
0.107±0.010 OUR AVERAGE		00.12	F66 01 0 C-V	
$0.114 \pm 0.011 \pm 0.009$	ACCIARRI		$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$	
$0.099 \pm 0.008 \pm 0.013$	ALEXANDER	97E OPAI	_ <i>E</i> ^{ee} _{cm} = 91.2 GeV	
$\langle N_{oldsymbol{\Sigma}^-} angle$				
VALUE	<u>DOCUMENT ID</u>	TECN	COMMENT	
0.082±0.007 OUR AVERAGE		005 DI DI	1 F86 010 C V	
$0.081 \pm 0.002 \pm 0.010$	ABREU		$H E_{cm}^{ee} = 91.2 \text{ GeV}$	
$0.083 \pm 0.006 \pm 0.009$	ALEXANDER	97E OPAI	- <i>E</i> ^{ee} _{cm} = 91.2 GeV	
$\langle N_{\Sigma^+ + \Sigma^-} angle$				
VALUE	DOCUMENT ID	TECN	COMMENT	
0.181±0.018 OUR AVERAGE			•	
$0.182 \pm 0.010 \pm 0.016$			$E_{\rm cm}^{ee}$ = 91.2 GeV	
$0.170 \pm 0.014 \pm 0.061$	ABREU	950 DLPI	H $E_{ m cm}^{ee} = 91.2 \; { m GeV}$	
123 We have combined the va the statistical and systems isospin symmetry is assum	atic errors of the two	final states	separately in quadratu	dding re. I
$\langle N_{\Sigma^0} angle$				
VALUE	<u>DOCUMENT ID</u>	TECN	COMMENT	
0.076±0.010 OUR AVERAGE		00.10	F66 01 0 C V	
$0.095 \pm 0.015 \pm 0.013$	ACCIARRI		$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$	
$0.071 \pm 0.012 \pm 0.013$			$E_{\text{cm}}^{ee} = 91.2 \text{ GeV}$	
$0.070\pm0.010\pm0.010$	ADAM	96B DLPI	H <i>E</i> ^{ee} _{cm} = 91.2 GeV	
$\langle N_{(\Sigma^+ + \Sigma^- + \Sigma^0)/3} \rangle$				
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.084 \pm 0.005 \pm 0.008$	ALEXANDER	97E OPAI	- $E_{\sf cm}^{\it ee} = 91.2 \; {\sf GeV}$	
$\langle N_{\Sigma(1385)^+} angle$				
VALUE			COMMENT	
$0.0239 \pm 0.0009 \pm 0.0012$	ALEXANDER	97D OPAI	- <i>E</i> ^{ee} _{cm} = 91.2 GeV	
$\langle N_{\Sigma(1385)^-} \rangle$				
—\\				
VALUE	<u>DOCUMENT</u> ID	<u>TEC</u> N	COMMENT	
VALUE 0.0240±0.0010±0.0014	<u>DOCUMENT ID</u> ALEXANDER			

$\langle N_{\Sigma(1385)^++\Sigma(1385)^-} angle$				
VALUE	DOCUMENT ID		TECN	COMMENT
0.046 ±0.004 OUR AVERAGE	rror includes sca			
$0.0479 \pm 0.0013 \pm 0.0026$	ALEXANDER	97 D	OPAL	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$
$0.0382 \!\pm\! 0.0028 \!\pm\! 0.0045$	ABREU	950	DLPH	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$
/a. \				
⟨ <i>N₌</i> -⟩				
<u>VALUE</u> 0.0258±0.0009 OUR AVERAGE	DOCUMENT ID		<u>TECN</u>	COMMENT
	ALEVANDED	075	ODAL	F66 01.0 C-V
$0.0259 \pm 0.0004 \pm 0.0009$				$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$
$0.0250 \pm 0.0009 \pm 0.0021$	ABREU	950	DLPH	E ^{ee} _{cm} = 91.2 GeV
$\langle N_{\Xi(1530)^0} \rangle$				
VALUE	DOCUMENT ID			
	rror includes sca			
$0.0068 \pm 0.0005 \pm 0.0004$				$E_{cm}^{ee} = 91.2 \; GeV$
$0.0041 \pm 0.0004 \pm 0.0004$	ABREU	950	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$
$\langle \mathit{N}_{\Omega^-} angle$				
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
0.00164±0.00028 OUR AVERAGE	ALEVANDED	075	ODAL	F66 01.2 C-V
				$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$
$0.0014 \pm 0.0002 \pm 0.0004$	ADAM	9 6 B	DLPH	E ^{ee} _{cm} = 91.2 GeV
$\langle N_{A_c^+} \rangle$				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.078 \pm 0.012 \pm 0.012$	ALEXANDER	96 R	OPAL	$E_{\mathrm{cm}}^{ee} = 91.2 \; \mathrm{GeV}$
$\langle N_{charged} angle$				
VALUE	DOCUMENT ID			
20.76±0.16 OUR AVERAGE Error	r includes scale f	actor	of 2.1.	See the ideogram below.
$20.46 \pm 0.01 \pm 0.11$	ACHARD	03 G	L3	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$
$21.21 \pm 0.01 \pm 0.20$	ABREU	99	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$
21.05 ± 0.20	AKERS	95Z	OPAL	$E_{\rm cm}^{\rm ee} = 91.2~{\rm GeV}$
$20.91 \pm 0.03 \pm 0.22$	BUSKULIC	95 R	ALEP	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$
21.40 ± 0.43	ACTON	92 B	OPAL	$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$
$20.71 \pm 0.04 \pm 0.77$	ABREU		DLPH	•
20.7 ± 0.7	ADEVA	91ı		$E_{\rm cm}^{ee}$ = 91.2 GeV
$20.1 \pm 1.0 \pm 0.9$	ABRAMS	90		$E_{\rm cm}^{ee} = 91.1 \text{ GeV}$
				C.111

Z HADRONIC POLE CROSS SECTION

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson"). This quantity is defined as

$$\sigma_{\it h}^0 = rac{12\pi}{M_{\it Z}^2} \; rac{\Gamma(e^+\,e^-)\,\Gamma({
m hadrons})}{\Gamma_{\it Z}^2}$$

It is one of the parameters used in the Z lineshape fit.

VALUE (nb)	EVTS	DOCUMENT ID	TECN	COMMENT
41.541±0.037 OUR F	IT			
41.501 ± 0.055	4.10M	¹²⁴ ABBIENDI	01A OPAL	<i>E</i> ^{ee} _{cm} = 88–94 GeV
$41.578 \!\pm\! 0.069$	3.70M	ABREU	00F DLPH	E ^{ee} _{cm} = 88–94 GeV
41.535 ± 0.055	3.54M	ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
41.559 ± 0.058	4.07M	¹²⁵ BARATE	00c ALEP	E ^{ee} _{cm} = 88–94 GeV
 ● ● We do not use t 	he followi	ng data for averages	s, fits, limits,	etc. • • •
42 ±4	450	ABRAMS	89B MRK2	E ^{ee} _{cm} = 89.2–93.0 GeV

 $^{124\,\}mathrm{ABBIENDI}$ 01A error includes approximately 0.031 due to statistics, 0.033 due to event selection systematics, 0.029 due to uncertainty in luminosity measurement, and 0.011 due to LEP energy uncertainty.

 $^{^{125}\,\}mathrm{BARATE}$ 00C error includes approximately 0.030 due to statistics, 0.026 due to experimental systematics, and 0.025 due to uncertainty in luminosity measurement.

Z VECTOR COUPLINGS TO CHARGED LEPTONS

These quantities are the effective vector couplings of the Z to charged leptons. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters, A_e , A_μ , and A_τ . By convention the sign of g_A^e is fixed to be negative (and opposite to that of g^{ν_e} obtained using ν_e scattering measurements). The fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and A_e , A_μ , and

 $A_{ au}$ measurements. See "Note on the Z boson" for details.

gv

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
-0.03816 ± 0.00047 OU	JR FIT			
-0.0346 ± 0.0023	137.0K	¹²⁶ ABBIENDI	010 OPAL	E ^{ee} _{cm} = 88–94 GeV
$-0.0412\ \pm0.0027$	124.4k	¹²⁷ ACCIARRI	00C L3	<i>E</i> ^{ee} _{cm} = 88−94 GeV
-0.0400 ± 0.0037		BARATE	00c ALEP	E ^{ee} _{cm} = 88–94 GeV
$-0.0414\ \pm0.0020$		¹²⁸ ABE	95」SLD	$E_{\rm cm}^{\rm ee}=91.31~{\rm GeV}$

 $^{^{126}}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

g_{V}^{μ}

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT		
-0.0367 ± 0.0023 OUR	FIT					
$-0.0388 {}^{\displaystyle +0.0060}_{\displaystyle -0.0064}$	182.8K ¹²	⁹ ABBIENDI	010 OPAL	Eee = 88–94 GeV		
-0.0386 ± 0.0073	113.4k ¹³	⁰ ACCIARRI	00c L3	E ^{ee} _{cm} = 88–94 GeV		
$-0.0362\!\pm\!0.0061$		BARATE	00c ALEP	Eee = 88-94 GeV		
• • • We do not use the following data for averages, fits, limits, etc. • •						
$-0.0413\!\pm\!0.0060$	66143 13	¹ ABBIENDI	01K OPAL	E ^{ee} _{cm} = 89–93 GeV		

 $^{^{129}}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

$g_V^{ au}$

HTTP://PDG.LBL.GOV

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
-0.0366 ± 0.0010 OUR	FIT			
$-0.0365\!\pm\!0.0023$	151.5K	¹³² ABBIENDI	010 OPAL	E ^{ee} _{cm} = 88–94 GeV
-0.0384 ± 0.0026	103.0k	¹³³ ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
$-0.0361\!\pm\!0.0068$		BARATE	00c ALEP	$E_{\rm cm}^{\rm ee} = 88-94 \; {\rm GeV}$

Page 31

 $^{^{127}}$ ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

 $^{^{128}}$ ABE 95J obtain this result combining polarized Bhabha results with the A_{LR} measurement of ABE 94C. The Bhabha results alone give $-0.0507\pm0.0096\pm0.0020$.

 $^{^{130}}$ ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

¹³¹ ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of initial-final state interference.

