

B-particle organization

Many measurements of *B* decays involve admixtures of *B* hadrons. Previously we arbitrarily included such admixtures in the B^{\pm} section, but because of their importance we have created two new sections: " B^{\pm}/B^0 Admixture" for $\Upsilon(4S)$ results and " $B^{\pm}/B^0/B_s^0/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_b at high energy are found in the Admixture sections. $B^0-\overline{B}^0$ mixing data are found in the B^0 section, while $B_s^0-\overline{B}_s^0$ mixing data and $B-\overline{B}$ mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. *CP*-violation data are found in the B^{\pm} , B^0 , and B^{\pm} , B^0 Admixture sections. *b*-baryons are found near the end of the Baryon section.

The organization of the B sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

 $\bullet B^{\pm}$

mass, mean life, CP violation, branching fractions

• B⁰

mass, mean life, $B^0 - \overline{B}^0$ mixing, *CP* violation,

branching fractions

• $B^{\pm} B^0$ Admixtures

CP violation, branching fractions

• $B^{\pm}/B^0/B_s^0/b$ -baryon Admixtures

mean life, production fractions, branching fractions

• *B**

mass

• $B_1(5721)^0$

mass

- $B_2^*(5747)^0$
 - mass
- B_s^0

mass, mean life, $B_s^0 - \overline{B}_s^0$ mixing, CP violation, branching fractions • B_{s}^{*} mass • $B_{s1}(5830)^0$ mass • $B_{s2}^8(5840)^0$ mass • B_c^{\pm} mass, mean life, branching fractions At end of Baryon Listings: $\bullet \Lambda_b$ mass, mean life, branching fractions • Σ_b mass • Σ_{h}^{*} mass • Ξ_b^0 , $\Xi_b^$ mass • b-baryon Admixture

mean life, branching fractions

B^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

 $\begin{array}{l} {\rm Mass} \,\, m_{B^\pm} \,=\, 5279.15 \,\pm\, 0.31 \,\, {\rm MeV} \\ {\rm Mean} \,\, {\rm life} \,\, \tau_{B^\pm} \,=\, (1.638 \pm 0.011) \times 10^{-12} \,\, {\rm s} \\ c\tau \,=\, 491.1 \,\, \mu {\rm m} \end{array}$

CP violation

$$\begin{split} &A_{CP}(B^+ \to J/\psi(1S)K^+) = 0.017 \pm 0.016 \quad (S = 1.2) \\ &A_{CP}(B^+ \to J/\psi\rho^+) = -0.11 \pm 0.14 \\ &A_{CP}(B^+ \to J/\psi\rho^+) = -0.16 \pm 0.08 \\ &A_{CP}(B^+ \to \eta_c K^+) = -0.16 \pm 0.08 \\ &A_{CP}(B^+ \to \psi(2S)K^+) = -0.025 \pm 0.024 \\ &A_{CP}(B^+ \to \psi(2S)K^*(892)^+) = 0.08 \pm 0.21 \\ &A_{CP}(B^+ \to \psi(2S)K^*(892)^+) = 0.07 \pm 0.18 \\ &A_{CP}(B^+ \to \chi_{c1}(1P)\pi^+) = 0.07 \pm 0.18 \\ &A_{CP}(B^+ \to \chi_{c1}K^+) = -0.009 \pm 0.033 \\ &A_{CP}(B^+ \to \chi_{c1}K^+(892)^+) = 0.5 \pm 0.5 \\ &A_{CP}(B^+ \to \chi_{c1}K^*(892)^+) = 0.5 \pm 0.5 \\ &A_{CP}(B^+ \to D_{CP}(+1)\pi^+) = 0.017 \pm 0.026 \\ &A_{CP}(B^+ \to D^0K^+) = 135 \pm 26 \text{ degrees} \\ &r_B(B^+ \to D^0K^+) = 135 \pm 26 \text{ degrees} \\ &r_B(B^+ \to D^0K^+) = 0.14 \pm 0.06 \\ &\delta_B(B^+ \to D^0K^+) = 0.14 \pm 0.06 \\ &\delta_B(B^+ \to D^0K^+) = 0.14 \pm 0.06 \\ &A_{CP}(B^+ \to [K^-\pi^+]_DK^+) = 0.9^{+0.8} \\ &A_{CP}(B^+ \to [K^-\pi^+]_DK^+) = 0.9^{+0.8} \\ &A_{CP}(B^+ \to [K^-\pi^+]_DK^+) = 0.02 \pm 0.15 \\ &A_{CP}(B^+ \to [K^-\pi^+]_DK^+) = -0.02 \pm 0.15 \\ &A_{CP}(B^+ \to D_{CP}(-1)K^+) = -0.09 \pm 0.10 \\ &A_{CP}(B^+ \to D_{CP}(-1)^0\pi^+) = -0.09 \pm 0.05 \\ &A_{CP}(B^+ \to D^{*0}K^+) = 0.17 \pm 0.08 \\ &\delta_B^*(B^+ \to D^{*0}K^+) = 0.17 \pm 0.08 \\ &\delta_B^*(B^+ \to D^{*0}K^+) = 0.17 \pm 0.08 \\ &\delta_B^*(B^+ \to D^{*0}K^+) = 0.13 \pm 0.31 \\ &A_{CP}(B^+ \to D_{CP}(-1)K^+) = -0.15 \pm 0.16 \\ &A_{CP}(B^+ \to D_{CP}(-1)K^+) = -0.15 \pm 0.11 \\ &A_{CP}(B^+ \to D_{CP}(-1)K^*(892)^+) = -0.3 \pm 0.4 \\ &A_{CP}(B^+ \to D_{CP}(-1)K^*(892)^+) = -0.3 \pm 0.4 \\ &A_{CP}(B^+ \to D_{CP}(-1)K^*(992)^+) = -0.15 \pm 0.11 \\ &A_{CP}(B^+ \to D_{CP}(-1)K^*(992)^+) = -0.15 \pm 0.11 \\ &A_{CP}(B^+ \to D_{CP}(-1)K^*($$

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

$$\begin{aligned} &A_{CP}(B^+ \to D^+ \overline{D^*}) = 0.13 \pm 0.18 \\ &A_{CP}(B^+ \to D^+ \overline{D^0}) = -0.13 \pm 0.14 \\ &A_{CP}(B^+ \to K_+^* \pi^0) = 0.027 \pm 0.032 \\ &A_{CP}(B^+ \to \eta' K^+) = 0.016 \pm 0.019 \\ &A_{CP}(B^+ \to \eta' K^* (892)^+) = 0.30_{-0.37}^{-0.37} \\ &A_{CP}(B^+ \to \eta K^+) = -0.27 \pm 0.09 \\ &A_{CP}(B^+ \to \eta K^* (892)^+) = 0.02 \pm 0.06 \\ &A_{CP}(B^+ \to \eta K^* (892)^+ \pi^0) = 0.04 \pm 0.29 \\ &A_{CP}(B^+ \to \psi K^* (892)^+ \pi^0) = 0.04 \pm 0.29 \\ &A_{CP}(B^+ \to \psi K^* (892)^+ \pi^0) = 0.04 \pm 0.29 \\ &A_{CP}(B^+ \to K^* (892)^+ \pi^0) = 0.04 \pm 0.29 \\ &A_{CP}(B^+ \to K^* (892)^+ \pi^0) = 0.04 \pm 0.29 \\ &A_{CP}(B^+ \to K^* (\pi^- \pi^+) = -0.03 \pm 0.10 \quad (S = 1.8) \\ &A_{CP}(B^+ \to K^* (\pi^- \pi^+) = 0.023 \pm 0.031 \quad (S = 1.2) \\ &A_{CP}(B^+ \to K^* (1430)^0 \pi^+) = -0.04_{-0.07}^{-0.07} \quad (S = 1.1) \\ &A_{CP}(B^+ \to f_0(1550) K^+) = -0.04 \pm 0.07 \\ &A_{CP}(B^+ \to K^*_0(1430)^0 \pi^+) = 0.00 \pm 0.07 \quad (S = 2.4) \\ &A_{CP}(B^+ \to \phi^0 K^+) = 0.12 \pm 0.17 \\ &A_{CP}(B^+ \to \phi^0 K^+) = 0.12 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^0 K^+) = 0.12 \pm 0.11 \\ &A_{CP}(B^+ \to K^*(892)^+ f_0(980)) = -0.34 \pm 0.21 \\ &A_{CP}(B^+ \to K^*(892)^0 \rho^+) = -0.01 \pm 0.16 \\ &A_{CP}(B^+ \to K^*(892)^0 \rho^+) = -0.01 \pm 0.16 \\ &A_{CP}(B^+ \to K^+ K^- \pi^+) = 0.00 \pm 0.10 \\ &A_{CP}(B^+ \to K^+ K^- \pi^+) = 0.01 \pm 0.10 \\ &A_{CP}(B^+ \to K^+ K^- \pi^+) = 0.01 \pm 0.03 \\ &A_{CP}(B^+ \to K^+ K^- \pi^+) = 0.01 \pm 0.03 \\ &A_{CP}(B^+ \to K^+ K^- \pi^+) = 0.01 \pm 0.08 \\ &A_{CP}(B^+ \to K^+ K^- \pi^+) = 0.01 \pm 0.08 \\ &A_{CP}(B^+ \to K^+ K^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to K^+ K^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to K^+ \pi^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to K^+ \pi^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to \pi^+ \pi^0) = 0.02 \pm 0.11 \\ \end{pmatrix}$$

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

$$\begin{aligned} A_{CP}(B^+ \to \rho^+ \rho^0) &= -0.08 \pm 0.13 \\ A_{CP}(B^+ \to b_1^0 \pi^+) &= 0.05 \pm 0.16 \\ A_{CP}(B^+ \to \omega \pi^+) &= -0.04 \pm 0.06 \\ A_{CP}(B^+ \to \omega \rho^+) &= 0.04 \pm 0.18 \\ A_{CP}(B^+ \to \eta \pi^+) &= -0.16 \pm 0.07 \quad (S = 1.1) \\ A_{CP}(B^+ \to \eta^\prime \pi^+) &= 0.21 \pm 0.15 \\ A_{CP}(B^+ \to \eta \rho^+) &= 0.01 \pm 0.16 \\ A_{CP}(B^+ \to \eta^\prime \rho^+) &= -0.04 \pm 0.28 \\ A_{CP}(B^+ \to \rho \overline{\rho} \pi^+) &= -0.00 \pm 0.04 \\ A_{CP}(B^+ \to \rho \overline{\rho} K^+) &= -0.16 \pm 0.07 \\ A_{CP}(B^+ \to \rho \overline{\rho} K^* (892)^+) &= 0.32 \pm 0.14 \\ A_{CP}(B^+ \to \rho \overline{\Lambda} \gamma) &= 0.17 \pm 0.17 \\ A_{CP}(B^+ \to K^+ \ell^+ \ell^-) &= -0.03 \pm 0.22 \\ A_{CP}(B^+ \to D^{(*)} K^{(*)+}) &= (57 \pm 17)^\circ \end{aligned}$$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0 \overline{B}{}^0$ and 50% $B^+ B^-$ production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_s , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ p Confidence level(MeV/c)
Se	mileptonic and leptonic modes	
$\ell^+ u_\ell$ anything	[a] (10.99 ± 0.28) %	-
$e^+ \nu_e X_c$	(10.8 \pm 0.4) %	-
$D \ell^+ u_\ell$ anything	(10.4 \pm 0.8) %	-
$\overline{D}{}^{0}\ell^{+}\nu_{\ell}$	[a] (2.27 ± 0.11)%	2310
$\overline{D}{}^0 \tau^+ \nu_{\tau}$	$(7 \pm 4) \times$	10 ⁻³ 1911
$\overline{D}^*(2007)^0 \ell^+ u_\ell$	[a] (6.07 ± 0.29) %	2258
$\overline{D}^{*}(2007)^{0} \tau^{+} u_{ au}$	(2.2 ± 0.6)%	1839
$D^-\pi^+\ell^+ u_\ell$	$($ 4.2 \pm 0.5 $)$ $ imes$	10 ⁻³ 2306

$\overline{D}_0^*(2420)^0 \ell^+ \nu_\ell \times$		(2.4	±0.7) × 10 ⁻³		_
$\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}\times$		(2.2	± 0.5) × 10 ⁻³		2066
$B(D_2^{*0} \to D^+ \pi^-)$							
$D^{(*)}$ n $\pi\ell^+ u_\ell$ (n ≥ 1)		(1.99	± 0.28) %		-
$\underline{D}^{*-}\pi^+\ell^+\nu_\ell$		(6.1	± 0.6) × 10 ⁻³		2254
$D_1(2420)^0 \ell^+ u_\ell imes B(D^0_1 o$		(4.0	± 0.7	$) \times 10^{-3}$		2084
$D^{*+}\pi^{-})$							
$\overline{D}_1^\prime(2430)^0 \ell^+ u_\ell imes$		<	7		imes 10 ⁻⁴	CL=90%	-
${\sf B}(\overline{D}_1^{\prime 0} o D^{*+} \pi^-)$							
$\overline{D}_2^*(2460)^0 \ell^+ u_\ell imes$		(1.8	± 0.7	$) \times 10^{-3}$		2066
$\overline{B(D_2^{*0} \rightarrow D^{*+} \pi^-)}$							
$\pi^0 \ell^+ \nu_{\ell}$		(7.7	± 1.2	$) \times 10^{-5}$		2638
$\eta \ell^+ \nu_{\ell}$		<	1.01		× 10 ^{−4}	CL=90%	2611
$\eta'\ell^+\nu_\ell$		(2.7	± 1.0	$) \times 10^{-4}$		2553
$\omega \ell^+ \nu_{\ell}$	[a]	(1.3	± 0.6) × 10 ⁻⁴		2582
$\rho^0 \ell^+ \nu_\ell$	[a]	(1.28	± 0.18) × 10 ⁻⁴		2583
$p\overline{p}e^+\nu_e$		<	5.2		imes 10 ⁻³	CL=90%	2467
$e^+ \nu_e$		<	9.8		imes 10 ⁻⁶	CL=90%	2640
$\mu^+ u_\mu$		<	1.7		imes 10 ⁻⁶	CL=90%	2639
$\tau^+ \nu_{\tau}$		(1.4	± 0.4	$) \times 10^{-4}$		2341
$e^+ \nu_e \gamma$		<	2.0		imes 10 ⁻⁴	CL=90%	2640
$\mu^+ u_\mu \gamma$		<	5.2		imes 10 ⁻⁵	CL=90%	2639
Inc	lusi	/e r	nodes	5			
$D^0 X$		(8.6	± 0.7) %		-
$\overline{D}^0 X$		(79	± 4) %		-
D^+X		(2.5	± 0.5) %		-
D^-X		(9.9	± 1.2) %		-
$D_s^+ X$		(7.9	$^{+1.4}_{-1.3}$) %		-
$D_s^- X$		(1.10	$^{+0.45}_{-0.32}$) %		-
$\Lambda_c^+ X$		(2.1	$^{+0.9}_{-0.6}$) %		_
$\overline{\Lambda}_{c}^{-}X$		(2.8	$^{+1.1}_{-0.9}$) %		-
τX		(97	± 4) %		_
сX		(23.4	$^{+2.2}_{-1.8}$) %		-
c cX		(1	.20	± 6) %		-

