$V_{ud}, V_{us},$ THE CABIBBO ANGLE, AND CKM UNITARITY

Written October 2005 by E. Blucher (Univ. of Chicago) and W.J. Marciano (BNL)

The Cabibbo-Kobayashi-Maskawa (CKM) [1,2] three-generation quark mixing matrix written in terms of the Wolfenstein parameters $(\lambda, A, \rho, \eta)$ [3] nicely illustrates the orthonormality constraint of unitarity and central role played by $\lambda$.

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \quad (1)$$

That cornerstone is a carryover from the two-generation Cabibbo angle, $\lambda = \sin(\theta_{\text{Cabibbo}}) = V_{us}$. Its value is a critical ingredient in determinations of the other parameters and in tests of CKM unitarity.

Unfortunately, the precise value of $\lambda$ has been somewhat controversial in the past, with kaon decays suggesting [4] $\lambda \simeq 0.220$ while hyperon decays [5] and indirect determinations via nuclear $\beta$-decays imply a somewhat larger $\lambda \simeq 0.225 - 0.230$. That discrepancy is often discussed in terms of a deviation from the unitarity requirement

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1. \quad (2)$$

For many years, using a value of $V_{us}$ derived from $K \to \pi e\nu$ ($K_{e3}$) decays, that sum was consistently 2–2.5 sigma below unity, a potential signal [6] for new physics effects. Below, we discuss the current status of $V_{ud}, V_{us},$ and their associated unitarity test in Eq. (2). (Since $|V_{ub}|^2 \simeq 1 \times 10^{-5}$ is negligibly small, it is ignored in this discussion.)
The value of $V_{ud}$ has been obtained from superallowed nuclear, neutron, and pion decays. Currently, the most precise determination of $V_{ud}$ comes from superallowed nuclear beta-decays [6] ($0^+ \rightarrow 0^+$ transitions). Measuring their half-lives, $t$, and Q values which give the decay rate factor, $f$, leads to a precise determination of $V_{ud}$ via the master formula [7–9]

$$|V_{ud}|^2 = \frac{2984.48(5)\sec}{ft(1 + RC)}$$

where RC denotes the entire effect of electroweak radiative corrections, nuclear structure, and isospin violating nuclear effects. RC is nucleus dependent, ranging from about +3.1% to +3.6% for the nine best measured superallowed decays. In Table 1, we give the $ft$ values along with their implied $V_{ud}$ for the nine best measured superallowed decays [6, 10]. They collectively give a weighted average (with errors combined in quadrature) of

$$V_{ud} = 0.97377(27) \text{ (superallowed)}$$

which, assuming unitarity, corresponds to $\lambda = 0.2275(12)$. We note, however, that a recent remeasurement [10] of the $^{46}$V Q value has significantly affected its $ft$ and $V_{ud}$ values, with the latter now about 2.7 sigma below the average. That recent shift may point to a potential problem with the Q values and $ft$ values of the other superallowed beta decays. Remeasurement of all Q values using modern atomic trapping techniques is called for and in progress.

Combined measurements of the neutron lifetime, $\tau_n$, and the ratio of axial-vector/vector couplings, $g_A \equiv G_A/G_V$, via neutron decay asymmetries can also be used to determine $V_{ud}$:

