Neutrino Properties

A REVIEW GOES HERE – Check our WWW List of Reviews

\[\tau \text{ MASS (electron based)} \]

Those limits given below are for the square root of \(m_{\nu_e}^{(\text{eff})} \equiv \sum_i |U_{ei}|^2 m_{\nu_i}^2 \). Limits that come from the kinematics of \(3\text{H} \beta^- \tau \) decay are the square roots of the limits for \(m_{\nu_e}^{(\text{eff})} \). Obtained from the measurements reported in the Listings for "\(\tau \) Mass Squared," below.

<table>
<thead>
<tr>
<th>VALUE (eV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2</td>
<td>95</td>
<td>OUR EVALUATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2.3</td>
<td>95</td>
<td>1 KRAUS 05</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td>< 2.5</td>
<td>95</td>
<td>2 LOBASHEV 99</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td>•••</td>
<td></td>
<td>We do not use the following data for averages, fits, limits, etc. •••</td>
<td></td>
<td></td>
</tr>
<tr>
<td><21.7</td>
<td>90</td>
<td>3 ARNABOLDI 03A</td>
<td>BOLO</td>
<td>187Re \beta-decay</td>
</tr>
<tr>
<td>< 5.7</td>
<td>95</td>
<td>4 LOREDO 02</td>
<td>ASTR</td>
<td>SN1987A</td>
</tr>
<tr>
<td>< 2.8</td>
<td>95</td>
<td>5 WEINHEIMER 99</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td>< 4.35</td>
<td>95</td>
<td>6 BELESEV 95</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td><12.4</td>
<td>95</td>
<td>7 CHING 95</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td><92</td>
<td>95</td>
<td>8 HIDDEMANN 95</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td>15 +32</td>
<td>95</td>
<td>HIDEDEMANN 95</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td><19.6</td>
<td>95</td>
<td>KERNAN 95</td>
<td>ASTR</td>
<td>SN 1987A</td>
</tr>
<tr>
<td>< 7.0</td>
<td>95</td>
<td>9 STOEFFL 95</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td>< 7.2</td>
<td>95</td>
<td>10 WEINHEIMER 93</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td><11.7</td>
<td>95</td>
<td>11 HOLZSCHUH 92B</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td><13.1</td>
<td>95</td>
<td>12 KAWAKAMI 91</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td>< 9.3</td>
<td>95</td>
<td>13 ROBERTSON 91</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
<tr>
<td><14</td>
<td>95</td>
<td>AVIGNONE 90</td>
<td>ASTR</td>
<td>SN 1987A</td>
</tr>
<tr>
<td><16</td>
<td>95</td>
<td>14 SPERGEL 88</td>
<td>ASTR</td>
<td>SN 1987A</td>
</tr>
<tr>
<td>17 to 40</td>
<td>95</td>
<td>14 BORIS 87</td>
<td>SPEC</td>
<td>3H \beta decay</td>
</tr>
</tbody>
</table>

1 KRAUS 05 is a continuation of the work reported in WEINHEIMER 99. This result represents the final analysis of data taken from 1997 to 2001. Various sources of systematic uncertainties have been identified and quantified. The background has been reduced compared to the initial running period. A spectral anomaly at the endpoint, reported in LOBASHEV 99, was not observed.

2 LOBASHEV 99 report a new measurement which continues the work reported in BELESEV 95. This limit depends on phenomenological fit parameters used to derive their best fit to \(m_{\nu_e}^2 \), making unambiguous interpretation difficult. See the footnote under "\(\tau \) Mass Squared."

3 ARNABOLDI 03A et al. report kinematical neutrino mass limit using \(\beta \)-decay of 187Re. Bolometric AgReO4 micro-calorimeters are used. Mass bound is substantially weaker than those derived from tritium \(\beta \)-decays but has different systematic uncertainties.

4 LOREDO 02 updates LOREDO 89.
5 WEINHEIMER 99 presents two analyses which exclude the spectral anomaly and result in an acceptable m_{ν}^2. We report the most conservative limit, but the other is nearly the same. See the footnote under "\(\varphi \) Mass Squared."

6 BELESEV 95 (Moscow) use an integral electrostatic spectrometer with adiabatic magnetic collimation and a gaseous tritium source. A fit to a normal Kurie plot above 18300–18350 eV (to avoid a low-energy anomaly) plus a monochromatic line 7–15 eV below the endpoint yields $m_{\nu}^2 = -4.1 \pm 10.9 \text{ eV}^2$, leading to this Bayesian limit.

7 CHING 95 quotes results previously given by SUN 93; no experimental details are given. A possible explanation for consistently negative values of m_{ν}^2 is given.

8 HIDDEMANN 95 (Munich) experiment uses atomic tritium embedded in a metal-dioxide lattice. Bayesian limit calculated from the weighted mean $m_{\nu}^2 = 221 \pm 4244 \text{ eV}^2$ from the two runs listed below.

9 STOEFFL 95 (LLNL) result is the Bayesian limit obtained from the m_{ν}^2 errors given below but with m_{ν}^2 set equal to 0. The anomalous endpoint accumulation leads to a value of m_{ν}^2 which is negative by more than 5 standard deviations.

10 WEINHEIMER 93 (Mainz) is a measurement of the endpoint of the tritium β spectrum using an electrostatic spectrometer with a magnetic guiding field. The source is molecular tritium frozen onto an aluminum substrate.

11 HOLZSCHUH 92b (Zurich) result is obtained from the measurement $m_{\nu}^2 = -24 \pm 48 \pm 61 \text{ (1}\sigma \text{ errors), in eV}^2$, using the PDG prescription for conversion to a limit in m_{ν}^2.

12 KAWAKAMI 91 (Tokyo) experiment uses tritium-labeled arachidic acid. This result is the Bayesian limit obtained from the m_{ν}^2 limit with the errors combined in quadrature. This was also done in ROBERTSON 91, although the authors report a different procedure.

13 ROBERTSON 91 (LANL) experiment uses gaseous molecular tritium. The result is in strong disagreement with the earlier claims by the ITEP group [LUBIMOV 80, BORIS 87 (+ BORIS 88 erratum)] that m_{ν} lies between 17 and 40 eV. However, the probability of a positive m^2 is only 3% if statistical and systematic error are combined in quadrature.

14 See also comment in BORIS 87b and erratum in BORIS 88.

\(\varphi \) MASS SQUARED (electron based)

Given troubling systematics which result in improbably negative estimators of $m_{\nu}^2(\text{eff}) \equiv \sum_i |U_{ei}|^2 m_{\nu_i}^2$, in many experiments, we use only KRAUS 05 and LOBASHEV 99 for our average.

<table>
<thead>
<tr>
<th>VALUE (eV2)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>− 1.1 ± 2.4</td>
<td></td>
<td>OUR AVERAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>− 0.6 ± 2.2</td>
<td>15</td>
<td>KRAUS</td>
<td>SPEC</td>
<td>3H β decay</td>
</tr>
<tr>
<td>− 1.9 ± 3.4</td>
<td>16</td>
<td>LOBASHEV</td>
<td>SPEC</td>
<td>3H β decay</td>
</tr>
<tr>
<td>− 3.7 ± 5.3</td>
<td>17</td>
<td>WEINHEIMER 99</td>
<td>SPEC</td>
<td>3H β decay</td>
</tr>
<tr>
<td>− 22 ± 4.8</td>
<td>18</td>
<td>BELESEV</td>
<td>SPEC</td>
<td>3H β decay</td>
</tr>
<tr>
<td>129 ± 6010</td>
<td>19</td>
<td>HIDDEMANN</td>
<td>SPEC</td>
<td>3H β decay</td>
</tr>
<tr>
<td>313 ± 5994</td>
<td>20</td>
<td>HIDDEMANN</td>
<td>SPEC</td>
<td>3H β decay</td>
</tr>
<tr>
<td>− 130 ± 20 ± 15</td>
<td>21</td>
<td>SUN</td>
<td>SPEC</td>
<td>3H β decay</td>
</tr>
<tr>
<td>− 31 ± 75 ± 48</td>
<td>22</td>
<td>WEINHEIMER 93</td>
<td>SPEC</td>
<td>3H β decay</td>
</tr>
<tr>
<td>− 39 ± 34 ± 15</td>
<td>23</td>
<td>HOLZSCHUH 92b</td>
<td>SPEC</td>
<td>3H β decay</td>
</tr>
<tr>
<td>− 24 ± 48 ± 61</td>
<td>24</td>
<td>KAWAKAMI</td>
<td>SPEC</td>
<td>3H β decay</td>
</tr>
<tr>
<td>− 65 ± 85 ± 65</td>
<td>25</td>
<td>ROBERTSON 91</td>
<td>SPEC</td>
<td>3H β decay</td>
</tr>
<tr>
<td>− 147 ± 68 ± 41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KRAUS 05 is a continuation of the work reported in WEINHEIMER 99. This result represents the final analysis of data taken from 1997 to 2001. Problems with significantly negative squared neutrino masses, observed in some earlier experiments, have been resolved in this work.

LOBASHEV 99 report a new measurement which continues the work reported in BELESEV 95. The data were corrected for electron trapping effects in the source, eliminating the dependence of the fitted neutrino mass on the fit interval. The analysis assuming a pure beta spectrum yields significantly negative fitted $m_\nu^2 \approx -(20–10)$ eV2. This problem is attributed to a discrete spectral anomaly of about 6×10^{-11} intensity with a time-dependent energy of 5–15 eV below the endpoint. The data analysis accounts for this anomaly by introducing two extra phenomenological fit parameters resulting in a best fit of $m_\nu^2 = -1.9 \pm 3.4 \pm 2.2$ eV2 which is used to derive a neutrino mass limit. However, the introduction of phenomenological fit parameters which are correlated with the derived m_ν^2 limit makes unambiguous interpretation of this result difficult.

WEINHEIMER 99 is a continuation of the work reported in WEINHEIMER 93. Using a lower temperature of the frozen tritium source eliminated the dewetting of the T_2 film, which introduced a dependence of the fitted neutrino mass on the fit interval in the earlier work. An indication for a spectral anomaly reported in LOBASHEV 99 has been seen, but its time dependence does not agree with LOBASHEV 99. Two analyses, which exclude the spectral anomaly either by choice of the analysis interval or by using a particular data set which does not exhibit the anomaly, result in acceptable m_ν^2 fits and are used to derive the neutrino mass limit published by the authors. We list the most conservative of the two.