HTTP://PDG.LBL.GOV Page 6

 $D, D^*, \text{ or } D_s \text{ modes}$ $\overline{D}^0 \pi^+$ $(4.84 \pm 0.15) \times 10^{-3}$ 2308 $D_{CP(+1)}\pi^+$ 1.96 ± 0.34) $imes 10^{-3}$ [*b*] $D_{CP(-1)}\pi^+$ 1.8 \pm 0.4) \times 10⁻³ [*b*] ($\overline{D}^0 \rho^+$ 1.34 ± 0.18)% 2237 ($\overline{D}^0 K^+$ 4.02 ± 0.21) $imes 10^{-4}$ 2280 $D_{CP(+1)}K^+$ 1.81 ± 0.27) $\times 10^{-4}$ [*b*] $D_{CP(-1)}K^+$ 1.73 ± 0.23) $\times 10^{-4}$ [b] $[K^{-}\pi^{+}]_{D}\pi^{+}$ ± 0.5) $\times 10^{-5}$ [c] 1.7($[\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}$ 4.6 ± 0.9) $\times 10^{-6}$ ($\overline{D}{}^{0}K^{*}(892)^{+}$ 5.3 ± 0.4) $\times \, 10^{-4}$ 2213 ($D_{CP(-1)}K^{*}(892)^{+}$ 1.7 ± 0.7 $) \times 10^{-4}$ [b] D_{CP(+1)} K*(892)⁺ $) \times 10^{-4}$ [*b*] (5.2 ± 1.2 _ $\overline{D}^0 K^+ \overline{K}^0$ (5.5 ± 1.6) $\times 10^{-4}$ 2189 $\overline{D}^0 K^+ \overline{K}^* (892)^0$ ± 1.7) $\times 10^{-4}$ 7.5 2071 ($\overline{D}{}^{0}\pi^{+}\pi^{+}\pi^{-}$) % 1.1 ± 0.4 2289 ($\overline{D}{}^0 \pi^+ \pi^+ \pi^-$ nonresonant $) \times 10^{-3}$ 5 ± 4 (2289 $\overline{D}^0 \pi^+ \rho^0$ $) \times 10^{-3}$ 4.2 ± 3.0 (2207 $\overline{D}^0 a_1(1260)^+$ $) \times 10^{-3}$ ± 4 (4 2123 $\overline{D}^0 \omega \pi^+$ 4.1 ± 0.9) $\times 10^{-3}$ 2206 ($D^*(2010)^-\pi^+\pi^+$ 1.35 ± 0.22) $\times 10^{-3}$ 2247 $D^{-}\pi^{+}\pi^{+}$ 1.02 ± 0.16) $\times 10^{-3}$ (2299 $D^+ K^0$ $\times 10^{-6}$ 5.0 CL=90% 2278 < $\overline{D}^{*}(2007)^{0}\pi^{+}$ 5.19 ± 0.26) $\times \, 10^{-3}$ 2256 $\overline{D}^*(2007)^0 \omega \pi^+$ 4.5 ± 1.2) $\times 10^{-3}$ 2149 ($\overline{D}^{*}(2007)^{0} \rho^{+}$ 9.8 ± 1.7) $\times 10^{-3}$ 2181 ($\overline{D}^{*}(2007)^{0}K^{+}$ 4.16 ± 0.33) $\times 10^{-4}$ 2227 $\overline{D}^{*}(2007)^{0} K^{*}(892)^{+}$ ± 1.4) $imes 10^{-4}$ (8.1 2156 $\overline{D}^*(2007)^0 K^+ \overline{K}^0$ $\times 10^{-3}$ 1.06 CL=90% 2132 $\overline{D}^{*}(2007)^{0}K^{+}K^{*}(892)^{0}$ 1.5 \pm 0.4) \times 10⁻³ 2008 ($\overline{D}^{*}(2007)^{0}\pi^{+}\pi^{+}\pi^{-}$ 1.03 ± 0.12)% 2236 ($\overline{D}^*(2007)^0 a_1(1260)^+$ 1.9 ± 0.5)% 2062 $\overline{D}^{*}(2007)^{0}\pi^{-}\pi^{+}\pi^{+}\pi^{0}$ (1.8 ± 0.4) % 2219 $\overline{D}^{*0} 3\pi^+ 2\pi^-$ 5.7 ± 1.2) $\times 10^{-3}$ 2196 ($D^*(2010)^+ \pi^0$ $\times 10^{-4}$ CL=90% <1.72255 $D^*(2010)^+ K^0$ $\times 10^{-6}$ CL=90% 9.0 2225 < $D^*(2010)^-\pi^+\pi^+\pi^0$ 1.5 ± 0.7) % (2235 $D^{*}(2010)^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}$ 2.6 ± 0.4) $\times 10^{-3}$ (2217 $\overline{D}^{**0}\pi^+$ 5.9 ± 1.3) $\times 10^{-3}$ [d] ($\overline{D}_{1}^{*}(2420)^{0}\pi^{+}$ (1.5 ± 0.6) $\times 10^{-3}$ S=1.3 2081 $^{+0.5}_{-0.6}$ $\overline{D}_1(2420)^0 \pi^+ \times \mathsf{B}(\overline{D}_1^0 \to$) × 10⁻⁴ 1.9 2081 ($\overline{D}^0 \pi^+ \pi^-$)

$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}$	(3.4	± 0.8) × 10 ⁻²	ł	_
\times B($\overline{D}_2^*(2462)^0 \rightarrow D^-\pi^+)$						
$\overline{D}_{0}^{*}(2400)^{\overline{0}}\pi^{+}$	(6.1	± 1.9	$) \times 10^{-4}$	ł	2113
$\times \ B(\overline{D}_0^*(2400)^0 \rightarrow \ D^-\pi^+)$						
$\overline{D}_{1}(2421)^{0}\pi^{+}$	(6.8	± 1.5	$) \times 10^{-4}$	ł	_
$\underline{} \times B(\overline{D}_1(2421)^0 \to D^{*-}\pi^+)$						
$D_2^*(2462)^0 \pi^+$	(1.8	± 0.5) × 10 ⁻²	ł	_
$ \xrightarrow{\times} B(\overline{D}_2^*(2462)^0 \to D^{*-}\pi^+) $					_	
$D_1'(2427)^0 \pi^+$	(5.0	± 1.2) × 10 ⁻²	ŀ	_
$\times B(D'_1(2427)^0 \to D^{*-}\pi^+)$					_	
$D_1(2420)^0 \pi^+ \times B(D_1^0 \to$	<	6		× 10 ⁻⁶	CL=90%	2081
$D^{*0}\pi^{+}\pi^{-})$						
$D_1^+(2420)^\circ \rho^+$	<	1.4		$\times 10^{-3}$	CL=90%	1995
$D_{2}^{*}(2460)^{\circ}\pi^{+}$	<	1.3		× 10 ⁻³	CL=90%	2063
$D_2^*(2460)^\circ \pi^+ \times B(D_2^{*\circ} \to \mathbb{C})$	<	2.2		$\times 10^{-5}$	CL=90%	2063
$D^{*0}\pi^{+}\pi^{-}$)		. –				
$D_{2}(2400)^{\circ}\rho^{+}$	<	4.7		× 10	CL=90%	1976
$D^{\circ}D_{s}^{\circ}$	(1.03	± 0.17) %	_	1815
$D_{s0}(2317)^+ D^0 \times$	(7.5	$^{+2.2}_{-1.7}$	$) \times 10^{-2}$	1	1605
$B(D_{s0}(2317)^+ \rightarrow D_s^+ \pi^0)$						
$D_{s0}(2317)^+ D^0 \times$	<	7.6		$\times 10^{-2}$	CL=90%	1605
$B(D_{s0}(2317)^+ \to D_s^{*+}\gamma)$						
$D_{s0}(2317)^+ D^*(2007)^0 \times$	(9	± 7) × 10 ⁻²	ł	1511
$B(D_{s0}(2317)^+ \rightarrow D_s^+ \pi^0)$						
$D_{sJ}(2457)^+ \overline{D}{}^0$	(3.1	$^{+1.0}_{-0.9}$) × 10 ⁻³	3	_
$D_{s,I}(2457)^+ \overline{D}{}^0 imes$	(4.8	$^{+1.3}_{-1.1}$) × 10 ⁻²	1	_
$B(D_{sJ}(2457)^+ \rightarrow D_s^+\gamma)$			1.1			
$D_{sJ}(2457)^+ \overline{D}{}^0 \times$	<	2.2		imes 10 ⁻²	⁴ CL=90%	-
${\sf B}(D_{sJ}(2457)^+ ightarrow$						
$D_s^+ \pi^+ \pi^-$)						
$D_{sJ}(2457)^+\overline{D}{}^0 imes$	<	2.7		imes 10 ⁻²	⁴ CL=90%	-
$B(D_{sJ}(2457)^+ o D_s^+ \pi^0)$						
$D_{sJ}(2457)^+ \overline{D}{}^0 imes$	<	9.8		$ imes 10^{-2}$	¹ CL=90%	-
$B(D_{sJ}(2457)^+ \to D_s^{*+}\gamma)$						
$D_{sJ}(2457)^+ D^*(2007)^0$	(1.20	± 0.30) %		_
$D_{sJ}(2457)^+\overline{D}{}^*(2007)^0 imes$	(1.4	$^{+0.7}_{-0.6}$	$) \times 10^{-3}$	3	-
$B(D_{sJ}(2457)^+ o D_s^+ \gamma)$			- • •			
$\overline{D}{}^0 D_{s1}(2536)^+ imes$	(2.2	± 0.7	$) \times 10^{-2}$	ļ	1447
$B(D_{s1}(2536)^+ \rightarrow 0)$						
D*(2007)°K ⁺)						
HTTP://PDG.LBL.GOV	Page 8		C	reated:	7/18/2008	14:28

$ \overline{D}^{*}(2007)^{0} D_{s1}(2536)^{+} \times \\ B(D_{s1}(2536)^{+} \rightarrow \\ D^{*}(2227)^{0} U^{(+)}) $	(5.5	± 1.6) × 10 ⁻⁴		1338
$\frac{D^{*}(2007)^{\circ}K^{+}}{\overline{D}^{0}D_{s1}(2536)^{+}\times}$ $B(D_{*}(2536)^{+}\times)D^{*+}K^{0})$	(2.3	± 1.1) × 10 ⁻⁴		1447
$\overline{D}^{0} D_{sJ}(2700)^{+} \times D^{0} K^{+}$	(1.13	$^{+0.26}_{-0.36}$) × 10 ⁻³		_
$ \begin{array}{rcl} & B(D_{sJ}(2700)^+ \rightarrow D^{*}K^+) \\ \overline{D}^{*0}D_{s1}(2536)^+ \times \\ & B(D_{s1}(2536)^+ \rightarrow D^{*+}K^0) \end{array} $	(3.9	±2.6) × 10 ⁻⁴		1338
$\frac{D^{*0}D_{s1}(2533)}{D^{*0}D_{sJ}(2573)^{+} \times}$ $B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})$	<	2		imes 10 ⁻⁴	CL=90%	1306
$ \frac{\overline{D}^{*}(2007)^{0}D_{sJ}(2573)^{+}}{B(D_{sJ}(2573)^{+} \rightarrow D^{0}K^{+})} $	<	5		imes 10 ⁻⁴	CL=90%	1306
$\overline{D}^0 D^{*+}$	(7.8	+1.6	$) \times 10^{-3}$		1734
$\frac{D^{*}}{D^{*}}(2007)^{0}D^{+}$	(8.4	+17	$) \times 10^{-3}$		1737
$\overline{D}^{*}(2007)^{0} D_{s}^{*+}$	(1 75	± 0.23) %		1650
$D(2007) D_s$	(1.75	10.23) /0		1050
D_s^{*} D^{**}	(2.7	± 1.2)%		_
$D^{*}(2007)^{\circ} D^{*}(2010)^{+}$	(8.1	± 1.7) × 10 ⁻⁴		1713
$D^{\circ} D^{\circ} (2010)^{+} + \overline{D^{\circ}} (2007)^{0} D^{+}$	<	1.30		%	CL=90%	1792
$D^{(2007)} D^{(2007)}$	(2.0)10-4		1700
$\frac{D^2 D}{D^0} + 0$	(3.9	± 0.5	$) \times 10^{-4}$		1792
$\overline{D}^{0}D^{+}\kappa^{0}$	(4.2	±0.0	$) \times 10^{-3}$		1571
$D^+ \overline{D}^* (2007)^0$	< (2.0 6.3	⊥17	$\times 10^{-4}$	CL=90%	1701
$\overline{D}^{*}(2007)^{0}D^{+}K^{0}$		0.5 6 1	⊥ 1. <i>1</i>	$ > 10^{-3} $	CI	1/91
$\frac{D}{D^0} \frac{D}{D^*} (2010)^+ \kappa^0$	$\langle \rangle$	0.1 5 2	+12	10^{-3}	CL—9070	1474
$\overline{D}^{*}(2007)^{0} D^{*}(2010)^{+} K^{0}$	(5.2 7.8	± 1.2 ± 2.6	$) \times 10^{-3}$		1362
$\overline{D}^{0} D^{0} K^{+}$		2 10	± 2.0 ± 0.26	$) \times 10^{-3}$		1577
$\overline{D}^{*}(2007)^{0} D^{0} K^{+}$		3.8	10.20	$^{-}_{-10}$	CI 90%	1481
$\overline{D}^{0} D^{*} (2007)^{0} K^{+}$	(4 7	+1.0	$) \times 10^{-3}$	CL_3070	1481
$\overline{D}^{*}(2007)^{0} D^{*}(2007)^{0} K^{+}$	(5.3	+1.0	$) \times 10^{-3}$		1368
$D^{-}D^{+}K^{+}$	<	4	± 1.0	× 10 ⁻⁴	CI = 90%	1570
$D^{-}D^{*}(2010)^{+}K^{+}$	<	7		$\times 10^{-4}$	CL = 90%	1475
$D^*(2010)^- D^+ K^+$	(1.5	+0.4	$) \times 10^{-3}$	02 00/0	1475
$D^{*}(2010)^{-}D^{*}(2010)^{+}K^{+}$	<	1.8		$\times 10^{-3}$	CL=90%	1363
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(3.5	+0.6)%		_
$D^{+}\pi^{0}$	(1.6	±0.6	$) \times 10^{-5}$		2270
$D^{s+}\pi^{0}$	<	27		× 10 ⁻⁴	CI = 90%	2215
$D^+ n$, 4		× 10 ⁻⁴	CI = 0.0%	2235
$\sum_{s''}$		т 6		~ 10 v 10-4	CL = 90 / 0	2233
$\nu_{s} ''_{h}$	<	0		× 10 ···	CL = 90%	21/0
$\nu_s \rho^{-}$	<	3.1		$\times 10^{-7}$	CL=90%	2197
$D_{s}^{++}\rho^{\circ}$	<	4		imes 10 ⁻⁴	CL=90%	2138

$D_s^+ \omega$	<	4		imes 10 ⁻⁴	CL=90%	2195
$D_s^{*+}\omega$	<	6		imes 10 ⁻⁴	CL=90%	2136
$D_{s}^{+}a_{1}(1260)^{0}$	<	1.8		imes 10 ⁻³	CL=90%	2079
$D_{s}^{*+}a_{1}(1260)^{0}$	<	1.4		imes 10 ⁻³	CL=90%	2014
$D_{\epsilon}^{+}\phi$	<	1.9		imes 10 ⁻⁶	CL=90%	2141
$D_{s}^{*+}\phi$	<	1.2		imes 10 ⁻⁵	CL=90%	2079
$D_{\xi}^{+}\overline{K}^{0}$	<	9		imes 10 ⁻⁴	CL=90%	2241
$D_{s}^{*+}\overline{K}^{0}$	<	9		imes 10 ⁻⁴	CL=90%	2184
$D_{\epsilon}^{+}\overline{K}^{*}(892)^{0}$	<	4		imes 10 ⁻⁴	CL=90%	2172
$D_{\epsilon}^{*+}\overline{K}^{*}(892)^{0}$	<	4		imes 10 ⁻⁴	CL=90%	2112
$D_{s}^{-}\pi^{+}K^{+}$	<	7		imes 10 ⁻⁴	CL=90%	2222
$D_{s}^{*-}\pi^{+}K^{+}$	<	9.9		imes 10 ⁻⁴	CL=90%	2164
$D_{s}^{-}\pi^{+}K^{*}(892)^{+}$	<	5		imes 10 ⁻³	CL=90%	2138
$D_s^{*-}\pi^+ K^*(892)^+$	<	7		imes 10 ⁻³	CL=90%	2076
Charmo	nium	moc	les			
$\eta_c K^+$	(9.1	± 1.3	$) imes 10^{-4}$		1753
$\eta_{c} K^{*}(892)^{+}$	(1.2	+0.7) × 10 ⁻³		1648
$n_{c}(2S)K^{+}$	(3.4	-0.0 $+1.8$	$) \times 10^{-4}$		1320
$J/\psi(1S)K^+$	(1.007	$7 \pm 0.03!$	5) $\times 10^{-3}$		1683
$J/\psi(1S) K^+ \pi^+ \pi^-$	(1.07	± 0.19) × 10 ⁻³	S=1.9	1612
$h_c(1P)K^+ \times B(h_c(1P) \rightarrow$	<	3.4		$\times 10^{-6}$	CL=90%	1401
$J/\psi \pi^+ \pi^-$)						
$X(3872)K^+$	<	3.2		$\times 10^{-4}$	CL=90%	1140
$X(3872)K^+ \times B(X \rightarrow X)$	(1.14	± 0.20) × 10 ⁻⁵		1140
$J/\psi\pi^+\pi^-$) X(3872) $K^+ \times B(X \rightarrow I/\psi \gamma)$	(22	⊥10) ~ 10-6		1140
$X(3872)K^{+} \times B(X \rightarrow D^{0}\overline{D^{0}})$	<	5.5 6.0	± 1.0	$\times 10^{-5}$	CI = 90%	1140
$X(3872)K^+ \times B(X \rightarrow X)$	<	4.0		$\times 10^{-5}$	CL=90%	1140
D^+D^-)		-				-
$X(3872) \dot{K^+} \times B(X \rightarrow D^0 \overline{D^0} \pi^0)$	(1.0	± 0.4) × 10 ⁻⁴		1140
$X(3872) K^+ \times B(X \rightarrow$	(1.7	± 0.6) × 10 ⁻⁴		1140
$\overline{D^{*0}}D^{0})$				E		
$X(3872)K^+$	<	7.7		$ imes 10^{-0}$	CL=90%	1140
× B(X(3872) \rightarrow J/ $\psi(15)\eta)$ X(3872)+ κ^{0} × B(X(3872)+	1 /	<u></u>		× 10 ⁻⁵	CI _00%	_
$J/\psi(1S)\pi^+\pi^0)$] <	2.2		× 10 -	CL=90%	_
$X(4260)^0 K^+ \times B(X^0 \rightarrow$	<	2.9		imes 10 ⁻⁵	CL=95%	_
$J/\psi \pi^+ \pi^-$)						
$X(3945)^0 K^+ imes B(X^0 o$	<	1.4		imes 10 ⁻⁵	CL=90%	-
$J/\psi \gamma$)						

