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32. STATISTICS
Revised September 2007 by G. Cowan (RHUL).

This chapter gives an overview of statistical methods used in High Energy Physics.
In statistics, we are interested in using a given sample of data to make inferences about
a probabilistic model, e.g., to assess the model’s validity or to determine the values
of its parameters. There are two main approaches to statistical inference, which we
may call frequentist and Bayesian. In frequentist statistics, probability is interpreted as
the frequency of the outcome of a repeatable experiment. The most important tools
in this framework are parameter estimation, covered in Section 32.1, and statistical
tests, discussed in Section 32.2. Frequentist confidence intervals, which are constructed
so as to cover the true value of a parameter with a specified probability, are treated in
Section 32.3.2. Note that in frequentist statistics one does not define a probability for a
hypothesis or for a parameter.

Frequentist statistics provides the usual tools for reporting objectively the outcome
of an experiment without needing to incorporate prior beliefs concerning the parameter
being measured or the theory being tested. As such they are used for reporting most
measurements and their statistical uncertainties in High Energy Physics.

In Bayesian statistics, the interpretation of probability is more general and includes
degree of belief (called subjective probability). One can then speak of a probability
density function (p.d.f.) for a parameter, which expresses one’s state of knowledge about
where its true value lies. Bayesian methods allow for a natural way to input additional
information, such as physical boundaries and subjective information; in fact they require
as input the prior p.d.f. for the parameters, i.e., the degree of belief about the parameters’
values before carrying out the measurement. Using Bayes’ theorem Eq. (31.4), the prior
degree of belief is updated by the data from the experiment. Bayesian methods for
interval estimation are discussed in Sections 32.3.1 and 32.3.2.6

Bayesian techniques are often used to treat systematic uncertainties, where the author’s
beliefs about, say, the accuracy of the measuring device may enter. Bayesian statistics
also provides a useful framework for discussing the validity of different theoretical
interpretations of the data. This aspect of a measurement, however, will usually be
treated separately from the reporting of the result.

For many inference problems, the frequentist and Bayesian approaches give similar
numerical answers, even though they are based on fundamentally different interpretations
of probability. For small data samples, however, and for measurements of a parameter
near a physical boundary, the different approaches may yield different results, so we are
forced to make a choice. For a discussion of Bayesian vs. non-Bayesian methods, see
References written by a statistician[1], by a physicist[2], or the more detailed comparison
in Ref. [3].

Following common usage in physics, the word “error” is often used in this chapter to
mean “uncertainty.” More specifically it can indicate the size of an interval as in “the
standard error” or “error propagation,” where the term refers to the standard deviation
of an estimator.

CITATION: W.-M. Yao et al., Journal of Physics G 33, 1 (2006)
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2 32. Statistics

32.1. Parameter estimation

Here we review the frequentist approach to point estimation of parameters. An
estimator θ̂ (written with a hat) is a function of the data whose value, the estimate, is
intended as a meaningful guess for the value of the parameter θ.

There is no fundamental rule dictating how an estimator must be constructed. One
tries, therefore, to choose that estimator which has the best properties. The most
important of these are (a) consistency, (b) bias, (c) efficiency, and (d) robustness.

(a) An estimator is said to be consistent if the estimate θ̂ converges to the true value θ
as the amount of data increases. This property is so important that it is possessed by all
commonly used estimators.

(b) The bias, b = E[ θ̂ ] − θ, is the difference between the expectation value of the
estimator and the true value of the parameter. The expectation value is taken over a
hypothetical set of similar experiments in which θ̂ is constructed in the same way. When
b = 0, the estimator is said to be unbiased. The bias depends on the chosen metric, i.e., if
θ̂ is an unbiased estimator of θ, then θ̂ 2 is not in general an unbiased estimator for θ2. If
we have an estimate b̂ for the bias, we can subtract it from θ̂ to obtain a new θ̂ ′ = θ̂ − b̂.
The estimate b̂ may, however, be subject to statistical or systematic uncertainties that
are larger than the bias itself, so that the new θ̂ ′ may not be better than the original.

(c) Efficiency is the inverse of the ratio of the variance V [ θ̂ ] to its minimum
possible value. Under rather general conditions, the minimum variance is given by the
Rao-Cramér-Frechet bound,

σ2
min =

(
1 +

∂b

∂θ

)2

/I(θ) , (32.1)

where

I(θ) = E

⎡⎣(
∂

∂θ

∑
i

ln f(xi; θ)

)2
⎤⎦ (32.2)

is the Fisher information. The sum is over all data, assumed independent, and distributed
according to the p.d.f. f(x; θ), b is the bias, if any, and the allowed range of x must not
depend on θ.

The mean-squared error,

MSE = E[(θ̂ − θ)2] = V [θ̂] + b2 , (32.3)

is a convenient quantity which combines the uncertainties in an estimate due to bias and
variance.

(d) Robustness is the property of being insensitive to departures from assumptions in the
p.d.f., e.g., owing to uncertainties in the distribution’s tails.
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For some common estimators, the properties above are known exactly. More generally,
it is possible to evaluate them by Monte Carlo simulation. Note that they will often
depend on the unknown θ.

32.1.1. Estimators for mean, variance and median :
Suppose we have a set of N independent measurements, xi, assumed to be unbiased

measurements of the same unknown quantity µ with a common, but unknown, variance
σ2. Then

µ̂ =
1
N

N∑
i=1

xi (32.4)

σ̂2 =
1

N − 1

N∑
i=1

(xi − µ̂)2 (32.5)

are unbiased estimators of µ and σ2. The variance of µ̂ is σ2/N and the variance of σ̂2 is

V
[
σ̂2

]
=

1
N

(
m4 − N − 3

N − 1
σ4

)
, (32.6)

where m4 is the 4th central moment of x. For Gaussian distributed xi, this becomes
2σ4/(N − 1) for any N ≥ 2, and for large N , the standard deviation of σ̂ (the “error of
the error”) is σ/

√
2N . Again, if the xi are Gaussian, µ̂ is an efficient estimator for µ, and

the estimators µ̂ and σ̂2 are uncorrelated. Otherwise the arithmetic mean (32.4) is not
necessarily the most efficient estimator; this is discussed in more detail in [4] Sec. 8.7.

If σ2 is known, it does not improve the estimate µ̂, as can be seen from Eq. (32.4);
however, if µ is known, substitute it for µ̂ in Eq. (32.5) and replace N − 1 by N to obtain
an estimator of σ2 still with zero bias but smaller variance. If the xi have different,
known variances σ2

i , then the weighted average

µ̂ =
1
w

N∑
i=1

wixi (32.7)

is an unbiased estimator for µ with a smaller variance than an unweighted average; here
wi = 1/σ2

i and w =
∑

i wi. The standard deviation of µ̂ is 1/
√

w.
As an estimator for the median xmed, one can use the value x̂med such that half the

xi are below and half above (the sample median). If the sample median lies between
two observed values, it is set by convention halfway between them. If the p.d.f. of x
has the form f(x − µ) and µ is both mean and median, then for large N the variance
of the sample median approaches 1/[4Nf2(0)], provided f(0) > 0. Although estimating
the median can often be more difficult computationally than the mean, the resulting
estimator is generally more robust, as it is insensitive to the exact shape of the tails of a
distribution.
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4 32. Statistics

32.1.2. The method of maximum likelihood :
Suppose we have a set of N measured quantities x = (x1, . . . , xN ) described by a joint

p.d.f. f(x; θ), where θ = (θ1, . . . , θn) is set of n parameters whose values are unknown.
The likelihood function is given by the p.d.f. evaluated with the data x, but viewed as a
function of the parameters, i.e., L(θ) = f(x; θ). If the measurements xi are statistically
independent and each follow the p.d.f. f(x; θ), then the joint p.d.f. for x factorizes and
the likelihood function is

L(θ) =
N∏

i=1

f(xi; θ) . (32.8)

The method of maximum likelihood takes the estimators θ̂ to be those values of θ that
maximize L(θ).