- 132 ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.
- 133 ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

g_V^ℓ

<u>VALUE</u>	EVTS	DOCUMENT ID	TECN	COMMENT
-0.03783 ± 0.00041 O	UR FIT			
-0.0358 ± 0.0014	471.3K	¹³⁴ ABBIENDI	010 OPAL	E ^{ee} _{cm} = 88–94 GeV
$-0.0397\ \pm0.0020$	379.4k	¹³⁵ ABREU	00F DLPH	E ^{ee} _{cm} = 88–94 GeV
$-0.0397\ \pm0.0017$	340.8k	¹³⁶ ACCIARRI	00c L3	E ^{ee} _{cm} = 88–94 GeV
-0.0383 ± 0.0018	500k	BARATE	00c ALEP	$E_{\rm cm}^{\rm ee} = 88 – 94 {\rm GeV}$

 $^{^{134}}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

Z AXIAL-VECTOR COUPLINGS TO CHARGED LEPTONS

These quantities are the effective axial-vector couplings of the Z to charged leptons. Their magnitude is derived from a measurement of the Z line-shape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters, A_e , A_μ , and A_τ . By convention the sign of g_A^e is fixed to be negative (and opposite to that of g^{ν_e} obtained using ν_e scattering measurements). The fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and A_e , A_μ , and A_τ measurements. See "Note on the Z boson" for details.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
-0.50111 ± 0.00035 OU	JR FIT			
-0.50062 ± 0.00062	137.0K ¹	. ³⁷ ABBIENDI	010 OPAL	E ^{ee} _{cm} = 88–94 GeV
-0.5015 ± 0.0007	124.4k ¹	^{.38} ACCIARRI	00C L3	<i>E</i> ^{ee} _{cm} = 88−94 GeV
-0.50166 ± 0.00057		BARATE	00c ALEP	E ^{ee} _{cm} = 88–94 GeV
-0.4977 ± 0.0045	1	. ³⁹ ABE	95J SLD	$E_{\rm cm}^{\it ee}=91.31~{\rm GeV}$

 $^{^{137}}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

¹³⁵ Using forward-backward lepton asymmetries.

 $^{^{136}}$ ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

 $^{^{138}}$ ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

 $^{^{139}}$ ABE 95J obtain this result combining polarized Bhabha results with the A_{LR} measurement of ABE 94C. The Bhabha results alone give $-0.4968 \pm 0.0039 \pm 0.0027$.

-	g^{μ}	
<i>0 A</i>		

~ A				
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
-0.50120 ± 0.000	54 OUR FIT			
-0.50117 ± 0.000	182.8K	¹⁴⁰ ABBIENDI	010 OPAL	Eee = 88-94 GeV
-0.5009 ± 0.001	.4 113.4k	¹⁴¹ ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
-0.50046 ± 0.000	93	BARATE	00c ALEP	E ^{ee} _{cm} = 88–94 GeV
● ● We do not	use the following	g data for averages	s, fits, limits,	etc. • • •
-0.520 ± 0.015	66143	¹⁴² ABBIENDI	01K OPAL	E ^{ee} _{cm} = 89–93 GeV

 $^{^{140}}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

g_{Δ}^{τ}

- / 1				
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
-0.50204±0.00064 OU	JR FIT			
-0.50165 ± 0.00124	151.5K	¹⁴³ ABBIENDI	010 OPAL	Eee = 88-94 GeV
-0.5023 ± 0.0017	103.0k	¹⁴⁴ ACCIARRI	00C L3	E _{cm} = 88-94 GeV
-0.50216 ± 0.00100		BARATE	00C ALEP	E _{cm} = 88–94 GeV

 $^{^{143}}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

g_A^ℓ

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
-0.50123 ± 0.00026 O	UR FIT			
-0.50089 ± 0.00045	471.3K	¹⁴⁵ ABBIENDI	010 OPAL	E ^{ee} _{cm} = 88–94 GeV
-0.5007 ± 0.0005	379.4k	ABREU	00F DLPH	Eee = 88–94 GeV
-0.50153 ± 0.00053	340.8k	¹⁴⁶ ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
-0.50150 ± 0.00046	500k	BARATE	00c ALEP	$E_{\rm cm}^{\rm ee} = 88 - 94 \; {\rm GeV}$

 $^{^{145}}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

Z COUPLINGS TO NEUTRAL LEPTONS

These quantities are the effective couplings of the Z to neutral leptons. $\nu_e e$ and $\nu_\mu e$ scattering results are combined with g_A^e and g_V^e measurements at the Z mass to obtain g^{ν_e} and $g^{\nu_{\mu}}$ following NOVIKOV 93C.

${m g}^{m u_{m e}}$

VALUE	DOCUMENT ID		TECN	COMMENT
0.528±0.085	147 VILAIN	94	CHM2	From $\nu_{\mu} e$ and $\nu_{e} e$ scat-
				tering

¹⁴⁷ VILAIN 94 derive this value from their value of $g^{\nu\mu}$ and their ratio $g^{\nu}e/g^{\nu\mu}=$ $1.05 ^{\,+\, 0.15}_{\,-\, 0.18}$

HTTP://PDG.LBL.GOV

Page 33 Created: 6/24/2005 17:17

 $^{^{141}}$ ACCIARRI 00C use their measurement of the au polarization in addition to forwardbackward lepton asymmetries.

 $^{^{142}}$ ABBIENDI 01 K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of initial-final state interference.

 $^{^{144}}$ ACCIARRI 00C use their measurement of the au polarization in addition to forwardbackward lepton asymmetries.

 $^{^{146}}$ ACCIARRI 00C use their measurement of the au polarization in addition to forwardbackward lepton asymmetries.

$g^{oldsymbol{ u}_{oldsymbol{\mu}}}$					
<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT	
0.502±0.017	148 VILAIN	94	CHM2	From $\nu_{}e$ scattering	

 $^{-148}$ VILAIN 94 derive this value from their measurement of the couplings $g_A^{~e}
u^\mu = -0.503 \pm 0.000$ 0.017 and $g_V^{e\,
u_\mu}=-$ 0.035 \pm 0.017 obtained from $u_\mu e$ scattering. We have re-evaluated this value using the current PDG values for g_A^e and g_V^e .

Z ASYMMETRY PARAMETERS

For each fermion-antifermion pair coupling to the Z these quantities are defined as

$$A_f = \frac{2g_V^f g_A^f}{(g_V^f)^2 + (g_A^f)^2}$$

where g_V^f and g_A^f are the effective vector and axial-vector couplings. For their relation to the various lepton asymmetries see the 'Note on the ZBoson.'

Using polarized beams, this quantity can also be measured as $(\sigma_L - \sigma_R)/(\sigma_L + \sigma_R)$, where σ_L and σ_R are the e^+e^- production cross sections for Z bosons produced with left-handed and right-handed electrons respectively.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.1515±0.0019 OUR AVER				
$0.1454 \pm 0.0108 \pm 0.0036$		¹⁴⁹ ABBIENDI	010 OPAL	E ^{ee} _{cm} = 88–94 GeV
0.1516 ± 0.0021	559000	¹⁵⁰ ABE	01B SLD	$E_{cm}^{ee} = 91.24 \; GeV$
$0.1504\!\pm\!0.0068\!\pm\!0.0008$		¹⁵¹ HEISTER	01 ALEP	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$0.1382 \pm 0.0116 \pm 0.0005$	105000	¹⁵² ABREU	00E DLPH	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$0.1678\!\pm\!0.0127\!\pm\!0.0030$	137092	¹⁵³ ACCIARRI	98H L3	Eee = 88-94 GeV
$0.162\ \pm0.041\ \pm0.014$	89838	¹⁵⁴ ABE	97 SLD	$E_{cm}^{\mathit{ee}} = 91.27 \; GeV$
$0.202\ \pm0.038\ \pm0.008$		¹⁵⁵ ABE	95J SLD	$E_{cm}^{\mathit{ee}} = 91.31 \; GeV$

- 149 ABBIENDI 010 fit for A_e and A_τ from measurements of the τ polarization at varying τ production angles. The correlation between A_e and A_τ is less than 0.03.
- $^{150}\,\mathrm{ABE}$ $^{01\mathrm{B}}$ use the left-right production and left-right forward-backward decay asymmetries in leptonic Z decays to obtain a value of 0.1544 \pm 0.0060. This is combined with leftright production asymmetry measurement using hadronic Z decays (ABE 00B) to obtain the quoted value.
- 151 HEISTER 01 obtain this result fitting the au polarization as a function of the polar production angle of the τ .
- 152 ABREU 00E obtain this result fitting the au polarization as a function of the polar au production angle. This measurement is a combination of different analyses (exclusive au decay modes, inclusive hadronic 1-prong reconstruction, and a neural network
- $^{153}\operatorname{Derived}$ from the measurement of forward-backward τ polarization asymmetry.
- $^{154}\,\mathrm{ABE}$ 97 obtain this result from a measurement of the observed left-right charge asymmetry, $A_Q^{
 m obs} =$ 0.225 \pm 0.056 \pm 0.019, in hadronic Z decays. If they combine this value of $A_Q^{\rm obs}$ with their earlier measurement of $A_{LR}^{\rm obs}$ they determine A_e to be 0.1574 \pm 0.0197 \pm 0.0067 independent of the beam polarization.

 $^{155}\,\mathrm{ABE}$ 95J obtain this result from polarized Bhabha scattering.

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in $\mu^+\mu^-$ production at SLC using a polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter

<u>VALUE</u>	EVTS	DOCUMENT ID	TECN	COMMENT	
0.142 ± 0.015	16844	¹⁵⁶ ABE	01B SLD	$E_{cm}^{ee} = 91.24 \text{ GeV}$	

 $^{156}\,\mathrm{ABE}$ 01B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in $\mu^+\mu^-$ decays of the Z boson obtained with a polarized electron beam.

The LEP Collaborations derive this quantity from the measurement of the au polarization in $Z \to \tau^+ \tau^-$. The SLD Collaboration directly extracts this quantity from its measured left-right forward-backward asymmetry in $Z \rightarrow \tau^+ \tau^-$ produced using a polarized e^- beam. This double asymmetry eliminates the dependence on the Z-e-ecoupling parameter A_{α} .

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
0.143 ± 0.004 OUR AVE	RAGE			
$0.1456 \pm 0.0076 \pm 0.0057$	144810	¹⁵⁷ ABBIENDI	010 OPAL	<i>E</i> ^{ee} _{cm} = 88−94 GeV
0.136 ± 0.015	16083	¹⁵⁸ ABE	01B SLD	$E_{cm}^{ee} = 91.24 \; GeV$
$0.1451 \!\pm\! 0.0052 \!\pm\! 0.0029$		¹⁵⁹ HEISTER	01 ALEP	E ^{ee} _{cm} = 88–94 GeV
$0.1359 \pm 0.0079 \pm 0.0055$	105000	¹⁶⁰ ABREU	00E DLPH	$E_{cm}^{ee} = 88 – 94 \; GeV$
$0.1476 \pm 0.0088 \pm 0.0062$	137092	ACCIARRI	98H L3	$E_{cm}^{\mathit{ee}} = 88 – 94 \; GeV$

 $^{^{157}}$ ABBIENDI 010 fit for A_e and A_τ from measurements of the τ polarization at varying τ production angles. The correlation between A_e and A_τ is less than 0.03.