$Z(3930)^0 K^+ imes B(Z^0 o$	<	2.5		imes 10 ⁻⁶	CL=90%	_
$J/\psi\gamma$)						
$J/\psi(1S){ m K}^{*}(892)^{+}$	(1.43	± 0.08	$) \times 10^{-3}$		1571
$J/\psi(1S) K(1270)^+$	(1.8	± 0.5	$) \times 10^{-3}$		1390
$J/\psi(1S){ m K}(1400)^+$	<	5		imes 10 ⁻⁴	CL=90%	1308
$J/\psi(1S)\etaK^+$	(1.08	± 0.33	$) \times 10^{-4}$		1509
$J/\psi(1S)\eta^\prime K^+$	<	8.8		imes 10 ⁻⁵	CL=90%	1273
$J/\psi(1S)\phiK^+$	(5.2	± 1.7	$) imes 10^{-5}$	S=1.2	1227
$J/\psi(1S)\pi^+$	(4.9	± 0.6	$) imes 10^{-5}$	S=1.5	1727
$J/\psi(1S) ho^+$	(5.0	± 0.8	$) imes 10^{-5}$		1611
$J/\psi(1S)\pi^+\pi^0$ nonresonant	<	7.3		imes 10 ⁻⁶	CL=90%	1717
$J/\psi(1S)a_1(1260)^+$	<	1.2		imes 10 ⁻³	CL=90%	1415
$J/\psi(1S) p\overline{\Lambda}$	(1.18	± 0.31	$) imes 10^{-5}$		567
$J/\psi(1S)\overline{\Sigma}^0 p$	<	1.1		imes 10 ⁻⁵	CL=90%	-
$J/\psi(1S)D^+$	<	1.2		imes 10 ⁻⁴	CL=90%	870
$J/\psi(1S)\overline{D}{}^0\pi^+$	<	2.5		imes 10 ⁻⁵	CL=90%	665
$\psi(2S) K^+$	(6.48	± 0.35	$) \times 10^{-4}$		1284
$\psi(2S) K^{*}(892)^{+}$	(6.7	± 1.4	$) \times 10^{-4}$	S=1.3	1115
$\psi(2S) K^+ \pi^+ \pi^-$	(1.9	± 1.2	$) \times 10^{-3}$		1178
$\psi(3770)K^+$	(4.9	± 1.3	$) \times 10^{-4}$		1218
$\psi(3770) K^+ \times B(\psi \rightarrow D^0 \overline{D}{}^0)$	(1.6	± 0.4	$) \times 10^{-4}$	S=1.1	1218
$\psi(3770) K^+ \times B(\psi \rightarrow D^+ D^-)$	(9.4	± 3.5	$) imes 10^{-5}$		1218
$\chi_{c0} \pi^+ \times B(\chi_{c0} \rightarrow \pi^+ \pi^-)$	<	3		imes 10 ⁻⁷	CL=90%	-
$\chi_{c0}(1P)K^+$	(1.40	$^{+0.23}_{-0.19}$	$) imes 10^{-4}$		1478
$\chi_{c0} K^*(892)^+$	<	2.86		imes 10 ⁻³	CL=90%	_
$\chi_{c2} K^+$	<	2.9		imes 10 ⁻⁵	CL=90%	_
$\chi_{c2} K^*(892)^+$	<	1.2		imes 10 ⁻⁵	CL=90%	_
$\chi_{c1}(1P)\pi^+$	(2.2	± 0.5	$) imes 10^{-5}$		1467
$\chi_{c1}(1P)K^+$	(4.9	± 0.5	$) \times 10^{-4}$	S=1.5	1412
$\chi_{c1}(1P) K^*(892)^+$	(3.6	± 0.9	$) \times 10^{-4}$		1265
$h_c K^+$	<	3.8		imes 10 ⁻⁵		_
II and	1/*		_			
к ⁰ +	N . U		5 ⊥010) _{∨ 10} –5		2614
$K^{+}\pi^{0}$	(1 20	± 0.10	$) \times 10^{-5}$		2014
$n' K^+$		7.02	± 0.00 ± 0.25	$) \times 10^{-5}$		2013
$n' K^{*}(802)^{+}$		1.02	± 0.23	$) \times 10^{-6}$		2320
$n K^+$	(4.9 07	± 2.0	$) \times 10^{-6}$	S-3 3	2472
$nK^{*}(892)^{+}$	(۲.1 1 02	±0.9	$) \times 10^{-5}$	5_5.5	2000 2521
$nK^{*}(1430)^{+}$	(1 2	+0.10	$) \times 10^{-5}$		2JJ4 —
$n K^*(1/30)^+$		0.1	⊥ 2 ∩	$) \sim 10^{-6}$		3 111
$V_{1} V_{2} (1430)$	(9.1	± 3.0	$) \times 10^{-6}$	C 1 0	∠414 0557
ω N $(202)^+$	(0.1	± 0.8	$) \times 10^{-6}$	5=1.8	2557
$\omega \Lambda (092)$	<	3.4		× 10 °	CL=90%	2503

$a_0(980)^+ K^0 \times B(a_0(980)^+ \rightarrow \pi\pi^+)$	<	3.9		imes 10 ⁻⁶	CL=90%	_
$a_0(980)^0 K^+ \times B(a_0(980)^0 \rightarrow \pi^0)$	<	2.5		imes 10 ⁻⁶	CL=90%	_
$K^{*}(892)^{0}\pi^{+}$	(1.09	±0.18	$) \times 10^{-5}$	S=2.1	2562
$K^{*}(892)^{+}\pi^{0}$	(6.9	± 2.4) × 10 ⁻⁶		2562
$K^+\pi^-\pi^+$	(5.5	± 0.7) × 10 ⁻⁵	S=2.6	2609
$K^+\pi^-\pi^+$ nonresonant	(6	$^{+6}_{-4}$) × 10 ⁻⁶	S=6.1	2609
$egin{array}{l} \mathcal{K}^+ f_0(980) imes B(f_0(980) ightarrow \ \pi^+ \pi^-) \end{array}$	(9.2	$^{+0.8}_{-1.1}$) × 10 ⁻⁶		2524
$f_2(1270)^0 K^+$	(1.3	+0.4	$) imes 10^{-6}$		_
$f_0(1370)^0 K^+ \times$	<	1.07	- 0.5	$\times 10^{-5}$	CL=90%	_
$B(f_0(1370)^0 \rightarrow \pi^+\pi^-)$				_		
$\rho^0(1450) K^+ \times$	<	1.17		imes 10 ⁻⁵	CL=90%	-
$B(\rho^0(1450) \to \pi^+\pi^-)$				C		
$f_0(1500) K^+ \times B(f_0(1500) \rightarrow + -)$	<	4.4		× 10 ⁻⁶	CL=90%	2398
$\pi'\pi$) f'(1525) K ⁺ ~	/	2 /		× 10-6	CI	2202
$P(f'(1525)) \rightarrow \pi^+\pi^-)$		5.4		× 10 ·	CL—9070	2392
$D(\mathcal{I}_2(1525) \to \pi^+\pi^-)$	(4.0		, ₁₀−6		0550
$\kappa + \rho^{2}$ $\kappa^{*}(1420)^{0} = \pm$	(4.2	±0.5	$) \times 10^{-5}$		2559
$K_0(1430)^{\circ} \pi^{\circ}$	(4.7	± 0.5) × 10 °		2445
$K_2(1430)^{\circ} \pi^{+}$	<	6.9		× 10 °	CL=90%	2445
$\kappa^{(1410)} \pi^{(1410)} + \kappa^{(1600)} \pi^{(1410)}$	<	4.5		$\times 10^{-5}$	CL=90%	2448
$K^{-}(1080)^{\circ}\pi^{+}$	<	1.2		$\times 10^{-6}$	CL=90%	2358
K = -+ + +	<	1.8		$\times 10^{\circ}$	CL=90%	2609
$\kappa = \pi + \pi^+$ nonresonant $\kappa = (1400)^0 \pi^+$	<	5.0		$\times 10^{-3}$	CL = 90%	2609
$K_1(1400) = \pi^0$	<	2.0		$\times 10^{-5}$	CL = 90%	2451
$K^0 q^+$	\langle	0.0 9 0	⊥15	10^{-6}	CL—9070	2009
κ^{μ}	(0.U 7 5	± 1.5 ± 1.0	$) \times 10^{-5}$		2000
$K^{*}(892) + a^{0}$	(7.J	± 1.0	$^{-}_{-}^{-}$	CI 90%	2504
$K^{*}(892)^{+} f_{0}(980)$	(5.2	+13	$(\times 10^{-6}) \times 10^{-6}$	CL=3070	2304
$a^+_{+}K^0$	(35	+0.7	$) \times 10^{-5}$		
$K^{*}(892)^{0} a^{+}$	(0.2	± 0.7	$) \times 10^{-6}$		2504
$K^{*}(892)^{+} K^{*}(892)^{0}$		9.2 7 1	± 1.5	$^{-}_{-10}$	CI 90%	2304
$K_1(1400)^+ a^0$	2	7.8		$\times 10^{-4}$	CL_90%	2387
$K_1^{(1100)} \rho^0$	~	15		$^{\times 10}_{\times 10}$ -3	CL = 90%	2381
$\kappa_2(100) p$	(1 36	+0.27	$) \times 10^{-6}$	CL_3070	2501
$\overline{K}^{0}K^{+}\pi^{0}$	(24	10.21	× 10 ⁻⁵	CL =90%	2555
$K^+ K^0_{c} K^0_{c}$	(1.15	+0.13	$) \times 10^{-5}$	CL	2521
$K_{0}^{0} K_{0}^{0} \pi^{+}$	<	3.2	_ 0.10	× 10 ⁻⁶	CL =90%	2577
$K^+ K^- \pi^+$		5.0	+0.7	$) \times 10^{-6}$	CL	2579
	l	5.0	± 0.1	/~10		2510

$K^+K^-\pi^+$ nonresonant	<	7.5		imes 10 ⁻⁵	CL=90%	2578
$K^+ \overline{K}^* (892)^0$	<	1.1		imes 10 ⁻⁶	CL=90%	2540
$K^+ \overline{K}_0^* (1430)^0$	<	2.2		imes 10 ⁻⁶	CL=90%	2421
$K^+ K^+ \pi^-$	<	1.3		imes 10 ⁻⁶	CL=90%	2578
${\it K}^+ {\it K}^+ \pi^-$ nonresonant	<	8.79		imes 10 ⁻⁵	CL=90%	2578
$b_1^0 K^+ imes B(b_1^0 o \ \omega \pi^0)$	(9.1	± 2.0	$) \times 10^{-6}$		_
$K^{*+}\pi^+K^-$	<	1.18		$ imes 10^{-5}$	CL=90%	2524
$K^{*+}K^+\pi^-$	<	6.1		imes 10 ⁻⁶	CL=90%	2524
$K^+ K^- K^+$	(3.37	± 0.22	$) imes 10^{-5}$	S=1.4	2522
$K^+\phi$	(8.3	± 0.7	$) \times 10^{-6}$		2516
$f_0(980) K^+ \times B(f_0(980) \rightarrow$	<	2.9		× 10 ⁻⁶	CL=90%	2524
K^+K^-						
$a_2(1320) K^+ \times$	<	1.1		imes 10 ⁻⁶	CL=90%	2449
$B(a_2(1320) \rightarrow K^+K^-)$						
$f'_{2}(1525)K^{+}\times$	<	4.9		imes 10 ⁻⁶	CL=90%	2392
$B(f'_{2}(1525) \rightarrow K^{+}K^{-})$						
$X_{0}(1550) K^{+} \times$	(13	± 0.7	1×10^{-6}		_
$B(X_{2}(1550)) \rightarrow K^{+}K^{-})$	(4.5	± 0.7) × 10		
$\phi(1680) K^+ \times B(\phi(1680) \rightarrow 0)$	/	Q		× 10 [−] 7	CI	2311
$\psi(1000) \times D(\psi(1000))$		0		~ 10	CL—9070	2344
$f_{0}(1710) K^{+} \times B(f_{0}(1710) \rightarrow$	(17	± 1.0	1×10^{-6}		2320
$(110) \times (0(110))$	(1.7	± 1.0) × 10		2329
				-		
$K^+K^-K^+$ nonresonant	(2.8	$^{+0.9}_{-1.6}$) × 10 ⁻⁵	S=3.3	2522
$K^{*}(892)^{+}K^{+}K^{-}$	(3.6	± 0.5	$) \times 10^{-5}$		2466
$K^{*}(892)^{+}\phi$	(1.05	± 0.15	$) imes 10^{-5}$	S=1.4	2460
$K_1(1400)^+\phi$	<	1.1		imes 10 ⁻³	CL=90%	2339
$K_{2}^{*}(1430)^{+}\phi$	<	3.4		imes 10 ⁻³	CL=90%	2332
$\mathbf{K}^+ \phi \phi$	(4.0	+2.4	1×10^{-6}	S-20	2206
	(4.9	-2.2) × 10	5-2.9	2300
$\eta' \eta' K^+$	<	2.5		× 10 ⁻⁵	CL=90%	_
$K^{*}(892)^{+}\gamma$	(4.03	± 0.26) × 10 ⁻⁵		2564
$K_1(1270)^+ \gamma$	(4.3	± 1.3	$) \times 10^{-5}$		2486
$\eta K^+ \gamma$	(9.4	± 1.1	$) \times 10^{-0}$		2588
$\eta' K^+ \gamma$	<	4.2		$\times 10^{-0}$	CL=90%	-
$\phi K^+ \gamma$	(3.5	± 0.6) × 10 ⁻⁰		2516
$K^+\pi^-\pi^+\gamma$	(2.76	± 0.22) × 10 ⁻⁵	S=1.2	2609
$\mathcal{K}^*(892)^{0} \pi^+ \gamma$	(2.0	+0.7	$) imes 10^{-5}$		2562
$K^+ a^0 \gamma$	<	2.0	0.0	$\times 10^{-5}$	CI = 90%	2559
$K^+\pi^-\pi^+\gamma$ nonresonant	~	9.2		$\times 10^{-6}$	CL = 90%	2609
$K^0 \pi^+ \pi^0 \gamma$	Ì	4.6	+0.5	$) \times 10^{-5}$		2609
$K_1(1400)^+ \gamma$	<	1.5	_ 0.0	$\times 10^{-5}$	CL=90%	2453
$K_{*}^{*}(1430)^{+}\gamma$	Ì	14	+0.4	$) \times 10^{-5}$		2447
	(±. T	- V.7	, ^ 10		<u>~</u> ++1

$K^*(1680)^+\gamma$	<	1.9		imes 10 ⁻³	CL=90%	2360				
$K_{3}^{*}(1780)^{+}\gamma$	<	3.9		imes 10 ⁻⁵	CL=90%	2341				
$K_{4}^{*}(2045)^{+}\gamma$	<	9.9		imes 10 ⁻³	CL=90%	2244				
Light unflavored meson modes										
$\rho^+\gamma$	(8.8	$^{+2.9}_{-2.5}$	$) \times 10^{-7}$		2583				
$\pi^+\pi^0$	(5.7	±0.5) × 10 ⁻⁶	S=1.4	2636				
$\pi^+\pi^+\pi^-$	(1.62	± 0.15	$) \times 10^{-5}$		2630				
$\rho^0 \pi^+$	(8.7	± 1.1) × 10 ⁻⁶		2581				
$\pi^+ \operatorname{f_0(980)}_{\pi^+\pi^-)} imes \operatorname{B}(\operatorname{f_0(980)}_{ ightarrow} o$	<	3.0		× 10 ⁻⁶	CL=90%	2547				
$\pi^+ f_2(1270)$	(8.2	± 2.5) × 10 ⁻⁶		2484				
$\rho(1450)^{0}\pi^{+}$	<	2.3		× 10 ⁻⁶	CL=90%	2434				
$f_0(1370)\pi^+ \times B(f_0(1370) \rightarrow \pi^+\pi^-)$	<	3.0		imes 10 ⁻⁶	CL=90%	2460				
$f_0(600)\pi^+ \times B(f_0(600) \rightarrow \pi^+ \pi^-)$	<	4.1		imes 10 ⁻⁶	CL=90%	_				
$\pi^+\pi^-\pi^+$ nonresonant	/	4.6		× 10−6	CI	2630				
$\pi^+ \pi^0 \pi^0$		4.0 8.0		$^{\times 10}$ $^{\times 10-4}$	CL = 90%	2030				
$n + \pi^0$	(1 00	+0 14	$^{\times 10}$	CL—9070	2031				
$\pi^{+}\pi^{-}\pi^{+}\pi^{0}$	<	4.0	10.14	$\times 10^{-3}$	CI = 90%	2621				
$a^{+} a^{+} a^{0}$	(1.8	+0.4	$) \times 10^{-5}$	S=1.5	2523				
$\rho^{\prime} + f_0(980) \times B(f_0(980) \rightarrow$	<	1.9	± • • •	$\times 10^{-6}$	CL=90%	2487				
$\pi^{+}\pi^{-}$)		1.0			02 00/0					
$a_1(1260)^+ \pi^0$	(2.6	± 0.7	$) \times 10^{-5}$		2494				
$a_1(1260)^0 \pi^+$	(2.0	± 0.6	$) \times 10^{-5}$		2494				
$b_1^0 \pi^+ imes {\sf B}(b_1^0 o \ \omega \pi^0)$	(6.7	± 2.0) × 10 ⁻⁶		_				
$\omega \pi^+$	(6.9	± 0.5	$) \times 10^{-6}$		2580				
$\omega \rho^+$	(1.06	$^{+0.26}_{-0.23}$	$) imes 10^{-5}$		2522				
$\eta \pi^+$	(4.4	± 0.4) × 10 ⁻⁶	S=1.1	2609				
$\eta' \pi^+$	(2.7	± 1.0) × 10 ⁻⁶	S=2.1	2551				
$\eta' ho^+$	(8.7	$^{+3.9}_{-3.1}$) × 10 ⁻⁶		2492				
$\eta \rho^+$	(5.4	± 1.9) × 10 ⁻⁶	S=1.6	2553				
$\phi \pi^+$	<	2.4		imes 10 ⁻⁷	CL=90%	2539				
$\phi \rho^+$	<	1.6		imes 10 ⁻⁵		2480				
$a_0(980)^0\pi^+ imes B(a_0(980)^0 ightarrow \eta\pi^0)$	<	5.8		imes 10 ⁻⁶	CL=90%	-				
$a_0(980)^+ \pi^0 \times B(a_0^+ \to \eta \pi^+)$	<	1.4		imes 10 ⁻⁶	CL=90%	_				
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	<	8.6		imes 10 ⁻⁴	CL=90%	2608				
$ ho^{0} a_{1}(1260)^{+}$	<	6.2		imes 10 ⁻⁴	CL=90%	2433				
$\rho^0 a_2(1320)^+$	<	7.2		imes 10 ⁻⁴	CL=90%	2410				
$\pi^+\pi^+\pi^+\pi^-\pi^-\pi^0$	<	6.3		imes 10 ⁻³	CL=90%	2592				
$a_1(1260)^+a_1(1260)^0$	<	1.3		%	CL=90%	2335				