Note that the likelihood function is not a p.d.f. for the parameters θ; in frequentist
statistics this is not defined. In Bayesian statistics, one can obtain from the likelihood
the posterior p.d.f. for θ, but this requires multiplying by a prior p.d.f. (see Sec. 32.3.1).

It is usually easier to work with lnL, and since both are maximized for the same
parameter values θ, the maximum likelihood (ML) estimators can be found by solving
the likelihood equations,

∂ ln L

∂θi
= 0 , i = 1, . . . , n . (32.9)

Maximum likelihood estimators are important because they are approximately unbiased
and efficient for large data samples, under quite general conditions, and the method has a
wide range of applicability.

In evaluating the likelihood function, it is important that any normalization factors in
the p.d.f. that involve θ be included. However, we will only be interested in the maximum
of L and in ratios of L at different values of the parameters; hence any multiplicative
factors that do not involve the parameters that we want to estimate may be dropped,
including factors that depend on the data but not on θ.

Under a one-to-one change of parameters from θ to η, the ML estimators θ̂ transform
to η(θ̂). That is, the ML solution is invariant under change of parameter. However, other
properties of ML estimators, in particular the bias, are not invariant under change of
parameter.

The inverse V −1 of the covariance matrix Vij = cov[θ̂i, θ̂j ] for a set of ML estimators
can be estimated by using

(V̂ −1)ij = − ∂2 lnL

∂θi∂θj

∣∣∣∣
θ̂

. (32.10)

For finite samples, however, Eq. (32.10) can result in an underestimate of the variances.
In the large sample limit (or in a linear model with Gaussian errors), L has a Gaussian
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form and lnL is (hyper)parabolic. In this case it can be seen that a numerically equivalent
way of determining s-standard-deviation errors is from the contour given by the θ′ such
that

ln L(θ′) = lnLmax − s2/2 , (32.11)

where ln Lmax is the value of lnL at the solution point (compare with Eq. (32.48)). The
extreme limits of this contour on the θi axis give an approximate s-standard-deviation
confidence interval for θi (see Section 32.3.2.4).

In the case where the size n of the data sample x1, . . . , xn is small, the unbinned
maximum likelihood method, i.e., use of equation (32.8), is preferred since binning can
only result in a loss of information, and hence larger statistical errors for the parameter
estimates. The sample size n can be regarded as fixed, or the user can choose to treat
it as a Poisson-distributed variable; this latter option is sometimes called “extended
maximum likelihood” (see, e.g., [6–8]) . If the sample is large, it can be convenient to
bin the values in a histogram, so that one obtains a vector of data n = (n1, . . . , nN )
with expectation values ν = E[n] and probabilities f(n; ν). Then one may maximize the
likelihood function based on the contents of the bins (so i labels bins). This is equivalent
to maximizing the likelihood ratio λ(θ) = f(n; ν(θ))/f(n; n), or to minimizing the
quantity [9]

−2 ln λ(θ) = 2
N∑

i=1

[
νi(θ) − ni + ni ln

ni

νi(θ)

]
, (32.12)

where in bins where ni = 0, the last term in (32.12) is zero. In the limit of zero bin width,
maximizing (32.12) is equivalent to maximizing the unbinned likelihood function (32.8).

A benefit of binning is that it allows for a goodness-of-fit test (see Sec. 32.2.2). The
minimum of −2 lnλ as defined by Eq. (32.12) follows a χ2 distribution in the large
sample limit. If there are N bins and m fitted parameters, then the number of degrees of
freedom for the χ2 distribution is N − m if the data are treated as Poisson distributed,
and N − m − 1 if the ni are multinomially distributed. If the ni are Poisson distributed
and the overall normalization νtot =

∑
i νi is taken as an adjustable parameter, then by

minimizing Eq. (32.12), one obtains that the area under the fitted function is equal to the
sum of the histogram contents, i.e.,

∑
i νi =

∑
i ni. This is not the case for parameter

estimation methods based on a least-squares procedure with traditional weights (see, e.g.,
Ref. 8).
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6 32. Statistics

32.1.3. The method of least squares :
The method of least squares (LS) coincides with the method of maximum likelihood in

the following special case. Consider a set of N independent measurements yi at known
points xi. The measurement yi is assumed to be Gaussian distributed with mean F (xi; θ)
and known variance σ2

i . The goal is to construct estimators for the unknown parameters
θ. The likelihood function contains the sum of squares

χ2(θ) = −2 ln L(θ) + constant =
N∑

i=1

(yi − F (xi; θ))2

σ2
i

. (32.13)

The set of parameters θ which maximize L is the same as those which minimize χ2.
The minimum of Equation (32.13) defines the least-squares estimators θ̂ for the more

general case where the yi are not Gaussian distributed as long as they are independent.
If they are not independent but rather have a covariance matrix Vij = cov[yi, yj ], then
the LS estimators are determined by the minimum of

χ2(θ) = (y − F (θ))T V −1(y − F (θ)) , (32.14)

where y = (y1, . . . , yN ) is the vector of measurements, F (θ) is the corresponding vector
of predicted values (understood as a column vector in (32.14)), and the superscript T
denotes transposed (i.e., row) vector.

In many practical cases one further restricts the problem to the situation where
F (xi; θ) is a linear function of the parameters, i.e.,

F (xi; θ) =
m∑

j=1

θjhj(xi) . (32.15)

Here the hj(x) are m linearly independent functions, e.g., 1, x, x2, . . . , xm−1, or Legendre
polynomials. We require m < N and at least m of the xi must be distinct.