 $^{^{160}}$ ABREU 00E obtain this result fitting the au polarization as a function of the polar au production angle. This measurement is a combination of different analyses (exclusive au decay modes, inclusive hadronic 1-prong reconstruction, and a neural network analysis).

The SLD Collaboration directly extracts this quantity by a simultaneous fit to four measured s-quark polar angle distributions corresponding to two states of e^- polarization (positive and negative) and to the K^+K^- and $K^\pm K^0_S$ strange particle tagging

VALUE VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
$0.895 \pm 0.066 \pm 0.062$	2870	¹⁶¹ ABE	00D SLD	$E_{cm}^{ee} = 91.2 \text{ GeV}$	

 161 ABE 00D tag $Z
ightarrow \, s\, \overline{s}$ events by an absence of B or D hadrons and the presence in each hemisphere of a high momentum K^{\pm} or $\mathit{K}^{0}_{\mathsf{S}}.$

 $^{^{158}\,\}mathrm{ABE}$ 01B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in $\tau^+\tau^-$ decays of the Z boson obtained with a polarized electron beam.

 $^{^{159}}$ HEISTER 01 obtain this result fitting the au polarization as a function of the polar production angle of the τ .

This quantity is directly extracted from a measurement of the left-right forward-backward asymmetry in $c\overline{c}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e . OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z Boson."

<u>VALUE</u>	<u>DOCUMENT ID</u>	<u>TECN</u>	<u>COMMENT</u>
0.671 ±0.027 OUR FIT			
$0.6712 \pm 0.0224 \pm 0.0157$	¹⁶² ABE	05 SLD	$E_{cm}^{ee} = 91.24 \; GeV$
• • • We do not use the follow	ving data for average	es, fits, limits,	etc. • • •
$0.583 \pm 0.055 \pm 0.055$	¹⁶³ ABE	02G SLD	E ^{ee} _{cm} = 91.24 GeV
0.688 ± 0.041	¹⁶⁴ ABE	01C SLD	$F_{em}^{ee} = 91.25 \text{ GeV}$

 162 ABE 05 use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $c\overline{c}$ events tagging on the invariant mass of reconstructed secondary decay vertices. The charge of the underlying c–quark is obtained with an algorithm that takes into account the net charge of the vertex as well as the charge of tracks emanating from the vertex and identified as kaons. This yields (9970 events) $A_{C}=0.6747\pm0.0290\pm0.0233$. Taking into account all correlations with earlier results reported in ABE 02G and ABE 01C, they obtain the quoted overall SLD result.

 163 ABE 02G tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously A_b and A_c .

164 ABE 01C tag $Z \to c \, \overline{c}$ events using two techniques: exclusive reconstruction of D^{*+} , D^+ and D^0 mesons and the soft pion tag for $D^{*+} \to D^0 \pi^+$. The large background from D mesons produced in $b \, \overline{b}$ events is separated efficiently from the signal using precision vertex information. When combining the A_C values from these two samples, care is taken to avoid double counting of events common to the two samples, and common systematic errors are properly taken into account.

A_b

This quantity is directly extracted from a measurement of the left-right forward-backward asymmetry in $b\overline{b}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e . OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z Boson."

99L SLD $E_{cm}^{ee} = 91.27 \text{ GeV}$

Created: 6/24/2005 17:17

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
0.923 ±0.020 OUR FIT					
$0.9170 \pm 0.0147 \pm 0.0145$		¹⁶⁵ ABE	05	SLD	$E_{cm}^{ee} = 91.24 \; GeV$
• • • We do not use the	following	g data for averages,	fits, I	limits, et	tc. • • •
$0.907\ \pm0.020\ \pm0.024$	48028	166 ABE	03F	SLD	E ^{ee} _{cm} = 91.24 GeV
$0.919 \ \pm 0.030 \ \pm 0.024$		¹⁶⁷ ABE	02 G	SLD	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.24 \; \mathrm{GeV}$

 165 ABE 05 use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $b\,\overline{b}$ events tagging on the invariant mass of reconstructed secondary decay vertices. The charge of the underlying b–quark is obtained with an algorithm that takes into account the net charge of the vertex as well as the charge of tracks emanating from the vertex and identified as kaons. This yields (25917 events) $A_b=0.9173\pm0.0184\pm0.0173.$ Taking into account all correlations with earlier results reported in ABE 03F, ABE 02G and ABE 99L, they obtain the quoted overall SLD result.

7473 168 ABE

 166 ABE 03F obtain an enriched sample of $b\overline{b}$ events tagging on the invariant mass of a 3-dimensional topologically reconstructed secondary decay. The charge of the underlying b quark is obtained using a self-calibrating track-charge method. For the 1996–1998 data sample they measure $A_b=0.906\pm0.022\pm0.023$. The value quoted here is obtained combining the above with the result of ABE 98I (1993–1995 data sample).

 $0.855 \pm 0.088 \pm 0.102$

TRANSVERSE SPIN CORRELATIONS IN $Z \rightarrow \tau^+ \tau^-$

The correlations between the transverse spin components of $\tau^+\tau^-$ produced in Z decays may be expressed in terms of the vector and axial-vector couplings:

$$C_{TT} = \frac{|g_A^{\tau}|^2 - |g_V^{\tau}|^2}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2}$$

$$C_{TN} = -2 \frac{|g_A^{\tau}| |g_V^{\tau}|}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2} \sin(\Phi_{g_V^{\tau}} - \Phi_{g_A^{\tau}})$$

 C_{TT} refers to the transverse-transverse (within the collision plane) spin correlation and C_{TN} refers to the transverse-normal (to the collision plane) spin correlation.

The longitudinal τ polarization P_{τ} $(=-A_{\tau})$ is given by:

$$P_{\tau} = -2 \frac{|\mathbf{g}_{A}^{\tau}||\mathbf{g}_{V}^{\tau}|}{|\mathbf{g}_{A}^{\tau}|^{2} + |\mathbf{g}_{V}^{\tau}|^{2}} \cos(\Phi_{\mathbf{g}_{V}^{\tau}} - \Phi_{\mathbf{g}_{A}^{\tau}})$$

Here Φ is the phase and the phase difference $\Phi_{{\mathcal g}_V^{\mathcal T}} - \Phi_{{\mathcal g}_A^{\mathcal T}}$ can be obtained using both the measurements of $\mathcal C_{TN}$ and $\mathcal P_{\mathcal T}.$

CTT					
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
1.01 ± 0.12 OUR AVERA	GE				
$0.87 \pm 0.20 ^{+0.10}_{-0.12}$	9.1k	ABREU	97 G	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$
$1.06\!\pm\!0.13\!\pm\!0.05$	120k	BARATE	97 D	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$
C _{TN}					
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.08 \pm 0.13 \pm 0.04$	120k ¹	⁶⁹ BARATE	97 D	ALEP	<i>E</i> _{cm} ^{ee} 91.2 GeV
4.00					

 $^{^{169}}$ BARATE 97D combine their value of C_{TN} with the world average $P_{\tau}=-0.140\pm0.007$ to obtain $\tan(\Phi_{\mathcal{G}_{N}^{\tau}}-\Phi_{\mathcal{G}_{A}^{\tau}})=-0.57\pm0.97.$

FORWARD-BACKWARD $e^+e^- \rightarrow f\overline{f}$ CHARGE ASYMMETRIES

These asymmetries are experimentally determined by tagging the respective lepton or quark flavor in e^+e^- interactions. Details of heavy flavor (c- or b-quark) tagging at LEP are described in the note on "The Z Boson." The Standard Model predictions for LEP data have been (re)computed using the ZFITTER package (version 6.36) with input parameters M_Z =91.187 GeV, $M_{\rm top}$ =174.3 GeV, $M_{\rm Higgs}$ =150 GeV, α_s =0.119, $\alpha^{(5)}$ (M_Z)= 1/128.877 and the Fermi constant G_F =1.16637 \times 10⁻⁵ GeV⁻² (see the note on "The Z Boson" for references).

 $^{^{167}}$ ABE 02G tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously A_b and A_c .

¹⁶⁸ ABE 99L obtain an enriched sample of $b\overline{b}$ events tagging with an inclusive vertex mass cut. For distinguishing b and \overline{b} quarks they use the charge of identified K^{\pm} .

For non-LEP data the Standard Model predictions are as given by the authors of the respective publications.

- $A^{(0,e)}_{FB}$ CHARGE ASYMMETRY IN $e^+\,e^-\, ightarrow\,\,e^+\,e^-\,$

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson"). For the Z peak, we report the pole asymmetry defined by $(3/4)A_e^2$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

ASYMMETRY (%)	STD. MODEL	$\frac{\sqrt{s}}{(\text{GeV})}$	DOCUMENT ID	TECN
1.45±0.25 OUR FIT				
0.89 ± 0.44	1.57	91.2	¹⁷⁰ ABBIENDI	01A OPAL
1.71 ± 0.49	1.57	91.2	ABREU	00F DLPH
1.06 ± 0.58	1.57	91.2	ACCIARRI	00C L3
1.88 ± 0.34	1.57	91.2	¹⁷¹ BARATE	00c ALEP

 $^{^{170}}$ ABBIENDI 01A error includes approximately 0.38 due to statistics, 0.16 due to event selection systematics, and 0.18 due to the theoretical uncertainty in t-channel prediction.