BELESEV 95 (Moscow) use an integral electrostatic spectrometer with adiabatic magnetic collimation and a gaseous tritium sources. This value comes from a fit to a normal Kurie plot above 18300–18350 eV (to avoid a low-energy anomaly), including the effects of an apparent peak 7–15 eV below the endpoint.

HIDDEMAANN 95 (Munich) experiment uses atomic tritium embedded in a metal-dioxide lattice. They quote measurements from two data sets.

STOEFFL 95 (LLNL) uses a gaseous source of molecular tritium. An anomalous pileup of events at the endpoint leads to the negative value for m_ν^2. The authors acknowledge that “the negative value for the best fit of m_ν^2 has no physical meaning” and discuss possible explanations for this effect.

SUN 93 uses a tritiated hydrocarbon source. See also CHING 95.

WEINHEIMER 93 (Mainz) is a measurement of the endpoint of the tritium β spectrum using an electrostatic spectrometer with a magnetic guiding field. The source is molecular tritium frozen onto an aluminum substrate.

HOLZSCHUH 928 (Zurich) source is a monolayer of tritiated hydrocarbon.

KAWAKAMI 91 (Tokyo) experiment uses tritium-labeled arachidic acid.

ROBERTSON 91 (LANL) experiment uses gaseous molecular tritium. The result is in strong disagreement with the earlier claims by the ITEP group [LUBIMOV 80, BORIS 87 (+ BORIS 88 erratum)] that m_ν lies between 17 and 40 eV. However, the probability of a positive m_ν^2 is only 3% if statistical and systematic error are combined in quadrature.

ν MASS (electron based)

These are measurement of m_ν (in contrast to m_ν^τ, given above). The masses can be different for a Dirac neutrino in the absence of CPT invariance. The possible distinction between ν and $\bar{\nu}$ properties is usually ignored elsewhere in these Listings.

<table>
<thead>
<tr>
<th>VALUE (eV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><460</td>
<td>68</td>
<td>YASUMI 94</td>
<td>CNTR</td>
<td>163Ho decay</td>
</tr>
<tr>
<td><225</td>
<td>95</td>
<td>SPRINGER 87</td>
<td>CNTR</td>
<td>163Ho decay</td>
</tr>
</tbody>
</table>
ν MASS (muon based)

Limits given below are for the square root of $m_{\nu\mu}^{2\text{(eff)}} = \sum_i |U_{\mu i}|^2 m_{\nu_i}^2$.

In some of the COSM papers listed below, the authors did not distinguish between weak and mass eigenstates.

OUR EVALUATION is based on **OUR AVERAGE** for the π^{\pm} mass and the ASSAMAGAN 96 value for the muon momentum for the π^+ decay at rest. The limit is calculated using the unified classical analysis of FELDMAN 98 for a Gaussian distribution near a physical boundary. **WARNING:** since $m_{\nu\mu}^{2\text{(eff)}}$ is calculated from the differences of large numbers, it and the corresponding limits are extraordinarily sensitive to small changes in the pion mass, the decay muon momentum, and their errors. For example, the limits obtained using JECKELMANN 94, LENZ 98, and the weighted averages are 0.15, 0.29, and 0.19 MeV, respectively.

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.17</td>
<td>90</td>
<td>ASSAMAGAN 96 SPEC</td>
<td>$m_{\nu}^2 = -0.016 \pm 0.023$</td>
<td></td>
</tr>
<tr>
<td>< 0.15</td>
<td>95</td>
<td>DOLGOV 95 COSM</td>
<td>Nucl. synthesis</td>
<td></td>
</tr>
<tr>
<td>< 0.48</td>
<td>93</td>
<td>ENQVIST 93 COSM</td>
<td>Nucl. synthesis</td>
<td></td>
</tr>
<tr>
<td>< 0.42</td>
<td>91</td>
<td>FULLER 91 COSM</td>
<td>Nucl. synthesis</td>
<td></td>
</tr>
<tr>
<td>< 0.50</td>
<td>91</td>
<td>LAM 91 COSM</td>
<td>Nucl. synthesis</td>
<td></td>
</tr>
<tr>
<td>< 0.65</td>
<td>74</td>
<td>CLARK ASPK</td>
<td>$K_{\mu 3}$ decay</td>
<td></td>
</tr>
</tbody>
</table>

26 ASSAMAGAN 96 measurement of p_μ from $\pi^+ \rightarrow \mu^+ \nu$ at rest combined with JECKELMANN 94 Solution B pion mass yields $m_{\nu}^2 = -0.016 \pm 0.023$ with corresponding Bayesian limit listed above. If Solution A is used, $m_{\nu}^2 = -0.143 \pm 0.024$ MeV2. Replaces ASSAMAGAN 94.

27 DOLGOV 95 removes earlier assumptions (DOLGOV 93) about thermal equilibrium below T_{QCD} for wrong-helicity Dirac neutrinos (ENQVIST 93, FULLER 91) to set more stringent limits.

28 ENQVIST 93 bases limit on the fact that thermalized wrong-helicity Dirac neutrinos would speed up expansion of early universe, thus reducing the primordial abundance. FULLER 91 exploits the same mechanism but in the older calculation obtains a larger production rate for these states, and hence a lower limit. Neutrino lifetime assumed to exceed nucleosynthesis time, ~ 1 s.

Assumes neutrino lifetime > 1 s. For Dirac neutrinos only. See also ENQVIST 93.

30 ANDERHUB 82 kinematics is insensitive to the pion mass.

ν MASS (tau based)

The limits given below are the square roots of limits for $m_{\nu\tau}^{2\text{(eff)}} = \sum_i |U_{\tau i}|^2 m_{\nu_i}^2$.

In some of the ASTR and COSM papers listed below, the authors did not distinguish between weak and mass eigenstates.

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 18.2</td>
<td>95</td>
<td>BARATE 98f ALEP</td>
<td>1991–1995 LEP runs</td>
<td></td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 4 Created: 6/7/2007 11:57
We do not use the following data for averages, fits, limits, etc.

< 28 95 32 ATHANAS 00 CLEO $E_{\text{CM}}^{\text{CL}} = 10.6 \text{ GeV}$
< 27.6 95 33 ACKERSTAFF 98T OPAL 1990–1995 LEP runs
< 30 95 473 34 AMMAR 98 CLEO $E_{\text{CM}}^{\text{CL}} = 10.6 \text{ GeV}$
< 60 95 35 ANASTASSOV 97 CLEO $E_{\text{CM}}^{\text{CL}} = 10.6 \text{ GeV}$
< 0.37 or >22 36 FIELDS 97 COSM Nucleosynthesis
< 68 95 37 SWAIN 97 THEO m_τ, τ^-, τ partial widths
< 29.9 95 38 ALEXANDER 96M OPAL 1990–1994 LEP runs
<149 95 39 BOTTINO 96 THEO π, μ, τ leptonic decays
<1 or >25 40 HANNESTAD 96c COSM Nucleosynthesis
< 71 95 41 SOBIE 96 THEO m_τ, τ^-, $B(\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau)$
< 24 95 25 42 BUSKULIC 95H ALEP 1991–1993 LEP runs
< 0.19 43 DOLGOV 95 COSM Nucleosynthesis
< 3 44 SIGL 95 ASTR SN 1987A
< 0.4 or >30 45 DODELSON 94 COSM Nucleosynthesis
< 0.1 or >50 46 KAWASAKI 94 COSM Nucleosynthesis
155–225 47 PERES 94 THEO π, K, μ, τ weak decays
< 32.6 95 113 48 CINABRO 93 CLEO $E_{\text{CM}}^{\text{CL}} \approx 10.6 \text{ GeV}$
< 0.3 or >35 49 DOLGOV 93 COSM Nucleosynthesis
< 0.74 50 ENQVIST 93 COSM Nucleosynthesis
< 31 95 19 51 ALBRECHT 92M ARG $E_{\text{CM}}^{\text{CL}} = 9.4–10.6 \text{ GeV}$
< 0.3 52 FULLER 91 COSM Nucleosynthesis
< 0.5 or >25 53 KOLB 91 COSM Nucleosynthesis
< 0.42 54 LAM 91 COSM Nucleosynthesis

BARATE 98F result based on kinematics of 2939 $\tau^- \rightarrow 2\pi^- \pi^+ \nu_\tau$ and 52 $\tau^- \rightarrow 3\pi^- 2\pi^+ (\pi^0) \nu_\tau$ decays. If possible 2.5% excited a_1 decay is included in 3-prong sample analysis, limit increases to 19.2 MeV.

ACKERSTAFF 98T use $\tau \rightarrow 5\pi^\pm \nu_\tau$ decays to obtain a limit of 43.2 MeV (95%CL).

They combine this with ALEXANDER 96M value using $\tau \rightarrow 3\pi^\pm \nu_\tau$ decays to obtain quoted limit.

AMMAR 98 limit comes from analysis of $\tau^- \rightarrow 3\pi^- 2\pi^+ \nu_\tau$ and $\tau^- \rightarrow 2\pi^- \pi^+ 2\pi^0 \nu_\tau$ decay modes.

ANASTASSOV 97 derive limit by comparing their m_τ measurement (which depends on m_{ν_τ}) to BAI 96 m_τ threshold measurement.

FIELDS 97 limit for a Dirac neutrino. For a Majorana neutrino the mass region < 0.93 or >31 MeV is excluded. These bounds assume $N_{\nu_\tau} < 4$ from nucleosynthesis; a wider excluded region occurs with a smaller N_{ν_τ} upper limit.

SWAIN 97 derive their limit from the Standard Model relationships between the tau mass, lifetime, branching fractions for $\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$, $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$, $\tau^- \rightarrow \pi^- \nu_\tau$, and $\tau^- \rightarrow K^- \nu_\tau$, and the muon mass and lifetime by assuming lepton universality and using world average values. Limit is reduced to 48 MeV when the CLEO τ mass measurement (BAILEST 93) is included; see CLEO’s more recent m_{ν_τ} limit (ANASTASSOV 97).

Consideration of mixing with a fourth generation heavy neutrino yields $\sin^2 \theta_L < 0.016$ (95%CL).