Minimizing χ2 in this case with m parameters reduces to solving a system of m
linear equations. Defining Hij = hj(xi) and minimizing χ2 by setting its derivatives with
respect to the θi equal to zero gives the LS estimators,

θ̂ = (HT V −1H)−1HT V −1y ≡ Dy . (32.16)

The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DV DT = (HT V −1H)−1 , (32.17)

or equivalently, its inverse U−1 can be found from

(U−1)ij =
1
2

∂2χ2

∂θi∂θj

∣∣∣∣
θ=θ̂

=
N∑

k,l=1

hi(xk)(V −1)klhj(xl) . (32.18)
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32. Statistics 7

The LS estimators can also be found from the expression

θ̂ = Ug , (32.19)

where the vector g is defined by

gi =
N∑

j,k=1

yjhi(xk)(V −1)jk . (32.20)

For the case of uncorrelated yi, for example, one can use (32.19) with

(U−1)ij =
N∑

k=1

hi(xk)hj(xk)
σ2

k

, (32.21)

gi =
N∑

k=1

ykhi(xk)
σ2

k

. (32.22)

Expanding χ2(θ) about θ̂, one finds that the contour in parameter space defined by

χ2(θ) = χ2(θ̂) + 1 = χ2
min + 1 (32.23)

has tangent planes located at plus or minus one standard deviation σ
θ̂

from the LS

estimates θ̂.
In constructing the quantity χ2(θ), one requires the variances or, in the case of

correlated measurements, the covariance matrix. Often these quantities are not known
a priori and must be estimated from the data; an important example is where the
measured value yi represents a counted number of events in the bin of a histogram.
If, for example, yi represents a Poisson variable, for which the variance is equal to the
mean, then one can either estimate the variance from the predicted value, F (xi; θ), or
from the observed number itself, yi. In the first option, the variances become functions
of the fitted parameters, which may lead to calculational difficulties. The second option
can be undefined if yi is zero, and in both cases for small yi, the variance will be poorly
estimated. In either case, one should constrain the normalization of the fitted curve to the
correct value, i.e., one should determine the area under the fitted curve directly from the
number of entries in the histogram (see Ref. 8, Section 7.4). A further alternative is to
use the method of maximum likelihood; for binned data this can be done by minimizing
Eq. (32.12)

As the minimum value of the χ2 represents the level of agreement between the
measurements and the fitted function, it can be used for assessing the goodness-of-fit; this
is discussed further in Section 32.2.2.
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8 32. Statistics

32.1.4. Propagation of errors :
Consider a set of n quantities θ = (θ1, . . . , θn) and a set of m functions η(θ) =

(η1(θ), . . . , ηm(θ)). Suppose we have estimates θ̂ = (θ̂1, . . . , θ̂n), using, say, maximum
likelihood or least squares, and we also know or have estimated the covariance matrix
Vij = cov[θ̂i, θ̂j ]. The goal of error propagation is to determine the covariance matrix for
the functions, Uij = cov[η̂i, η̂j ], where η̂ = η(θ̂ ). In particular, the diagonal elements
Uii = V [η̂i] give the variances. The new covariance matrix can be found by expanding the
functions η(θ) about the estimates θ̂ to first order in a Taylor series. Using this one finds

Uij ≈
∑
k,l

∂ηi

∂θk

∂ηj

∂θl

∣∣∣∣
θ̂

Vkl . (32.24)

This can be written in matrix notation as U ≈ AV AT where the matrix of derivatives A
is

Aij =
∂ηi

∂θj

∣∣∣∣
θ̂

, (32.25)

and AT is its transpose. The approximation is exact if η(θ) is linear (it holds, for
example, in equation (32.17)). If this is not the case, the approximation can break down
if, for example, η(θ) is significantly nonlinear close to θ̂ in a region of a size comparable
to the standard deviations of θ̂.

32.2. Statistical tests

In addition to estimating parameters, one often wants to assess the validity of certain
statements concerning the data’s underlying distribution. Hypothesis tests provide a rule
for accepting or rejecting hypotheses depending on the outcome of a measurement. In
significance tests one gives the probability to obtain a level of incompatibility with a
certain hypothesis that is greater than or equal to the level observed with the actual data.

32.2.1. Hypothesis tests :
Consider an experiment whose outcome is characterized by a vector of data x. A

hypothesis is a statement about the distribution of x. It could, for example, define
completely the p.d.f. for the data (a simple hypothesis), or it could specify only the
functional form of the p.d.f., with the values of one or more parameters left open (a
composite hypothesis).

A statistical test is a rule that states for which values of x a given hypothesis (often
called the null hypothesis, H0) should be rejected in favor of its complementary alternative
H1. This is done by defining a region of x-space called the critical region; if the outcome
of the experiment lands in this region, H0 is rejected, otherwise it is accepted.

Rejecting H0 if it is true is called an error of the first kind. The probability for this to
occur is called the size or significance level of the test, α, which is chosen to be equal to
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32. Statistics 9

some pre-specified value. It can also happen that H0 is false and the true hypothesis is
the alternative, H1. If H0 is accepted in such a case, this is called an error of the second
kind, which will have some probability β. The quantity 1 − β is called the power of the
test to reject H1.

In High Energy Physics, the components of x might represent the measured properties
of candidate events, and the acceptance region is defined by the cuts that one imposes in
order to select events of a certain desired type. That is, H0 could represent the signal
hypothesis, and various alternatives, H1, H2, etc., could represent background processes.

Often rather than using the full set of quantities x, it is convenient to define a test
statistic, t, which can be a single number, or in any case a vector with fewer components
than x. Each hypothesis for the distribution of x will determine a distribution for t, and
the acceptance region in x-space will correspond to a specific range of values of t. In
constructing t, one attempts to reduce the volume of data without losing the ability to
discriminate between different hypotheses.

In particle physics terminology, the probability to accept the signal hypothesis, H0,
is the selection efficiency, i.e., one minus the significance level. The efficiencies for the
various background processes are given by one minus the power. Often one tries to
construct a test to minimize the background efficiency for a given signal efficiency. The
Neyman–Pearson lemma states that this is done by defining the acceptance region such
that, for x in that region, the ratio of p.d.f.s for the hypotheses H0 and H1,

λ(x) =
f(x|H0)
f(x|H1)

, (32.26)

is greater than a given constant, the value of which is chosen to give the desired signal
efficiency. This is equivalent to the statement that (32.26) represents the test statistic
with which one may obtain the highest purity sample for a given signal efficiency. It can
be difficult in practice, however, to determine λ(x), since this requires knowledge of the
joint p.d.f.s f(x|H0) and f(x|H1).

In the usual case where the likelihood ratio (32.26) cannot be used explicitly, there
exist a variety of other multivariate classifiers that effectively separate different types
of events. Methods often used in HEP include neural networks or Fisher discriminants
(see [10]). Recently, further classification methods from machine learning have been
applied in HEP analyses; these include probability density estimation (PDE) techniques,
kernel-based PDE (KDE or Parzen window), support vector machines, and decision trees.
Techniques such as “boosting” and “bagging” can be applied to combine a number of
classifiers into a stronger one with greater stability with respect to fluctuations in the
training data. Descriptions of these methods can be found in [11–13], and proceedings
of the PHYSTAT conference series [14]. Software for HEP includes the TMVA [15] and
StatPatternRecognition [16] packages.
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10 32. Statistics

32.2.2. Significance tests :

Often one wants to quantify the level of agreement between the data and a hypothesis
without explicit reference to alternative hypotheses. This can be done by defining a
statistic t, which is a function of the data whose value reflects in some way the level of
agreement between the data and the hypothesis. The user must decide what values of
the statistic correspond to better or worse levels of agreement with the hypothesis in
question; for many goodness-of-fit statistics there is an obvious choice.