– $A_{FB}^{(0,\mu)}$ CHARGE ASYMMETRY IN $e^+\,e^ightarrow\,\,\mu^+\mu^-$ —

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson"). For the Z peak, we report the pole asymmetry defined by $(3/4)A_{\rm e}A_{\mu}$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID	TECN
1.69± 0.13 OUR FIT				
1.59 ± 0.23	1.57	91.2	¹⁷² ABBIENDI	01A OPAL
1.65 ± 0.25	1.57	91.2	ABREU	00F DLPH
1.88 ± 0.33	1.57	91.2	ACCIARRI	00c L3
$1.71\pm~0.24$	1.57	91.2	¹⁷³ BARATE	00c ALEP
• • • We do not use the follo	wing data for	averages	, fits, limits, etc. • •	• •
9 ±30	-1.3	20	¹⁷⁴ ABREU	95м DLPH
7 ± 26	-8.3	40	¹⁷⁴ ABREU	95м DLPH
-11 ± 33	-24.1	57	¹⁷⁴ ABREU	95м DLPH
-62 ± 17	-44.6	69	¹⁷⁴ ABREU	95м DLPH
-56 ± 10	-63.5	79	¹⁷⁴ ABREU	95м DLPH
-13 \pm 5	-34.4	87.5	¹⁷⁴ ABREU	95м DLPH
$-29.0 \ \ ^{+}_{-}\ \ ^{5.0}_{4.8}\ \ \pm 0.5$	-32.1	56.9	¹⁷⁵ ABE	901 VNS
$-$ 9.9 \pm 1.5 \pm 0.5	-9.2	35	HEGNER	90 JADE
0.05 ± 0.22	0.026	91.14	¹⁷⁶ ABRAMS	89D MRK2
-43.4 ± 17.0	-24.9	52.0	177 BACALA	89 AMY
-11.0 ± 16.5	-29.4	55.0	177 BACALA	89 AMY
-30.0 ± 12.4	-31.2	56.0	¹⁷⁷ BACALA	89 AMY

Page 38

Created: 6/24/2005 17:17

HTTP://PDG.LBL.GOV

¹⁷¹ BARATE 00C error includes approximately 0.31 due to statistics, 0.06 due to experimental systematics, and 0.13 due to the theoretical uncertainty in *t*-channel prediction.

-46.2 ± 14.9	-33.0	57.0	⁷⁷ BACALA	89	AMY
-29 ± 13	-25.9	53.3	ADACHI	88C	TOPZ
$+$ 5.3 \pm 5.0 \pm 0.5	-1.2	14.0	ADEVA	88	MRKJ
$-10.4~\pm~1.3~\pm0.5$	-8.6	34.8	ADEVA	88	MRKJ
$-12.3~\pm~5.3~\pm0.5$	-10.7	38.3	ADEVA	88	MRKJ
$-15.6~\pm~3.0~\pm0.5$	-14.9	43.8	ADEVA	88	MRKJ
$-\ 1.0\ \pm\ 6.0$	-1.2	13.9	BRAUNSCH	88D	TASS
$-$ 9.1 \pm 2.3 \pm 0.5	-8.6	34.5	BRAUNSCH	88D	TASS
$-10.6 \ \ ^{+}_{-} \ \ ^{2.2}_{2.3} \ \ \pm 0.5$	-8.9	35.0	BRAUNSCH	88 D	TASS
$-17.6 \ \ \begin{array}{c} + \ 4.4 \\ - \ 4.3 \end{array} \pm 0.5$	-15.2	43.6	BRAUNSCH	88D	TASS
$-$ 4.8 \pm 6.5 \pm 1.0	-11.5	39	BEHREND	87C	CELL
$-18.8 \pm 4.5 \pm 1.0$	-15.5	44	BEHREND	87C	CELL
$+ 2.7 \pm 4.9$	-1.2	13.9	BARTEL	86 C	JADE
$-11.1 \pm 1.8 \pm 1.0$	-8.6	34.4	BARTEL	86 C	JADE
$-17.3 \pm 4.8 \pm 1.0$	-13.7	41.5	BARTEL	86 C	JADE
$-22.8 \pm 5.1 \pm 1.0$	-16.6	44.8	BARTEL	86 C	JADE
$-$ 6.3 \pm 0.8 \pm 0.2	-6.3	29	ASH	85	MAC
$-$ 4.9 \pm 1.5 \pm 0.5	-5.9	29	DERRICK	85	HRS
$-$ 7.1 \pm 1.7	-5.7	29	LEVI	83	MRK2
-16.1 ± 3.2	-9.2	34.2	BRANDELIK	82C	TASS

 $^{^{172}} ABBIENDI 01A$ error is almost entirely on account of statistics.

HTTP://PDG.LBL.GOV

— $A^{(0, au)}_{FB}$ CHARGE ASYMMETRY IN $e^+e^ightarrow~ au^+ au^-$

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the "Note on the Z boson"). For the Z peak, we report the pole asymmetry defined by $(3/4)A_{\rm e}A_{\tau}$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID	TECN
1.88± 0.17 OUR FIT				
$1.45\pm~0.30$	1.57	91.2	¹⁷⁸ ABBIENDI	01A OPAL
2.41 ± 0.37	1.57	91.2	ABREU	00F DLPH
2.60 ± 0.47	1.57	91.2	ACCIARRI	00C L3
1.70 ± 0.28	1.57	91.2	¹⁷⁹ BARATE	00c ALEP
• • • We do not use the follo	wing data fo	r averages	s, fits, limits, etc. •	• •
$-32.8 \ \begin{array}{c} + & 6.4 \\ - & 6.2 \end{array} \pm 1.5$	-32.1	56.9	¹⁸⁰ ABE	901 VNS
$-$ 8.1 \pm 2.0 \pm 0.6	-9.2	35	HEGNER	90 JADE
$-18.4\ \pm 19.2$	-24.9	52.0	¹⁸¹ BACALA	89 AMY
-17.7 ± 26.1	-29.4	55.0	¹⁸¹ BACALA	89 AMY
$-45.9\ \pm 16.6$	-31.2	56.0	¹⁸¹ BACALA	89 AMY
$-49.5\ \pm 18.0$	-33.0	57.0	¹⁸¹ BACALA	89 AMY

Page 39

 $^{^{173}\,\}mathrm{BARATE}$ 00C error is almost entirely on account of statistics.

¹⁷⁴ ABREU 95M perform this measurement using radiative muon-pair events associated with high-energy isolated photons.

 $^{^{175}\,\}mathrm{ABE}$ 901 measurements in the range 50 $\,\leq\,\,\sqrt{s}\,\,\leq\,\,$ 60.8 GeV.

 $^{^{176}}$ ABRAMS 89D asymmetry includes both 9 $\mu^+\mu^-$ and 15 $\tau^+\tau^-$ events.

¹⁷⁷ BACALA 89 systematic error is about 5%.

-20 ± 14	-25.9	53.3	ADACHI	88C TOPZ
$-10.6~\pm~3.1~\pm1.5$	-8.5	34.7	ADEVA	88 MRKJ
$-$ 8.5 \pm 6.6 \pm 1.5	-15.4	43.8	ADEVA	88 MRKJ
$-$ 6.0 \pm 2.5 \pm 1.0	8.8	34.6	BARTEL	85F JADE
$-11.8 \pm 4.6 \pm 1.0$	14.8	43.0	BARTEL	85F JADE
$-$ 5.5 \pm 1.2 \pm 0.5	-0.063	29.0	FERNANDEZ	85 MAC
$-$ 4.2 \pm 2.0	0.057	29	LEVI	83 MRK2
$-10.3~\pm~5.2$	-9.2	34.2	BEHREND	82 CELL
$-$ 0.4 \pm 6.6	-9.1	34.2	BRANDELIK	82C TASS

¹⁷⁸ ABBIENDI 01A error includes approximately 0.26 due to statistics and 0.14 due to event selection systematics.

For the Z peak, we report the pole asymmetry defined by $(3/4)A_\ell^2$ as determined by the five-parameter fit to cross-section and lepton forward-backward asymmetry data assuming lepton universality. For details see the "Note on the Z boson."

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID	TECN
1.71±0.10 OUR FIT				
1.45 ± 0.17	1.57	91.2	¹⁸² ABBIENDI	01a OPAL
1.87 ± 0.19	1.57	91.2	ABREU	00F DLPH
1.92 ± 0.24	1.57	91.2	ACCIARRI	00c L3
1.73 ± 0.16	1.57	91.2	¹⁸³ BARATE	00c ALEP

 $^{^{182}}$ ABBIENDI 01A error includes approximately 0.15 due to statistics, 0.06 due to event selection systematics, and 0.03 due to the theoretical uncertainty in t-channel prediction.

4.0±6.7±2.8	7.2	91.2	184 ACKERSTAFF 97	r OPAL
ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID	TECN

¹⁸⁴ ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types.

 $^{^{179}}$ BARATE 00C error includes approximately 0.26 due to statistics and 0.11 due to experimental systematics.

 $^{^{180}\,\}mathrm{ABE}$ 901 measurements in the range 50 $\,\leq\,\sqrt{s}\,\leq\,$ 60.8 GeV.

¹⁸¹ BACALA 89 systematic error is about 5%.

¹⁸³ BARATE 00C error includes approximately 0.15 due to statistics, 0.04 due to experimental systematics, and 0.02 due to the theoretical uncertainty in *t*-channel prediction.

--- $A_{FB}^{(0,s)}$ CHARGE ASYMMETRY IN $e^+e^- o s\overline{s}$ -----

The *s*-quark asymmetry is derived from measurements of the forward-backward asymmetry of fast hadrons containing an *s* quark.

ASYMMETRY (%)	STD. MODEL	√ <i>s</i> (GeV)	DOCUMENT ID		TECN
9.8 \pm 1.1 OUR AVERAGE					
$10.08 \pm 1.13 \pm 0.40$	10.1	91.2			DLPH
$6.8 \pm 3.5 \pm 1.1$	10.1	91.2	¹⁸⁶ ACKERSTAFF	97T	OPAL
• • • We do not use the follow	ving data for	averages	, fits, limits, etc. • •	•	
$13.1 \pm 3.5 \pm 1.3$	10.1	91.2	¹⁸⁷ ABREU	95G	DLPH

¹⁸⁵ ABREU 00B tag the presence of an *s* quark requiring a high-momentum-identified charged kaon. The *s*-quark pole asymmetry is extracted from the charged-kaon asymmetry taking the expected *d*- and *u*-quark asymmetries from the Standard Model and using the measured values for the *c*- and *b*-quark asymmetries.

OUR FIT, which is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the "Note on the Z boson," refers to the \mathbf{Z} pole asymmetry. The experimental values, on the other hand, correspond to the measurements carried out at the respective energies. As a cross check we have also performed a weighted average of the "near peak" measurements taking into account the various common systematic errors. Applying to this combined "peak" measurement QED and energy-dependence corrections, our weighted average gives a pole asymmetry of $(6.89 \pm 0.39)\%$, the Standard Model prediction being 7.25%.

ASYMMETRY (%)	STD. MODEL	$\frac{\sqrt{s}}{(\text{GeV})}$	DOCUMENT ID	TECN
7.08± 0.35 OUR FIT				
$6.31 \pm \ 0.93 \pm 0.65$	6.35	91.26	¹⁸⁸ ABDALLAH	04F DLPH
$5.68 \pm 0.54 \pm 0.39$	6.3	91.25	¹⁸⁹ ABBIENDI	03P OPAL
$6.45 \pm 0.57 \pm 0.37$	6.10	91.21	¹⁹⁰ HEISTER	02н ALEP
$6.59 \pm \ 0.94 \pm 0.35$	6.2	91.235	¹⁹¹ ABREU	99Y DLPH
$6.3 \pm 0.9 \pm 0.3$	6.1	91.22	¹⁹² BARATE	980 ALEP
$6.3 \pm 1.2 \pm 0.6$	6.1	91.22	¹⁹³ ALEXANDER	97c OPAL
$8.3 \pm 3.8 \pm 2.7$	6.2	91.24	¹⁹⁴ ADRIANI	92D L3

¹⁸⁶ ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types. The value reported here corresponds then to the forward-backward asymmetry for "down-type" quarks.