Charged particle (h^{\pm}) modes

$h^{\pm}={\it K}^{\pm}$ or π^{\pm}							
$h^+ \pi^0$		(1.6	$^{+0.7}_{-0.6}$	$) imes 10^{-5}$		2636
ωh^+		(1.38	+0.27 -0.24	$) imes 10^{-5}$		2580
$h^+ X^0$ (Familon)		<	4.9	0.2.	imes 10 ⁻⁵	CL=90%	_
В	aryo	n m	odes				
$p\overline{\rho}\pi^+$	-	(1.62	± 0.20	$) imes 10^{-6}$		2439
$p\overline{p}\pi^+$ nonresonant		<	5.3		$\times 10^{-5}$	CL=90%	2439
$p\overline{p}\pi^+\pi^+\pi^-$		<	5.2		$\times 10^{-4}$	CL=90%	2370
$p\overline{p}K^+$		(5.9	± 0.5) × 10 ⁻⁶	S=1.5	2348
$\begin{array}{c} \Theta(1710)^{++} \overline{p} \times \\ B(\Theta(1710)^{++} \to p K^{+}) \end{array}$	[f]	<	9.1		× 10 ⁻⁸	CL=90%	_
$f_J(2220)K^+ \times B(f_J(2220) \rightarrow 2\overline{a})$	[<i>f</i>]	<	4.1		imes 10 ⁻⁷	CL=90%	2135
p(p)		/	15		× 10 [−] 6	CI 00%	2222
$p\overline{n}K^+$ nonresonant		~	1.5 8 9		$^{\times 10}_{\times 10^{-5}}$	CL = 90%	2348
$p\overline{p}K^*(892)^+$		(6.6	+2.3	$) \times 10^{-6}$	S=1.3	2215
$f_1(2220) K^{*+} \times B(f_1(2220) \rightarrow$		<	7.7	± 1.0	$\times 10^{-7}$	CL=90%	2059
$p\overline{p}$							
$p\overline{\Lambda}$		<	3.2		imes 10 ⁻⁷	CL=90%	2430
$p\overline{\Lambda}\gamma$		(2.5	$^{+0.5}_{-0.4}$) × 10 ⁻⁶		2430
$p\overline{\Lambda}\pi^0$		(3.0	$^{+0.7}_{-0.6}$) × 10 ⁻⁶		2402
$p\overline{\Sigma}(1385)^0$		<	4.7		imes 10 ⁻⁷	CL=90%	2362
$\Delta^+\overline{\Lambda}$		<	8.2		imes 10 ⁻⁷	CL=90%	_
$p\overline{\Sigma}\gamma$		<	4.6		imes 10 ⁻⁶	CL=90%	2413
$p\overline{\Lambda}\pi^+\pi^-$		<	2.0		$\times 10^{-4}$	CL=90%	2367
$\Lambda\overline{\Lambda}\pi^+$		<	2.8		imes 10 ⁻⁶	CL=90%	2358
$\Lambda\overline{\Lambda}K^+$		(2.9	$^{+1.0}_{-0.8}$) × 10 ⁻⁶		2251
$\overline{\Delta}^0 p$		<	1.38		imes 10 ⁻⁶	CL=90%	2402
$\Delta^{++}\overline{p}$		<	1.4		$\times 10^{-7}$	CL=90%	2402
$D^+ p \overline{p}$		<	1.5		$\times 10^{-5}$	CL=90%	1860
$\underline{D}^*(2010)^+ p \overline{p}$		<	1.5		$\times 10^{-5}$	CL=90%	1786
$\Lambda_c^- p \pi^+$		(2.1	± 0.6) × 10 ⁻⁴		1980
$\Lambda_{c}^{-}\Delta(1232)^{++}$		<	1.9		imes 10 ⁻⁵	CL=90%	1928
$\Lambda_c^- arDelta_X(1600)^{++}$		(5.9	± 1.9	$) imes 10^{-5}$		-
$\overline{\Lambda}_{c}^{-}\Delta_{X}(2420)^{++}$		(4.7	± 1.6	$) imes 10^{-5}$		_
$(\overline{\Lambda}_{c}^{-}\rho)_{s}\pi^{+}$	[g]	(3.9	± 1.3	$) imes 10^{-5}$		_
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{0}$		(1.8	± 0.6	$) \times 10^{-3}$		1935
$\overline{\Lambda}_{c}^{c} \rho \pi^{+} \pi^{+} \pi^{-}$		(2.3	± 0.7	$) \times 10^{-3}$		1880

$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{+} \pi^{-} \pi^{0}$	<	1.34		%	CL=90%	1822
$\Lambda_c^+ \Lambda_c^- K^+$	(7	± 4	$) \times 10^{-4}$		_
$\overline{\Sigma}_c(2455)^0 p$	(3.7	± 1.3	$) imes 10^{-5}$		1938
$\overline{\Sigma}_c(2520)^0 p$	<	2.7		imes 10 ⁻⁵	CL=90%	1904
$\overline{\Sigma}_{c}(2455)^{0} p \pi^{0}$	(4.4	± 1.8	$) imes 10^{-4}$		1896
$\overline{\Sigma}_{c}(2455)^{0} p \pi^{-} \pi^{+}$	(4.4	± 1.7	$) \times 10^{-4}$		1845
$\overline{\Sigma}_{c}(2455)^{}p\pi^{+}\pi^{+}$	(2.8	± 1.2	$) imes 10^{-4}$		1845
$\overline{\Lambda}_c(2593)^-/\overline{\Lambda}_c(2625)^-p\pi^+$	<	1.9		imes 10 ⁻⁴	CL=90%	-
$\overline{\Xi}_{c}^{0}\Lambda_{c}^{+}\times B(\overline{\Xi}_{c}^{0}\rightarrow \overline{\Xi}^{+}\pi^{-})$	(5.6	$^{+2.7}_{-2.4}$	$) imes 10^{-5}$		1143
$\overline{\Xi}{}^{0}_{c}\Lambda^{+}_{c}\times B(\overline{\Xi}{}^{0}_{c}\to\Lambda K^{+}\pi^{-})$	(4.0	± 1.6	$) \times 10^{-5}$		1143

Lepton Family number (*LF*) or Lepton number (*L*) violating modes, or $\Delta B = 1$ weak neutral current (*B1*) modes

				·· 、,	,		
$\pi^+\ell^+\ell^-$	B1	<	1.2		imes 10 ⁻⁷	CL=90%	2638
$\pi^+ e^+ e^-$	B1	<	1.8		imes 10 ⁻⁷	CL=90%	2638
$\pi^+ \mu^+ \mu^-$	B1	<	2.8		imes 10 ⁻⁷	CL=90%	2633
$\pi^+ \nu \overline{\nu}$	B1	<	1.0		imes 10 ⁻⁴	CL=90%	2638
$K^+ \ell^+ \ell^-$	B1	[a] (4.4	$^{+0.8}_{-0.7}$	$) imes 10^{-7}$	S=1.1	2616
$K^+ e^+ e^-$	B1	(4.9	± 1.0	$) imes 10^{-7}$		2616
$K^+ \mu^+ \mu^-$	B1	(3.9	$^{+1.0}_{-0.9}$	$) imes 10^{-7}$		2612
$K^+ \overline{\nu} \nu$	B1	<	1.4		imes 10 ⁻⁵	CL=90%	2616
$\rho^+ \nu \overline{\nu}$	B1	<	1.5		imes 10 ⁻⁴	CL=90%	2583
$K^{*}(892)^{+}\ell^{+}\ell^{-}$	B1	[a] (7	± 5	$) imes 10^{-7}$		2564
$K*(892)^+ \nu \overline{\nu}$	B1	<	1.4		imes 10 ⁻⁴	CL=90%	-
$K^{*}(892)^{+}e^{+}e^{-}$	B1	(8	± 8	$) imes 10^{-7}$		2564
$K^{*}(892)^{+}\mu^{+}\mu^{-}$	B1	(8	$^{+6}_{-4}$	$) imes 10^{-7}$		2560
$\pi^+ e^+ \mu^-$	LF	<	6.4		imes 10 ⁻³	CL=90%	2637
$\pi^+ e^- \mu^+$	LF	<	6.4		imes 10 ⁻³	CL=90%	2637
$\pi^+ e^{\pm} \mu^{\mp}$	LF	<	1.7		imes 10 ⁻⁷	CL=90%	2637
$K^+ e^+ \mu^-$	LF	<	9.1		imes 10 ⁻⁸	CL=90%	2615
$K^+e^-\mu^+$	LF	<	1.3		imes 10 ⁻⁷	CL=90%	2615
${\cal K}^+ e^\pm \mu^\mp$	LF	<	9.1		imes 10 ⁻⁸	CL=90%	2615
$K^+ \mu^{\pm} \tau^{\mp}$	LF	<	7.7		imes 10 ⁻⁵	CL=90%	2298
$K^{*}(892)^{+} e^{+} \mu^{-}$	LF	<	1.3		imes 10 ⁻⁶	CL=90%	2563
$K^{*}(892)^{+} e^{-} \mu^{+}$	LF	<	9.9		imes 10 ⁻⁷	CL=90%	2563
${\cal K}^*$ (892) $^+e^\pm\mu^\mp$	LF	<	1.4		imes 10 ⁻⁷	CL=90%	2563
$\pi^- e^+ e^+$	L	<	1.6		imes 10 ⁻⁶	CL=90%	2638
$\pi^- \mu^+ \mu^+$	L	<	1.4		imes 10 ⁻⁶	CL=90%	2633
$\pi^- e^+ \mu^+$	L	<	1.3		imes 10 ⁻⁶	CL=90%	2637
$ ho^- e^+ e^+$	L	<	2.6		imes 10 ⁻⁶	CL=90%	2583
$\rho^-\mu^+\mu^+$	L	<	5.0		imes 10 ⁻⁶	CL=90%	2578

Citation: C. Amsler <i>et al.</i>	(Particle Data Group),	PL B667 , 1	(2008) (URL:	http://pdg.lbl.gov)
-----------------------------------	------------------------	--------------------	--------------	---------------------

$\rho^- e^+ \mu^+$	L	< 3.3	imes 10 ⁻⁶	CL=90%	2582
$K^- e^+ e^+$	L	< 1.0	imes 10 ⁻⁶	CL=90%	2616
$K^- \mu^+ \mu^+$	L	< 1.8	imes 10 ⁻⁶	CL=90%	2612
$K^- e^+ \mu^+$	L	< 2.0	imes 10 ⁻⁶	CL=90%	2615
K*(892) ⁻ e ⁺ e ⁺	L	< 2.8	imes 10 ⁻⁶	CL=90%	2564
$K^{*}(892)^{-}\mu^{+}\mu^{+}$	L	< 8.3	imes 10 ⁻⁶	CL=90%	2560
$K^{*}(892)^{-} e^{+} \mu^{+}$	L	< 4.4	imes 10 ⁻⁶	CL=90%	2563

B⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0} = 5279.53 \pm 0.33$$
 MeV
 $m_{B^0} - m_{B^{\pm}} = 0.37 \pm 0.24$ MeV
Mean life $\tau_{B^0} = (1.530 \pm 0.009) \times 10^{-12}$ s
 $c\tau = 458.7 \ \mu$ m
 $\tau_{B^+} / \tau_{B^0} = 1.071 \pm 0.009$ (direct measurements)

$B^0 - \overline{B}^0$ mixing parameters

$$\begin{split} \chi_d &= 0.1878 \pm 0.0024 \\ \Delta m_{B^0} &= m_{B^0_H} - m_{B^0_L} = (0.507 \pm 0.005) \times 10^{12} \ \hbar \ \text{s}^{-1} \\ &= (3.337 \pm 0.033) \times 10^{-10} \ \text{MeV} \\ \chi_d &= \Delta m_{B^0} / \Gamma_{B^0} = 0.776 \pm 0.008 \\ \text{Re}(\lambda_{CP} \ / \ |\lambda_{CP}|) \ \text{Re}(z) &= 0.01 \pm 0.05 \\ \Delta \Gamma \ \text{Re}(z) &= -0.007 \pm 0.004 \\ \text{Re}(z) &= -0.015 \pm 0.008 \end{split}$$

HTTP://PDG.LBL.GOV Page 17

CP violation parameters

 $\operatorname{Re}(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2) = (-0.1 \pm 1.4) \times 10^{-3}$ $A_{T/CP} = 0.005 \pm 0.018$ $A_{CP}(B^0 \rightarrow D^*(2010)^+ D^-) = -0.06 \pm 0.09$ (S = 1.7) $A_{CP} (B^0 \rightarrow K^+ \pi^-) = -0.101 \pm 0.015$ $A_{CP}(B^0 \rightarrow \eta' K^*(892)^0) = -0.08 \pm 0.25$ $A_{CP}(B^0 \rightarrow \eta K^*(892)^0) = 0.19 \pm 0.05$ $A_{CP}(B^0 \rightarrow K^0 K^0) = (-0.6 \pm 0.7) \times 10^{-6}$ $A_{CP}(B^0 \rightarrow \eta K_0^*(1430)^0) = 0.06 \pm 0.13$ $A_{CP}(B^0 \rightarrow \eta K_2^*(1430)^0) = -0.07 \pm 0.19$ $A_{CP}(B^0 \rightarrow \rho^+ K^-) = -0.08 \pm 0.24$ (S = 1.7) $A_{CP}(B^0 \rightarrow K^+ \pi^- \pi^0) = 0.07 \pm 0.11$ $A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) = -0.05 \pm 0.14$ $A_{CP}(B^0 \rightarrow K^*(892)^0 \rho^0) = 0.09 \pm 0.19$ $A_{CP}(B^0 \rightarrow a_1^- K^+) = -0.16 \pm 0.12$ $A_{CP}(B^0 \rightarrow K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05$ $A_{CP}(B^0 \rightarrow K^*(892)^0 K^+ K^-) = 0.01 \pm 0.05$ $A_{CP}(B^0 \rightarrow K^*(892)^0 \phi) = -0.01 \pm 0.06$ $A_{CP}(B^0 \rightarrow K^*(892)^0 K^- \pi^+) = 0.2 \pm 0.4$ $A_{CP}(B^0 \rightarrow \phi(K\pi)^{*0}_0) = 0.17 \pm 0.15$ $A_{CP}(B^0 \rightarrow \phi K_2^*(1430)^0) = -0.12 \pm 0.15$ $A_{CP}(B^0 \rightarrow \rho^+ \pi^-) = 0.08 \pm 0.12$ (S = 2.0) $A_{CP}(B^0 \rightarrow \rho^- \pi^+) = -0.16 \pm 0.23$ (S = 1.7) $A_{CP}(B^0 \rightarrow \rho^0 \pi^0) = -0.5 \pm 0.5$ $A_{CP}(B^0 \rightarrow a_1(1260)^{\pm}\pi^{\mp}) = -0.07 \pm 0.07$ $A_{CP}(B^0 \rightarrow b_1 \pi^+) = -0.05 \pm 0.10$ $A_{CP}(B^0 \rightarrow K^*(1430)\gamma) = -0.08 \pm 0.15$ $A_{CP}(B^0 \rightarrow p \overline{p} K^*(892)^0) = 0.11 \pm 0.14$ $A_{CP}(B^0 \rightarrow p\overline{\Lambda}\pi^-) = -0.02 \pm 0.10$ $A_{CP}(B^0 \rightarrow b_1 K^+) = -0.07 \pm 0.12$ $C_{D^*(2010)^- D^+} (B^0 \rightarrow D^*(2010)^- D^+) = 0.23 \pm 0.13$ $S_{D^*(2010)^- D^+} (B^0 \rightarrow D^*(2010)^- D^+) = -0.55 \pm 0.21$ $C_{D^*(2010)^+ D^-} (B^0 \rightarrow D^*(2010)^+ D^-) = 0.01 \pm$ 0.26 (S = 2.0) $S_{D^*(2010)^+D^-} (B^0 \rightarrow D^*(2010)^+D^-) = -0.74 \pm 0.19$ $C_{D^{*+}D^{*-}}(B^0 \rightarrow D^{*+}D^{*-}) = 0.02 \pm 0.10$ $S_{D^{*+}D^{*-}} (B^0 \rightarrow D^{*+}D^{*-}) = -0.67 \pm 0.18$ $\bar{C_{+}}$ $(\bar{B}^{0} \rightarrow D^{*+}D^{*-}) = -0.05 \pm 0.14$ $S_+ (B^0 \rightarrow D^{*+}D^{*-}) = -0.72 \pm 0.20$