ALEXANDER 96M bound comes from analyses of $\tau^- \rightarrow 3\pi^- 2\pi^+ \nu_\tau$ and $\tau^- \rightarrow h^- h^+ \nu_\tau$ decays.
39 Bottino 96 assumes three generations of neutrinos with mixing, finds consistency with massless neutrinos with no mixing based on 1995 data for masses, lifetimes, and leptonic partial widths.

40 Hannestad 96c limit is on the mass of a Majorana neutrino. This bound assumes \(N_v < 4 \) from nucleosynthesis. A wider excluded region occurs with a smaller \(N_v \) upper limit. This paper is the corrected version of HANNESTAD 96; see the erratum: HANNESTAD 96b.

41 Sobie 96 derive their limit from the Standard Model relationship between the tau mass, lifetime, and leptonic branching fraction, and the muon mass and lifetime, by assuming lepton universality and using world average values.

42 Buskulic 95H bound comes from a two-dimensional fit of the visible energy and invariant mass distribution of \(\tau \rightarrow 5\pi (\pi^0) \nu_\tau \) decays. Replaced by Barate 98f.

43 Dolgov 95 removes earlier assumptions (DOLGOV 93) about thermal equilibrium below \(T_{QCD} \) for wrong-helicity Dirac neutrinos (ENQUIST 93, FULLER 91) to set more stringent limits. Dolgov 96 argues that a possible window near 20 MeV is excluded.

44 Sigl 95 exclude massive Dirac or Majorana neutrinos with lifetimes between \(10^{-3} \) and \(10^8 \) seconds if the decay products are predominantly \(\gamma \) or \(e^+ e^- \).

45 Dodelson 94 calculate constraints on \(\nu_\tau \) mass and lifetime from nucleosynthesis for 4 generic decay modes. Limits depend strongly on decay mode. Quoted limit is valid for all decay modes of Majorana neutrinos with lifetime greater than about 300 s. For Dirac neutrinos limits change to \(< 0.3 \) or \(> 33 \).

46 Kawasaki 94 excluded region is for Majorana neutrino with lifetime \(>1000 \) s. Other limits are given as a function of \(\nu_\tau \) lifetime for decays of the type \(\nu_\tau \rightarrow \nu_\mu \phi \) where \(\phi \) is a Nambu-Goldstone boson.

47 Peres 94 used PDG 92 values for parameters to obtain a value consistent with mixing. Reexamination by Bottino 96 which included radiative corrections and 1995 PDG parameters resulted in two allowed regions, \(m_3 < 70 \) MeV and \(140 \) MeV.

48 Cinabro 93 bound comes from analysis of \(\tau^- \rightarrow 3\pi^- 2\pi^0 \nu_\tau \) and \(\tau^- \rightarrow 2\pi^- \pi^+ 2\pi^0 \nu_\tau \) decay modes.

49 Dolgov 93 assumes neutrino lifetime \(>100 \) s. For Majorana neutrinos, the low mass limit is 0.5 MeV. Kawasaki 92 points out that these bounds can be overcome for a Dirac neutrino if it possesses a magnetic moment. See also Dolgov 96.

50 Enqvist 93 bases limit on the fact that thermalized wrong-helicity Dirac neutrinos would speed up expansion of early universe, thus reducing the primordial abundance. Fuller 91 exploits the same mechanism but in the older calculation obtains a larger production rate for these states, and hence a lower limit. Neutrino lifetime assumed to exceed nucleosynthesis time, \(\sim 1 \) s.

51 Albrecht 92m reports measurement of a slightly lower \(\tau \) mass, which has the effect of reducing the \(\nu_\tau \) mass reported in Albrecht 88b. Bound is from analysis of \(\tau^- \rightarrow 3\pi^- 2\pi^+ \nu_\tau \) mode.

52 Assumes neutrino lifetime \(>1 \) s. For Dirac neutrinos. See also ENQUIST 93.

53 Kolb 91 exclusion region is for Dirac neutrino with lifetime \(>1 \) s; other limits are given.
SUM OF THE NEUTRINO MASSES, \(m_{\text{tot}} \)

(Defined in the above note), of effectively stable neutrinos (i.e., those with mean lives greater than or equal to the age of the universe). These papers assumed Dirac neutrinos. When necessary, we have generalized the results reported so they apply to \(m_{\text{tot}} \). For other limits, see SZALAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84, and COWSIK 85.

<table>
<thead>
<tr>
<th>VALUE (eV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.24</td>
<td>95</td>
<td>54 CIRELLI 06</td>
<td>COSM</td>
<td></td>
</tr>
<tr>
<td>< 0.62</td>
<td>95</td>
<td>55 HANNESTAD 06</td>
<td>COSM</td>
<td></td>
</tr>
<tr>
<td>< 0.52</td>
<td>95</td>
<td>56 KRISTIANSEN 06</td>
<td>COSM</td>
<td></td>
</tr>
<tr>
<td>< 0.17</td>
<td>95</td>
<td>54 SELJAK 06</td>
<td>COSM</td>
<td></td>
</tr>
<tr>
<td>< 2.0</td>
<td>95</td>
<td>57 ICHIKAWA 05</td>
<td>COSM</td>
<td></td>
</tr>
<tr>
<td>< 0.75</td>
<td>95</td>
<td>58 BARGER 04</td>
<td>COSM</td>
<td></td>
</tr>
<tr>
<td>< 1.0</td>
<td>95</td>
<td>59 CROTTY 04</td>
<td>COSM</td>
<td></td>
</tr>
<tr>
<td>< 0.7</td>
<td>95</td>
<td>60 SPERGEL 03</td>
<td>COSM WMAP</td>
<td></td>
</tr>
<tr>
<td>< 2.75</td>
<td>95</td>
<td>61 LEWIS 02</td>
<td>COSM</td>
<td></td>
</tr>
<tr>
<td>< 5.5</td>
<td>95</td>
<td>62 WANG 02</td>
<td>COSM CMB</td>
<td></td>
</tr>
<tr>
<td>< 180</td>
<td>95</td>
<td>63 FUKUGITA 00</td>
<td>COSM</td>
<td></td>
</tr>
<tr>
<td>< 132</td>
<td>95</td>
<td>64 CROFT 99</td>
<td>ASTR Ly (\alpha) power spec</td>
<td></td>
</tr>
<tr>
<td>< 280</td>
<td>95</td>
<td>60 GERSHTEIN 66</td>
<td>COSM</td>
<td></td>
</tr>
<tr>
<td>< 400</td>
<td>95</td>
<td>59</td>
<td>COSM</td>
<td></td>
</tr>
</tbody>
</table>

54 Constrains the total mass of neutrinos from recent CMB, large scale structure, Lyman-\(\alpha \) forest, and SN1a data.

55 Constrains the total mass of neutrinos from recent CMB and large scale structure data.

56 Constrains the total mass of neutrinos from recent CMB, large scale structure, SN1a, HST, BBN, and baryon acoustic oscillation data. The limit relaxes to 1.66 when WMAP data alone is used.

57 Constrains the total mass of neutrinos from the CMB experiments alone, assuming \(\Lambda \)CDM Universe. FUKUGITA 06 show that this result is unchanged by the 3-year WMAP data.

58 Constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the Sloan Digital Sky Survey and the 2dF galaxy redshift survey, WMAP and 27 other CMB experiments and measurements by the HST Key project.

59 Constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the Sloan Digital Sky Survey, the 2dF galaxy redshift survey, WMAP and ACBAR. The limit is strengthened to 0.6 eV when measurements by the HST Key project and supernovae data are included.

60 Constrains the fractional contribution of neutrinos to the total matter density in the Universe from WMAP data combined with other CMB measurements, the 2dGRS data, and Lyman-\(\alpha \) data. The limit does not noticeably change if the Lyman-\(\alpha \) data are not used.

61 LEWIS 02 constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the CMB, HST Key project, 2dF galaxy redshift survey, supernovae type Ia, and BBN.

62 WANG 02 constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the CMB and other cosmological data sets such as galaxy clustering and the Lyman-\(\alpha \) forest.

63 FUKUGITA 00 is a limit on neutrino masses from structure formation. The constraint is based on the clustering scale \(\sigma_8 \) and the COBE normalization and leads to a conservative
limit of 0.9 eV assuming 3 nearly degenerate neutrinos. The quoted limit is on the sum of the light neutrino masses.

64 CROFT 99 result based on the power spectrum of the Ly α forest. If $\Omega_{\text{matter}} < 0.5$, the limit is improved to $m_\nu < 2.4 \left(\Omega_{\text{matter}}/0.17-1 \right)$ eV.

Limits on MASSES of Light Stable Right-Handed ν
(with necessarily suppressed interaction strengths)

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><100–200</td>
<td>65 OLIVE</td>
<td>82</td>
<td>COSM Dirac ν</td>
</tr>
<tr>
<td><200–2000</td>
<td>65 OLIVE</td>
<td>82</td>
<td>COSM Majorana ν</td>
</tr>
</tbody>
</table>

65 Depending on interaction strength G_R where $G_R < G_F$.

Limits on MASSES of Heavy Stable Right-Handed ν
(with necessarily suppressed interaction strengths)

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 10</td>
<td>66 OLIVE</td>
<td>82</td>
<td>COSM $G_R/G_F < 0.1$</td>
</tr>
<tr>
<td>>100</td>
<td>66 OLIVE</td>
<td>82</td>
<td>COSM $G_R/G_F < 0.01$</td>
</tr>
</tbody>
</table>

66 These results apply to heavy Majorana neutrinos and are summarized by the equation: $m_\nu > 1.2$ GeV (G_F/G_R). The bound saturates, and if G_R is too small no mass range is allowed.

ν CHARGE

<table>
<thead>
<tr>
<th>VALUE (units: electron charge)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><2 \times 10^{-14}</td>
<td>67 RAFFELT</td>
<td>99</td>
<td>ASTR Red giant luminosity</td>
</tr>
<tr>
<td><6 \times 10^{-14}</td>
<td>68 RAFFELT</td>
<td>99</td>
<td>ASTR Solar cooling</td>
</tr>
<tr>
<td><4 \times 10^{-4}</td>
<td>69 BABU</td>
<td>94</td>
<td>RVUE BEBC beam dump</td>
</tr>
<tr>
<td><3 \times 10^{-4}</td>
<td>70 DAVIDSON</td>
<td>91</td>
<td>RVUE SLAC electron beam</td>
</tr>
<tr>
<td><2 \times 10^{-15}</td>
<td>71 BARBIELLINI</td>
<td>87</td>
<td>ASTR SN 1987A</td>
</tr>
<tr>
<td><1 \times 10^{-13}</td>
<td>72 BERNSTEIN</td>
<td>63</td>
<td>ASTR Solar energy losses</td>
</tr>
</tbody>
</table>

67 This RAFFELT 99 limit applies to all neutrino flavors which are light enough ($<$5 keV) to be emitted from globular-cluster red giants.