 $^{^{187}}$ ABREU 95G require the presence of a high-momentum charged kaon or Λ^0 to tag the s quark. An unresolved s- and d-quark asymmetry of $(11.2\pm3.1\pm5.4)\%$ is obtained by tagging the presence of a high-energy neutron or neutral kaon in the hadron calorimeter. Superseded by ABREU 00B.

100

• • • We do not use the following data for averages, fits, limits, etc. • •	С. ● ● ●
---	----------

$3.1~\pm~3.5~\pm0.5$	-3.5	89.43	¹⁸⁸ ABDALLAH	04F DLPH
$11.0 \pm 2.8 \pm 0.7$	12.3	92.99	¹⁸⁸ ABDALLAH	04F DLPH
$-$ 6.8 \pm 2.5 \pm 0.9	-3.0	89.51	¹⁸⁹ ABBIENDI	03P OPAL
$14.6 \pm 2.0 \pm 0.8$	12.2	92.95	¹⁸⁹ ABBIENDI	03P OPAL
$-12.4 \pm 15.9 \pm 2.0$	-9.6	88.38	¹⁹⁰ HEISTER	02н ALEP
$-$ 2.3 \pm 2.6 \pm 0.2	-3.8	89.38	¹⁹⁰ HEISTER	02н ALEP
$-$ 0.3 \pm 8.3 \pm 0.6	0.9	90.21	¹⁹⁰ HEISTER	02н ALEP
$10.6~\pm~7.7~\pm0.7$	9.6	92.05	¹⁹⁰ HEISTER	02H ALEP
$11.9 \pm 2.1 \pm 0.6$	12.2	92.94	¹⁹⁰ HEISTER	02н ALEP
$12.1 \pm 11.0 \pm 1.0$	14.2	93.90	¹⁹⁰ HEISTER	02н ALEP
$-4.96\pm3.68\pm0.53$	-3.5	89.434	¹⁹¹ ABREU	99Y DLPH
$11.80 \pm \ 3.18 \pm 0.62$	12.3	92.990	¹⁹¹ ABREU	99Y DLPH
$-$ 1.0 \pm 4.3 \pm 1.0	-3.9	89.37	¹⁹² BARATE	980 ALEP
$11.0 \pm 3.3 \pm 0.8$	12.3	92.96	¹⁹² BARATE	980 ALEP
$3.9 \pm 5.1 \pm 0.9$	-3.4	89.45	¹⁹³ ALEXANDER	97C OPAL
$15.8 \pm 4.1 \pm 1.1$	12.4	93.00	¹⁹³ ALEXANDER	97C OPAL
$-12.9~\pm~7.8~\pm5.5$	-13.6	35	BEHREND	90D CELL
$7.7\ \pm 13.4\ \pm 5.0$	-22.1	43	BEHREND	90D CELL
$-12.8 \pm 4.4 \pm 4.1$	-13.6	35	ELSEN	90 JADE
$-10.9 \pm 12.9 \pm 4.6$	-23.2	44	ELSEN	90 JADE
-14.9 ± 6.7	-13.3	35	OULD-SAADA	89 JADE

¹⁸⁸ ABDALLAH 04F tag b- and c-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of $c\overline{c}$ and $b\overline{b}$ events are obtained using lifetime information.

\longrightarrow $A_{FB}^{(0,b)}$ CHARGE ASYMMETRY IN $e^+e^ightarrow b\,\overline{b}$.

OUR FIT, which is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the "Note on the Z boson," refers to the Z pole asymmetry. The experimental values, on the other hand, correspond to the measurements carried out at the respective energies. As a cross check we have also performed a weighted average of the "near peak" measurements taking into account the various common systematic errors. Applying to this combined "peak" measurement QED and energy-dependence corrections, our weighted average gives a pole asymmetry of $(10.05 \pm 0.17)\%$, the Standard Model prediction being 10.15%. For the jet-charge measurements (where the QCD effects are included since they

¹⁸⁹ ABBIENDI 03P tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average B^0 - \overline{B}^0 mixing.

 $^{^{190}}$ HEISTER 02H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.

¹⁹¹ ABREU 99Y tag $Z \to b\overline{b}$ and $Z \to c\overline{c}$ events by an exclusive reconstruction of several D meson decay modes (D^{*+} , D^0 , and D^+ with their charge-conjugate states).

¹⁹²BARATE 980 tag $Z \rightarrow c\overline{c}$ events requiring the presence of high-momentum reconstructed D^{*+} , D^+ , or D^0 mesons.

 $^{^{193}}$ ALEXANDER 97C identify the b and c events using a D/D^* tag.

¹⁹⁴ ADRIANI 92D use both electron and muon semileptonic decays.

represent an inherent part of the analysis), we use the corrections given by the authors.

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID	TECN
9.91± 0.16 OUR FIT				
$9.58\pm \ 0.32\pm \ 0.14$	9.68	91.231	¹⁹⁵ ABDALLAH	05 DLPH
$10.04 \pm 0.56 \pm 0.25$	9.69	91.26	¹⁹⁶ ABDALLAH	04F DLPH
$9.72\pm 0.42\pm 0.15$	9.67	91.25	¹⁹⁷ ABBIENDI	03P OPAL
$9.77\pm 0.36\pm 0.18$	9.69	91.26	¹⁹⁸ ABBIENDI	02ı OPAL
$9.52\pm \ 0.41\pm \ 0.17$	9.59	91.21	¹⁹⁹ HEISTER	02H ALEP
$10.00\pm 0.27\pm 0.11$	9.63	91.232	²⁰⁰ HEISTER	01D ALEP
$7.62\pm \ 1.94\pm \ 0.85$	9.64	91.235	²⁰¹ ABREU	99Y DLPH
$9.60\pm \ 0.66\pm \ 0.33$	9.69	91.26	²⁰² ACCIARRI	99D L3
$9.31\pm \ 1.01\pm \ 0.55$	9.65	91.24	²⁰³ ACCIARRI	98∪ L3
$9.4 \pm 2.7 \pm 2.2$	9.61	91.22	²⁰⁴ ALEXANDER	97c OPAL
• • • We do not use the follow				•
	_	89.449	¹⁹⁵ ABDALLAH	05 DLPH
$6.37\pm \ 1.43\pm \ 0.17$ $10.41\pm \ 1.15\pm \ 0.24$	5.8	92.990	¹⁹⁵ ABDALLAH	05 DLPH 05 DLPH
	12.1		196 ABDALLAH	05 DLPH 04F DLPH
$6.7 \pm 2.2 \pm 0.2$ $11.2 \pm 1.8 \pm 0.2$	5.7	89.43 92.99	196 ABDALLAH	04F DLPH
$4.7 \pm 1.8 \pm 0.2$	12.1 5.9	92.99 89.51	197 ABBIENDI	03P OPAL
$10.3 \pm 1.5 \pm 0.2$	12.0	92.95	197 ABBIENDI	03P OPAL
$5.82\pm\ 1.53\pm\ 0.12$	5.9	92.95 89.50	198 ABBIENDI	02i OPAL
$12.21\pm 1.23\pm 0.25$	12.0	92.91	198 ABBIENDI	02i OPAL
$-13.1 \pm 13.5 \pm 1.0$	3.2	92.91 88.38	199 HEISTER	02H ALEP
$-15.1 \pm 15.5 \pm 1.0$ $5.5 \pm 1.9 \pm 0.1$	5.6	89.38	¹⁹⁹ HEISTER	02H ALEP
$-0.4 \pm 6.7 \pm 0.8$	7.5	90.21	¹⁹⁹ HEISTER	02H ALEP
$-0.4 \pm 0.7 \pm 0.8$ $-11.1 \pm 6.4 \pm 0.5$	11.0	90.21	¹⁹⁹ HEISTER	02H ALEP
$10.4 \pm 0.4 \pm 0.3$ $10.4 \pm 1.5 \pm 0.3$	12.0	92.03	¹⁹⁹ HEISTER	02H ALEP
$10.4 \pm 1.5 \pm 0.5$ $13.8 \pm 9.3 \pm 1.1$	12.0	92.94	¹⁹⁹ HEISTER	02H ALEP
$4.36 \pm 9.5 \pm 1.1$ $4.36 \pm 1.19 \pm 0.11$	5.8	93.90 89.472	²⁰⁰ HEISTER	01D ALEP
$11.72\pm 0.97\pm 0.11$	12.0	92.950	²⁰⁰ HEISTER	01D ALEP
$5.67\pm 7.56\pm 1.17$	5.7	89.434	201 ABREU	99Y DLPH
$8.82 \pm 6.33 \pm 1.22$	12.1	92.990	201 ABREU	99Y DLPH
$6.02\pm 0.93\pm 1.22$ $6.11\pm 2.93\pm 0.43$	5.9	89.50	²⁰² ACCIARRI	990 L3
$13.71\pm 2.40\pm 0.44$	12.2	93.10	202 ACCIARRI	99D L3
$4.95\pm 5.23\pm 0.40$	5.8	89.45	²⁰³ ACCIARRI	980 L3
$11.37\pm 3.99\pm 0.65$	12.1	92.99	²⁰³ ACCIARRI	98U L3
$-8.6 \pm 10.8 \pm 2.9$	5.8	89.45	204 ALEXANDER	97c OPAL
$- 0.0 \pm 10.0 \pm 2.9$ $- 2.1 \pm 9.0 \pm 2.6$	12.1	93.00	204 ALEXANDER	97C OPAL
. 7				
$-71 \pm 34 + 7 = 8$	-58	58.3	SHIMONAKA	91 TOPZ
$-22.2~\pm~7.7~\pm~3.5$	-26.0	35	BEHREND	90D CELL
$-49.1 \pm 16.0 \pm 5.0$	-39.7	43	BEHREND	90D CELL
-28 ± 11	-23	35	BRAUNSCH	90 TASS
$-16.6~\pm~7.7~\pm~4.8$	-24.3	35	ELSEN	90 JADE
$-33.6 \pm 22.2 \pm 5.2$	-39.9	44	ELSEN	90 JADE
$3.4 ~\pm~ 7.0 ~\pm~ 3.5$	-16.0	29.0	BAND	89 MAC
-72 ± 28 ± 13	-56	55.2	SAGAWA	89 AMY