$$\begin{array}{l} C_{-}\left(B^{0}\rightarrow D^{*+}D^{*-}\right)=0.2\pm0.7\\ S_{-}\left(B^{0}\rightarrow D^{*+}D^{*-}\right)=-1.8\pm1.1\\ C\left(B^{0}\rightarrow D^{*}(2010)^{+}D^{*}(2010)^{-}K_{S}^{0}\right)=0.1\pm0.29\\ S\left(B^{0}\rightarrow D^{*}(2010)^{+}D^{*}(2010)^{-}K_{S}^{0}\right)=0.1\pm0.4\\ C_{D^{+}D^{-}}\left(B^{0}\rightarrow D^{+}D^{-}\right)=-0.4\pm0.5 \quad (S=3.1)\\ \textbf{S}_{D^{+}D^{-}}\left(B^{0}\rightarrow D^{+}D^{-}\right)=-0.81\pm0.29 \quad (S=1.1)\\ C_{J/\psi(15)\pi^{0}}\left(B^{0}\rightarrow D^{/}\psi(15)\pi^{0}\right)=-0.11\pm0.20\\ S_{J/\psi(15)\pi^{0}}\left(B^{0}\rightarrow D^{(2)}_{CP}h^{0}\right)=-0.23\pm0.16\\ \textbf{S}_{D_{CP}^{0}h^{0}}\left(B^{0}\rightarrow D_{CP}^{(2)}h^{0}\right)=-0.56\pm0.24\\ \textbf{S}_{D_{CP}^{0}h^{0}}\left(B^{0}\rightarrow K_{S}^{0}K_{S}^{0}\right)=-1.3\pm0.8\\ C_{K_{S}^{0}K_{S}^{0}}\left(B^{0}\rightarrow K_{S}^{0}K_{S}^{0}\right)=-0.04\pm0.20 \quad (S=2.5)\\ \textbf{S}_{\eta'(958)K}\left(B^{0}\rightarrow \eta'(958)K_{S}^{0}\right)=-0.04\pm0.20 \quad (S=2.5)\\ \textbf{S}_{\eta'(958)K}\left(B^{0}\rightarrow \eta'(958)K_{S}^{0}\right)=-0.04\pm0.20 \quad (S=2.5)\\ \textbf{S}_{\eta'(958)K}\left(B^{0}\rightarrow \eta'(958)K_{S}^{0}\right)=-0.04\pm0.20 \quad (S=2.5)\\ \textbf{S}_{\eta'(958)K}\left(B^{0}\rightarrow \eta'(8^{0})=-0.09\pm0.08 \quad (S=1.5)\\ \textbf{S}_{\eta'K^{0}}\left(B^{0}\rightarrow \eta'K^{0}\right)=-0.25\pm0.31 \quad (S=1.6)\\ \textbf{S}_{\omega K_{S}^{0}}\left(B^{0}\rightarrow f_{0}(980)K_{S}^{0}\right)=-0.02\pm0.21 \quad (S=1.1)\\ \textbf{S}_{\omega K_{S}^{0}}\left(B^{0}\rightarrow f_{0}(980)K_{S}^{0}\right)=-0.02\pm0.21 \quad (S=1.1)\\ \textbf{S}_{(6)(980)K_{S}^{0}}\left(B^{0}\rightarrow K_{S}K_{S}K_{S}\right)=-0.15\pm0.16 \quad (S=1.1)\\ \textbf{S}_{K_{S}K_{S}}(B^{0}\rightarrow K_{S}K_{S}K_{S})=-0.15\pm0.16 \quad (S=1.1)\\ \textbf{S}_{K_{S}K_{S}}(B^{0}\rightarrow K_{S}K_{S}K_{S})=-0.1\pm0.03\\ \textbf{S}_{K^{+}K^{-}K_{S}^{0}}\left(B^{0}\rightarrow K^{+}K^{-}K_{S}^{0}\right)=-0.74^{+0.12}_{-0.10}\\ \textbf{C}_{K^{+}K^{-}K_{S}^{0}}\left(B^{0}\rightarrow K^{+}K^{-}K_{S}^{0}\right)=-0.01\pm0.09\\ \textbf{S}_{K^{+}K^{-}K_{S}^{0}}\left(B^{0}\rightarrow K_{S}^{0}\pi^{0}\right)=-0.3\pm0.12\\ \textbf{C}_{\phi K_{S}^{0}}\left(B^{0}\rightarrow K_{S}^{0}\pi^{0}\right)=0.3\pm0.17\\ \textbf{C}_{K_{S}^{0}\pi^{0}}\left(B^{0}\rightarrow K_{S}^{0}\pi^{0}\right)=0.2\pm0.5\\ \textbf{S}\left(B^{0}\rightarrow K_{S}^{0}$$

$$\begin{split} S_{K_{S}^{0}\pi^{0}\gamma}(B^{0} \rightarrow K_{S}^{0}\pi^{0}\gamma) &= -0.01 \pm 0.30 \\ C_{K^{*}(892)^{0}\gamma}(B^{0} \rightarrow K^{*}(892)^{0}\gamma) &= -0.12 \pm 0.30 \quad (S = 1.8) \\ S_{K^{*}(892)^{0}\gamma}(B^{0} \rightarrow K^{*}(892)^{0}\gamma) &= -0.27 \pm 0.26 \\ C(B^{0} \rightarrow \rho^{0}\gamma) &= 0.4 \pm 0.5 \\ S(B^{0} \rightarrow \rho^{0}\gamma) &= -0.8 \pm 0.7 \\ C_{\pi\pi}(B^{0} \rightarrow \pi^{+}\pi^{-}) &= -0.38 \pm 0.17 \quad (S = 2.6) \\ \mathbf{S}_{\pi\pi}(B^{0} \rightarrow \pi^{+}\pi^{-}) &= -0.01 \pm 0.08 \\ C_{\rho\pi}(B^{0} \rightarrow \rho^{+}\pi^{-}) &= 0.01 \pm 0.14 \quad (S = 1.9) \\ S_{\rho\pi}(B^{0} \rightarrow \rho^{+}\pi^{-}) &= 0.01 \pm 0.09 \\ \Delta C_{\rho\pi}(B^{0} \rightarrow \rho^{+}\pi^{-}) &= -0.05 \pm 0.10 \\ C_{\rho0\pi^{0}}(B^{0} \rightarrow \rho^{0}\pi^{0}) &= -0.1 \pm 0.7 \\ S_{\rho0\pi^{0}}(B^{0} \rightarrow \rho^{0}\pi^{0}) &= -0.1 \pm 0.7 \\ S_{\rho^{0}\pi^{0}}(B^{0} \rightarrow a_{1}(1260)^{+}\pi^{-}) &= -0.26 \pm 0.17 \\ \Delta S_{a_{1}\pi}(B^{0} \rightarrow a_{1}(1260)^{+}\pi^{-}) &= -0.26 \pm 0.17 \\ \Delta S_{a_{1}\pi}(B^{0} \rightarrow a_{1}(1260)^{+}\pi^{-}) &= -0.14 \pm 0.22 \\ C(B^{0} \rightarrow b_{1}^{-}\pi^{+}) &= -1.04 \pm 0.24 \\ \Delta C(B^{0} \rightarrow b_{1}^{-}\pi^{+}) &= -1.04 \pm 0.24 \\ C_{\rho^{0}K_{S}^{0}}(B^{0} \rightarrow \rho^{0}K_{S}^{0}) &= 0.2 \pm 0.6 \\ C_{\rho\rho}(B^{0} \rightarrow \rho^{+}\rho^{-}) &= -0.05 \pm 0.13 \\ S_{\rho\rho}(B^{0} \rightarrow \rho^{+}\rho^{-}) &= -0.06 \pm 0.17 \\ |\lambda| (B^{0} \rightarrow c7K^{0}) &= 0.988 \pm 0.020 \\ |\lambda| (B^{0} \rightarrow J/\psi K^{*}(892)^{0}) &= 1.7^{+0.7}_{-0.9} \quad (S = 1.6) \\ \cos 2\beta (B^{0} \rightarrow [K_{S}^{0}\pi^{+}\pi^{-}]_{D^{(*)}}h^{0}) &= 1.0^{+0.6}_{-0.7} \quad (S = 1.8) \\ (S_{+} + S_{-})/2 (B^{0} \rightarrow D^{-}\pi^{+}) &= -0.024 \pm 0.023 \\ (S_{-} - S_{+})/2 (B^{0} \rightarrow D^{-}\pi^{+}) &= -0.024 \pm 0.023 \\ (S_{-} - S_{+})/2 (B^{0} \rightarrow D^{-}\pi^{+}) &= -0.024 \pm 0.023 \\ (S_{-} - S_{+})/2 (B^{0} \rightarrow D^{-}\pi^{+}) &= -0.018 \pm 0.025 \\ \mathbf{S}_{J^{\prime}\psi K^{0}} (B^{0} \rightarrow J^{\prime}\psi K^{0}) &= -0.018 \pm 0.025 \\ \mathbf{S}_{J^{\prime}\psi K^{0}} (B^{0} \rightarrow J^{\prime}\psi K^{0}) &= 0.642 \pm 0.035 \\ \sin(2\beta_{eff})(B^{0} \rightarrow \phi K^{0}) &= 0.22 \pm 0.30 \\ \end{array}$$

$$\begin{aligned} & \sin(2\beta_{\rm eff})(B^0 \to \ K^+ \ K^- \ K^0_S) = 0.77^{+0.13}_{-0.12} \\ & \sin(2\beta_{\rm eff})(B^0 \to \ [\ K^0_S \ \pi^+ \ \pi^-]_{D^{(*)}} \ h^0) = 0.45 \pm 0.28 \\ & |\lambda| \ (B^0 \to \ [\ K^0_S \ \pi^+ \ \pi^-]_{D^{(*)}} \ h^0) = 1.01 \pm 0.08 \\ & |\sin(2\beta + \gamma)| > 0.40, \ {\rm CL} = 90\% \\ & \alpha = (96 \pm 10)^{\circ} \end{aligned}$$

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the *B* are listed in the B^{\pm}/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0 \overline{B}{}^0$ and 50% $B^+ B^-$ production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_s , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

_				Sc	ale factor/	р
B ⁰ DECAY MODES	F	Fraction (Γ_i/Γ)			Confidence level	
1+ wanthing	r - 1	(10.22 0.20) 0/			
$\ell = \nu_{\ell}$ anything	[a]	(10.33 ± 0.28) %) ,		_
$e' \nu_e \lambda_c$		(10.1 ± 0.4) %	D		_
$D\ell^+ u_\ell$ anything		(9.6 ± 0.9) %	Ď		-
$D^-\ell^+ u_\ell$	[a]	($2.17\pm0.12)$ %	, D		2309
$D^- \tau^+ \nu_{ au}$		(1.0 \pm 0.4) %	, D		1909
$D^*(2010)^-\ell^+ u_\ell$	[<i>a</i>]	(5.16±0.11) %	, D		2257
$D^{*}(2010)^{-} au^{+} u_{ au}$		($1.6~\pm0.5$) %	, D	S=1.2	1837
$\overline{D}^0 \pi^- \ell^+ \nu_\ell$		(4.3 \pm 0.6) $ imes$	10 ⁻³		2308
$D^*_0(2400)^-\ell^+ u_\ell imes$		(2.0 ± 0.9) \times	10-3		-
$B(D_0^{*-} ightarrow~\overline{D}{}^0\pi^-)$						
$D_2^*(2460)^- \ell^+ u_\ell imes$		(2.2 ± 0.6) \times	10 ⁻³		2067
$B(D_2^{*-} ightarrow \overline{D}{}^0\pi^-)$						
$\overline{D}^{(*)}$ n $\pi \ell^+ u_\ell$ (n \geq 1)		(2.4 ± 0.5) %	, D		_
$\overline{D}^{*0}\pi^-\ell^+\nu_{\ell}$		(4.9 ±0.8)×	10-3		2256
$D_1(2420)^{-}\widetilde\ell^+ u_\ell imes$		(5.4 ± 2.1) ×	10-3		_
$B(D_1^- \rightarrow \overline{D}^{*0}\pi^-)$						
$D_1'(2430)^- \ell^+ \nu_\ell imes$		<	5.0 ×	10-3	CL=90%	_
$$ B($D_1^{\prime -} ightarrow \overline{D}^{*0} \pi^-$)						

$D_2^*(2460)^- \ell^+ u_\ell imes$	<	3.0	imes 10 ⁻³	CL=90%	2067
$B(D_2^{*-} \rightarrow \overline{D}^{*0}\pi^-)$					
$\rho^-\ell^+\nu_\ell$	[a] (2.47∄	$(0.33) \times 10^{-4}$		2583
$\pi^-\ell^+\nu_\ell$	[a] (1.36±	$(0.09) \times 10^{-4}$		2638
۰. •	•••		,		
K^{\pm} any thing		nodes	0) $0/$		
Λ anything $\Omega^{0} x$		/0 ⊐ 01 ⊥	-15)%		_
$\overline{D}^{0} X$		0.⊥ ⊥ /7 / ⊥	(1.3) / 0		_
$D^+ X$	(•	+/.4 ⊥ 30	_2.0) /0 0/_	CI	_
$D^- X$		3.9 360 -∔	-33)%	CL—9070	_
$D^+ X$	(•		-21		
$D_{s}^{+}X$	(1	10.3 _	-1.8)%		_
$D_s^- X$	<	2.6	%	CL=90%	-
$\Lambda_c^+ X$	<	3.1	%	CL=90%	_
$\overline{\Lambda}_{c}^{-}X$	(5.0 +	-2.1)%		-
τX	(9	95 ±	:5)%		_
сX	(z	24.6 ±	3.1)%		_
c cX	(11	19 ±	=6)%		_
	• * •				
D, I	D^* , or $D_{\mathfrak{g}}$, mod	es		
$D^-\pi^+$	(2.68±	$(0.13) \times 10^{-3}$		2306
$D \rho'$	(7.7 ±	$(1.3) \times 10^{-3}$		2235
$D K^{\circ}\pi^{+}$	(4.9 ±	$(0.9) \times 10^{-4}$		2259
D^{-} (892)	(4.5 ±	$(0.7) \times 10^{-4}$		2211
$D \omega \pi^+$	(2.8 ±	$(0.6) \times 10^{-4}$		2204
$D - \kappa^+ \overline{\kappa}^0$	(2.0 ±	$(0.6) \times 10^{-4}$		2279
$D = K + \overline{K} * (902)^0$	< (3.1	$\times 10^{-4}$	CL=90%	2188
$\overline{D}^0 \pi^+ \pi^-$	(0.0 I	$(1.9) \times 10^{-4}$		2070
$D^{*}(2010)^{-}\pi^{+}$	(0.4 ⊥ 0.76⊥	$(0.9) \times 10^{-3}$		2301
$D^{-}\pi^{+}\pi^{+}\pi^{-}$	(2.70	$(-25) \times 10^{-3}$		2233
$(D^{-}\pi^{+}\pi^{+}\pi^{-})$ nonresonant	(30 4	$(-1.0) \times 10^{-3}$		2207
$D^{-}\pi^{+}o^{0}$	(11 +	$(-1.0) \times 10^{-3}$		2206
$D^{-}a_{1}(1260)^{+}$	(6.0 +	-3.3) × 10 ⁻³		2121
$D^*(2010)^- \pi^+ \pi^0$	(1.5 ±	=0.5)%		2247
$D^*(2010)^- \rho^+$	(6.8 ±	$(0.9) \times 10^{-3}$		2180
$D^{*}(2010)^{-K^{+}}$	(2.14±	$(0.16) \times 10^{-4}$		2226
$D^{*}(2010)^{-}K^{0}\pi^{+}$	(3.0 ±	$(0.8) \times 10^{-4}$		2205
$\hat{D}^{*}(2010)^{-}K^{*}(892)^{+}$	(3.3 ±	$(0.6) \times 10^{-4}$		2155
$D^*(2010)^- K^+ \overline{K}^0$	<	4.7	$\times 10^{-4}$	CL=90%	2131
$D^{*}(2010)^{-} K^{+} \overline{K}^{*}(892)^{0}$	(1.29±	$(0.33) \times 10^{-3}$		2007
$D^*(2010)^-\pi^+\pi^+\pi^-$	(7.0 ±	± 0.8) $ imes 10^{-3}$	S=1.3	2235
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	(0.0 ±	$\simeq 2.5$) $ imes 10^{-3}$		2235
resonant					