68 This RAFFELT 99 limit is derived from the helioseismological limit on a new energy-loss channel of the Sun, and applies to all neutrino flavors which are light enough ($<$1 keV) to be emitted from the sun.

69 BABU 94 use COOPER-SARKAR 92 limit on ν magnetic moment to derive quoted result. It applies to ν_τ.

70 DAVIDSON 91 use data from early SLAC electron beam dump experiment to derive charge limit as a function of neutrino mass. It applies to ν_τ.

71 Precise BARBIELLINI 87 limit depends on assumptions about the intergalactic or galactic magnetic fields and about the direct distance and time through the field. It applies to ν_e.

72 The limit applies to all flavors.
ν (MEAN LIFE) / MASS

Measures \(\left[\sum |U_{ij}|^2 \Gamma_j/m_j \right]^{-1} \), where the sum is over mass eigenstates which cannot be resolved experimentally. Some of the limits constrain the radiative decay and are based on the limit of the corresponding photon flux. Other apply to the decay of a heavier neutrino into the lighter one and a Majoron or other invisible particle. Many of these limits apply to any ν within the indicated mass range.

Limits on the radiative decay are either directly based on the limits of the corresponding photon flux, or are derived from the limits on the neutrino magnetic moments. In the latter case the transition rate for \(\nu_j \to \nu_j + \gamma \) is constrained by \(\Gamma_{ij} = \frac{1}{\tau_{ij}} = \left\langle \frac{(m_j^2 - m_i^2)^3}{m_i^2} \right\rangle \mu_{ij}^2 \), where \(\mu_{ij} \) is the neutrino transition moment in the mass eigenstates basis. Typically, the limits on lifetime based on the magnetic moments are many orders of magnitude more restrictive than limits based on the nonobservation of photons.

<table>
<thead>
<tr>
<th>VALUE (s/eV)</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 15.4</td>
<td>90</td>
<td>73 KRAKAUER 91</td>
<td>CNTR</td>
<td>(\nu_\mu, \overline{\nu}_\mu) at LAMPF</td>
</tr>
<tr>
<td>> 7 \times 10^9</td>
<td></td>
<td>74 RAFFELT 85</td>
<td>ASTR</td>
<td></td>
</tr>
<tr>
<td>> 300</td>
<td>90</td>
<td>75 REINES 74</td>
<td>CNTR</td>
<td>(\pi_e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• • • We do not use the following data for averages, fits, limits, etc. • • •</td>
</tr>
<tr>
<td>> 0.11</td>
<td>90</td>
<td>76 WONG 07</td>
<td>CNTR</td>
<td>Reactor (\tau_e)</td>
</tr>
<tr>
<td>> 0.004</td>
<td>90</td>
<td>77 XIN 05</td>
<td>CNTR</td>
<td>Reactor (\nu_\mu)</td>
</tr>
<tr>
<td>> 4.4 \times 10^{-5}</td>
<td>90</td>
<td>78 XIN 05</td>
<td>CNTR</td>
<td>Reactor (\nu_\mu)</td>
</tr>
<tr>
<td>(\geq 100)</td>
<td>95</td>
<td>79 AHARMIM 04</td>
<td>SNO</td>
<td>quasidegen. ν masses</td>
</tr>
<tr>
<td>> 0.067</td>
<td>90</td>
<td>79 AHARMIM 04</td>
<td>SNO</td>
<td>hierarchical ν masses</td>
</tr>
<tr>
<td>> 1.1 \times 10^{-3}</td>
<td>90</td>
<td>80 CECCHINI 04</td>
<td>ASTR</td>
<td>Radiative decay (\nu) mass (\geq 0.01) eV</td>
</tr>
<tr>
<td>> 8.7 \times 10^{-5}</td>
<td>99</td>
<td>81 EGUCHI 04</td>
<td>KLND</td>
<td>quasidegen. ν masses</td>
</tr>
<tr>
<td>(\geq 4200)</td>
<td>90</td>
<td>82 BANDYOPADHYAY 03</td>
<td>FIT</td>
<td>nonradiative decay</td>
</tr>
<tr>
<td>> 2.8 \times 10^{-5}</td>
<td>99</td>
<td>83 DERBIN 02B</td>
<td>CNTR</td>
<td>Solar (p p) and Be ν</td>
</tr>
<tr>
<td>> 2.8 \times 10^{15}</td>
<td></td>
<td>84 JOSHIUSA 02B</td>
<td>FIT</td>
<td>nonradiative decay</td>
</tr>
<tr>
<td>none (10^{-12}) – (5 \times 10^4)</td>
<td></td>
<td>85 DOLOGOV 99</td>
<td>COSM</td>
<td></td>
</tr>
<tr>
<td>< (10^{-12}) or (> 5 \times 10^4)</td>
<td></td>
<td>86 BILLER 98</td>
<td>ASTR</td>
<td>(m_\nu = 0.05) – 1 eV</td>
</tr>
<tr>
<td>> 6.4</td>
<td>90</td>
<td>87, 88 BLUDMAN 92</td>
<td>ASTR</td>
<td>(m_\nu < 50) eV</td>
</tr>
<tr>
<td>> 1.1 \times 10^{15}</td>
<td></td>
<td>89 DODELSON 92</td>
<td>ASTR</td>
<td>(m_\nu = 1) – 300 keV</td>
</tr>
<tr>
<td>> 6.3 \times 10^{15}</td>
<td></td>
<td>89 DODELSON 92</td>
<td>ASTR</td>
<td>(m_\nu = 1) – 300 keV</td>
</tr>
<tr>
<td>> 1.7 \times 10^{15}</td>
<td></td>
<td>90 GRANEK 91</td>
<td>COSM</td>
<td>Decaying (L^0)</td>
</tr>
<tr>
<td>> 8.3 \times 10^{14}</td>
<td></td>
<td>91 KRAKAUER 91</td>
<td>CNTR</td>
<td>(\nu_e) at LAMPF</td>
</tr>
<tr>
<td>> 22</td>
<td>68</td>
<td>92 WALKER 90</td>
<td>ASTR</td>
<td>(m_\nu = 0.03) – (2) MeV</td>
</tr>
<tr>
<td>> 38</td>
<td>68</td>
<td>93 CHUPP 89</td>
<td>ASTR</td>
<td>(m_\nu < 20) eV</td>
</tr>
<tr>
<td>> 88, 93</td>
<td></td>
<td>88 KOLB 89</td>
<td>ASTR</td>
<td>(m_\nu < 20) eV</td>
</tr>
<tr>
<td>> 94</td>
<td></td>
<td>89 RAFFELT 89</td>
<td>RVUE</td>
<td>(\pi) (Dirac, Majorana)</td>
</tr>
<tr>
<td>> 95</td>
<td></td>
<td>89 RAFFELT 89</td>
<td>ASTR</td>
<td></td>
</tr>
<tr>
<td>> 96</td>
<td></td>
<td>88 VONFEILITZ 88</td>
<td>ASTR</td>
<td></td>
</tr>
<tr>
<td>> 97</td>
<td></td>
<td>87 OBERAUER 87</td>
<td></td>
<td>(\pi_R) (Dirac)</td>
</tr>
<tr>
<td>> 97</td>
<td></td>
<td>87 OBERAUER 87</td>
<td></td>
<td>(\pi) (Majorana)</td>
</tr>
</tbody>
</table>

73 KRAKAUER 91 quotes the limit \(\tau/\mu_1 > (0.75a^2 + 21.65a + 26.3) \) s/eV, where \(a \) is a parameter describing the asymmetry in the neutrino decay defined as \(dN_\gamma/d\cos\theta = (1/2)(1 + a \cos \theta) \). The parameter \(a = 0 \) for a Majorana neutrino, but can vary from \(-1\) to \(1\) for a Dirac neutrino. The bound given by the authors is the most conservative (which applies for \(a = -1 \)).

74 RAFFELT 89 limit on the radiative decay is from solar \(\pi \) - and \(\gamma \)-ray fluxes. Limit depends on \(\nu \) flux from \(pp \), now established from GALLEX and SAGE to be \(> 0.5 \) of expectation.

75 REINES 74 looked for \(\nu \) of nonzero mass decaying radiatively to a neutral of lesser mass \(\pi \) + \(\gamma \). Used liquid scintillator detector near fission reactor. Finds lab lifetime \(6 \times 10^7 \) s or more. Above value of (mean life)/mass assumes average effective neutrino energy of 0.2 MeV. To obtain the limit \(6 \times 10^7 \) s REINES 74 assumed that the full \(\pi_e \) reactor flux could be responsible for yielding decays with photon energies in the interval \(0.1 \) MeV \(-\) \(0.5 \) MeV. This represents some overestimate so their lower limit is an over-estimate of the lab lifetime (VOGEL 84). If so, OBERAUER 87 may be comparable or better.

76 WONG 07 use their limit on the neutrino magnetic moment together with the assumed experimental value of \(\Delta m_{13}^2 \sim 2 \times 10^{-3} \) eV\(^2\) to obtain \(\tau_{13}/\mu^2 > 3.2 \times 10^{27} \) s/eV\(^3\) for the radiative decay in the case of the inverted mass hierarchy. Similarly to RAFFELT 89 this limit can be violated if electric and magnetic moments are equal to each other. Analogous, but numerically somewhat different limits are obtained for \(\tau_{23} \) and \(\tau_{21} \).

77 XIN 05 search for the \(\gamma \) from radiative decay of \(\nu_e \) produced by the electron capture on \(^{51} \text{Cr} \). No events were seen and the limit on \(\tau/\mu_1 \) was derived. This is a weaker limit on the decay of \(\nu_e \) than OBERAUER 91.