$$|V_{ud}|^2 = \frac{4908.7(1.9)\sec}{\tau_n(1 + 3g_A^2)},$$

where the error stems from uncertainties in the electroweak radiative corrections [8] due to hadronic loop effects. Those effects have been recently updated and their error was reduced by about a factor of 2 [9], leading to a ±0.0002 theoretical
Table 1: Values of $V_{ud}$ implied by various precisely measured superallowed nuclear beta decays. The $ft$ values are taken from a recent update by Savard et al. [10]. Uncertainties in $V_{ud}$ correspond to 1) nuclear structure and $Z^2\alpha^3$ uncertainties [6, 11] added in quadrature with the $ft$ error, 2) a common error assigned to nuclear Coulomb distortion effects [11], and 3) a common uncertainty in the radiative corrections from quantum loop effects [9]. Only the first error is used to obtain the weighted average.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>$ft$ (sec)</th>
<th>$V_{ud}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{10}\text{C}$</td>
<td>3039.5(47)</td>
<td>0.97381(77)(15)(19)</td>
</tr>
<tr>
<td>$^{14}\text{O}$</td>
<td>3043.3(19)</td>
<td>0.97368(39)(15)(19)</td>
</tr>
<tr>
<td>$^{26}\text{Al}$</td>
<td>3036.8(11)</td>
<td>0.97406(23)(15)(19)</td>
</tr>
<tr>
<td>$^{34}\text{Cl}$</td>
<td>3050.0(12)</td>
<td>0.97412(26)(15)(19)</td>
</tr>
<tr>
<td>$^{38}\text{K}$</td>
<td>3051.1(10)</td>
<td>0.97404(26)(15)(19)</td>
</tr>
<tr>
<td>$^{42}\text{Sc}$</td>
<td>3046.8(12)</td>
<td>0.97330(32)(15)(19)</td>
</tr>
<tr>
<td>$^{46}\text{V}$</td>
<td>3050.7(12)</td>
<td>0.97280(34)(15)(19)</td>
</tr>
<tr>
<td>$^{50}\text{Mn}$</td>
<td>3045.8(16)</td>
<td>0.97367(41)(15)(19)</td>
</tr>
<tr>
<td>$^{54}\text{Co}$</td>
<td>3048.4(11)</td>
<td>0.97373(40)(15)(19)</td>
</tr>
<tr>
<td>Weighted Ave.</td>
<td></td>
<td>0.97377(11)(15)(19)</td>
</tr>
</tbody>
</table>

uncertainty in $V_{ud}$ (common to all $V_{ud}$ extractions). Using the world averages (from PDG 2004) [4]

$$\tau_n^{\text{ave}} = 885.7(8)\text{sec}$$

$$g_A^{\text{ave}} = 1.2695(29)$$

leads to

$$V_{ud} = 0.9746(4)\tau_n(18)g_A(2)\text{RC}$$

with the error dominated by $g_A$ uncertainties (which have been expanded due to experimental inconsistencies). We note that a recent precise measurement [12] of $\tau_n = 878.5(7)(3)\text{ sec}$ is also inconsistent with the 2004 world average and would lead to a considerably larger $V_{ud} = 0.9786(4)(18)(2)$. Future neutron studies are expected to resolve these inconsistencies and
significantly reduce the uncertainties in $g_A$ and $\tau_n$, potentially making them the best way to determine $V_{ud}$.

The recently completed PIBETA experiment at PSI measured the very small ($\mathcal{O}(10^{-8})$) branching ratio for $\pi^+ \rightarrow \pi^0 e^+\nu_e$ with about $\pm 1/2\%$ precision. Their result gives [13]

$$V_{ud} = 0.9749(26) \left[ \frac{\text{BR}(\pi^+ \rightarrow e^+\nu_e(\gamma))}{1.2352 \times 10^{-4}} \right]^{1/2}$$

which is normalized using the very precisely determined theoretical prediction for $\text{BR}(\pi^+ \rightarrow e^+\nu_e(\gamma)) = 1.2352(5) \times 10^{-4}$ [7] rather than the experimental branching ratio of $4.1230(4) \times 10^{-4}$ which would lower the value to $V_{ud} = 0.9728(30)$. Theoretical uncertainties in that determination are very small; however, much higher statistics would be required to make this approach competitive with others.

$V_{us}$

$|V_{us}|$ may be determined from kaon decays, hyperon decays, and tau decays. Previous determinations have most often used $K\ell\bar{3}$ decays:

$$\Gamma_{K\ell\bar{3}} = \frac{G_F^2 M_K^5}{192\pi^3} S_{EW} (1 + \delta_{K}^\ell + \delta_{SU2}) C^2 |V_{us}|^2 f_+^\ell(0) I^K_\ell. \quad (9)$$