- 195 ABDALLAH 05 obtain an enriched samples of $b\overline{b}$ events using lifetime information. The quark (or antiquark) charge is determined with a neural network using the secondary vertex charge, the jet charge and particle identification.
- ¹⁹⁶ ABDALLAH 04F tag b- and c-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of $c\overline{c}$ and $b\overline{b}$ events are obtained using lifetime information.
- ¹⁹⁷ ABBIENDI 03P tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average B^0 - \overline{B}^0 mixing.
- ¹⁹⁸ ABBIENDI 02I tag $Z^0 \to b\overline{b}$ decays using a combination of secondary vertex and lepton tags. The sign of the *b*-quark charge is determined using an inclusive tag based on jet, vertex, and kaon charges.
- 199 HEISTER 02H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.
- ²⁰⁰ HEISTER 01D tag $Z \to b \overline{b}$ events using the impact parameters of charged tracks complemented with information from displaced vertices, event shape variables, and lepton identification. The *b*-quark direction and charge is determined using the hemisphere charge method along with information from fast kaon tagging and charge estimators of primary and secondary vertices. The change in the quoted value due to variation of A_{FB}^{C} and R_{b} is given as +0.103 ($A_{FB}^{C}-0.0651$) -0.440 ($R_{b}-0.21585$).
- ²⁰¹ ABREU 99Y tag $Z \rightarrow b\overline{b}$ and $Z \rightarrow c\overline{c}$ events by an exclusive reconstruction of several D meson decay modes (D^{*+} , D^0 , and D^+ with their charge-conjugate states).
- ²⁰² ACCIARRI 99D tag $Z \to b \, \overline{b}$ events using high p and p_T leptons. The analysis determines simultaneously a mixing parameter $\chi_b = 0.1192 \pm 0.0068 \pm 0.0051$ which is used to correct the observed asymmetry.
- ²⁰³ ACCIARRI 98U tag $Z \rightarrow b\overline{b}$ events using lifetime and measure the jet charge using the hemisphere charge.
- 204 ALEXANDER 97C identify the b and c events using a D/D^* tag.

CHARGE ASYMMETRY IN $e^+e^- \rightarrow q\overline{q}$

Summed over five lighter flavors.

Experimental and Standard Model values are somewhat event-selection dependent. Standard Model expectations contain some assumptions on $B^0-\overline{B}^0$ mixing and on other electroweak parameters.

ASYMMETRY (%)	STD. MODEL	$\frac{\sqrt{s}}{(\text{GeV})}$		DOCUMENT ID		TECN
• • • We do not use the follo	wing data for	averages	, fits	, limits, etc. • •	•	
$-0.76\pm0.12\pm0.15$		91.2		ABREU	921	DLPH
$4.0 \pm 0.4 \pm 0.63$	4.0	91.3	206	ACTON	92L	OPAL
$9.1\ \pm 1.4\ \pm 1.6$	9.0	57.9		ADACHI	91	TOPZ
$-0.84\pm0.15\pm0.04$		91		DECAMP	91 B	ALEP
$8.3\ \pm 2.9\ \pm 1.9$	8.7	56.6		STUART	90	AMY
$11.4 \pm 2.2 \pm 2.1$	8.7	57.6		ABE	89L	VNS
6.0 ± 1.3	5.0	34.8		GREENSHAW	89	JADE
8.2 ± 2.9	8.5	43.6		GREENSHAW	89	JADE

²⁰⁵ ABREU 921 has 0.14 systematic error due to uncertainty of quark fragmentation.

 206 ACTON 92L use the weight function method on 259k selected $Z \to \,$ hadrons events. The systematic error includes a contribution of 0.2 due to $B^0 \ \overline{B}{}^0$ mixing effect, 0.4 due to Monte Carlo (MC) fragmentation uncertainties and 0.3 due to MC statistics. ACTON 92L derive a value of $\sin^2\!\theta_W^{\rm eff}$ to be 0.2321 \pm 0.0017 \pm 0.0028.

CHARGE ASYMMETRY IN $p\overline{p} \rightarrow Z \rightarrow e^+e^-$

ASYMMETRY (%) STD. (GeV) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • • $5.2 \pm 5.9 \pm 0.4$ 91 ABE 91E CDF

ANOMALOUS $ZZ\gamma$, $Z\gamma\gamma$, AND ZZV COUPLINGS

A REVIEW GOES HERE - Check our WWW List of Reviews

Combining the LEP results properly taking into account the correlations the following 95% CL limits are derived:

(See EP Preprint Summer 2004: CERN-PH-EP/2004-069 and hep-ex/0412015, 6 December 2004, on http://lepewwg.web.cern.ch/LEPEWWG/stanmod/)

$$\begin{array}{lll} -0.13 < h_1^Z < +0.13, & -0.078 < h_2^Z < +0.071, \\ -0.20 < h_3^Z < +0.07, & -0.05 < h_4^Z < +0.12, \\ -0.056 < h_1^\gamma < +0.055, & -0.045 < h_2^\gamma < +0.025, \\ -0.049 < h_3^\gamma < -0.008, & -0.002 < h_4^\gamma < +0.034. \end{array}$$

VALUE

DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • •

207 ACHARD 04H L3 208 ABBIENDI,G 00C OPAL 209 ABBOTT 98M D0 210 ABREU 98K DLPH

207 ACHARD 04H select 3515 e $^+$ e $^ \to$ $Z\gamma$ events with $Z\to q\overline{q}$ or $\nu\overline{\nu}$ at $\sqrt{s}=189$ –209 GeV to derive 95% CL limits on h_i^V . For deriving each limit the other parameters are fixed at zero. They report: $-0.153 < h_1^Z < 0.141, -0.087 < h_2^Z < 0.079, -0.220 < h_3^Z < 0.112, -0.068 < h_4^Z < 0.148, -0.057 < h_1^\gamma < 0.057, -0.050 < h_2^\gamma < 0.023, -0.059 < h_3^\gamma < 0.004, -0.004 < h_4^\gamma < 0.042.$

208 ABBIENDI,G 00C study $e^+e^- \to Z\gamma$ events (with $Z \to q\overline{q}$ and $Z \to \nu\overline{\nu}$) at 189 GeV to obtain the central values (and 95% CL limits) of these couplings: $h_1^Z = 0.000 \pm 0.100 \; (-0.190, 0.190), \; h_2^Z = 0.000 \pm 0.068 \; (-0.128, 0.128), \; h_3^Z = -0.074^{+0.102}_{-0.103} \; (-0.269, 0.119), \; h_4^Z = 0.046 \pm 0.068 \; (-0.084, 0.175), \; h_1^{\gamma} = 0.000 \pm 0.061 \; (-0.115, 0.115), \; h_2^{\gamma} = 0.000 \pm 0.041 \; (-0.077, 0.077), \; h_3^{\gamma} = -0.080^{+0.039}_{-0.041} \; (-0.164, -0.006), \; h_4^{\gamma} = 0.064^{+0.033}_{-0.030} \; (+0.007, +0.134). \;$ The results are derived assuming that only one coupling at a time is different from zero.

HTTP://PDG.LBL.GOV

Page 45

- 209 ABBOTT 98M study $p\overline{p} \to Z\gamma$ +X, with $Z \to e^+e^-$, $\mu^+\mu^-$, $\overline{\nu}\nu$ at 1.8 TeV, to obtain 95% CL limits at $\Lambda = 750$ GeV: $|h_{30}^Z| < 0.36$, $|h_{40}^Z| < 0.05$ (keeping $|h_{30}^\gamma| < 0.37$, $|h_{40}^\gamma| < 0.05$ (keeping $h_i^Z = 0$). Limits on the *CP*-violating couplings are $|h_{10}^Z| < 0.36$, $|h_{20}^Z| < 0.05$ (keeping $h_i^\gamma = 0$), and $|h_{10}^\gamma| < 0.37$, $|h_{20}^\gamma| < 0.05$ (keeping $h_i^Z = 0$).
- ²¹⁰ ABREU 98K determine a 95% CL upper limit on $\sigma(e^+e^- \to \gamma + \text{ invisible particles}) < 2.5 \, \text{pb using } 161 \, \text{and } 172 \, \text{GeV data}$. This is used to set 95% CL limits on $\left|h_{30}^{\gamma}\right| < 0.8 \, \text{and}$ $\left|h_{30}^{Z}\right| < 1.3$, derived at a scale $\Lambda = 1 \, \text{TeV}$ and with n = 3 in the form factor representation.

Combining the LEP results properly taking into account the correlations the following 95% CL limits are derived:

(See EP Preprint Summer 2004: CERN-PH-EP/2004-069 and hep-ex/0412015, 6 December 2004, on http://lepewwg.web.cern.ch/LEPEWWG/stanmod/)

$$-0.30 < f_4^Z < +0.30,$$
 $-0.34 < f_5^Z < +0.38,$ $-0.17 < f_4^{\gamma} < +0.19,$ $-0.32 < f_5^{\gamma} < +0.36.$

VALUE

DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • •

- 211 ABBIENDI 04C study ZZ production in e^+e^- collisions in the C.M. energy range 190–209 GeV. They select 340 events with an expected background of 180 events. Including the ABBIENDI 00N data at 183 and 189 GeV (118 events with an expected background of 65 events) they report the following 95% CL limits: $-0.45 < f_4^Z < 0.58$, $-0.94 < f_5^Z < 0.25$, $-0.32 < f_4^\gamma < 0.33$, and $-0.71 < f_5^\gamma < 0.59$.
- ACHARD 03D study Z-boson pair production in e^+e^- collisions in the C.M. energy range 200–209 GeV. They select 549 events with an expected background of 432 events. Including the ACCIARRI 99G and ACCIARRI 99O data (183 and 189 GeV respectively, 286 events with an expected background of 241 events) and the 192–202 GeV ACCIARRI 011 results (656 events, expected background of 512 events), they report the following 95% CL limits: $-0.48 \le f_4^Z \le 0.46$, $-0.36 \le f_5^Z \le 1.03$, $-0.28 \le f_4^\gamma \le 0.28$, and $-0.40 \le f_5^\gamma \le 0.47$.