78 XIN 05 use their limit on the neutrino magnetic moment of \(\nu_e \) together with the assumed experimental value of \(\Delta m_{13}^2 \sim 2 \times 10^{-3} \) eV\(^2\) to obtain \(\tau_{13}/\mu^2 > 1 \times 10^{23} \) s/eV\(^3\) for the radiative decay in the case of the inverted mass hierarchy. Similarly to RAFFELT 89 this limit can be violated if electric and magnetic moments are equal to each other. Analogous, but numerically somewhat different limits are obtained for \(\tau_{23} \) and \(\tau_{21} \). Again, this limit is specific for \(\nu_e \).

79 AHARMIM 04 obtained these results from the solar \(\pi_e \) flux limit set by the SNO measurement assuming \(\nu_2 \) decay through nonradiative process \(\nu_2 \rightarrow \pi_1 X \), where \(X \) is a Majoron or other invisible particle. Limits are given for the cases of quasidegenerate and hierarchical neutrino masses.

80 CECCHINI 04 obtained this bound through the observations performed on the occasion of the 21 June 2001 total solar eclipse, looking for visible photons from radiative decays of solar neutrinos. Limit is a \(\tau/\mu_2 \) in \(\nu_2 \rightarrow \nu_1 \gamma \). Limit ranges from \(\sim 100 \) to \(10^7 \) s/eV for \(0.01 < \mu_1 < 0.1 \) eV.

81 EGUCHI 04 obtained these results from the solar \(\pi_e \) flux limit set by the KamLAND measurement assuming \(\nu_2 \) decay through nonradiative process \(\nu_2 \rightarrow \pi_1 X \), where \(X \) is
a Majoron or other invisible particle. Limits are given for the cases of quasidegenerate and hierarchical neutrino masses.

82 The ratio of the lifetime over the mass derived by BANDYOPADHYAY 03 is for \(\nu_2 \). They obtained this result using the following solar-neutrino data: total rates measured in Cl and Ga experiments, the Super-Kamiokande’s zenith-angle spectra, and SNO’s day and night spectra. They assumed that \(\nu_1 \) is the lowest mass, stable or nearly stable neutrino state and \(\nu_2 \) decays through nonradiative Majoron emission process, \(\nu_2 \rightarrow \pi_1^+ + J \), or through nonradiative process with all the final state particles being sterile. The best fit is obtained in the region of the LMA solution.

83 DERBIN 02B (also BACK 03B) obtained this bound for the radiative decay from the results of background measurements with Counting Test Facility (the prototype of the Borexino detector). The laboratory gamma spectrum is given as \(dN/\cos\theta = (1/2)(1 + \alpha \cos\theta) \) with \(\alpha = 0 \) for a Majorana neutrino, and \(\alpha \) varying to \(-1\) to \(1\) for a Dirac neutrino. The listed bound is for the case of \(\alpha = 0 \). The most conservative bound \(1.5 \times 10^3 \text{s} \text{eV}^{-1} \) is obtained for the case of \(\alpha = -1 \).

84 The ratio of the lifetime over the mass derived by JOSHIPURA 02B is for \(\nu_2 \). They obtained this result from the total rates measured in all solar neutrino experiments. They assumed that \(\nu_1 \) is the lowest mass, stable or nearly stable neutrino state and \(\nu_2 \) decays through nonradiative process like Majoron emission decay, \(\nu_2 \rightarrow \nu_1^\prime + J \) where \(\nu_1^\prime \) state is sterile. The exact limit depends on the specific solution of the solar neutrino problem. The quoted limit is for the LMA solution.

85 DOLGOV 99 places limits in the (Majorana) \(\tau \)-associated \(\nu \) mass-lifetime plane based on nucleosynthesis. Results would be considerably modified if neutrino oscillations exist.

86 BILLER 98 use the observed TeV \(\gamma \)-ray spectra to set limits on the mean life of any radiatively decaying neutrino between 0.05 and 1 eV. Curve shows \(\tau_{\nu}/B_\gamma > 0.15 \times 10^{21} \text{s} \) at 0.05 eV, \(> 1.2 \times 10^{21} \text{s} \) at 0.17 eV, \(> 3 \times 10^{21} \text{s} \) at 1 eV, where \(B_\gamma \) is the branching ratio to photons.

87 BLUDMAN 92 sets additional limits for the case of high mass ranges. Cosmological limits are also obtained.

88 Limit on the radiative decay based on nonobservation of \(\gamma \)’s in coincidence with \(\nu \)’s from SN 1987A.

89 DODELSON 92 range is for wrong-helicity keV mass Dirac \(\nu \)’s from the core of neutron star in SN 1987A decaying to \(\nu \)’s that would have interacted in KAM2 or IMB detectors.

90 GRANEK 91 considers heavy neutrino decays to \(\gamma \nu_L \) and \(3\nu_L \), where \(m_{\nu_L} < 100 \text{ keV} \).

91 Lifetime is calculated as a function of heavy neutrino mass, branching ratio into \(\gamma \nu_L \), and \(m_{\nu_L} \).

92 KRAKAUER 91 quotes the limit for \(\nu_\mu \), \(\tau/m_{\nu_\mu} > (0.3a^2 + 9.8a + 15.9) \text{s/eV} \), where \(a \) is a parameter describing the asymmetry in the radiative neutrino decay defined as \(dN/d\cos\theta = (1/2)(1 + a \cos\theta) \) \(a = 0 \) for a Majorana neutrino, but can vary from \(-1\) to \(1\) for a Dirac neutrino. The bound given by the authors is the most conservative (which applies for \(a = -1 \)).

93 WALKER 90 uses SN 1987A \(\gamma \) flux limits after 289 days.

94 CHUPP 89 should be multiplied by a branching ratio (about 1) and a detection efficiency (about 1/4), and pertains to radiative decay of any neutrino to a lighter or sterile neutrino.

95 RAFFELT 89 use the observed \(\nu \)’s in coincidence with \(\pi_\mu e^- \) cross sections. The bound for the radiative decay is not valid if electric and magnetic transition moments are equal for Dirac neutrinos.

96 RAFFELT 89B analyze stellar evolution and exclude the region \(3 \times 10^{12} < \tau m^3 < 3 \times 10^{21} \text{eV}^3 \).

97 Model-dependent theoretical analysis of SN 1987A neutrinos. Quoted limit is for \(\sum_j |U_{\ell j}|^2 \Gamma_j m_j \) \(-1\), where \(\ell = \mu, \tau \). Limit is \(3.3 \times 10^{14} \text{s/eV} \) for \(\ell = e \).

98 OBERAUER 87 looks for photons and \(e^+ e^- \) pairs from radiative decays of reactor neutrinos.
Cowan 77 considers variety of scenarios. For neutrinos produced in the big bang,
Falk 78 finds lifetime constraints based on supernova energetics.
Cowsik 79 and Goldman 79.

\[\frac{1}{100} \text{Stecker 80 limit based on UV background; result given is} \ \tau < 5 \text{ s} \]

•••

\[\frac{1}{1000} \text{Liu 04 solar + reactor (Majorana)} \]
\[\frac{1}{1000} \text{Grimus 02 solar + reactor (Majorana)} \]
\[\frac{1}{1000} \text{Tanimoto 00 reactor} \]
\[\frac{1}{1000} \text{Daruftch 03 reactor} \]
\[\frac{1}{1000} \text{Binetruy 84 finds} \]

\[\frac{1}{1000} \text{Grimus 02 solar + reactor (Majorana)} \]

\[\frac{1}{1000} \text{Liu 04 reactor} \]
\[\frac{1}{1000} \text{Back 03 reactor} \]
\[\frac{1}{1000} \text{Wong 07 reactor} \]
\[\frac{1}{1000} \text{Auerbach 01 LSND} \]

\[\frac{1}{100} \text{Ayuila 99 ASTR} \]
\[\frac{1}{100} \text{Becom 99 reactor} \]
\[\frac{1}{100} \text{Li 03 reactor} \]

\[\frac{1}{10} \text{Tanimoto 00 reactor} \]
\[\frac{1}{10} \text{Ayala 99 ASTR} \]
\[\frac{1}{10} \text{Beacom 99 SKAM} \]

\[\tau < 10^22 \text{ s at } m_\nu = 20 \text{ keV} \]

We do not use the following data for averages, fits, limits, etc.

\[\tau > \frac{1}{10^23} \text{ s for } m_\nu \sim 1 \text{ eV} \]

See also cowsik 79 and goldman 79.

ν MAGNETIC MOMENT

The coupling of neutrinos to an electromagnetic field is characterized by a 3 × 3 matrix \(\lambda \) of the magnetic (\(\mu \)) and electric (\(d \)) dipole moments (\(\lambda = \mu - id \)). For Majorana neutrinos the matrix \(\lambda \) is antisymmetric and only transition moments are allowed, while for Dirac neutrinos \(\lambda \) is a general 3 × 3 matrix. In the standard electroweak theory extended to include neutrino masses (see Fujikawa 80) \(\mu_\nu = 3eG_Fm_\nu/(8\pi^2\sqrt{2}) = 3.2 \times 10^{-19}(m_\nu/\text{eV})\mu_B, \) i.e. it is unobservably small given the known small neutrino masses. In more general models there is no longer a proportionality between neutrino mass and its magnetic moment, even though only massive neutrinos have nonvanishing magnetic moments without fine tuning.

Laboratory bounds on \(\lambda \) are obtained via elastic \(\nu - e \) scattering, where the scattered neutrino is not observed. The combinations of matrix elements of \(\lambda \) that are constrained by various experiments depend on the initial neutrino flavor and on its propagation between source and detector (e.g., solar \(\nu_e \) and reactor \(\nu_e \) do not constrain the same combinations). The listings below therefore identify the initial neutrino flavor.