The hypothesis in question, say, H0, will determine the p.d.f. g(t|H0) for the statistic.
The significance of a discrepancy between the data and what one expects under the
assumption of H0 is quantified by giving the p-value, defined as the probability to find t in
the region of equal or lesser compatibility with H0 than the level of compatibility observed
with the actual data. For example, if t is defined such that large values correspond to
poor agreement with the hypothesis, then the p-value would be

p =
∫ ∞

tobs

g(t|H0) dt , (32.27)

where tobs is the value of the statistic obtained in the actual experiment. The p-value
should not be confused with the size (significance level) of a test or the confidence level of
a confidence interval (Section 32.3), both of which are pre-specified constants.

The p-value is a function of the data and is therefore itself a random variable. If
the hypothesis used to compute the p-value is true, then for continuous data, p will be
uniformly distributed between zero and one. Note that the p-value is not the probability
for the hypothesis; in frequentist statistics this is not defined. Rather, the p-value is
the probability, under the assumption of a hypothesis H0, of obtaining data at least as
incompatible with H0 as the data actually observed.

When estimating parameters using the method of least squares, one obtains the
minimum value of the quantity χ2 (32.13). This statistic can be used to test the
goodness-of-fit, i.e., the test provides a measure of the significance of a discrepancy
between the data and the hypothesized functional form used in the fit. It may also
happen that no parameters are estimated from the data, but that one simply wants to
compare a histogram, e.g., a vector of Poisson distributed numbers n = (n1, . . . , nN ),
with a hypothesis for their expectation values νi = E[ni]. As the distribution is Poisson
with variances σ2

i = νi, the χ2 (32.13) becomes Pearson’s χ2 statistic,

χ2 =
N∑

i=1

(ni − νi)2

νi
. (32.28)

If the hypothesis ν = (ν1, . . . , νN ) is correct, and if the measured values ni in (32.28) are
sufficiently large (in practice, this will be a good approximation if all ni > 5), then the
χ2 statistic will follow the χ2 p.d.f. with the number of degrees of freedom equal to the
number of measurements N minus the number of fitted parameters. The same holds for
the minimized χ2 from Eq. (32.13) if the yi are Gaussian.
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Alternatively, one may fit parameters and evaluate goodness-of-fit by minimizing
−2 ln λ from Eq. (32.12). One finds that the distribution of this statistic approaches the
asymptotic limit faster than does Pearson’s χ2, and thus computing the p-value with the
χ2 p.d.f. will in general be better justified (see Ref. 9 and references therein).

Assuming the goodness-of-fit statistic follows a χ2 p.d.f., the p-value for the hypothesis
is then

p =
∫ ∞

χ2
f(z; nd) dz , (32.29)

where f(z; nd) is the χ2 p.d.f. and nd is the appropriate number of degrees of freedom.
Values can be obtained from Fig. 32.1 or from the CERNLIB routine PROB or the ROOT
function TMath::Prob. If the conditions for using the χ2 p.d.f. do not hold, the statistic
can still be defined as before, but its p.d.f. must be determined by other means in order
to obtain the p-value, e.g., using a Monte Carlo calculation.

If one finds a χ2 value much greater than nd and a correspondingly small p-value,
one may be tempted to expect a high degree of uncertainty for any fitted parameters.
Although this may be true for systematic errors in the parameters, it is not in general the
case for statistical uncertainties. If, for example, the error bars (or covariance matrix)
used in constructing the χ2 are underestimated, then this will lead to underestimated
statistical errors for the fitted parameters. But in such a case, an estimate θ̂ can differ
from the true value θ by an amount much greater than its estimated statistical error.
The standard deviations of estimators that one finds from, say, equation (32.11) reflect
how widely the estimates would be distributed if one were to repeat the measurement
many times, assuming that the measurement errors used in the χ2 are also correct. They
do not include the systematic error which may result from an incorrect hypothesis or
incorrectly estimated measurement errors in the χ2.

Since the mean of the χ2 distribution is equal to nd, one expects in a “reasonable”
experiment to obtain χ2 ≈ nd. Hence the quantity χ2/nd is sometimes reported. Since
the p.d.f. of χ2/nd depends on nd, however, one must report nd as well in order to make
a meaningful statement. The p-values obtained for different values of χ2/nd are shown in
Fig. 32.2.

32.3. Confidence intervals and limits

When the goal of an experiment is to determine a parameter θ, the result is usually
expressed by quoting, in addition to the point estimate, some sort of interval which
reflects the statistical precision of the measurement. In the simplest case, this can be
given by the parameter’s estimated value θ̂ plus or minus an estimate of the standard
deviation of θ̂, σ

θ̂
. If, however, the p.d.f. of the estimator is not Gaussian or if there

are physical boundaries on the possible values of the parameter, then one usually quotes
instead an interval according to one of the procedures described below.

In reporting an interval or limit, the experimenter may wish to
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Figure 32.1: One minus the χ2 cumulative distribution, 1−F (χ2; n), for n degrees
of freedom. This gives the p-value for the χ2 goodness-of-fit test as well as one
minus the coverage probability for confidence regions (see Sec. 32.3.2.4).

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

Degrees of freedom n

50%

10%

90%
99%

95%

68%

32%

5%

1%

χ2/n

Figure 32.2: The ‘reduced’ χ2, equal to χ2/n, for n degrees of freedom. The
curves show as a function of n the χ2/n that corresponds to a given p-value.
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• communicate as objectively as possible the result of the experiment;
• provide an interval that is constructed to cover the true value of the parameter with

a specified probability;
• provide the information needed by the consumer of the result to draw conclusions

about the parameter or to make a particular decision;
• draw conclusions about the parameter that incorporate stated prior beliefs.

With a sufficiently large data sample, the point estimate and standard deviation (or
for the multiparameter case, the parameter estimates and covariance matrix) satisfy
essentially all of these goals. For finite data samples, no single method for quoting an
interval will achieve all of them.

In addition to the goals listed above, the choice of method may be influenced by
practical considerations such as ease of producing an interval from the results of several
measurements. Of course the experimenter is not restricted to quoting a single interval
or limit; one may choose, for example, first to communicate the result with a confidence
interval having certain frequentist properties, and then in addition to draw conclusions
about a parameter using Bayesian statistics. It is recommended, however, that there be a
clear separation between these two aspects of reporting a result. In the remainder of this
section, we assess the extent to which various types of intervals achieve the goals stated
here.

32.3.1. The Bayesian approach :
Suppose the outcome of the experiment is characterized by a vector of data x, whose

probability distribution depends on an unknown parameter (or parameters) θ that we
wish to determine. In Bayesian statistics, all knowledge about θ is summarized by the
posterior p.d.f. p(θ|x), which gives the degree of belief for θ to take on values in a certain
region given the data x. It is obtained by using Bayes’ theorem,

p(θ|x) =
L(x|θ)π(θ)∫

L(x|θ′)π(θ′) dθ′ , (32.30)

where L(x|θ) is the likelihood function, i.e., the joint p.d.f. for the data given a certain
value of θ, evaluated with the data actually obtained in the experiment, and π(θ) is the
prior p.d.f. for θ. Note that the denominator in (32.30) serves simply to normalize the
posterior p.d.f. to unity.