$D^*(2010)^- \pi^+ \rho^0$ $D^*(2010)^- \gamma(1260)^+$	(5.7 \pm 3.2	$) \times 10^{-3}$		2150
$D^{*}(2010)^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	(1.30 ± 0.27) /0		2001
$D^{*}=2\pi^{\pm}2\pi^{-}$	(1.70 ± 0.27	$) \frac{70}{10-3}$		2210
$D^{*}(2010)^{-}$ $n\pi\pi^{+}$	(4.7 ± 0.9	$) \times 10^{-4}$		2195
$D^{*}(2010) = p \pi^{-1}$	(0.5 ± 1.0	$) \times 10^{-3}$		1707
$\frac{D}{D^*}(2010) = 0 = \pi^+$	(1.5 ± 0.4	$) \times 10^{-3}$		1785
$D(2010) = \omega \pi^{-1}$	(2.89 ± 0.30	$) \times 10^{-4}$		2148
$D_1(2430)^{*}\omega \times$	(4.1 ± 1.0) × 10 ·		1992
$D(D_1(2430)^2 \rightarrow D^{*-} - +)$					
$\overline{D}^{**-} = \pi^+$	[./] (0.1 ± 1.0^{-1}) ~ 10-3		
$D_{1}^{(2)} = -+ \times B(D^{-1})$	[a] (2.1 ± 1.0) \times 10 $^{\circ}$		_
$D_1(2420) \pi^+ \times B(D_1 \rightarrow D^- \pi^+ \pi^-)$	(8.9 - 3.5) × 10 5		_
$D_{-}(2420)^{-}\pi^{+}\times B(D^{-})$	/	2 2	v 10−5	CI _00%	
$D_1(2420) \pi \rightarrow D(D_1 \rightarrow D^{*-} + -)$	<	5.5	× 10	CL=90%	_
$\frac{D}{D^*} \pi \pi $,		×		
$D_{2}(2400) \pi' \times$	(2.15 ± 0.35) × 10 +		2064
$B(D_2^*(2460)^- \to D^0\pi^-)$			F		
$D_0^*(2400)^- \pi^+ \times$	(6.0 ± 3.0) × 10 ⁻⁵		2090
$B(D_0^*(2400)^- \to D^0 \pi^-)$			_		
$D_2^*(2460)^- \pi^+ \times B((D_2^*)^- \rightarrow$	<	2.4	imes 10 ⁻⁵	CL=90%	-
$D^{*-}\pi^{+}\pi^{-})$					
$\overline{D}_{2}^{*}(2460)^{-}\rho^{+}$	<	4.9	imes 10 ⁻³	CL=90%	1977
$D^{\overline{0}}\overline{D}^{0}$	<	6	imes 10 ⁻⁵	CL=90%	1868
$D^{*0}\overline{D}^{0}$	<	2.9	imes 10 ⁻⁴	CL=90%	1794
$D^- D^+$	(2.11 ± 0.31	$) \times 10^{-4}$	S=1.2	1864
$D^{-}D_{s}^{+}$	($7.4 \ \pm 0.7$) × 10 ⁻³		1812
$D^{*}(2010)^{-}D_{c}^{+}$	(8.3 ± 1.1	$) \times 10^{-3}$		1735
$D^{-}D^{*+}$	(7.6 ± 1.6	$) \times 10^{-3}$		1731
$D^{*}(2010)^{-}D^{*+}$	(1.79 ± 0.14)%		1649
$D_{s0}(2317)^{-} K^{+} \times$	(4.4 ±1.4	$) \times 10^{-5}$		2097
$B(D_{s0}(2317)^{-} \rightarrow D_{s}^{-}\pi^{0})$					
$D_{c0}(2317)^{-}\pi^{+}\times$	<	2.5	$\times 10^{-5}$	CI = 90%	2128
$B(D_{2}(2317)^{-} \rightarrow D^{-}\pi^{0})$		2.0	~ 10	62 50/0	2120
$D_{s0}(2517) \neq D_{s}(7)$	_	0.4	× 10-6		
$D_{sJ}(2457) = 0$	<	9.4	× 10 °	CL=90%	_
$D(D_s J(2457) \to D_s \pi^*)$			6		
$D_{sJ}(2457) \pi' \times$	<	4.0	× 10 °	CL=90%	-
$B(D_{sJ}(2457) \to D_s \pi^0)$			F		
$D_s D_s^{\top}$	<	3.6	$\times 10^{-5}$	CL=90%	1759
$D_{s}^{*-}D_{s}^{+}$	<	1.3	imes 10 ⁻⁴	CL=90%	1674
$D_{s}^{*-}D_{s}^{*+}$	<	2.4	imes 10 ⁻⁴	CL=90%	1583
-					

$D_{s0}(2317)^+ D^- \times B(D_{s0}(2317)^+ \to D^+ \pi^0)$	(9.9 +4.2 -3.4) × 10 ⁻⁴	S=1.5	1602
$D_{s0}(2317)^+ D^- \times$	<	9.5	$ imes 10^{-4}$	CL=90%	_
$ \begin{array}{cccc} B(D_{s0}(2317)^+ \rightarrow D_s^+ \gamma) \\ D_{s0}(2317)^+ D^*(2010)^- \times \\ B(D_s(2217)^+ \rightarrow D_s^+ \sigma^0) \\ \end{array} $	(1.5 ± 0.6)) × 10 ⁻³		1509
$D_{s0}(2457)^+ D^-$	(3.5 ± 1.1)) × 10 ⁻³		_
$D_{sJ}(2457)^+ D^- imes$	($6.7 \begin{array}{c} +1.7 \\ -1.4 \end{array}$) × 10 ⁻⁴		_
$B(D_{sJ}(2457)^+ \to D_s^+ \gamma)$			Л		
$D_{sJ}(2457)^+ D^- \times$ $P(D_{sJ}(2457)^+ \to D^{*+} x)$	<	6.0	$\times 10^{-4}$	CL=90%	_
$D_{sJ}(2457)^+ \rightarrow D_s^- \gamma $ $D_{sJ}(2457)^+ D^- \times $ $B(D_{sJ}(2457)^+ \rightarrow $	<	2.0	imes 10 ⁻⁴	CL=90%	_
$D_{s}^{+}\pi^{+}\pi^{-})$					
$D_{sJ}(2457)^+ D^- \times$	<	3.6	$\times 10^{-4}$	CL=90%	-
$B(D_{sJ}(2457)^+ \to D_s^+ \pi^0)$ $D^*(2010)^- D_{s'}(2457)^+$	(03 + 22)	v v 10−3		_
$D_{2}(2457) + D_{3}(2457)$	(9.3 ± 2.2	$) \times 10^{-3}$		
$B(D_{c1}(2457)^+ \rightarrow D^+\gamma)$	(2.3 -0.7) ~ 10		
$D^- D_{s1}(2536)^+ \times$	(1.7 ± 0.6)) × 10 ⁻⁴		1444
$B(D_{s1}(2536)^+ \to D^{*0}K^+)$			Л		
$D^{*}(2010)^{-} D_{s1}(2536)^{+} \times B(D_{s1}(2536)^{+} \rightarrow D^{*0}K^{+})$	(3.3 ± 1.1)) × 10 ⁻⁴		1336
$D^{-}D_{s1}(2536)^{+} \times$	(2.6 ± 1.1)	$) imes 10^{-4}$		1444
$B(D_{s1}(2536)^+ \to D^{*+}K^0)$			Λ		
$D^* D_{s1}(2536)^+ \times B(D_{s1}(2536)^+ \to D^{*+} K^0)$	(5.0 ± 1.7)) × 10 ⁻⁴		1336
$D^{-}D_{sJ}(2573)^{+} \times$	<	1	$ imes 10^{-4}$	CL=90%	1414
$B(D_{sJ}(2573)^+ \rightarrow D^0 K^+)$		0			1202
$D(2010) D_{sJ}(2573)^+ \times D^0 K^+)$	<	2	× 10 ·	CL=90%	1303
$D_s^+ \pi^-$	(1.53±0.35)	$) imes 10^{-5}$		2270
$D_s^{*+}\pi^-$	(3.0 ± 0.7)	$) imes 10^{-5}$		2215
$D_s^+ \rho^-$	<	6	imes 10 ⁻⁴	CL=90%	2197
$D_s^{*+}\rho^-$	<	6	imes 10 ⁻⁴	CL=90%	2138
$D_{s}^{+}a_{0}^{-}$	<	1.9	imes 10 ⁻⁵	CL=90%	_
$D_{s}^{*+}a_{0}^{-}$	<	3.6	imes 10 ⁻⁵	CL=90%	-
$D_s^+ a_1(1260)^-$	<	2.2	imes 10 ⁻³	CL=90%	2080
$D_s^{*+}a_1(1260)^-$	<	1.8	imes 10 ⁻³	CL=90%	2015
$D_s^+ a_2^-$	<	1.9	$\times 10^{-4}$	CL=90%	-

$D_{s}^{*+}a_{2}^{-}$	<	2.0×10^{-4}	CL=90%	_
$D_{s}^{-}K^{+}$	($2.9\ \pm 0.5$ $)\times 10^{-5}$		2242
$D_s^{*-}K^+$	($2.2~\pm0.6$) $\times10^{-5}$		2185
$D_{s}^{-}K^{*}(892)^{+}$	<	8×10^{-4}	CL=90%	2172
$D_{s}^{\tilde{*}-} K^{*}(892)^{+}$	<	9×10^{-4}	CL=90%	2112
$D_{a}^{3}\pi^{+}\dot{K}^{0}$	<	5×10^{-3}	CL=90%	2222
$D_{s}^{s} \pi^{+} \kappa^{0}$	<	2.6×10^{-3}	CL=90%	2164
$D_{-}^{s}\pi^{+}K^{*}(892)^{0}$	<	3.1×10^{-3}	CL=90%	2138
$D^{*-}\pi^{+}K^{*}(892)^{0}$	<	1.7×10^{-3}	CL=90%	2076
$\overline{D}^{0}K^{0}$	(5.2 +0.7) $\times 10^{-5}$		2280
$\overline{D}^0 K^+ \pi^-$	(8.8 ± 1.7) × 10 ⁻⁵		2261
$\overline{D}{}^{0} K^{*}(892)^{0}$	(4.2 ± 0.6) $\times 10^{-5}$		2213
$D_{2}^{*}(2460)^{-}K^{+}\times$	(1.8 ± 0.5) $\times 10^{-5}$		2031
$B(D_2^*(2460)^- \to \overline{D}{}^0\pi^-)$				
$\overline{D}{}^0$ K^+ π^- non-resonant	<	3.7×10^{-5}	CL=90%	_
$\overline{D}{}^{0}\pi^{0}$	($2.61 \pm 0.24) imes 10^{-4}$		2308
$\overline{D}{}^0 \rho^0$	(3.2 ± 0.5) $\times 10^{-4}$		2237
$\overline{D}^0 f_2$	($1.2~\pm0.4$) $\times10^{-4}$		-
$\overline{D}^0 \eta$	($2.02 \pm 0.35) imes 10^{-4}$	S=1.6	2274
$\overline{D}^0 \eta'$	($1.25\pm0.23) imes 10^{-4}$	S=1.1	2198
$\overline{D}_{\alpha}^{0}\omega$	($2.59\pm0.30) imes10^{-4}$		2235
$D^0\phi$	<	1.16 $\times 10^{-5}$	CL=90%	2182
$D^{0}K^{+}\pi^{-}$	<	1.9×10^{-5}	CL=90%	2261
$D^{0}K^{*}(892)^{0}$	<	1.1 $\times 10^{-5}$	CL=90%	2213
$D^{*0}\gamma$	<	2.5×10^{-5}	CL=90%	2258
$D^*(2007)^0 \pi^0$	($1.7 \pm 0.4) \times 10^{-4}$	S=1.5	2256
$D^{*}(2007)^{\circ}\rho^{\circ}$	<	5.1×10^{-4}	CL=90%	2182
$D^{*}(2007)^{\circ}\eta$ $D^{*}(2007)^{0}\eta'$	($1.8 \pm 0.6 \times 10^{-4}$	S=1.8	2220
$D^{*}(2007)^{\circ}\eta^{\circ}$ $\overline{D}^{*}(2007)^{\circ} -+$	($1.23 \pm 0.35) \times 10^{-4}$		2141
$D(2007)^{\circ} \pi^{\circ} \pi$	($0.2 \pm 2.2 \times 10^{-5}$		2248
D (2007) K D*(2007) ⁰ K*(802) ⁰	($3.0 \pm 1.2 \times 10^{-5}$	CI	2227
$D^{*}(2007)^{0} K^{*}(892)^{0}$	<	10^{-5}	CL = 90%	2157
$D^{*}(2007)^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	\langle	$(4.0 \times 10^{-3}) \times 10^{-3}$	CL—9070	2157
$D^{*}(2010)^{+} D^{*}(2010)^{-}$	(2.7 ± 0.3) × 10 8 2 ± 0.9) × 10 ⁻⁴		1711
$\frac{D}{D^*}(2007)^0\omega$	(27 ± 0.8) × 10 ⁻⁴	S=1 5	2180
$D^{*}(2010)^{+}D^{-}$	(6.1 + 1.5) × 10 ⁻⁴	S=1.6	1790
$D^*(2007)^0 \overline{D}^*(2007)^0$	<	9 $\times 10^{-5}$	CL=90%	1715
$D^{-}D^{0}K^{+}$	(1.7 ± 0.4) $\times 10^{-3}$	/ V	1574
$D^{-}D^{*}(2007)^{0}K^{+}$	(4.6 ± 1.0) $\times 10^{-3}$		1478
$D^*(2010)^- D^0 K^+$	($3.1 \begin{array}{c} +0.6 \\ -0.5 \end{array}) \times 10^{-3}$		1479
$D^{*}(2010)^{-} D^{*}(2007)^{0} K^{+}$	(1.18±0.20) %		1366

$D^- D^+ K^0$	<	1.7	imes 10 ⁻³	CL=90%	1568
$D^{*}(2010)^{-}D^{+}K^{0} +$	($6.5 \pm$	1.6) $\times 10^{-3}$		1473
$D^{-}D^{*}(2010)^{+}K^{0}$,				
$D^{*}(2010)^{-}D^{*}(2010)^{+}K^{0}$	(7.8 ±	1.1) $ imes 10^{-3}$		1360
$D^{*-}D_{s1}(2536)^+ \times$	(8.0 ±	2.4) $\times 10^{-4}$		1336
$B(D_{s1}(2536)^+ \rightarrow$					
$D^{*+}K^{0}$)					
$\overline{D}^0 D^0 K^0$	<	1.4	imes 10 ⁻³	CL=90%	1574
$\overline{D}{}^{0} D^{*} (2007){}^{0} K^{0} +$	<	3.7	imes 10 ⁻³	CL=90%	1478
$\overline{D}^{*}(2007)^{0} D^{0} K^{0}$					
$\overline{D}^{*}(2007)^{0} D^{*}(2007)^{0} K^{0}$	<	6.6	imes 10 ⁻³	CL=90%	1365
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(4.3 ±	0.7)%		_
	•		,		
chari	monium	mode	1 < 1 < -4		1750
$\eta_c \Lambda^\circ$	(8.9 ±	$1.6) \times 10^{-4}$	6 4 4	1753
$\eta_c K^{(892)}$	(9.6 ±	3.3×10^{-4}	S=1.1	1648
$J/\psi(15)K^{*}$	(8.71±	$(0.32) \times 10^{-4}$		1683
$J/\psi(15)K + \pi$	($1.2 \pm$	$(0.6) \times 10^{-3}$		1652
$J/\psi(15) K^{*}(892)^{\circ}$	($1.33\pm$	$(0.06) \times 10^{-5}$		1571
$J/\psi(1S)\eta K_{S}$	(8 ±	4) $\times 10^{-5}$		1508
$J/\psi(1S)\eta' K_{S}^{0}$	<	2.5	$\times 10^{-5}$	CL=90%	1271
$J/\psi(1S)\phi K^0$	(9.4 ±	2.6) $\times 10^{-5}$		1224
$J/\psi(1S) K(1270)^0$	(1.3 \pm	0.5) $\times 10^{-3}$		1390
$J/\psi(1S)\pi^0$	($2.05\pm$	$0.24) \times 10^{-5}$		1728
$J/\psi(1S)\eta$	($9.5~\pm$	$1.9) \times 10^{-6}$		1672
$J/\psi(1S)\pi^+\pi^-$	(4.6 ±	0.9) $ imes 10^{-5}$		1716
$J/\psi(1S)\pi^+\pi^-$ nonresonant	<	1.2	$\times 10^{-5}$	CL=90%	1716
$J/\psi(1S)f_2$	<	4.6	$\times 10^{-6}$	CL=90%	-
$J/\psi(1S) ho^0$	(2.7 \pm	0.4) $ imes 10^{-5}$		1612
$J/\psi(1S)\omega$	<	2.7	$\times 10^{-4}$	CL=90%	1609
$J/\psi(1S)\phi$	<	9.2	imes 10 ⁻⁶	CL=90%	1520
$J/\psi(1S)\eta'(958)$	<	6.3	$\times 10^{-5}$	CL=90%	1546
$J/\psi(1S) K^0 \pi^+ \pi^-$	($1.0~\pm$	0.4) $ imes 10^{-3}$		1611
$J/\psi(1S){ m K}^0 ho^0$	(5.4 \pm	$3.0) imes 10^{-4}$		1390
$J/\psi(1S) K^{*}(892)^{+} \pi^{-}$	(8 ±	4) $ imes 10^{-4}$		1514
$J/\psi(1S){\sf K}^*(892)^0\pi^+\pi^-$	($6.6 \pm$	2.2) $\times 10^{-4}$		1447
$X(3872)^{-}K^{+}$	<	5	imes 10 ⁻⁴	CL=90%	-
$X(3872)^{-}K^{+} \times$	[e] <	5.4	imes 10 ⁻⁶	CL=90%	-
$B(X(3872)^{-} \rightarrow$					
$J/\psi(1S)\pi^{-}\pi^{0})$					
$X(3872) K^0 imes B(X o$	<	1.03	imes 10 ⁻⁵	CL=90%	1139
$J/\psi \pi^+ \pi^-$)					
$X(3872) K^0 \times B(X \rightarrow$	(1.7 \pm	0.8) $ imes$ 10 $^{-4}$		1139
$D^0 \overline{D}{}^0 \pi^0$)					