Here, $\ell$ refers to either $e$ or $\mu$, $G_F$ is the Fermi constant, $M_K$ is the kaon mass, $S_{EW}$ is the short-distance radiative correction, $\delta_{K}^\ell$ is the mode-dependent long-distance radiative correction, $f_+(0)$ is the calculated form factor at zero momentum transfer for the $\ell\nu$ system, and $I^K_\ell$ is the phase-space integral, which depends on measured semileptonic form factors. For charged kaon decays, $\delta_{SU2}$ is the deviation from one of the ratio of $f_+(0)$ for the charged to neutral kaon decay; it is zero for the neutral kaon. $C^2$ is 1 ($1/2$) for neutral (charged) kaon decays. Previous PDG determinations of $|V_{us}|$ have been based only on $K \rightarrow \pi\nu\nu$ decays; $K \rightarrow \pi\mu\nu$ decays have not been used because of large uncertainties in $I^K_\ell$. The experimental measurements are the semileptonic decay widths (based on the semileptonic branching fractions and lifetime) and form factors (allowing calculation of the phase space integrals). Theory is needed for
$S_{EW}$, $\delta_K$, $\delta_{SU2}$, and $f_+(0)$. These experimental and theoretical inputs are discussed in the following paragraphs.

**Branching Fractions.** Recent measurements of the $K \to \pi e\nu$ branching fractions are significantly different from previous PDG averages, probably as a result of inadequate treatment of radiation in older experiments. We therefore choose to base averages on recent measurements where the treatment of radiation is clear.

For the $K_L$ branching fractions, we consider the following experimental inputs:

- KTeV measured the following 5 partial width ratios [14, 15]:
  \[
  \frac{\Gamma(K_L \to \pi^+\pi^-\pi^0)}{\Gamma(K_L \to \pi^+e^+\nu)},
  \frac{\Gamma(K_L \to \pi^0\pi^0\pi^0)}{\Gamma(K_L \to \pi^0e^+\nu)},
  \frac{\Gamma(K_L \to \pi^0\pi^0\pi^0)}{\Gamma(K_L \to \pi^00^0)},
  \frac{\Gamma(K_L \to \pi^0\pi^0\pi^0)}{\Gamma(K_L \to \pi^00^00^0)}.
  \]
  Since the six decay modes listed above account for more than 99.9% of the total decay rate, the five partial width ratios may be converted into measurements of the branching fractions for the six decay modes.

- KLOE uses a tagged $K_L$ sample to measure the 4 largest $K_L$ branching fractions [16].

- NA48 measures the following 2 ratios: $\Gamma_{K\ell3}/\Gamma(2\text{ track})$ [17] and $\Gamma_{000}/\Gamma(K_S \to \pi^0\pi^0\pi^0)$ [18]. These ratios may be used to determine $B(K\ell3)$.

A fit to all of these measurements, accounting for correlations, gives the $K_L$ semileptonic branching fractions in Table 2. Figure 1 shows a comparison of the new experimental measurements, the best fit values, and the 2002 PDG fit values [19].

Note that the new measurements are consistent with each other, but are shifted significantly from the PDG fit.

For $K_S \to \pi e\nu$, we use the new KLOE measurement:
\[B(K_S \to \pi e\nu) = (7.06 \pm 0.06 \pm 0.04) \times 10^{-4}.
\]

For $K^\pm \to \pi^0 e^\pm\nu$, we use the BNL E865 [20] measurement of $B(K^\pm \to \pi^0 e^\pm\nu) = (5.13 \pm 0.1)\%$. Preliminary measurements from NA48, KLOE, and ISTRA+ are consistent with this result.

**Kaon Lifetime.** KLOE has performed two new measurements of the $K_L$ lifetime: one based on exploiting the lifetime
Table 2: Average $K_L$ semileptonic branching fractions and widths based on fit to new measurements from KTeV, KLOE, and NA48. The partial width measurements use the average $K_L$ lifetime quoted in Table 3.