ANOMALOUS W/Z QUARTIC COUPLINGS

A REVIEW GOES HERE - Check our WWW List of Reviews

$$a_0/\Lambda^2$$
, a_c/Λ^2

Combining published and unpublished preliminary LEP results the following 95% CL intervals for the QGCs associated with the $ZZ\gamma\gamma$ vertex are derived:

(See EP Preprint Summer 2004: CERN-PH-EP/2004-069 and hep-ex/0412015, 6 December 2004, on http://lepewwg.web.cern.ch/LEPEWWG/stanmod/)

$$-0.008 < a_0^Z/\Lambda^2 < +0.021$$

 $-0.029 < a_0^Z/\Lambda^2 < +0.039$

HTTP://PDG.LBL.GOV

Page 46

VALUE DOCUMENT ID TECN

• • We do not use the following data for averages, fits, limits, etc. • •

213 ABBIENDI 04L OPAL 214 HEISTER 04A ALEP 215 ACHARD 02G L3

ABBIENDI 04L select 20 e⁺ e⁻ $\rightarrow \nu \overline{\nu} \gamma \gamma$ acoplanar events in the energy range 180–209 GeV and 176 e⁺ e⁻ $\rightarrow q \overline{q} \gamma \gamma$ events in the energy range 130–209 GeV. These samples are used to constrain possible anomalous $W^+W^-\gamma \gamma$ and $ZZ\gamma\gamma$ quartic couplings. Further combining with the $W^+W^-\gamma$ sample of ABBIENDI 04B the following one-parameter 95% CL limits are obtained: -0.007 < a_0^Z/Λ^2 < 0.023 GeV⁻², -0.029 < a_c^Z/Λ^2 < 0.029 GeV⁻², -0.020 < a_0^W/Λ^2 < 0.020 GeV⁻², -0.052 < a_c^W/Λ^2 < 0.037 GeV⁻².

In the CM energy range 183 to 209 GeV HEISTER 04A select 30 $e^+\,e^- \to \nu \overline{\nu} \gamma \gamma$ events with two acoplanar, high energy and high transverse momentum photons. The photon–photon acoplanarity is required to be $>5^\circ$, ${\rm E}_{\gamma}/\sqrt{s}>0.025$ (the more energetic photon having energy $>0.2\,\sqrt{s}$), ${\rm p}_{T\gamma}/{\rm E}_{beam}>0.05$ and $|\cos\theta_{\gamma}|<0.94$. A likelihood fit to the photon energy and recoil missing mass yields the following one–parameter 95% CL limits: $-0.012 < a_0^Z/\Lambda^2 < 0.019~{\rm GeV}^{-2}$, $-0.041 < a_c^Z/\Lambda^2 < 0.044~{\rm GeV}^{-2}$, $-0.060 < a_0^W/\Lambda^2 < 0.055~{\rm GeV}^{-2}$, $-0.099 < a_c^W/\Lambda^2 < 0.093~{\rm GeV}^{-2}$.

215 ACHARD 02G study $e^+e^- \to Z\gamma\gamma \to q\overline{q}\gamma\gamma$ events using data at center-of-mass energies from 200 to 209 GeV. The photons are required to be isolated, each with energy >5 GeV and $|\cos\theta| < 0.97$, and the di-jet invariant mass to be compatible with that of the Z boson (74–111 GeV). Cuts on Z velocity ($\beta < 0.73$) and on the energy of the most energetic photon reduce the backgrounds due to non-resonant production of the $q\overline{q}\gamma\gamma$ state and due to ISR respectively, yielding a total of 40 candidate events of which 8.6 are expected to be due to background. The energy spectra of the least energetic photon are fitted for all ten center-of-mass energy values from 130 GeV to 209 GeV (as obtained adding to the present analysis 130–202 GeV data of ACCIARRI 01E, for a total of 137 events with an expected background of 34.1 events) to obtain the fitted values $a_0/\Lambda^2 = 0.00^+_{-0.01}$ GeV $^{-2}$ and $a_c/\Lambda^2 = 0.03^+_{-0.01}$ GeV $^{-2}$, where the other parameter is kept fixed to its Standard Model value (0). A simultaneous fit to both parameters yields the 95% CL limits -0.02 GeV $^{-2}$ $< a_0/\Lambda^2 < 0.03$ GeV $^{-2}$ and -0.07 GeV $^{-2}$ $< a_0/\Lambda^2 < 0.05$ GeV $^{-2}$.

Z REFERENCES

ABDALLAH ABE ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD ACHARD ABBIENDI ABB	05 04B 04C 04E 04G 04L 04F 04C 04C 04H 04A 04 03P 03H 03F	EPJ C40 1 PRL 94 091801 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B599 1 PL B577 18 PL B569 129 PRL 90 141804	K. G. G. G. G. J. K. P. P. A. S. G. J. K.	Abdallah et al. Abe et al. Abbiendi et al. Abdallah et al. Achard et al. Achard et al. Achard et al. Schael et al. Abdallah et al. Abdallah et al.	(OPAL (OPAL (OPAL (OPAL (OPAL (DELPHI (SLD (L3 (ALEPH (ALEPH (OPAL (DELPHI (SLD	Collab.)
ABE ACHARD		PRL 90 141804 PL B572 133	K.		` (SLD	
ACHARD ABBIENDI	03G 02I	PL B577 109 PL B546 29	P.	Achard et al. Abbiendi et al.	(L3	Collab.) Collab.)
, LODIENDI	021	1 2 2010 23	٥.	Abbienar et al.	(SI/IL	conab.)

HTTP://PDG.LBL.GOV

Page 47

ABE	02G	PRL 88 151801	K	Abe et al.	(SLD	Collab.)
ACHARD	02G	PL B540 43		Achard et al.	. `	Collab.)
HEISTER	02B	PL B526 34		Heister et al.	(ALEPH	
HEISTER	02C	PL B528 19	Α.	Heister <i>et al.</i>	(ALEPH	Collab.)
HEISTER	02H	EPJ C24 177	Α.	Heister et al.	(ALEPH	Collab.)
ABBIENDI	01A	EPJ C19 587	G.	Abbiendi <i>et al.</i>		Collab.)
ABBIENDI	01G	EPJ C18 447	G	Abbiendi et al.	` .	Collab.)
ABBIENDI	01K	PL B516 1		Abbiendi <i>et al.</i>	` .	
					` .	Collab.)
ABBIENDI	01N	EPJ C20 445		Abbiendi et al.		Collab.)
ABBIENDI	010	EPJ C21 1		Abbiendi <i>et al.</i>	(OPAL	Collab.)
ABE	01B	PRL 86 1162	K.	Abe <i>et al.</i>	(SLD	Collab.)
ABE	01C	PR D63 032005	K.	Abe et al.	(SLD	Collab.)
ACCIARRI	01E	PL B505 47	M.	Acciarri et al.	٠.	Collab.)
ACCIARRI	011	PL B497 23		Acciarri <i>et al.</i>		Collab.)
				Heister <i>et al.</i>		
HEISTER	01	EPJ C20 401			(ALEPH	
HEISTER	01D	EPJ C22 201		Heister et al.	(ALEPH	
ABBIENDI	00N	PL B476 256	G.	Abbiendi <i>et al.</i>		Collab.)
ABBIENDI,G	00C	EPJ C17 553	G.	Abbiendi <i>et al.</i>	(OPAL	Collab.)
ABE	00B	PRL 84 5945	K.	Abe et al.		Collab.)
ABE	00D	PRL 85 5059		Abe et al.	` .	Collab.)
ABREU	00	EPJ C12 225		Abreu et al.	(DELPHI	
					`	
ABREU	00B	EPJ C14 613		Abreu et al.	(DELPHI	
ABREU	00E	EPJ C14 585		Abreu <i>et al.</i>	(DELPHI	
ABREU	00F	EPJ C16 371	Ρ.	Abreu et al.	(DELPHI	Collab.)
ABREU	00P	PL B475 429	P.	Abreu et al.	(DELPHI	Collab.)
ACCIARRI	00	EPJ C13 47	М	Acciarri et al.	,	Collab.)
ACCIARRI	00C	EPJ C16 1		Acciarri <i>et al.</i>		Collab.)
ACCIARRI	00J	PL B479 79		Acciarri et al.		Collab.)
ACCIARRI	00Q	PL B489 93		Acciarri <i>et al.</i>	(L3	Collab.)
BARATE	00B	EPJ C16 597	R.	Barate et al.	(ALEPH	Collab.)
BARATE	00C	EPJ C14 1	R.	Barate et al.	(ALEPH	Collab.)
BARATE	000	EPJ C16 613	R.	Barate et al.	(ALEPH	
ABBIENDI	99B	EPJ C8 217		Abbiendi <i>et al.</i>		Collab.)
				Abbiendi <i>et al.</i>		
ABBIENDI	99I	PL B447 157				Collab.)
ABE	99E	PR D59 052001		Abe et al.	` .	Collab.)
ABE	99L	PRL 83 1902		Abe et al.	(SLD	Collab.)
ABREU	99	EPJ C6 19	Ρ.	Abreu <i>et al.</i>	(DELPHI	Collab.)
ABREU	99B	EPJ C10 415	P.	Abreu et al.	(DELPHI	
ABREU	99J	PL B449 364	P.	Abreu et al.	(DELPHI	
ABREU	99U	PL B462 425		Abreu et al.	(DELPHI	Collab)
	99Y	EPJ C10 219		Abreu et al.	(DELPHI	Collab.)
ABREU						
ACCIARRI	99D	PL B448 152		Acciarri et al.		Collab.)
ACCIARRI	99F	PL B453 94		Acciarri <i>et al.</i>	(L3	Collab.)
ACCIARRI	99G	PL B450 281	Μ.	Acciarri <i>et al.</i>	(L3	Collab.)
ACCIARRI	990	PL B465 363	M.	Acciarri et al.	(L3	Collab.)
ABBOTT	98M	PR D57 R3817		Abbott et al.		Collab.)
ABE	98D	PRL 80 660		Abe et al.		Collab.)
ABE	981	PRL 81 942		Abe et al.		Collab.)
ABREU	98K	PL B423 194		Abreu <i>et al</i> .	(DELPHI	
ABREU	98L	EPJ C5 585	Ρ.	Abreu et al.	(DELPHI	
ACCIARRI	98G	PL B431 199	M.	Acciarri <i>et al.</i>	(L3	Collab.)
ACCIARRI	98H	PL B429 387	M.	Acciarri <i>et al.</i>	(L3	Collab.)
ACCIARRI	98U	PL B439 225	М	Acciarri <i>et al.</i>		Collab.)
ACKERSTAFF	98A	EPJ C5 411		Ackerstaff <i>et al.</i>		Collab.)
		EPJ C1 439			` .	
ACKERSTAFF	98E			Ackerstaff et al.	` .	Collab.)
ACKERSTAFF	980	PL B420 157		Ackerstaff et al.	` .	Collab.)
ACKERSTAFF	98Q	EPJ C4 19		Ackerstaff et al.	(OPAL	Collab.)
BARATE	98O	PL B434 415	R.	Barate et al.	(ALEPH	Collab.)
BARATE	98T	EPJ C4 557	R.	Barate et al.	(ALEPH	Collab.)
BARATE	98V	EPJ C5 205		Barate et al.	(ALEPH	,
ABE	97	PRL 78 17		Abe et al.	`	Collab.)
				Abreu et al.	(DELPHI	
ABREU	97C	ZPHY C73 243				
ABREU	97E	PL B398 207		Abreu et al.	(DELPHI	
ABREU	97G	PL B404 194		Abreu <i>et al</i> .	(DELPHI	
ACCIARRI	97D	PL B393 465	M.	Acciarri <i>et al.</i>	(L3	Collab.)
ACCIARRI	97J	PL B407 351	M.	Acciarri <i>et al.</i>	(L3	Collab.)
ACCIARRI	97L	PL B407 389	M	Acciarri <i>et al.</i>		Collab.)
ACCIARRI	97R	PL B413 167		Acciarri <i>et al.</i>		Collab.)
ACKERSTAFF	97K	ZPHY C74 1		Ackerstaff et al.	`	Collab.)
					` .	
ACKERSTAFF	97M	ZPHY C74 413		Ackerstaff et al.	` .	Collab.)
ACKERSTAFF	97S	PL B412 210	K.	Ackerstaff et al.	(OPAL	Collab.)