$X(3872) K^0 \times B(X \rightarrow \overline{D}^{*0} D^0)$	<	4.37	imes 10 ⁻⁴	CL=90%	1139
$J/\psi(1S) p \overline{p}$	<	8.3	imes 10 ⁻⁷	CL=90%	862
$J/\psi(1S)\gamma$	<	1.6	imes 10 ⁻⁶	CL=90%	1731
$J/\psi(1S)\overline{D}^0$	<	1.3	imes 10 ⁻⁵	CL=90%	877
$\psi(2S)K^0$	($6.2 \pm$	0.6) $ imes 10^{-4}$		1283
$\psi(3770) \mathcal{K}_{0}^{0} \times B(\psi \rightarrow \overline{D}{}^{0} D^{0})$	<	1.23	imes 10 ⁻⁴	CL=90%	1217
$\psi(3770) \mathcal{K}^0 \times B(\psi \to D^- D^+)$	<	1.88	imes 10 ⁻⁴	CL=90%	1217
$\psi(2S)K^+\pi^-$	<	1	$\times 10^{-3}$	CL=90%	1238
$\psi(2S) K^{*}(892)^{0}$	($7.2 \pm$	0.8) $\times 10^{-4}$		1116
$\chi_{c0}(1P)K^0$	<	1.13	$\times 10^{-4}$	CL=90%	1477
$\chi_{c0} K^* (892)^0$	<	7.7	$\times 10^{-4}$	CL=90%	-
$\chi_{c2}K^0$	<	2.6	$\times 10^{-5}$	CL=90%	-
$\chi_{c2} K^*(892)^0$	<	3.6	$\times 10^{-5}$	CL=90%	-
$\chi_{c1}(1P)K^0$	($3.9 \pm$	0.4) $\times 10^{-4}$		1411
$\chi_{c1}(1P) K^*(892)^0$	(3.2 ±	0.6) $ imes 10^{-4}$		1265
K	or K* n	nodes			
$K^+\pi^-$	(1.94+	$(0.06) \times 10^{-5}$		2615
$K^0 \pi^0$	(9.8 +	$0.6) \times 10^{-6}$		2615
$n' K^0$	(6.5 ±	$0.4) \times 10^{-5}$	S=1.2	2528
$n' K^* (892)^0$	(3.8 ±	$(1.2) \times 10^{-6}$		2472
ηK^0	<	1.9	$\times 10^{-6}$	CL=90%	2587
$\eta K^*(892)^0$	($1.59\pm$	$0.10) \times 10^{-5}$		2534
$\eta K_0^*(1430)^0$	($1.10\pm$	$(0.22) \times 10^{-5}$		2415
$nK_{2}^{*}(1430)^{0}$	(9.6 ±	$2.1) \times 10^{-6}$		2414
ωK^0	(5.0 +	$(0.6) \times 10^{-6}$		2557
$a_0(980)^0 K^0 \times B(a_0(980)^0 \rightarrow$	<	7.8	$\times 10^{-6}$	CL=90%	
$\eta \pi^0$					
$a_0(980)^{\pm} K^{\mp} \times B(a_0(980)^{\pm} \rightarrow$	<	1.9	imes 10 ⁻⁶	CL=90%	_
$\eta \pi^{\pm}$					
$a_0(1450)^{\pm} K^{\mp} \times$	<	3.1	imes 10 ⁻⁶	CL=90%	_
$(a_0(1450)^{\pm} \rightarrow \eta \pi^{\pm})$					
$K_{S}^{0} X^{0}$ (Familon)	<	5.3	imes 10 ⁻⁵	CL=90%	_
$\omega \tilde{K}^*(892)^0$	<	4.2	imes 10 ⁻⁶	CL=90%	2503
$K^+ \tilde{K}^-$	<	4.1	imes 10 ⁻⁷	CL=90%	2593
$K^0 \overline{K}^0$	(9.6 +	$^{2.0}_{1.8}$) $ imes$ 10 $^{-7}$		2592
K ⁰ _S K ⁰ _S K ⁰ _S	(6.2 +	$^{1.2}_{1.1}$) $ imes$ 10 $^{-6}$	S=1.3	2521
$K_{S}^{0}K_{S}^{0}K_{I}^{0}$	<	1.6	imes 10 ⁻⁵	CL=90%	2521
$\breve{K} + \pi - \pi^{O}$	(3.7 ±	0.5) $ imes$ 10 $^{-5}$		2609
$K^+ ho^-$	(8.5 ±	2.8) $\times 10^{-6}$	S=1.7	2559
$(K^{+}\pi^{-}\pi^{0})$ non-resonant	<	9.4	× 10 ⁻⁶	CL=90%	_
$K_{*}^{*0}\pi^{0}$	[<i>h</i>] ($6.1 \pm$	1.6) $ imes 10^{-6}$		_
$K^0 \hat{\pi^+} \pi^-$ charmless	(4.48±	$0.26) \times 10^{-5}$		2609
	`		,		

$K^0 \pi^+ \pi^-$ non-resonant	(1.99 ± 0.31	$) \times 10^{-5}$		_
$\kappa^0 ho^0$	($5.4\ \pm 0.9$	$) \times 10^{-6}$		2558
$K^0 f_0(980)$	($5.5\ \pm 0.9$	$) \times 10^{-6}$		2524
$K^{*}(892)^{+}\pi^{-}$	($9.8\ \pm 1.3$	$) \times 10^{-6}$	S=1.2	2563
$K^*(1430)^+\pi^-$	($5.0 \ {+0.8 \atop -0.9}$	$) \times 10^{-5}$		-
$\mathcal{K}^{*+}_{\times}\pi^{-}$	[<i>h</i>] (5.1 ± 1.6	$) \times 10^{-6}$		-
$\hat{\kappa^{*}(1410)^{+}\pi^{-}} \times$	<	3.8	× 10 ⁻⁶	CL=90%	_
$B(K^{*}(1410)^{+} \rightarrow K^{0}\pi^{+})$					
$K^{*}(1680)^{+}\pi^{-}\times$	<	2.6	imes 10 ⁻⁶	CL=90%	2358
$B(K^*(1680)^+ \rightarrow K^0 \pi^+)$					
$K_2^*(1430)^+\pi^- imes$	<	2.1	imes 10 ⁻⁶	CL=90%	2445
$B(K_2^*(1430)^+ o \ K^0 \pi^+)$					
$f_0(980) \stackrel{-}{K}^0 \times B(f_0(980) \rightarrow$	(7.6 + 1.9	$) \times 10^{-6}$		2524
$\pi^{+}\pi^{-}$)	(-2.1)		
$f_2(1270) \acute{K^0} \times B(f_2(1270) \rightarrow$	<	1.4	imes 10 ⁻⁶	CL=90%	2459
$\pi^{+}\pi^{-}$)					
$K^*(892)^0 \pi^0$	<	3.5	imes 10 ⁻⁶	CL=90%	2563
$K_2^*(1430)^+ \pi^-$	<	1.8	imes 10 ⁻⁵	CL=90%	2445
$K^0 K^- \pi^+$	<	1.8	imes 10 ⁻⁵	CL=90%	2578
$\overline{K}^{*0}K^0 + K^{*0}\overline{K}^0$	<	1.9	$\times 10^{-6}$		-
$K^+ K^- \pi^0$	<	1.9	$\times 10^{-5}$	CL=90%	2579
$K^{0}K^{+}K^{-}$	(2.47 ± 0.23	$) \times 10^{-5}$		2522
$\kappa^{0}\phi$	($8.6\begin{array}{c}+1.3\\-1.1\end{array}$) × 10 ⁻⁶		2516
$K^+\pi^-\pi^+\pi^-$	[<i>i</i>] <	2.3	imes 10 ⁻⁴	CL=90%	2600
$\kappa^{*}(892)^{0}\pi^{+}\pi^{-}$	($5.4\ \pm 0.5$	$) \times 10^{-5}$		2557
$K^*(892)^0 ho^0$	($5.6\ \pm 1.6$	$) \times 10^{-6}$		2504
$K^*(892)^0 f_0(980)$	<	4.3	imes 10 ⁻⁶	CL=90%	2468
$K_1(1400)^+\pi^-$	<	1.1	$\times 10^{-3}$	CL=90%	2451
$a_1(1260)^-K^+$	[<i>i</i>] ($1.6\ \pm 0.4$	$) \times 10^{-5}$		2471
$b_1^- K^+ imes B(b_1^- o \ \omega \pi^-)$	(7.4 ± 1.4) × 10 ⁻⁶		-
$K^{*}(892)^{0}K^{+}K^{-}$	(2.75 ± 0.26	$) \times 10^{-5}$		2467
$K^{*}(892)^{0}\phi$	(9.5 ± 0.8) × 10 ⁻⁰		2460
$K^{*}(892)^{\circ}K^{-}\pi^{+}$	(4.6 ± 1.4) × 10 ⁻⁰		2524
$K^{*}(892)^{0} \overline{K}^{*}(892)^{0}$	($1.28^{+0.37}_{-0.32}$) × 10 ⁻⁶		2485
$K^{*}(892)^{0} K^{+} \pi^{-}$	<	2.2	imes 10 ⁻⁶	CL=90%	2524
$K^*(892)^0 K^*(892)^0$	<	4.1	imes 10 ⁻⁷	CL=90%	2485
$K^{*}(892)^{+} ho^{-}$	<	1.20	$\times 10^{-5}$	CL=90%	2504
$K^{*}(892)^{+}K^{*}(892)^{-}$	<	1.41	$\times 10^{-4}$	CL=90%	2485
$K_1(1400)^0 \rho^0$	<	3.0	$\times 10^{-3}$	CL=90%	2388
$\kappa_1(1400)^\circ \phi$	<	5.0	$\times 10^{-3}$	CL=90%	2339
$\phi(\kappa \pi)_0^{*0}$	($5.0\ \pm 0.9$) × 10 ⁻⁰		_

$\phi(K\pi)_0^{*0} (1.60 < m_{K\pi} < 2.15)$	[<i>j</i>] <	1.7	imes 10 ⁻⁶	CL=90%	_
$K_0^*(1430)^{0}\phi$	(4.6 ±0.9)	imes 10 ⁻⁶		2333
$K^{*}(1680)^{0}\phi$	<	3.5	$\times 10^{-6}$	CL=90%	2238
$K^{*}(1780)^{0}\phi$	<	2.7	$ imes 10^{-6}$	CL=90%	_
$K^{*}(2045)^{0}\phi$	<	1.53	$ imes 10^{-5}$	CL=90%	_
$K_{2}^{*}(1430)^{0}\rho^{0}$	<	1.1	$ imes 10^{-3}$	CL=90%	2381
$K_{2}^{(1430)0}\phi$	(7.8 ± 1.3)	$\times 10^{-6}$		2333
$K^{0}\phi\phi$	($4.1 \begin{array}{c} +1.7 \\ -1.5 \end{array}$	10^{-6}		2305
$\eta' \eta' K^0$	<	3.1	$ imes 10^{-5}$	CL=90%	_
$\mathcal{K}^*(892)^0\gamma$	(4.01±0.20)	$ imes 10^{-5}$		2564
$\eta {\cal K}^{0} \gamma$	($1.07 \substack{+0.22 \\ -0.15}$	1×10^{-5}		2587
$\eta' \kappa^0 \gamma$	<	6.6	$ imes 10^{-6}$	CL=90%	-
$\mathcal{K}^{0}\phi\gamma$	<	2.7	imes 10 ⁻⁶	CL=90%	2516
$K^+ \pi^- \gamma$	(4.6 ± 1.4)	imes 10 ⁻⁶		2615
\mathcal{K}^* (1410) γ	<	1.3	$\times 10^{-4}$	CL=90%	2450
$K^+\pi^-\gamma$ nonresonant	<	2.6	$\times 10^{-6}$	CL=90%	2615
$K^0 \pi^+ \pi^- \gamma$	($1.95 \pm 0.22)$	$\times 10^{-5}$		2609
$K^+\pi^-\pi^0\gamma$	(4.1 ± 0.4)	$\times 10^{-5}$		2609
$K_1(1270)^0 \gamma$	<	5.8	$\times 10^{-5}$	CL=90%	2486
$K_1(1400)^0 \gamma$	<	1.5	$\times 10^{-5}$	CL=90%	2453
$K_{2}^{*}(1430)^{0}\gamma$	($1.24 \pm 0.24)$	$\times 10^{-5}$		2447
$\mathcal{K}^*(1680)^{0}_{2}\gamma$	<	2.0	$\times 10^{-3}$	CL=90%	2361
$K_{3}^{*}(1780)^{0}\gamma$	<	8.3	$\times 10^{-5}$	CL=90%	2341
${K_{4}^{st}}(2045)^{0}\gamma$	<	4.3	$\times 10^{-3}$	CL=90%	2244
Light unfl	avored r	neson mod	es		
$\rho^{0}\gamma$	(9.3 ± 2.1)	$ imes 10^{-7}$	S=1.1	2583
$\omega \gamma$	($4.6 \begin{array}{c} +2.0 \\ -1.7 \end{array}$	10^{-7}		2582
$\phi\gamma$	<	8.5	$ imes 10^{-7}$	CL=90%	2541
$\pi^+\pi^-$	(5.13±0.24)	imes 10 ⁻⁶		2636
$\pi^0 \pi^0$	($1.62 \pm 0.31)$	imes 10 ⁻⁶	S=1.3	2636
$\eta \pi^0$	<	1.3	$\times 10^{-6}$	CL=90%	2610
$\eta \eta$	<	1.8	$\times 10^{-6}$	CL=90%	2582
$\eta' \pi^{0}$	($1.5 \ {+1.0 \atop -0.8}$)) × 10 ⁻⁶	S=1.5	2551
$\eta' \eta'$	<	2.4	$ imes 10^{-6}$	CL=90%	2460
$\eta'\eta_{\perp}$	<	1.7	imes 10 ⁻⁶	CL=90%	2523
$\eta' ho^{0}$	<	1.3	imes 10 ⁻⁶	CL=90%	2492
$\eta' f_0(980) \times B(f_0(980) \rightarrow \pi^+ \pi^-)$	<	1.5	× 10 ⁻⁶	CL=90%	2456
$n\rho^0$	<	1.5	$\times 10^{-6}$	CL=90%	2553
$\eta f_0(980) imes B(f_0(980) ightarrow \pi^+ \pi^-)$	<	4	× 10 ⁻⁷	CL=90%	2518
HTTP://PDG.LBL.GOV	Page 29	9 C	reated:	7/18/2008	14:28

		1.0	10-6		0550
	<	1.9	$\times 10^{-0}$	CL=90%	2552
	<	2.2	$\times 10^{-0}$	CL=90%	2491
	<	1.5	$\times 10^{-6}$	CL=90%	2522
	<	1.5	$\times 10^{-6}$	CL=90%	2487
	<	4.0	imes 10 ⁻⁶	CL=90%	2521
	<	2.8	imes 10 ⁻⁷	CL=90%	2539
	<	6	imes 10 ⁻⁷	CL=90%	2511
	<	5	imes 10 ⁻⁷	CL=90%	2448
	<	1.3	imes 10 ⁻⁵	CL=90%	2480
	<	1.2	$\times 10^{-6}$	CL=90%	2479
	<	1.5	$\times 10^{-6}$	CL=90%	2435
	~	3.1	× 10 ⁻⁶	CI = 90%	_
		5.1	~ 10	CL_3070	
	<	2.3	imes 10 ⁻⁶	CL=90%	-
	<	7.2	imes 10 ⁻⁴	CL=90%	2631
	(1.8 ± 0.5)	imes 10 ⁻⁶		2581
[k]	(2.28 ± 0.25	imes 10 ⁻⁵		2581
	<	2.3	$\times 10^{-4}$	CL=90%	2621
	(1.1 + 0.4)	$\times 10^{-6}$		2523
	<	53	$\times 10^{-7}$	CI = 90%	2488
		5.5		CL_3070	2100
	<	1.6	$\times 10^{-7}$	CL=90%	2451
[k]	($3.3\ \pm 0.5$)	imes 10 ⁻⁵		2494
	($1.09 \pm 0.15)$	imes 10 ⁻⁵		_
[k]	<	3.0	$\times 10^{-4}$	CI = 90%	2473
[···]	~	31	× 10 ⁻³	CI = 90%	2622
		242 ± 0.31	× 10 ⁻⁵	02 00/0	2523
	(2.42 ± 0.01	$^{-10}_{-3}$	CI 90%	2/05
	>	1.1	× 10 × 10 ⁻⁶	CL = 90%	2455
	~	0.0	$^{\times 10}_{\times 10}$	CL = 90%	2500
	<	9.0	$\times 10^{-5}$	CL = 90%	2009
	<	0.1	× 10 °	CL=90%	2433
	<	2.4	× 10 °	CL=90%	2433
	<	3.0	$\times 10^{-3}$	CL=90%	2592
	<	2.8	$\times 10^{-3}$	CL=90%	2336
	<	1.1	%	CL=90%	2572
nvor	n ma	odes			
		11	× 10 ^{−7}	CI 90%	2467
	~	 25	$^{10}_{10}$	CL = 90%	2406
		2.5 27 ⊥04 \	~ 10 ∨ 10−6	CL-90/0	2700 2217
	(∠.1 ±0.4)	× 10 - 8		∠341 0010
1/1	/		$\sqrt{10-0}$		
[/]	<	5	$\times 10^{-6}$	CL=90%	2318
	[k] [k]	< < < < < < < < < < < < < < < < < < <	<pre>< 1.9 < 2.2 < 1.5 < 1.5 < 4.0 < 2.8 < 6 < 5 < 1.3 < 1.2 < 1.5 < 3.1 < 2.3 < 7.2 (1.8 ±0.5) [k] (2.28±0.25) < 2.3 (1.1 ±0.4) < 5.3 < 1.6 [k] (3.3 ±0.5) (1.09±0.15) [k] < 3.0 < 3.1 (2.42±0.31) < 1.1 < 1.2 < 9.0 < 6.1 < 2.4 < 3.0 < 2.8 < 1.1</pre>	$ < 1.9 \times 10^{-6} < 2.2 \times 10^{-6} < 1.5 \times 10^{-6} < 1.5 \times 10^{-6} < 4.0 \times 10^{-6} < 2.8 \times 10^{-7} < 6 \times 10^{-7} < 5 \times 10^{-7} < 1.3 \times 10^{-5} < 1.2 \times 10^{-6} < 1.5 \times 10^{-6} < 1.5 \times 10^{-6} < 1.5 \times 10^{-6} < 3.1 \times 10^{-6} < 3.1 \times 10^{-6} < 3.1 \times 10^{-6} < 2.3 \times 10^{-4} (1.8 \pm 0.5) \times 10^{-5} < 2.3 \times 10^{-4} (1.1 \pm 0.4) \times 10^{-6} < 5.3 \times 10^{-7} < 1.6 \times 10^{-5} < 1.2 \times 10^{-6} < 3.1 \times 10^{-5} < 1.1 \times 10^{-3} < 1.2 \times 10^{-6} < 3.1 \times 10^{-3} < 1.2 \times 10^{-6} < 3.1 \times 10^{-3} < 2.4 \pm 0.31) \times 10^{-5} < 1.1 \times 10^{-3} < 2.4 \times 10^{-3} < 1.2 \times 10^{-6} < 9.0 \times 10^{-3} < 2.4 \times 10^{-3} < 3.0 \times 10^{-3} < 2.8 \times 10^{-3} < 1.1 \times 10^{-4} < 2.5 \times 10^$	$ < 1.9 \times 10^{-6} CL=90\% < 2.2 \times 10^{-6} CL=90\% < 1.5 \times 10^{-6} CL=90\% < 1.5 \times 10^{-6} CL=90\% < 4.0 \times 10^{-6} CL=90\% < 2.8 \times 10^{-7} CL=90\% < 6 \times 10^{-7} CL=90\% < 5 \times 10^{-7} CL=90\% < 1.3 \times 10^{-5} CL=90\% < 1.2 \times 10^{-6} CL=90\% < 1.5 \times 10^{-6} CL=90\% < 1.5 \times 10^{-6} CL=90\% < 1.5 \times 10^{-6} CL=90\% < 2.3 \times 10^{-6} CL=90\% < 2.3 \times 10^{-6} CL=90\% < 1.8 \pm 0.5) \times 10^{-6} < 2.3 \times 10^{-4} CL=90\% < 1.6 \times 10^{-7} CL=90\% < 1.6 \times 10^{-7} CL=90\% < 1.6 \times 10^{-7} CL=90\% < 2.42\pm 0.31) \times 10^{-5} < 1.1 \times 10^{-3} CL=90\% < 1.2 \times 10^{-6} CL=90\% < 2.4 \times 10^{-3} CL=90\% < 1.1 \times 10^{-7} CL=90\% < 1.1 1 \% CL=90\% < 1.1 1 10^{-3} CL=90\% < 1.1 10^{-7} CL=90\% $