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>Branching fraction</th>
<th>$\Gamma_i \left(10^7 s^{-1}\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_L \to \pi^\pm e^\mp \nu$</td>
<td>$0.4040 \pm 0.0008$</td>
<td>$0.7908 \pm 0.0032$</td>
</tr>
<tr>
<td>$K_L \to \pi^\pm \mu^\mp \nu$</td>
<td>$0.2699 \pm 0.0008$</td>
<td>$0.5283 \pm 0.0023$</td>
</tr>
</tbody>
</table>

Figure 1: Recent $K_L \to \pi e\nu$, $K_L \to \pi \mu\nu$, and $K^\pm \to \pi^0 e^\pm \nu$ branching fraction measurements (solid points) compared to PDG 2002 fit (open circles). The vertical lines indicate the $\pm 1\sigma$ bounds from a fit to all recent measurements (from KTeV, KLOE, NA48, and E865).

dependence of the detector acceptance to find the $K_L$ lifetime required to make the sum of branching fractions equal to 1 [16], and another based on the $K_L \to 3\pi^0$ decay distribution [21]. These new results and the old PDG average are listed in Table 3. The new average value, which we use for the results quoted below, is $\tau_L = (50.98 \pm 0.21) ns$.

Combining the $K_L$ branching fractions with the new lifetime gives the partial decay widths quoted in Table 2. Note that correlations between the KLOE branching fractions and the “indirect” KLOE lifetime determination have been taken into account.
For the $K_S$ and $K^+$ lifetimes, we use the PDG average values.

**Table 3: $K_L$ lifetime measurements.**

<table>
<thead>
<tr>
<th>Source</th>
<th>Lifetime (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDG 2004 Average</td>
<td>51.5 ± 0.4</td>
</tr>
<tr>
<td>KLOE (sum of branching fractions)</td>
<td>50.72 ± 0.35</td>
</tr>
<tr>
<td>KLOE ($3\pi^0$ distribution)</td>
<td>50.87 ± 0.31</td>
</tr>
<tr>
<td>New Average</td>
<td>50.98 ± 0.21</td>
</tr>
</tbody>
</table>

**Phase Space Integrals.** Recent experiments have also re-measured the semileptonic form factors needed to calculate the phase space integrals. These recent measurements of the semileptonic form factors are much more precise than previous averages, making it possible to use both the muon and electron decay modes for $K_L$.

We use the KTeV quadratic form factor results [22] for neutral kaon decays and the ISTRA+ quadratic form factor measurements [23] for charged kaons. For both charged and neutral decays, we include an additional 0.7% uncertainty in the phase space integrals, as suggested by KTeV [22], to account for differences between the quadratic and pole model form factor parametrizations, both of which give acceptable fits to the data. The resulting phase space integrals are $I_{K^0} = 0.1535 \pm 0.0011$, $I_{K^0}^\mu = 0.10165 \pm 0.0008$, and $I_{K^+}^e = 0.1591 \pm 0.0012$.

**Theoretical Inputs.** We use the following theoretical inputs to calculate $f_+(0)|V_{us}|$ from Eq. (9).

- Short-distance radiative correction [7, 24]: $S_{EW} = 1.023$;
- Long-distance radiative corrections [25, 26]: $\delta_{K^0}^e = 0.0104 \pm 0.002$, $\delta_{K^0}^\mu = 0.019 \pm 0.003$, $\delta_{K^+}^e = 0.0006 \pm 0.002$;
- SU2 breaking correction [25,27] $\delta_{SU2} = 0.046 \pm 0.004$.

$K_{L3}$ results for $|V_{us}|$. Figure 2 shows a comparison of the PDG and the averages of recent measurements for $|V_{us}|f_+(0)$ for $K^\pm$, $K_L$, and $K_S$. The average of all recent measurements gives

$$f_+^{K^0\pi^-}(0)|V_{us}| = 0.2169 \pm 0.0009.$$  (10)
The figure also shows $f_+(0)(1 - |V_{ud}|^2 - |V_{ub}|^2)^{1/2}$, the expectation for $f_+(0)|V_{us}|$ assuming unitarity, based on $|V_{ud}| = 0.9738 \pm 0.0003$, $|V_{ub}| = (3.6 \pm 0.7) \times 10^{-3}$, and the Leutwyler-Roos calculation of $f_+(0) = 0.961 \pm 0.008$ [27]. Using the result in Eq. (10) with the Leutwyler-Roos calculation of $f_+(0)$ gives

$$|V_{us}| = \lambda = 0.2257 \pm 0.0021.$$  \hspace{1cm} (11)