Other limits, e.g. from various stellar cooling processes, apply to all neutrino flavors. Analogous flavor independent, but weaker, limits are obtained from the analysis of \(e^+e^- \rightarrow \nu\bar{\nu} \) collider experiments.
< 0.03	118 RAFFELT	99 ASTR	Red giant luminosity
< 4	119 RAFFELT	99 ASTR	Solar cooling
<44000 90	ABREU	97J DLPH	$e^+ e^- \rightarrow \nu \bar{\nu}$ at LEP
<33000 90	ACCIARRI	97Q L3	$e^+ e^- \rightarrow \nu \bar{\nu}$ at LEP
< 0.62	ELMFORS	97 COSM	Depolarization in early universe plasma
<27000 95	ESCRIBANO	97 RVUE	$\Gamma(Z \rightarrow \nu \nu)$ at LEP
< 30	VILAIN	95B CHM2	$\nu_\mu e \rightarrow \nu_\mu e$
<55000 90	GOULD	94 RVUE	$e^+ e^- \rightarrow \nu \bar{\nu}$ at LEP
< 1.9	DERBIN	93 CNTR	Reactor $\nu e \rightarrow \nu e$
< 5400	COOPER-	92 BEBC	$\nu_\tau e^- \rightarrow \nu_\tau e^-$
< 2.4	VIDYAKIN	92 CNTR	Reactor $\nu e \rightarrow \nu e$
<56000 90	DESHPANDE	91 RVUE	$e^+ e^- \rightarrow \nu \bar{\nu}$
< 100	DORENBOS...	91 CHRM	$\nu_\mu e \rightarrow \nu_\mu e$
< 8.5	AHRENS	90 CNTR	$\nu_\mu e \rightarrow \nu_\mu e$
< 10.8	KRKAUER	90 CNTR	LAMPF $\nu e \rightarrow \nu e$
< 7.4	KRKAUER	90 CNTR	LAMPF (ν_μ, ν_μ) elas.
< 0.02	RAFFELT	90 ASTR	Red giant luminosity
< 0.1	RAFFELT	89B ASTR	Cooling helium stars
<40000 90	FUKUGITA	88 COSM	Primordial magn. fields
< 0.3	GROTCH	88 RVUE	$e^+ e^- \rightarrow \nu \bar{\nu}$
< 0.11	RAFFELT	88B ASTR	He burning stars
< 0.006	FUKUGITA	87 ASTR	Cooling helium stars
< 0.1–0.2	MORGAN	81 COSM	4He abundance
< 0.85	BEG	78 ASTR	Stellar plasmons
< 0.6	SUTHERLAND	76 ASTR	Red giants + degenerate dwarfs
< 81	KIM	74 RVUE	$\nu_\mu e \rightarrow \nu_\mu e$
< 1	BERNSTEIN	63 ASTR	Solar cooling
< 14	COWAN	57 CNTR	Reactor ν

103 WONG 07 performed search for non-standard $\nu_\mu e$ scattering at the Kuo-Sheng nuclear reactor. Ge detector equipped with active anti-Compton shield is used. Most stringent laboratory limit on magnetic moment of reactor ν_μ. Supersedes LI 03B.

104 AUERBACH 01 limit is based on the LSND ν_μ and ν_μ electron scattering measurements. The limit is slightly more stringent than KRKAUER 90.

105 SCHWIEHORST 01 quote an experimental sensitivity of 4.9×10^{-7}.

106 DARAKTCHIEVA 05 present the final analysis of the search for non-standard $\nu_\mu e$ scattering component at Bugey nuclear reactor. Full kinematical event reconstruction of both the kinetic energy above 700 keV and scattering angle of the recoil electron, by use of TPC. Most stringent laboratory limit on magnetic moment. Supersedes DARAKTCHIEVA 03.

107 XIN 05 evaluated the ν_μ flux at the Kuo-Sheng nuclear reactor and searched for non-standard $\nu_\mu e$ scattering. Ge detector equipped with active anti-Compton shield was used. This laboratory limit on magnetic moment is considerably less stringent than the limits for reactor ν_μ, but is specific to ν_μ.

108 GRIFOLS 04 obtained this bound using the SNO data of the solar 8B neutrino flux measured with deuteron breakup. This bound applies to $\mu_{eff} = (\mu_{21}^2 + \mu_{22}^2 + \mu_{23}^2)^{1/2}$.

109 LIU 04 obtained this limit using the shape of the recoil electron energy spectrum from the Super-Kamiokande-I 1496 days of solar neutrino data. Neutrinos are assumed to have
only diagonal magnetic moments, \(\mu_{\nu 1} = \mu_{\nu 2} \). This limit corresponds to the oscillation parameters in the vacuum oscillation region.

110 LIU 04 obtained this limit using the shape of the recoil electron energy spectrum from the Super-Kamiokande-I 1496 live-day solar neutrino data, by limiting the oscillation parameter region in the LMA region allowed by solar neutrino experiments plus KamLAND. \(\mu_{\nu 1} = \mu_{\nu 2} \) is assumed. In the LMA region, the same limit would be obtained even if neutrinos have off-diagonal magnetic moments.

111 BACK 03B obtained this bound from the results of background measurements with Counting Test Facility (the prototype of the Borexino detector). Standard Solar Model flux was assumed. This \(\mu_{\nu} \), can be different from the reactor \(\mu_{\nu} \), in certain oscillation scenarios (see BEACOM 99).

112 DARAKTCHIEVA 03 searched for non-standard \(\nu_e - e \) scattering component at Bugey nuclear reactor. Full kinematical event reconstruction by use of TPC. Superseded by DARAKTCHIEVA 05.

113 LI 03B used Ge detector in active shield near nuclear reactor to test for nonstandard \(\nu_e - e \) scattering.

114 GRIMUS 02 obtain stringent bounds on all Majorana neutrino transition moments from a simultaneous fit of LMA-MSW oscillation parameters and transition moments to global solar neutrino data + reactor data. Using only solar neutrino data, a 90% CL bound of \(6.3 \times 10^{-10} \mu_B \) is obtained.

115 TANIMOTO 00 combined \(e^+ e^- \rightarrow \nu \pi \gamma \) data from VENUS, TOPAZ, and AMY.

116 AYALA 99 improves the limit of BARBIERI 88.

117 BEACOM 99 obtain the limit using the shape, but not the absolute magnitude which is affected by oscillations, of the solar neutrino spectrum obtained by Superkamiokande (825 days). This \(\mu_{\nu} \), can be different from the reactor \(\mu_{\nu} \), in certain oscillation scenarios.

118 RAFFELT 99 is an update of RAFFELT 90. This limit applies to all neutrino flavors which are light enough (\(< 5 \text{ keV})\) to be emitted from globular-cluster red giants. This limit pertains equally to electric dipole moments and magnetic transition moments, and it applies to both Dirac and Majorana neutrinos.

119 RAFFELT 99 is essentially an update of BERNSTEIN 63, but is derived from the helioseismological limit on a new energy-loss channel of the Sun. This limit applies to all neutrino flavors which are light enough (\(< 1 \text{ keV})\) to be emitted from the Sun. This limit pertains equally to electric dipole and magnetic transition moments, and it applies to both Dirac and Majorana neutrinos.

120 ACIARRI 97 result applies to both direct and transition magnetic moments and for \(q^2 = 0 \).

121 ELMFORS 97 calculate the rate of depolarization in a plasma for neutrinos with a magnetic moment and use the constraints from a big-bang nucleosynthesis on additional degrees of freedom.

122 Applies to absolute value of magnetic moment.

123 DERBIN 93 determine the cross section for 0.6–2.0 MeV electron energy as \((1.28 \pm 0.63) \times \sigma_{\text{weak}} \). However, the \((\text{reactor on} - \text{reactor off})/(\text{reactor off})\) is only \(\sim 1/100 \).

124 COOPER-SARKAR 92 assume \(f_{D_s}/f_\pi = 2 \) and \(D_s, \bar{D}_s \) production cross section = 2.6 \(\mu_b \) to calculate \(\nu \) flux.

125 VIDYAKIN 92 limit is from a \(e\bar{\nu}_e \) elastic scattering experiment. No experimental details are given except for the cross section from which this limit is derived. Signal/noise was 1/10. The limit uses \(\sin^2 \theta_W = 0.23 \) as input.

126 DORENBOSCH 91 corrects an incorrect statement in DORENBOSCH 89 that the \(\nu \) magnetic moment is \(< 1 \times 10^{-9} \) at the 95% CL. DORENBOSCH 89 measures both \(\nu_{\mu} e \) and \(\bar{\nu}_e \) elastic scattering and assume \(\mu(\nu) = \mu(\bar{\nu}) \).

127 KRAKAUER 90 experiment fully reported in ALLEN 93.

128 RAFFELT 90 limit applies for a diagonal magnetic moment of a Dirac neutrino, or for a transition magnetic moment of a Majorana neutrino. In the latter case, the same analysis gives \(< 1.4 \times 10^{-12} \). Limit at 95% CL obtained from \(\delta M_c \).
129 Significant dependence on details of stellar models.

130 FUKUGITA 88 find magnetic dipole moments of any two neutrino species are bounded by \(\mu < 10^{-16} [10^{-9} \text{ G} / B_0] \) where \(B_0 \) is the present-day intergalactic field strength.

131 GROTCH 88 combined data from MAC, ASP, CELLO, and Mark J.

132 For \(m_\nu = 8-200 \text{ eV} \). NUSSINOV 87 examines transition magnetic moments for \(\nu_\mu \rightarrow \nu_e \) and obtain \(< 3 \times 10^{-15} \) for \(m_\nu > 16 \text{ eV} \) and \(< 6 \times 10^{-14} \) for \(m_\nu > 4 \text{ eV} \).

133 We obtain above limit from SUTHERLAND 76 using their limit \(f < \frac{1}{3} \). KIM 74 is a theoretical analysis of \(\nu_\mu \) reaction data.

134 KIM 74 is a theoretical analysis of \(\nu_\mu \) reaction data.

NEUTRINO CHARGE RADIUS SQUARED

We report limits on the so-called neutrino charge radius squared. While the straight-forward definition of a neutrino charge radius has been proven to be gauge-dependent and, hence, unphysical (LEE 77), there have been recent attempts to define a physically observable neutrino charge radius (BERNABEU 00, BERNABEU 02). The issue is still controversial (FUJIKAWA 03, BERNABEU 03). A more general interpretation of the experimental results is that they are limits on certain nonstandard contributions to neutrino scattering.