Bayesian statistics supplies no unique rule for determining π(θ); this reflects the
experimenter’s subjective degree of belief about θ before the measurement was carried
out. By itself, therefore, the posterior p.d.f. is not a good way to report objectively
the result of an observation, since it contains both the result (through the likelihood
function) and the experimenter’s prior beliefs. Without the likelihood function, someone
with different prior beliefs would be unable to substitute these to determine his or her
own posterior p.d.f. This is an important reason, therefore, to publish wherever possible
the likelihood function or an appropriate summary of it. Often this can be achieved by
reporting the ML estimate and one or several low order derivatives of L evaluated at the
estimate.
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In the single parameter case, for example, an interval (called a Bayesian or credible
interval) [θlo, θup] can be determined which contains a given fraction 1−α of the posterior
probability, i.e.,

1 − α =
∫ θup

θlo

p(θ|x) dθ . (32.31)

Sometimes an upper or lower limit is desired, i.e., θlo can be set to zero or θup to infinity.
In other cases one might choose θlo and θup such that p(θ|x) is higher everywhere inside
the interval than outside; these are called highest posterior density (HPD) intervals. Note
that HPD intervals are not invariant under a nonlinear transformation of the parameter.

The main difficulty with Bayesian intervals is in quantifying the prior beliefs.
Sometimes one attempts to construct π(θ) to represent complete ignorance about the
parameters by setting it equal to a constant. A problem here is that if the prior p.d.f. is
flat in θ, then it is not flat for a nonlinear function of θ, and so a different parametrization
of the problem would lead in general to a different posterior p.d.f. In practice, one does
not choose a flat prior as a true expression of degree of belief about a parameter; rather, it
is used as a recipe to construct an interval, which in the end will have certain frequentist
properties.

If a parameter is constrained to be non-negative, then the prior p.d.f. can simply be
set to zero for negative values. An important example is the case of a Poisson variable
n which counts signal events with unknown mean s as well as background with mean b,
assumed known. For the signal mean s one often uses the prior

π(s) =
{

0 s < 0
1 s ≥ 0 . (32.32)

As mentioned above, this is regarded as providing an interval whose frequentist properties
can be studied, rather than as representing a degree of belief. In the absence of a clear
discovery, (e.g., if n = 0 or if in any case n is compatible with the expected background),
one usually wishes to place an upper limit on s. Using the likelihood function for Poisson
distributed n,

L(n|s) =
(s + b)n

n!
e−(s+b) , (32.33)

along with the prior (32.32) in (32.30) gives the posterior density for s. An upper limit
sup at confidence level (or here, rather, credibility level) 1 − α can be obtained by
requiring

1 − α =
∫ sup

−∞
p(s|n)ds =

∫ sup
−∞ L(n|s) π(s) ds∫ ∞
−∞ L(n|s) π(s) ds

, (32.34)

where the lower limit of integration is effectively zero because of the cut-off in π(s). By
relating the integrals in Eq. (32.34) to incomplete gamma functions, the equation reduces
to
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α = e−sup

∑n
m=0(sup + b)m/m!∑n

m=0 bm/m!
. (32.35)

This must be solved numerically for the limit sup. For the special case of b = 0, the
sums can be related to the quantile F−1

χ2 of the χ2 distribution (inverse of the cumulative
distribution) to give

sup = 1
2F−1

χ2 (1 − α; nd) , (32.36)

where the number of degrees of freedom is nd = 2(n + 1). The quantile of the χ2

distribution can be obtained using the CERNLIB routine CHISIN or the ROOT function
TMath::ChisquareQuantile. It so happens that for the case of b = 0, the upper limits
from Eq. (32.36) coincide numerically with the values of the frequentist upper limits
discussed in Section 32.3.2.5. Values for 1 − α = 0.9 and 0.95 are given by the values
νup in Table 32.3. The frequentist properties of confidence intervals for the Poisson mean
obtained in this way are discussed in Refs. [2] and [17].

Bayesian statistics provides a framework for incorporating systematic uncertainties
into a result. Suppose, for example, that a model depends not only on parameters of
interest θ but on nuisance parameters ν, whose values are known with some limited
accuracy. For a single nuisance parameter ν, for example, one might have a p.d.f. centered
about its nominal value with a certain standard deviation σν . Often a Gaussian p.d.f.
provides a reasonable model for one’s degree of belief about a nuisance parameter; in
other cases more complicated shapes may be appropriate. The likelihood function, prior
and posterior p.d.f.s then all depend on both θ and ν and are related by Bayes’ theorem
as usual. One can obtain the posterior p.d.f. for θ alone by integrating over the nuisance
parameters, i.e.,

p(θ|x) =
∫

p(θ, ν|x) dν . (32.37)

If the prior joint p.d.f. for θ and ν factorizes, then integrating the posterior p.d.f. over ν
is equivalent to replacing the likelihood function by (see Ref. 18),

L′(x|θ) =
∫

L(x|θ, ν)π(ν) dν . (32.38)

The function L′(x|θ) can also be used together with frequentist methods that employ
the likelihood function such as ML estimation of parameters. The results then have a
mixed frequentist/Bayesian character, where the systematic uncertainty due to limited
knowledge of the nuisance parameters is built in. Although this may make it more
difficult to disentangle statistical from systematic effects, such a hybrid approach may
satisfy the objective of reporting the result in a convenient way.

Even if the subjective Bayesian approach is not used explicitly, Bayes’ theorem
represents the way that people evaluate the impact of a new result on their beliefs. One
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Figure 32.3: Construction of the confidence belt (see text).

of the criteria in choosing a method for reporting a measurement, therefore, should be the
ease and convenience with which the consumer of the result can carry out this exercise.

32.3.2. Frequentist confidence intervals :
The unqualified phrase “confidence intervals” refers to frequentist intervals obtained

with a procedure due to Neyman [19], described below. These are intervals (or in the
multiparameter case, regions) constructed so as to include the true value of the parameter
with a probability greater than or equal to a specified level, called the coverage probability.
In this section, we discuss several techniques for producing intervals that have, at least
approximately, this property.

32.3.2.1. The Neyman construction for confidence intervals:
Consider a p.d.f. f(x; θ) where x represents the outcome of the experiment and θ is the

unknown parameter for which we want to construct a confidence interval. The variable
x could (and often does) represent an estimator for θ. Using f(x; θ) we can find for a
pre-specified probability 1−α and for every value of θ a set of values x1(θ, α) and x2(θ, α)
such that

P (x1 < x < x2; θ) = 1 − α =
∫ x2

x1

f(x; θ) dx . (32.39)

This is illustrated in Fig. 32.3: a horizontal line segment [x1(θ, α), x2(θ, α)] is drawn
for representative values of θ. The union of such intervals for all values of θ, designated
in the figure as D(α), is known as the confidence belt. Typically the curves x1(θ, α) and
x2(θ, α) are monotonic functions of θ, which we assume for this discussion.
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Upon performing an experiment to measure x and obtaining a value x0, one draws
a vertical line through x0. The confidence interval for θ is the set of all values of θ for
which the corresponding line segment [x1(θ, α), x2(θ, α)] is intercepted by this vertical
line. Such confidence intervals are said to have a confidence level (CL) equal to 1 − α.