A similar result for $f_+(0)$ was recently obtained from a quenched lattice gauge theory calculation [28]. Other calculations of $f_+(0)$ result in $|V_{us}|$ values that differ by as much as 2\% from the result in Eq. (11). For example, a recent chiral perturbation theory calculation [29, 30] gives $f_+(0) = 0.974 \pm 0.012$, which implies a lower value of $|V_{us}| = 0.2227 \pm 0.0029$ [31].

---

**Figure 2:** Comparison of determinations of $|V_{us}|f_+(0)$ from this review (labeled 2005), from the PDG 2002, and with the prediction from unitarity using $|V_{ud}|$ and the Leutwyler-Roos calculation of $f_+(0)$ [27]. For $f_+(0)(1 - |V_{ud}|^2 - |V_{ub}|^2)^{1/2}$, the inner error bars are from the quoted uncertainty in $f_+(0)$; the total uncertainties include the $|V_{ud}|$ and $|V_{ub}|$ errors.
A value of $V_{us}$ can also be obtained from a comparison of the radiative inclusive decay rates for $K \rightarrow \mu \nu(\gamma)$ and $\pi \rightarrow \mu \nu(\gamma)$ combined with a lattice gauge theory calculation of $f_K/f_\pi$ via [32]

$$
\frac{|V_{us}| f_K}{|V_{ud}| f_\pi} = 0.2387(4) \left[ \frac{\Gamma(K \rightarrow \mu \nu(\gamma))}{\Gamma(\pi \rightarrow \mu \nu(\gamma))} \right]^{1/2} \tag{12}
$$

with the small error coming from electroweak radiative corrections. Employing

$$
\frac{\Gamma(K \rightarrow \mu \nu(\gamma))}{\Gamma(\pi \rightarrow \mu \nu(\gamma))} = 1.3383(46), \tag{13}
$$

which incorporates the KLOE result [33], $B(K \rightarrow \mu \nu(\gamma)) = 63.66(9)(15)\%$ and [34, 35]

$$
f_K/f_\pi = 1.198(3)(+16/-5) \tag{14}
$$

along with the value of $V_{ud}$ in Eq. (4) leads to

$$
|V_{us}| = 0.2245(5)(1.198 f_\pi/f_K). \tag{15}
$$

It should be mentioned that hyperon decay fits suggest [5]

$$
|V_{us}| = 0.2250(27) \text{ Hyperon Decays} \tag{16}
$$

modulo SU(3) breaking effects that could shift that value up or down. We note that a recent representative effort [36] that incorporates SU(3) breaking found $V_{us} = 0.226(5)$. Similarly, strangeness changing tau decays give [37]

$$
|V_{us}| = 0.2208(34) \text{ Tau Decays} \tag{17}
$$

where the central value depends on the strange quark mass.

Employing the value of $V_{ud}$ in Eq. (4) and $V_{us}$ in Eq. (11) leads to the unitarity consistency check

$$
|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9992(5)(9), \tag{18}
$$

where the first error is the uncertainty from $|V_{ud}|^2$ and the second error is the uncertainty from $|V_{us}|^2$. The result is in good agreement with unitarity. Averaging the direct determination of $\lambda(V_{us})$ with the determination derived from unitarity and
$V_{ud}$ gives $\lambda = 0.227(1)$. Although unitarity now seems well established, issues regarding the Q values in superallowed nuclear $\beta$-decays, $\tau_n, g_A, f_+(0)$ and $f_K/f_\pi$ must still be resolved before a definitive confirmation is possible.

References

11. I. S. Towner and J. C. Hardy, [nucl-th/0209014].
16. F. Ambrosino et al., [KLOE Collab.], hep-ex/0508027.


33. F. Ambrosino et al., [KLOE Collab.], hep-ex/0509045.


35. C. Bernard et al., hep-lat/0509137.