<table>
<thead>
<tr>
<th>VALUE ((10^{-32} \text{ cm}^2))</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>−2.97 to 4.14</td>
<td>90</td>
<td>135 AUERBACH</td>
<td>01 LSND</td>
<td>(\nu_e e \rightarrow \nu_e e)</td>
</tr>
<tr>
<td>• • • We do not use the following data for averages, fits, limits, etc. • • •</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><0.68, > −0.53</td>
<td>90</td>
<td>136 HIRSCH</td>
<td>03</td>
<td>(\nu_\mu e) scat.</td>
</tr>
<tr>
<td><9.9 and > −8.2</td>
<td>90</td>
<td>137 HIRSCH</td>
<td>03</td>
<td>anomalous (e^+ e^- \rightarrow e^+ e^-)</td>
</tr>
<tr>
<td>< 0.6</td>
<td>90</td>
<td>VILAIN</td>
<td>95B</td>
<td>CHM2 (\nu_\mu e) elastic scat.</td>
</tr>
<tr>
<td>0.9 ± 2.7</td>
<td>95</td>
<td>ALLEN</td>
<td>93</td>
<td>CNTR LAMPF (\nu e \rightarrow \nu e)</td>
</tr>
<tr>
<td>< 2.3</td>
<td>95</td>
<td>MOURAO</td>
<td>92</td>
<td>ASTR HOME/KAM2 (\nu) rates</td>
</tr>
<tr>
<td>< 7.3</td>
<td>95</td>
<td>VIDYAKIN</td>
<td>92</td>
<td>CNTR Reactor (\nu e \rightarrow \nu e)</td>
</tr>
<tr>
<td>1.1 ± 2.3</td>
<td>90</td>
<td>ALLEN</td>
<td>91</td>
<td>CNTR Repl. by ALLEN 93</td>
</tr>
<tr>
<td>−1.1 ± 1.0</td>
<td>90</td>
<td>AHRENS</td>
<td>90</td>
<td>CNTR (\nu_\mu e) elastic scat.</td>
</tr>
<tr>
<td>−0.3 ± 1.5</td>
<td>139</td>
<td>DORENBOS...</td>
<td>89</td>
<td>CHRM (\nu_\mu e) elastic scat.</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>GRIFOLS</td>
<td>89B</td>
<td>ASTR SN 1987A</td>
</tr>
</tbody>
</table>

135 AUERBACH 01 measure \(\nu_e e \) elastic scattering with LSND detector. The cross section agrees with the Standard Model expectation, including the charge and neutral current interference. The 90% CL applies to the range shown.

136 Based on analysis of CCFR 98 results. Limit is on \(\langle r_V^2 \rangle + \langle r_A^2 \rangle \). The CHARM II and E734 at BNL results are reanalyzed, and weaker bounds on the charge radius squared than previously published are obtained. The NuTeV result is discussed; when tentatively interpreted as \(\nu_\mu \) charge radius it implies \(\langle r_V^2 \rangle + \langle r_A^2 \rangle = (4.20 \pm 1.64) \times 10^{-33} \text{ cm}^2 \).

137 Results of LEP-2 are interpreted as limits on the axial-vector charge radius squared of a Majorana \(\nu_\tau \). Slightly weaker limits for both vector and axial-vector charge radius squared are obtained for the Dirac case, and somewhat weaker limits are obtained from the analysis of lower energy data (LEP-1.5 and TRISTAN).

138 VIDYAKIN 92 limit is from a \(e \bar{\tau} \) elastic scattering experiment. No experimental details are given except for the cross section from which this limit is derived. Signal/noise was 1/10. The limit uses \(\sin^2 \theta_W = 0.23 \) as input.

139 Result is obtained from reanalysis given in ALLEN 91, followed by our reduction to obtain \(1 \sigma \) errors.

140 GRIFOLS 89B sets a limit of \(\langle r^2 \rangle < 0.2 \times 10^{-32} \text{ cm}^2 \) for right-handed neutrinos.
REFERENCES FOR Neutrino Properties