Now suppose that the true value of θ is θ0, indicated in the figure. We see from the
figure that θ0 lies between θ1(x) and θ2(x) if and only if x lies between x1(θ0) and x2(θ0).
The two events thus have the same probability, and since this is true for any value θ0, we
can drop the subscript 0 and obtain

1 − α = P (x1(θ) < x < x2(θ)) = P (θ2(x) < θ < θ1(x)) . (32.40)

In this probability statement θ1(x) and θ2(x), i.e., the endpoints of the interval, are the
random variables and θ is an unknown constant. If the experiment were to be repeated
a large number of times, the interval [θ1, θ2] would vary, covering the fixed value θ in a
fraction 1 − α of the experiments.

The condition of coverage Eq. (32.39) does not determine x1 and x2 uniquely, and
additional criteria are needed. The most common criterion is to choose central intervals
such that the probabilities excluded below x1 and above x2 are each α/2. In other cases,
one may want to report only an upper or lower limit, in which case the probability
excluded below x1 or above x2 can be set to zero. Another principle based on likelihood
ratio ordering for determining which values of x should be included in the confidence belt
is discussed in Sec. 32.3.2.2

When the observed random variable x is continuous, the coverage probability obtained
with the Neyman construction is 1 − α, regardless of the true value of the parameter. If
x is discrete, however, it is not possible to find segments [x1(θ, α), x2(θ, α)] that satisfy
(32.39) exactly for all values of θ. By convention, one constructs the confidence belt
requiring the probability P (x1 < x < x2) to be greater than or equal to 1 − α. This gives
confidence intervals that include the true parameter with a probability greater than or
equal to 1 − α.

32.3.2.2. Relationship between intervals and tests:
An equivalent method of constructing confidence intervals is to consider a test (see

Sec. 32.2) of the hypothesis that the parameter’s true value is θ (assume one constructs a
test for all physical values of θ). One then excludes all values of θ where the hypothesis
would be rejected at a significance level less than α. The remaining values constitute the
confidence interval at confidence level 1 − α.

In this procedure, one is still free to choose the test to be used; this corresponds to the
freedom in the Neyman construction as to which values of the data are included in the
confidence belt. One possibility is use a test statistic based on the likelihood ratio,

λ =
f(x; θ)

f(x; θ̂ )
, (32.41)

where θ̂ is the value of the parameter which, out of all allowed values, maximizes f(x; θ).
This results in the intervals described in [20] by Feldman and Cousins. The same intervals
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can be obtained from the Neyman construction described in the previous section by
including in the confidence belt those values of x which give the greatest values of λ.

Another technique that can be formulated in the language of statistical tests has been
used to set limits on the Higgs mass from measurements at LEP [21,22]. For each value
of the Higgs mass, a statistic called CLs is determined from the ratio

CLs =
p-value of signal plus background hypothesis
1 − p-value of hypothesis of background only

. (32.42)

The p-values in (32.42) are themselves based on a test statistic which depends in general
on the signal being tested, i.e., on the hypothesized Higgs mass. Smaller CLs corresponds
to a lesser level of agreement with the signal hypothesis.

In the usual procedure for constructing confidence intervals, one would exclude the
signal hypothesis if the probability to obtain a value of CLs less than the one actually
observed is less than α. The LEP Higgs group has in fact followed a more conservative
approach, and excludes the signal at a confidence level 1 − α if CLs itself (not the
probability to obtain a lower CLs value) is less than α. This results in a coverage
probability that is in general greater than 1 − α. The interpretation of such intervals is
discussed in [21,22].

32.3.2.3. Profile likelihood and treatment of nuisance parameters:
As mentioned in Section 32.3.1, one may have a model containing parameters that

must be determined from data, but which are not of any interest in the final result
(nuisance parameters). Suppose the likelihood L(θ, ν) depends on parameters of interest
θ and nuisance parameters ν. The nuisance parameters can be effectively removed from
the problem by constructing the profile likelihood, defined by

Lp(θ) = L(θ, ̂̂ν(θ)) , (32.43)

where ̂̂ν(θ) is given by the ν that maximizes the likelihood for fixed θ. The profile
likelihood may then be used to construct tests of or intervals for the parameters of
interest. This is analogous to use of the integrated likelihood (32.38) used in the Bayesian
approach. For example, one may construct the profile likelihood ratio,

λp(θ) =
Lp(θ)

L(θ̂, ν̂)
, (32.44)

where θ̂ and ν̂ are the ML estimators. The ratio λp can be used in place of the likelihood
ratio (32.41) for inference about θ. The resulting intervals for the parameters of interest
are not guaranteed to have the exact coverage probability for all values of the nuisance
parameters, but in cases of practical interest the approximation is found to be very good.
Further discussion on use of the profile likelihood can be found in, e.g., [25,26] and other
contributions to the PHYSTAT conferences [14].
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32.3.2.4. Gaussian distributed measurements:
An important example of constructing a confidence interval is when the data consists

of a single random variable x that follows a Gaussian distribution; this is often the case
when x represents an estimator for a parameter and one has a sufficiently large data
sample. If there is more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known σ,

1 − α =
1√
2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2

dx = erf
(

δ√
2 σ

)
(32.45)

is the probability that the measured value x will fall within ±δ of the true value µ. From
the symmetry of the Gaussian with respect to x and µ, this is also the probability for
the interval x ± δ to include µ. Fig. 32.4 shows a δ = 1.64σ confidence interval unshaded.
The choice δ = σ gives an interval called the standard error which has 1 − α = 68.27% if
σ is known. Values of α for other frequently used choices of δ are given in Table 32.1.

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Figure 32.4: Illustration of a symmetric 90% confidence interval (unshaded) for
a measurement of a single quantity with Gaussian errors. Integrated probabilities,
defined by α, are as shown.

We can set a one-sided (upper or lower) limit by excluding above x + δ (or below
x − δ). The values of α for such limits are half the values in Table 32.1.

In addition to Eq. (32.45), α and δ are also related by the cumulative distribution
function for the χ2 distribution,

α = 1 − F (χ2; n) , (32.46)

for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be obtained from Fig. 32.1 on the
n = 1 curve or by using the CERNLIB routine PROB or the ROOT function TMath::Prob.
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Table 32.1: Area of the tails α outside ±δ from the mean of a Gaussian
distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

For multivariate measurements of, say, n parameter estimates θ̂ = (θ̂1, . . . , θ̂n), one
requires the full covariance matrix Vij = cov[θ̂i, θ̂j ], which can be estimated as described
in Sections 32.1.2 and 32.1.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the estimators will be
distributed according to a multivariate Gaussian centered about the true (unknown)
values θ, and furthermore the likelihood function itself takes on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 32.5, corresponding
to a contour χ2 = χ2

min + 1 or lnL = lnLmax − 1/2. The ellipse is centered about the
estimated values θ̂, and the tangents to the ellipse give the standard deviations of the
estimators, σi and σj . The angle of the major axis of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2
j − σ2

i

, (32.47)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the distance σi from the
ellipse’s horizontal centerline at which the ellipse becomes tangent to vertical, i.e. at the
distance ρijσi below the centerline as shown. As ρij goes to +1 or −1, the ellipse thins
to a diagonal line.