ACKERSTAFF ACKERSTAFF ALEXANDER ALEXANDER ALEXANDER BARATE BARATE BARATE BARATE BARATE BARATE BARATE ABE ABREU ABREU ABREU ABREU ACCIARRI ADAM ADAM ADAM ALEXANDER ALEXANDER ALEXANDER ALEXANDER	97C 97D 97E 97D 97E 97F 97H 96E 96S 96S 96S 96B 96B 96B 96B 96F 96N 96R	ZPHY C76 387 ZPHY C76 425 ZPHY C73 379 ZPHY C73 569 ZPHY C73 587 PL B405 191 PL B401 150 PL B401 163 PL B402 213 ZPHY C74 451 PR D53 1023 ZPHY C70 531 ZPHY C70 531 ZPHY C72 31 PL B389 405 ZPHY C73 61 PL B371 126 ZPHY C70 371 ZPHY C70 197 PL B370 185 PL B384 343 ZPHY C72 1		K. Ackerstaff et al. K. Ackerstaff et al. G. Alexander et al. G. Alexander et al. G. Alexander et al. R. Barate et al. P. Abreu et al. P. Abreu et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. W. Adam et al. G. Alexander et al.	(OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (SLD Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.)
BUSKULIC BUSKULIC ABE	96D 96H 95J	ZPHY C69 393 ZPHY C69 379 PRL 74 2880		D. Buskulic <i>et al.</i> D. Buskulic <i>et al.</i> K. Abe <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.)
ABREU ABREU ABREU ABREU	95 95D 95G 95L	ZPHY C65 709 ZPHY C66 323 ZPHY C67 1 ZPHY C65 587	erratum	P. Abreu et al.	(SLD Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.)
ABREU ABREU ABREU	95O 95R	ZPHY C65 603 ZPHY C67 543 ZPHY C68 353		P. Abreu et al. P. Abreu et al. P. Abreu et al.	(DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.)
ABREU ABREU ACCIARRI	95X 95B	PL B361 207 ZPHY C69 1 PL B345 589		P. Abreu et al. P. Abreu et al. M. Acciarri et al.	(DELPHI Collab.) (DELPHI Collab.) (L3 Collab.)
ACCIARRI ACCIARRI AKERS	95C 95G 95C	PL B345 609 PL B353 136 ZPHY C65 47		M. Acciarri <i>et al.</i> M. Acciarri <i>et al.</i> R. Akers <i>et al.</i>	(L3 Collab.) (L3 Collab.) (OPAL Collab.)
AKERS AKERS AKERS		ZPHY C67 27 ZPHY C67 389 ZPHY C67 555		R. Akers <i>et al.</i> R. Akers <i>et al.</i> R. Akers <i>et al.</i>	(OPAL Collab.) (OPAL Collab.) (OPAL Collab.)
AKERS AKERS ALEXANDER	95X 95Z 95D	ZPHY C68 1 ZPHY C68 203 PL B358 162		R. Akers et al. R. Akers et al. G. Alexander et al.	(OPAL Collab.) (OPAL Collab.) (OPAL Collab.)
BUSKULIC MIYABAYASHI ABE	94C	ZPHY C69 15 PL B347 171 PRL 73 25		D. Buskulic <i>et al.</i> K. Miyabayashi <i>et al.</i> K. Abe <i>et al.</i>	(ALEPH Collab.) (TOPAZ Collab.) (SLD Collab.)
ABREU ABREU AKERS	94B 94P 94P	PL B327 386 PL B341 109 ZPHY C63 181		P. Abreu <i>et al.</i> P. Abreu <i>et al.</i> R. Akers <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.)
BUSKULIC BUSKULIC VILAIN	94G 94J 94	ZPHY C62 179 ZPHY C62 1 PL B320 203		D. Buskulic <i>et al.</i> D. Buskulic <i>et al.</i> P. Vilain <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.) (CHARM II Collab.)
ABREU ABREU Also	93 93l 95	PL B298 236 ZPHY C59 533 ZPHY C65 709	erratum	P. Abreu <i>et al.</i> P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.)
ABREU ACTON ACTON	93L 93 93D	PL B318 249 PL B305 407 ZPHY C58 219		P. Abreu <i>et al.</i> P.D. Acton <i>et al.</i> P.D. Acton <i>et al.</i>	(DELPHI Collab.) (OPAL Collab.) (OPAL Collab.)
ACTON ADRIANI ADRIANI	93E 93 93I	PL B311 391 PL B301 136 PL B316 427		P.D. Acton <i>et al.</i> O. Adriani <i>et al.</i> O. Adriani <i>et al.</i>	(OPAL Collab.) (L3 Collab.) (L3 Collab.)
BUSKULIC NOVIKOV ABREU	93L 93C 92I	PL B313 520 PL B298 453 PL B277 371		D. Buskulic <i>et al.</i> V.A. Novikov, L.B. Okun, P. Abreu <i>et al.</i>	(ALEPH Collab.) M.I. Vysotsky (ITEP) (DELPHI Collab.)
ABREU ACTON ACTON	92M 92B 92L	PL B289 199 ZPHY C53 539 PL B294 436		P. Abreu et al. D.P. Acton et al. P.D. Acton et al.	(DELPHI Collab.) (OPAL Collab.) (OPAL Collab.)
ACTON ADEVA ADRIANI	92N 92 92D	PL B295 357 PL B275 209 PL B292 454		P.D. Acton <i>et al.</i> B. Adeva <i>et al.</i> O. Adriani <i>et al.</i>	(OPAL Collab.) (L3 Collab.) (L3 Collab.)

ALITTI BUSKULIC BUSKULIC DECAMP ABE ABREU ACTON ADACHI ADEVA AKRAWY DECAMP DECAMP JACOBSEN SHIMONAKA ABE ABRAMS AKRAWY BEHREND BRAUNSCH ELSEN HEGNER STUART ABE ABE ABE ABRAMS ALBAJAR BACALA BAND GREENSHAW OULD-SAADA SAGAWA ADACHI ADEVA BRAUNSCH ANSARI BEHREND BRATEL Also Also ASH BARTEL DERRICK FERNANDEZ LEVI BEHREND BRANDELIK	90 90 90 89 89C 89L 89B 89D 89 89 89	PL B276 354 PL B292 210 PL B294 145 PRPL 216 253 PRL 67 1502 ZPHY C50 185 PL B273 338 PL B255 613 PL B259 199 PL B257 531 PL B268 218 PRL 67 3347 PL B268 457 ZPHY C48 13 PRL 64 1334 PL B246 285 ZPHY C46 349 ZPHY C46 349 ZPHY C46 349 ZPHY C46 547 PRL 63 720 PL B232 425 PRL 63 720 PL B232 425 PRL 63 2780 ZPHY C44 15 PL B218 112 PL B218 112 PL B218 369 ZPHY C44 15 PL B218 112 PL B218 369 ZPHY C44 567 PRL 63 2341 PL B208 319 PR D38 2665 ZPHY C40 163 PL B186 440 PL B191 209 ZPHY C30 371 ZPHY C40 163 PL B186 440 PL B191 209 ZPHY C30 371 ZPHY C40 163 PL B186 440 PL B191 209 ZPHY C30 371 ZPHY C40 163 PL B186 440 PL B191 209 ZPHY C30 371 ZPHY C40 163 PL B186 440 PL B191 209 ZPHY C30 371 ZPHY C26 507 PL 108B 140 PRL 55 1831 PL 161B 188 PR D31 2352 PRL 54 1624 PRL 51 1941 PL 114B 282 PL 110B 173	J. Alitti et al. D. Buskulic et al. D. Buskulic et al. D. Decamp et al. F. Abe et al. P. Abreu et al. D.P. Acton et al. I. Adachi et al. B. Adeva et al. M.Z. Akrawy et al. D. Decamp et al. D. Decamp et al. A. Shimonaka et al. K. Abe et al. G.S. Abrams et al. M.Z. Akrawy et al. D. Stuart et al. S. Hegner et al. S. Hegner et al. C. Albajar et al. K. Abe et al. F. Abe et al. G.S. Abrams et al. N. Band et al. T. Greenshaw et al. A. Bacala et al. A. Bagawa et al. B. Adachi et al. B. Adeva et al. C. Albajar et al. A. Barandeit et al. D. Stuart et al. C. Albajar et al. A. Bacala et al. A. Bacala et al. A. Barande et al. B. Adachi et al. C. Albajar et al. C. Albajar et al. A. Barande et al. B. Adachi et al. C. Albajar et al. C. Albajar et al. A. Barande et al. C. Albajar et al. A. Barande et al. B. Adachi et al. B. Adachi et al. C. Albajar et al. A. Sagawa et al. C. Albajar et al. A. Barande et al. B. Adachi et al. B. Adachi et al. B. Adachi et al. B. Adeva et al. B. Adeva et al. B. Adeva et al. B. Adeva et al. B. Aberrend et al. B. Bartel et al. B. Bartel et al. B. Berrend et al.	(UA2 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (Mark II Collab.) (VENUS Collab.) (VENUS Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (CELLO Collab.) (CELLO Collab.) (JADE Collab.) (AMY Collab.) (CDF Collab.) (VENUS Collab.) (VENUS Collab.) (AMY Collab.) (AMY Collab.) (AMY Collab.) (Mark II Collab.) (Mark II Collab.) (Mark II Collab.) (MAC Collab.) (JADE Collab.) (MAC Collab.) (TASSO Collab.)
--	--	---	---	---