WONG 07 PR D75 012001 H.T. Wong et al. (TEXONO Collab.)
CIRELLI 06 JCAP 0612 013 M. Cirelli et al.
FUKUGITA 06 PR D74 027302 M. Fukugita et al.
HANNESTAD 06 JCAP 0611 016 S. Hannestad, G. Raffelt
KRISTIANSEN 06 JCAP 0703 005 J. Kristiansen, O. Elgaroy, H. Eriksen
SELJAK 06 JCAP 0610 014 U. Seljak, A. Slosar, P. McDonald
DARAKTCH... 05 PL B615 153 Z. Daraktchieva et al. (MUNU Collab.)
ICHIKAWA 05 PR D75 012001 K. Ichikawa, M. Fukugita, M. Kawasaki (ICRR)
KRAUS 05 EPJ C40 447 Ch. Kraus et al.
XIN 05 PR D72 012006 B. Xin et al. (TEXONO Collab.)
AHARMIM 04 PR D70 093014 B. Aharmim et al. (SNO Collab.)
BARGER 04 PL B595 55 V. Barger, D. Marfatia, A. Tregre
CECCHINI 04 ASP 21 183 S. Cecchini et al. (BGNA+)
CROTTHY 04 PR D69 027302 P. Crotty, J. Lesgourgues, S. Pastor
EGUCHI 04 PRL 92 071301 K. Eguchi et al. (KamLAND Collab.)
GRIFOLS 04 PL B587 184 J.A. Grifols, E. Masso, S. Mohanty (BARC, AHMED)
HANNESTAD 06 JCAP 0611 016 S. Hannestad, G. Raffelt
KRISTIANSEN 06 JCAP 0703 005 J. Kristiansen, O. Elgaroy, H. Eriksen
SELJAK 06 JCAP 0610 014 U. Seljak, A. Slosar, P. McDonald
DARAKTCH... 05 PL B615 153 Z. Daraktchieva et al. (MUNU Collab.)
ICHIKAWA 05 PR D75 012001 K. Ichikawa, M. Fukugita, M. Kawasaki (ICRR)
KRAUS 05 EPJ C40 447 Ch. Kraus et al.
XIN 05 PR D72 012006 B. Xin et al. (TEXONO Collab.)
AHARMIM 04 PR D70 093014 B. Aharmim et al. (SNO Collab.)
BARGER 04 PL B595 55 V. Barger, D. Marfatia, A. Tregre
CECCHINI 04 ASP 21 183 S. Cecchini et al. (BGNA+)
CROTTHY 04 PR D69 027302 P. Crotty, J. Lesgourgues, S. Pastor
EGUCHI 04 PRL 92 071301 K. Eguchi et al. (KamLAND Collab.)
GRIFOLS 04 PL B587 184 J.A. Grifols, E. Masso, S. Mohanty (BARC, AHMED)
HANNESTAD 06 JCAP 0611 016 S. Hannestad, G. Raffelt
KRISTIANSEN 06 JCAP 0703 005 J. Kristiansen, O. Elgaroy, H. Eriksen
SELJAK 06 JCAP 0610 014 U. Seljak, A. Slosar, P. McDonald
DARAKTCH... 05 PL B615 153 Z. Daraktchieva et al. (MUNU Collab.)
ICHIKAWA 05 PR D75 012001 K. Ichikawa, M. Fukugita, M. Kawasaki (ICRR)
KRAUS 05 EPJ C40 447 Ch. Kraus et al.
XIN 05 PR D72 012006 B. Xin et al. (TEXONO Collab.)
AHARMIM 04 PR D70 093014 B. Aharmim et al. (SNO Collab.)
BARGER 04 PL B595 55 V. Barger, D. Marfatia, A. Tregre
CECCHINI 04 ASP 21 183 S. Cecchini et al. (BGNA+)
CROTTHY 04 PR D69 027302 P. Crotty, J. Lesgourgues, S. Pastor
EGUCHI 04 PRL 92 071301 K. Eguchi et al. (KamLAND Collab.)
GRIFOLS 04 PL B587 184 J.A. Grifols, E. Masso, S. Mohanty (BARC, AHMED)
HANNESTAD 06 JCAP 0611 016 S. Hannestad, G. Raffelt
KRISTIANSEN 06 JCAP 0703 005 J. Kristiansen, O. Elgaroy, H. Eriksen
SELJAK 06 JCAP 0610 014 U. Seljak, A. Slosar, P. McDonald
DARAKTCH... 05 PL B615 153 Z. Daraktchieva et al. (MUNU Collab.)
ICHIKAWA 05 PR D75 012001 K. Ichikawa, M. Fukugita, M. Kawasaki (ICRR)
KRAUS 05 EPJ C40 447 Ch. Kraus et al.
XIN 05 PR D72 012006 B. Xin et al. (TEXONO Collab.)
AHARMIM 04 PR D70 093014 B. Aharmim et al. (SNO Collab.)
BARGER 04 PL B595 55 V. Barger, D. Marfatia, A. Tregre
CECCHINI 04 ASP 21 183 S. Cecchini et al. (BGNA+)
CROTTHY 04 PR D69 027302 P. Crotty, J. Lesgourgues, S. Pastor
EGUCHI 04 PRL 92 071301 K. Eguchi et al. (KamLAND Collab.)
GRIFOLS 04 PL B587 184 J.A. Grifols, E. Masso, S. Mohanty (BARC, AHMED)
HANNESTAD 06 JCAP 0611 016 S. Hannestad, G. Raffelt
KRISTIANSEN 06 JCAP 0703 005 J. Kristiansen, O. Elgaroy, H. Eriksen
SELJAK 06 JCAP 0610 014 U. Seljak, A. Slosar, P. McDonald
<table>
<thead>
<tr>
<th>Reference</th>
<th>Page</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HANNESTAD 96C</td>
<td>PR D54 7894</td>
<td>S. Hannestad, J. Madsen (AARH)</td>
</tr>
<tr>
<td>SOBIE 96</td>
<td>ZPHY C70 383</td>
<td>R.J. Sobie, R.K. Keeler, I. Lawson (VICT)</td>
</tr>
<tr>
<td>BELESEV 95</td>
<td>PL B350 263</td>
<td>A.I. Belesev et al. (INRM, KIAE)</td>
</tr>
<tr>
<td>BUSKULIC 95H</td>
<td>PL B349 585</td>
<td>D. Buskulic et al. (ALEPH Collab.)</td>
</tr>
<tr>
<td>CHING 95</td>
<td>UMP A10 2841</td>
<td>C.R. Ching et al. (CST, BEIJ, CINE)</td>
</tr>
<tr>
<td>DOLOV 95</td>
<td>PR D51 4129</td>
<td>A.D. Dolgov, K. Kainulainen, I.Z. Rothstein (MICH)</td>
</tr>
<tr>
<td>HIDDEMANN 95</td>
<td>JPG 21 639</td>
<td>K.H. Hiddemann, H. Daniel, O. Schwentker (MUNT)</td>
</tr>
<tr>
<td>KERNAN 95</td>
<td>NP B437 243</td>
<td>P.J. Kernan, L.M. Krauss (CASE)</td>
</tr>
<tr>
<td>SIGL 95</td>
<td>PR D51 1499</td>
<td>G. Sigl, M.S. Turner (FNAL, EFI)</td>
</tr>
<tr>
<td>STOEFL 95</td>
<td>PRL 75 3237</td>
<td>W. Stoeffl, D.J. Decman (LLNL)</td>
</tr>
<tr>
<td>VILAIN 95</td>
<td>PL B345 115</td>
<td>P. Vilain et al. (CHARM II Collab.)</td>
</tr>
<tr>
<td>ASSAMAGAN 94</td>
<td>PL B335 231</td>
<td>K.A. Assamagan et al. (PSI, ZURI, VILL+)</td>
</tr>
<tr>
<td>BABU 94</td>
<td>PL B321 140</td>
<td>K.S. Babu, T.M. Gould, I.Z. Rothstein (BART+)</td>
</tr>
<tr>
<td>DODELSON 94</td>
<td>PR D49 5068</td>
<td>S. Dodelson, G. Gyuk, M.S. Turner (FNAL, CHIC+)</td>
</tr>
<tr>
<td>GOULD 94</td>
<td>PL B333 545</td>
<td>T.M. Gould, I.Z. Rothstein (JHU, MICH)</td>
</tr>
<tr>
<td>JECKELMANN 94</td>
<td>PL B335 326</td>
<td>B. Jeckelmann, P.F.A. Goudsmit, H.J. Leisi (WABRN+)</td>
</tr>
<tr>
<td>KAWASAKI 94</td>
<td>NP B419 105</td>
<td>M. Kawasaki et al. (OSU)</td>
</tr>
<tr>
<td>PERES 94</td>
<td>PR D50 513</td>
<td>O.L.G. Peres, V. Pleitez, R. Zukanovich Funchal</td>
</tr>
<tr>
<td>VILAIN 95</td>
<td>PL B345 115</td>
<td>P. Vilain et al. (CHARM II Collab.)</td>
</tr>
<tr>
<td>ALLEN 93</td>
<td>PR D47 11</td>
<td>R.C. Allen et al. (UCI, LANL, ANL+)</td>
</tr>
<tr>
<td>BAILEST 93</td>
<td>PR D47 R3671</td>
<td>R. Balest et al. (CLEO Collab.)</td>
</tr>
<tr>
<td>CINABRO 93</td>
<td>PRL 70 3700</td>
<td>D. Cinabro et al. (CLEO Collab.)</td>
</tr>
<tr>
<td>DERBIN 93</td>
<td>JETPL 55 206</td>
<td>A.V. Derbin et al. (PKI+</td>
</tr>
<tr>
<td>DOLOV 93</td>
<td>PRL 71 476</td>
<td>A.D. Dolgov, I.Z. Rothstein (MICH)</td>
</tr>
<tr>
<td>ENQVIST 93</td>
<td>PL B301 376</td>
<td>K. Enqvist, H. Uibo (NORD)</td>
</tr>
<tr>
<td>SUN 93</td>
<td>CJNP 15 261</td>
<td>H.C. Sun et al. (CIAE, CST, BEIJ)</td>
</tr>
<tr>
<td>WEINHEIMER 93</td>
<td>PL B300 210</td>
<td>C. Weinheimer et al. (MANZ)</td>
</tr>
<tr>
<td>ALBRECHT 92M</td>
<td>PL B292 221</td>
<td>H. Albrect et al. (AGPS Collab.)</td>
</tr>
<tr>
<td>BLUDMAN 92</td>
<td>PR D45 4720</td>
<td>S.A. Bludman et al. (CFPA)</td>
</tr>
<tr>
<td>COOPER-... 92</td>
<td>PL B280 153</td>
<td>A.M. Cooper-Sarkar et al. (BBEC WA66 Collab.)</td>
</tr>
<tr>
<td>DODELSON 92</td>
<td>PRL 68 2572</td>
<td>S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+)</td>
</tr>
<tr>
<td>HOLZSCHUH 92B</td>
<td>PL B287 381</td>
<td>E. Holzschuh, M. Fritschi, W. Kundig (ZURI)</td>
</tr>
<tr>
<td>KAWANO 92</td>
<td>PL B275 487</td>
<td>L.H. Kawano et al. (CIT, UCSD, LLL+)</td>
</tr>
<tr>
<td>MOURAO 92</td>
<td>PL B285 364</td>
<td>A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+)</td>
</tr>
<tr>
<td>PDG 92</td>
<td>PR D45 51</td>
<td>K. Hikasa et al. (KEK, LBL, BOST+)</td>
</tr>
<tr>
<td>VIDYAKIN 92</td>
<td>JETPL 55 206</td>
<td>G.S. Vidyakin et al. (KIEP)</td>
</tr>
<tr>
<td>ALLEN 91</td>
<td>PR D43 R1</td>
<td>R.C. Allen et al. (UCI, LANL, UMD)</td>
</tr>
<tr>
<td>DAVIDSON 91</td>
<td>PR D43 2314</td>
<td>S. Davidson, B.A. Campbell, D. Bailey (ALBE+)</td>
</tr>
<tr>
<td>DESHPANDE 91</td>
<td>PR D43 943</td>
<td>N.G. Deshpande, K.V.L. Sarma (OREG, TATA)</td>
</tr>
<tr>
<td>DORENBOS...</td>
<td>ZPHY C51 142</td>
<td>J. Dorenbosch et al. (CHARM Collab.)</td>
</tr>
<tr>
<td>FULLER 91</td>
<td>PR D43 3136</td>
<td>G.M. Fuller, R.A. Malaney (UCSD)</td>
</tr>
<tr>
<td>GRANEK 91</td>
<td>UMP A6 2387</td>
<td>H. Graneck, B.H.J. McKellar (MELB)</td>
</tr>
<tr>
<td>KAWAKAMI 91</td>
<td>PL B256 105</td>
<td>H. Kawakami et al. (INUS, TOHOK, TINT+)</td>
</tr>
<tr>
<td>KOLB 91</td>
<td>PR D45 4720</td>
<td>S.A. Bludman et al. (AGPS Collab.)</td>
</tr>
<tr>
<td>KRAKAUER 91</td>
<td>PR D44 64</td>
<td>D.A. Krakauer et al. (LAMPF E225 Collab.)</td>
</tr>
<tr>
<td>LAM 91</td>
<td>PR D44 3345</td>
<td>W.P. Lam, K.W. Ng (AST)</td>
</tr>
<tr>
<td>ROBERTSON 91</td>
<td>PRL 67 957</td>
<td>R.G.H. Robertson et al. (LASL, LLL)</td>
</tr>
<tr>
<td>AHRENS 90</td>
<td>PR D41 3297</td>
<td>L.A. Ahrens et al. (BNL, BROW, HIRO)</td>
</tr>
<tr>
<td>AVIGNONE 90</td>
<td>PR D41 682</td>
<td>F.T. Avignone, J.I. Collar (SCUC)</td>
</tr>
<tr>
<td>KRAKAUER 90</td>
<td>PL B252 177</td>
<td>D.A. Krakauer et al. (LAMPF E225 Collab.)</td>
</tr>
<tr>
<td>RAFFELT 90</td>
<td>PRL 64 2856</td>
<td>G.G. Raffelt (MPIM)</td>
</tr>
<tr>
<td>WALKER 90</td>
<td>PR D41 689</td>
<td>T.P. Walker (HARV)</td>
</tr>
<tr>
<td>CHUPP 89</td>
<td>PRL 62 505</td>
<td>E.L. Chupp, W.T. Vestrand, C. Reppin (UNH, MPIM)</td>
</tr>
<tr>
<td>DORENBOS...</td>
<td>ZPHY C41 567</td>
<td>J. Dorenbosch et al. (CHARM Collab.)</td>
</tr>
<tr>
<td>GRILLO 89B</td>
<td>PR D40 3819</td>
<td>J.A. Grifols, E. Masso (BARC)</td>
</tr>
<tr>
<td>KOLB 89</td>
<td>PRL 62 509</td>
<td>E.W. Kolb, M.S. Turner (CHIC, FNAL)</td>
</tr>
<tr>
<td>LOREDO 89</td>
<td>ANYAS 571 601</td>
<td>T.J. Loredo, D.Q. Lamb (CHIC)</td>
</tr>
<tr>
<td>RAFFELT 89</td>
<td>PR D39 2066</td>
<td>G.G. Raffelt (PRIN, UCB)</td>
</tr>
<tr>
<td>RUFF 89B</td>
<td>NP B437 243</td>
<td>H. Ruff et al. (CHARM Collab.)</td>
</tr>
<tr>
<td>ALBRECHT 88B</td>
<td>PL B202 149</td>
<td>H. Albrecht et al. (ARGUS Collab.)</td>
</tr>
<tr>
<td>BARBIERI 88</td>
<td>PRL 62 27</td>
<td>R. Barbieri, R.N. L. Mohapatra (PISA, UMD)</td>
</tr>
<tr>
<td>BORIS 88</td>
<td>PRL 64 25 (erratum)</td>
<td>S.D. Boris et al. (ITEP, ASCI)</td>
</tr>
<tr>
<td>FUKUGITA 88</td>
<td>PRL 60 879</td>
<td>M. Fukugita et al. (KOTU, MPIM, UCB)</td>
</tr>
<tr>
<td>GROTCH 88</td>
<td>ZPHY C39 553</td>
<td>H. Grotch, R.W. Robinett (PSU)</td>
</tr>
<tr>
<td>RUFF 88</td>
<td>PR D37 549</td>
<td>G.G. Raffelt, D.S.P. Dearborn (UCB, LLL)</td>
</tr>
<tr>
<td>SPERGEL 88</td>
<td>PL B200 366</td>
<td>D.N. Spergel, J.N. Bahcall (IAS)</td>
</tr>
<tr>
<td>VONFEILIT... 88</td>
<td>PL B200 580</td>
<td>F. von Feilitzsch, L. Oberauer (MUNT)</td>
</tr>
<tr>
<td>BARBIELLINI 87</td>
<td>NAT 329 21</td>
<td>G. Barbieri, G. Cocconi (CERN)</td>
</tr>
</tbody>
</table>