It could happen that one of the parameters, say, θj , is known from previous
measurements to a precision much better than σj , so that the current measurement
contributes almost nothing to the knowledge of θj . However, the current measurement of
θi and its dependence on θj may still be important. In this case, instead of quoting both
parameter estimates and their correlation, one sometimes reports the value of θi, which
minimizes χ2 at a fixed value of θj , such as the PDG best value. This θi value lies along
the dotted line between the points where the ellipse becomes tangent to vertical, and has
statistical error σinner as shown on the figure, where σinner = (1 − ρ2

ij)
1/2σi. Instead of

the correlation ρij , one reports the dependency dθ̂i/dθj which is the slope of the dotted
line. This slope is related to the correlation coefficient by dθ̂i/dθj = ρij × σi

σj
.

November 29, 2007 14:50



32. Statistics 21

θ i

φ

θ i

jσ

θj

iσ

jσ

iσ

^

θ j
^

ij   iρ  σ

innerσ

Figure 32.5: Standard error ellipse for the estimators θ̂i and θ̂j . In this case the
correlation is negative.

Table 32.2: ∆χ2 or 2∆ lnL corresponding to a coverage probability 1 − α in the
large data sample limit, for joint estimation of m parameters.

(1 − α) (%) m = 1 m = 2 m = 3
68.27 1.00 2.30 3.53
90. 2.71 4.61 6.25
95. 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99. 6.63 9.21 11.34
99.73 9.00 11.83 14.16

As in the single-variable case, because of the symmetry of the Gaussian function
between θ and θ̂, one finds that contours of constant lnL or χ2 cover the true values with
a certain, fixed probability. That is, the confidence region is determined by

ln L(θ) ≥ ln Lmax − ∆ lnL , (32.48)

or where a χ2 has been defined for use with the method of least squares,

χ2(θ) ≤ χ2
min + ∆χ2 . (32.49)

Values of ∆χ2 or 2∆ lnL are given in Table 32.2 for several values of the coverage
probability and number of fitted parameters.

For finite data samples, the probability for the regions determined by Equations
(32.48) or (32.49) to cover the true value of θ will depend on θ, so these are not exact
confidence regions according to our previous definition. Nevertheless, they can still have
a coverage probability only weakly dependent on the true parameter and approximately
as given in Table 32.2. In any case, the coverage probability of the intervals or regions
obtained according to this procedure can in principle be determined as a function of the
true parameter(s), for example, using a Monte Carlo calculation.
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One of the practical advantages of intervals that can be constructed from the
log-likelihood function or χ2 is that it is relatively simple to produce the interval
for the combination of several experiments. If N independent measurements result in
log-likelihood functions lnLi(θ), then the combined log-likelihood function is simply the
sum,

lnL(θ) =
N∑

i=1

ln Li(θ) . (32.50)

This can then be used to determine an approximate confidence interval or region with
Equation (32.48), just as with a single experiment.

32.3.2.5. Poisson or binomial data:
Another important class of measurements consists of counting a certain number of

events n. In this section we will assume these are all events of the desired type, i.e.,
there is no background. If n represents the number of events produced in a reaction
with cross section σ, say, in a fixed integrated luminosity L, then it follows a Poisson
distribution with mean ν = σL. If, on the other hand, one has selected a larger sample of
N events and found n of them to have a particular property, then n follows a binomial
distribution where the parameter p gives the probability for the event to possess the
property in question. This is appropriate, e.g., for estimates of branching ratios or
selection efficiencies based on a given total number of events.

For the case of Poisson distributed n, the upper and lower limits on the mean value ν
can be found from the Neyman procedure to be

νlo = 1
2F−1

χ2 (αlo; 2n) , (32.51a)

νup = 1
2F−1

χ2 (1 − αup; 2(n + 1)) , (32.51b)

where the upper and lower limits are at confidence levels of 1 − αlo and 1 − αup,
respectively, and F−1

χ2 is the quantile of the χ2 distribution (inverse of the cumulative

distribution). The quantiles F−1
χ2 can be obtained from standard tables or from the

CERNLIB routine CHISIN. For central confidence intervals at confidence level 1 − α, set
αlo = αup = α/2.

It happens that the upper limit from (32.51a) coincides numerically with the Bayesian
upper limit for a Poisson parameter using a uniform prior p.d.f. for ν. Values for
confidence levels of 90% and 95% are shown in Table 32.3.

For the case of binomially distributed n successes out of N trials with probability of
success p, the upper and lower limits on p are found to be

plo =
nF−1

F [αlo; 2n, 2(N − n + 1)]

N − n + 1 + nF−1
F [αlo; 2n, 2(N − n + 1)]

, (32.52a)
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Table 32.3: Lower and upper (one-sided) limits for the mean ν of a Poisson
variable given n observed events in the absence of background, for confidence levels
of 90% and 95%.

1 − α =90% 1 − α =95%

n νlo νup νlo νup

0 – 2.30 – 3.00
1 0.105 3.89 0.051 4.74
2 0.532 5.32 0.355 6.30
3 1.10 6.68 0.818 7.75
4 1.74 7.99 1.37 9.15
5 2.43 9.27 1.97 10.51
6 3.15 10.53 2.61 11.84
7 3.89 11.77 3.29 13.15
8 4.66 12.99 3.98 14.43
9 5.43 14.21 4.70 15.71

10 6.22 15.41 5.43 16.96

pup =
(n + 1)F−1

F [1 − αup; 2(n + 1), 2(N − n)]

(N − n) + (n + 1)F−1
F [1 − αup; 2(n + 1), 2(N − n)]

. (32.52b)

Here F−1
F is the quantile of the F distribution (also called the Fisher–Snedecor

distribution; see Ref. 4).

32.3.2.6. Difficulties with intervals near a boundary:

A number of issues arise in the construction and interpretation of confidence intervals
when the parameter can only take on values in a restricted range. An important example
is where the mean of a Gaussian variable is constrained on physical grounds to be
non-negative. This arises, for example, when the square of the neutrino mass is estimated
from m̂2 = Ê2 − p̂2, where Ê and p̂ are independent, Gaussian distributed estimates of
the energy and momentum. Although the true m2 is constrained to be positive, random
errors in Ê and p̂ can easily lead to negative values for the estimate m̂2.

If one uses the prescription given above for Gaussian distributed measurements, which
says to construct the interval by taking the estimate plus or minus one standard deviation,
then this can give intervals that are partially or entirely in the unphysical region. In fact,
by following strictly the Neyman construction for the central confidence interval, one
finds that the interval is truncated below zero; nevertheless an extremely small or even a
zero-length interval can result.
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An additional important example is where the experiment consists of counting a
certain number of events, n, which is assumed to be Poisson distributed. Suppose the
expectation value E[n] = ν is equal to s + b, where s and b are the means for signal and
background processes, and assume further that b is a known constant. Then ŝ = n − b
is an unbiased estimator for s. Depending on true magnitudes of s and b, the estimate
ŝ can easily fall in the negative region. Similar to the Gaussian case with the positive
mean, the central confidence interval or even the upper limit for s may be of zero length.

The confidence interval is in fact designed not to cover the parameter with a probability
of at most α, and if a zero-length interval results, then this is evidently one of those
experiments. So although the construction is behaving as it should, a null interval is an
unsatisfying result to report and several solutions to this type of problem are possible.

An additional difficulty arises when a parameter estimate is not significantly far away
from the boundary, in which case it is natural to report a one-sided confidence interval
(often an upper limit). It is straightforward to force the Neyman prescription to produce
only an upper limit by setting x2 = ∞ in Eq. 32.39. Then x1 is uniquely determined and
the upper limit can be obtained. If, however, the data come out such that the parameter
estimate is not so close to the boundary, one might wish to report a central (i.e.,
two-sided) confidence interval. As pointed out by Feldman and Cousins [20], however, if
the decision to report an upper limit or two-sided interval is made by looking at the data
(“flip-flopping”), then the resulting intervals will not in general cover the parameter with
the probability 1 − α.

With the confidence intervals suggested in [20], the prescription determines whether the
interval is one- or two-sided in a way which preserves the coverage probability. Interval
constructions that have this property and avoid the problem of null intervals are said to
be unified. The intervals based on the Feldman-Cousins prescription are of this type. For
a given choice of 1 − α, if the parameter estimate is sufficiently close to the boundary,
the method gives a one-sided limit. In the case of a Poisson variable in the presence of
background, for example, this would occur if the number of observed events is compatible
with the expected background. For parameter estimates increasingly far away from the
boundary, i.e., for increasing signal significance, the interval makes a smooth transition
from one- to two-sided, and far away from the boundary one obtains a central interval.

The intervals according to this method for the mean of Poisson variable in the absence
of background are given in Table 32.4. (Note that α in [20] is defined following Neyman
[19] as the coverage probability; this is opposite the modern convention used here in which
the coverage probability is 1 − α.) The values of 1 − α given here refer to the coverage of
the true parameter by the whole interval [ν1, ν2]. In Table 32.3 for the one-sided upper
and lower limits, however, 1 − α refers to the probability to have individually νup ≥ ν or
νlo ≤ ν.

A potential difficulty with unified intervals arises if, for example, one constructs such
an interval for a Poisson parameter s of some yet to be discovered signal process with,
say, 1 − α = 0.9. If the true signal parameter is zero, or in any case much less than the
expected background, one will usually obtain a one-sided upper limit on s. In a certain
fraction of the experiments, however, a two-sided interval for s will result. Since, however,
one typically chooses 1 − α to be only 0.9 or 0.95 when searching for a new effect, the
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Table 32.4: Unified confidence intervals [ν1, ν2] for a the mean of a Poisson
variable given n observed events in the absence of background, for confidence levels
of 90% and 95%.

1 − α =90% 1 − α =95%

n ν1 ν2 ν1 ν2

0 0.00 2.44 0.00 3.09
1 0.11 4.36 0.05 5.14
2 0.53 5.91 0.36 6.72
3 1.10 7.42 0.82 8.25
4 1.47 8.60 1.37 9.76
5 1.84 9.99 1.84 11.26
6 2.21 11.47 2.21 12.75
7 3.56 12.53 2.58 13.81
8 3.96 13.99 2.94 15.29
9 4.36 15.30 4.36 16.77

10 5.50 16.50 4.75 17.82

value s = 0 may be excluded from the interval before the existence of the effect is well
established. It must then be communicated carefully that in excluding s = 0 from the
interval, one is not necessarily claiming to have discovered the effect.

The intervals constructed according to the unified procedure in [20] for a Poisson
variable n consisting of signal and background have the property that for n = 0
observed events, the upper limit decreases for increasing expected background. This is
counter-intuitive, since it is known that if n = 0 for the experiment in question, then no
background was observed, and therefore one may argue that the expected background
should not be relevant. The extent to which one should regard this feature as a drawback
is a subject of some controversy (see, e.g., Ref. 24).

Another possibility is to construct a Bayesian interval as described in Section 32.3.1.
The presence of the boundary can be incorporated simply by setting the prior density
to zero in the unphysical region. Priors based on invariance principles (rather than
subjective degree of belief) for the Poisson mean are rarely used in high energy physics.
An example one may consider for the Poisson problem is a prior inversely proportional to
the mean; here one obtains a posterior that diverges for the case of zero events observed
and finds upper limits which undercover when evaluated by the frequentist definition
of coverage [2]. Rather, priors uniform in the Poisson mean have been used, although
as previously mentioned, this is generally not done to reflect the experimenter’s degree
of belief, but rather as a procedure for obtaining an interval with certain frequentist
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properties. The resulting upper limits have a coverage probability that depends on the
true value of the Poisson parameter and is everywhere greater than the stated probability
content. Lower limits and two-sided intervals for the Poisson mean based on flat priors
undercover, however, for some values of the parameter, although to an extent that in
practical cases may not be too severe [2, 17]. Intervals constructed in this way have
the advantage of being easy to derive; if several independent measurements are to be
combined then one simply multiplies the likelihood functions (cf. Eq. (32.50)).

An additional alternative is presented by the intervals found from the likelihood
function or χ2 using the prescription of Equations (32.48) or (32.49). As in the case of
the Bayesian intervals, the coverage probability is not, in general, independent of the true
parameter. Furthermore, these intervals can for some parameter values undercover. The
coverage probability can of course be determined with some extra effort and reported
with the result.

Also as in the Bayesian case, intervals derived from the value of the likelihood function
from a combination of independent experiments can be determined simply by multiplying
the likelihood functions. These intervals are also invariant under transformation of the
parameter; this is not true for Bayesian intervals with a conventional flat prior, because
a uniform distribution in, say, θ will not be uniform if transformed to θ2. Use of the
likelihood function to determine approximate confidence intervals is discussed further in
[23].

In any case, it is important to always report sufficient information so that the result can
be combined with other measurements. Often this means giving an unbiased estimator
and its standard deviation, even if the estimated value is in the unphysical region.

Regardless of the type of interval reported, the consumer of that result will almost
certainly use it to derive some impression about the value of the parameter. This will
inevitably be done, either explicitly or intuitively, with Bayes’ theorem,

p(θ|result) ∝ L(result|θ)π(θ) , (32.53)

where the reader supplies his or her own prior beliefs π(θ) about the parameter, and the
‘result’ is whatever sort of interval or other information the author has reported. For all
of the intervals discussed, therefore, it is not sufficient to know the result; one must also
know the probability to have obtained this result as a function of the parameter, i.e., the
likelihood. Contours of constant likelihood, for example, provide this information, and so
an interval obtained from lnL = ln Lmax −∆ ln L already takes one step in this direction.

It can also be useful with a frequentist interval to calculate its subjective probability
content using the posterior p.d.f. based on one or several reasonable guesses for the prior
p.d.f. If it turns out to be significantly less than the stated confidence level, this warns
that it would be particularly misleading to draw conclusions about the parameter’s value
from the interval alone.
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