$f_J(2220) \mathcal{K}^0 \times B(f_J(2220) \rightarrow n\overline{n})$	<	4.5	$\times 10^{-7}$	CL=90%	2135
$p_{\overline{D}} K^{*}(892)^{0}$	(15 + 06	1×10^{-6}		2216
$f_1(2220) K^* \times B(f_1(2220)) \rightarrow$	<	1.5 ± 0.0	$\times 10^{-7}$	CI 90%	
$p\overline{p}$)		1.5	× 10	CL_9070	
$p\overline{\Lambda}\pi^{-}$	(3.2 ±0.4)	$) \times 10^{-6}$		2401
$p\overline{\Sigma}(1385)^{-}$	<	2.6	$\times 10^{-7}$	CL=90%	2363
$\Delta^0 \overline{\Lambda}$	<	9.3	$ imes 10^{-7}$	CL=90%	2364
$p\overline{\Lambda}K^{-}$	<	8.2	$ imes 10^{-7}$	CL=90%	2308
$p\overline{\Sigma}^0\pi^-$	<	3.8	imes 10 ⁻⁶	CL=90%	2383
$\overline{\Lambda}\Lambda$	<	3.2	imes 10 ⁻⁷	CL=90%	2392
$\Delta^0 \overline{\Delta}{}^0$	<	1.5	imes 10 ⁻³	CL=90%	2335
$\Delta^{++}\overline{\Delta}^{}$	<	1.1	$ imes 10^{-4}$	CL=90%	2335
$\overline{D}^0 p \overline{p}$	($1.14 \pm 0.09)$	$) imes 10^{-4}$		1862
$D_s^- \overline{\Lambda} p$	(2.9 ± 0.9)	$) imes 10^{-5}$		1710
$\overline{D^*}(2007)^0 p \overline{p}$	($1.03 \pm 0.13)$	$) \times 10^{-4}$		1788
$D^- \rho \overline{\rho} \pi^+$	(3.38±0.32)	$) \times 10^{-4}$		1786
$D^{*-} \rho \overline{\rho} \pi^+$	(4.8 ± 0.5)	$) imes 10^{-4}$		1707
$\Theta_c \overline{p} \pi^+ imes B(\Theta_c o D^- p)$	<	9	imes 10 ⁻⁶	CL=90%	-
$\Theta_{c} \overline{p} \pi^{+} \times B(\Theta_{c} \rightarrow D^{*-} p)$	<	1.4	imes 10 ⁻⁵	CL=90%	-
$\overline{\Sigma}_{c}^{}\Delta^{++}$	<	1.0	imes 10 ⁻³	CL=90%	1839
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}$	(1.3 ± 0.4)) × 10 ⁻³		1934
$\overline{\Lambda}_{c}^{-} p$	($2.1 \begin{array}{c} +0.7 \\ -0.5 \end{array}$) × 10 ⁻⁵		2021
$\overline{\Lambda}_{c}^{-} p \pi^{0}$	<	5.9	$ imes 10^{-4}$	CL=90%	1982
$\overline{\Lambda}_{c}^{c} p \pi^{+} \pi^{-} \pi^{0}$	<	5.07	$ imes 10^{-3}$	CL=90%	1882
$\overline{\Lambda}_{-}^{c} p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	<	2.74	$ imes 10^{-3}$	CL=90%	1821
$\Lambda^+ \overline{\rho} \pi^+ \pi^-$	(1.12 ± 0.32	1×10^{-3}		1934
$\Lambda^+ \overline{p} \pi^+ \pi^-$ (nonresonant)	(6.4 +1.9	1×10^{-4}		1934
$\overline{\Sigma}_{c}(2520)^{}p\pi^{+}$	(12 ± 04	1×10^{-4}		1860
$\frac{\Sigma}{\Sigma} (2520)^0 p \pi^-$	<	3.8	$\times 10^{-5}$	CI = 90%	1860
$\frac{\Sigma}{\Sigma} (2455)^0 p \pi^-$	(1.5 ± 0.5	10^{-4}	02 00/0	1895
$\frac{\Sigma}{\Sigma} (2455)^{} p \pi^+$	(2.2 ± 0.7	10^{-4}		1895
$\overline{A}^{-}A^{+}$	<	6.2	× 10 ⁻⁵	CI = 90%	1319
$\overline{\Lambda}_{c}(2593)^{-} / \overline{\Lambda}_{c}(2625)^{-} p$	<	1.1	$\times 10^{-4}$	CL=90%	_
$\overline{\Xi}_{c}^{-} \Lambda_{c}^{+} \times B(\overline{\Xi}_{c}^{-} \to \overline{\Xi}^{+} \pi^{-} \pi^{-})$	(9 +5	$) imes 10^{-5}$		1147
$\Lambda^+ \Lambda^- \kappa^0$) (-4 8 +5	1×10^{-4}		_
('c ('c ')	(· _ ,	, ^ 10		

Lepton Family number (*LF*) violating modes, or $\Delta B = 1$ weak neutral current (*B1*) modes

$\gamma \gamma$	B1	<	6.2	imes 10 ⁻⁷	CL=90%	2640
e ⁺ e ⁻	B1	<	1.13	imes 10 ⁻⁷	CL=90%	2640
$e^+e^-\gamma$	B1	<	1.2	imes 10 ⁻⁷	CL=90%	2640

HTTP://PDG.LBL.GOV

$\mu^+\mu^-$	B1	<	1.5	imes 10 ⁻⁸	CL=90%	2638
$\mu^+ \mu^- \gamma$	B1	<	1.6	imes 10 ⁻⁷	CL=90%	2638
$\tau^+ \tau^-$	B1	<	4.1	imes 10 ⁻³	CL=90%	1952
$\pi^0 \ell^+ \ell^-$	B1	<	1.2	$ imes 10^{-7}$	CL=90%	2638
$\pi^0 \nu \overline{\nu}$	B1	<	2.2	imes 10 ⁻⁴	CL=90%	2638
$\pi^{0}e^{+}e^{-}$	B1	<	1.4	$ imes 10^{-7}$	CL=90%	2638
$\pi^{0} \mu^{+} \mu^{-}$	B1	<	5.1	$ imes 10^{-7}$	CL=90%	2634
$K^0\ell^+\ell^-$	B1	[a] (2.9	$^{+1.6}_{-1.3}$) $ imes$ 10 $^{-7}$		2616
$K^0 \nu \overline{\nu}$	B1	<	1.6	imes 10 ⁻⁴	CL=90%	2616
$\rho^0 \nu \overline{\nu}$	B1	<	4.4	imes 10 ⁻⁴	CL=90%	2583
$K^0 e^+ e^-$	B1	(1.3	$^{+1.6}_{-1.1}$) $ imes$ 10 $^{-7}$		2616
$K^0 \mu^+ \mu^-$	B1	(5.7	$^{+2.2}_{-1.8}$) $ imes$ 10 $^{-7}$		2612
$K^*(892)^0 \ell^+ \ell^-$	B1	[a] (9.5	± 1.8) $\times 10^{-7}$		2564
$K^{*}(892)^{0} e^{+} e^{-}$	B1	(1.04	$^{+0.35}_{-0.31}) imes 10^{-6}$		2564
${\cal K}^{*}$ (892) $^{0}\mu^{+}\mu^{-}$	B1	(1.10	$^{+0.29}_{-0.26}) imes 10^{-6}$		2560
$K^{*}(892)^{0} \nu \overline{\nu}$	B1	<	3.4	imes 10 ⁻⁴	CL=90%	2564
$\phi u \overline{ u}$	B1	<	5.8	imes 10 ⁻⁵	CL=90%	2541
$e^{\pm} \mu^{\mp}$	LF	[k] <	9.2	imes 10 ⁻⁸	CL=90%	2639
$\pi^0 e^{\pm} \mu^{\mp}$	LF	<	1.4	$ imes 10^{-7}$	CL=90%	2637
$\mathcal{K}^0 e^{\pm} \mu^{\mp}$	LF	<	2.7	imes 10 ⁻⁷	CL=90%	2615
$K^{*}(892)^{0} e^{+} \mu^{-}$	LF	<	5.3	imes 10 ⁻⁷	CL=90%	2563
$K^*(892)^0 e^- \mu^+$	LF	<	3.4	$ imes 10^{-7}$	CL=90%	2563
$K^{*}_{}(892)^{0} e^{\pm} \mu^{\mp}$	LF	<	5.8	imes 10 ⁻⁷	CL=90%	2563
$e^{\pm} au^{\mp}$	LF	[k] <	1.1	imes 10 ⁻⁴	CL=90%	2341
$\mu^{\pm} \tau^{\mp}$	LF	[k] <	3.8	imes 10 ⁻⁵	CL=90%	2339
invisible	B1	<	2.2	imes 10 ⁻⁴	CL=90%	-
$ u \overline{\nu} \gamma$	B1	<	4.7	imes 10 ⁻⁵	CL=90%	2640

B^{\pm}/B^{0} ADMIXTURE

CP violation

The branching fraction measurements are for an admixture of *B* mesons at the $\Upsilon(4S)$. The values quoted assume that $B(\Upsilon(4S) \rightarrow B\overline{B}) = 100\%$.

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Event though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

B DECAY MODES	Fraction (Γ_i/Γ)							Scale factor/ p Confidence level (MeV/c)		
Semileptor	nic	an	d lept	on	ic mo	odes				
$B \rightarrow e^+ \nu_e$ anything [r	m]	(10.74	±	0.16) %			-	
$B ightarrow \overline{p} e^+ u_e$ anything		<	5.9			imes 10 ⁻	-4	CL=90%	-	
$B \rightarrow \mu^+ \nu_\mu$ anything [r	<i>m</i>]	(10.74	\pm	0.16) %			-	
$B \rightarrow \ell^+ \nu_\ell$ anything [a,r	m]	(10.74	±	0.16) %			_	
$B \rightarrow D^- \ell^+ u_\ell$ anything [[a]	(2.8	\pm	0.9) %			-	
$B ightarrow \overline{D}{}^0 \ell^+ u_\ell$ anything [[a]	(7.2	\pm	1.4) %			_	
$B \rightarrow D \tau^+ \nu_{\tau}$		(8.6	±	2.7) × 10 ⁻	-3		1911	
$B ightarrow \ D^{*-} \ell^+ u_\ell$ anything [[<i>n</i>]	(6.7	±	1.3) × 10 ⁻	-3		-	
$B \rightarrow D^* \tau^+ \nu_{ au}$		(1.62	±	0.33) %			-	
$B ightarrow \overline{D}^{**} \ell^+ u_\ell$ [a,	<i>o</i>]	(2.7	\pm	0.7) %			-	
$B \rightarrow$		(3.8	\pm	1.3) × 10 ⁻	-3	S=2.4	-	
$\overline{D}_1(2420)\ell^+ u_\ell$ any-										
thing										
$B o \ D \pi \ell^+ u_\ell$ any-		(2.6	\pm	0.5) %		S=1.5	-	
thing $+$										
$D^* \pi \ell^+ u_\ell$ anything										
$B ightarrow D \pi \ell^+ u_\ell$ anything		(1.5	±	0.6) %			-	
$B o \ D^* \pi \ell^+ u_\ell$ anything		(1.9	\pm	0.4) %	_		-	
$B \rightarrow$		(4.4	±	1.6	$) imes 10^{-1}$	-3		-	
$D_2^*(2460)\ell^+ u_\ell$ any-										
thing										
$B ightarrow ~D^{st -} \pi^+ \ell^+ u_\ell$ any-		(1.00	±	0.34) %			-	
thing										

HTTP://PDG.LBL.GOV

. .

$B \rightarrow D_s^- \ell^+ u_\ell$ anything	[a] •	<	7			imes 10 ⁻³	CL=90%	_
$B ightarrow D_s^- \ell^+ u_\ell K^+$ any-	[a] •	<	5			imes 10 ⁻³	CL=90%	_
thing								
$B o D_s^- \ell^+ u_\ell K^0$ any-	[a] •	<	7			imes 10 ⁻³	CL=90%	-
thing								
$B ightarrow \ \ell^+ u_\ell$ charm		(10.57	\pm	0.15) %		-
$B \to X_{\mu} \ell^+ \nu_{\ell}$		(2.33	\pm	0.22	$) \times 10^{-3}$		_
$B \rightarrow \pi \ell \nu_{\ell}$		(1.35	\pm	0.10	$) \times 10^{-4}$		2638
$B \rightarrow K^+ \ell^+ u_\ell$ anything	[a]	(6.2	\pm	0.5) %		-
$B \rightarrow K^- \ell^+ \nu_\ell$ anything	[a]	(10	±	4	$) \times 10^{-3}$		-
$B ightarrow \ K^0 / K^0 \ell^+ u_\ell$ any-	[a]	(4.5	\pm	0.5) %		-
thing								

D, D^* , or D_s modes

	-	, 0	, 0	~s ·					
$B \to$	D^\pm anything		(23.5	\pm	1.3) %		_
$B \to$	D^0/\overline{D}^0 anything		(62.5	\pm	2.9) %	S=1.3	_
$B \to$	$D^*(2010)^\pm$ anything		(22.5	\pm	1.5) %		_
$B \to$	$D^*(2007)^0$ anything		(26.0	±	2.7) %		_
$B \to$	D_s^{\pm} anything	[k]	(8.5	±	0.8) %		-
$B \rightarrow$	$D_s^{*\pm}$ anything		(6.5	±	1.0) %		-
$B \rightarrow$	$D_s^{*\pm}\overline{D}^{(*)}$		(3.5	±	0.6) %		-
$B \rightarrow$	$D^{(*)}\overline{D}^{(*)}K^0 +$	[k,p]	(7.1	+	2.7 1.7) %		-
D	$(*) D(*) K^{\pm}$		(00		4) 0/		
$D \rightarrow R$	$D(*)\overline{D}(*)$	[<i>k</i> , m]	(22	±	4) %		_
	D_{s}^{*} , D^{*} , D^{*}	$[\kappa, \rho]$	(4.0 E 0	Т	0.4) /0 3		1711
	$D D^{*}(2010) \pm \bot$	[^]	~	5.9			$^{\times 10}_{\times 10}$	CL = 90%	1/11
ת ⊐	* D± (2010) +	[^]		5.5			× 10	CL—9070	
$B \rightarrow$	$\stackrel{D}{D}D^{\pm}$	[k]	<	3.1			$\times 10^{-3}$	CL=90%	1866
$B \rightarrow$	$D_s^{(*)\pm}\overline{D}^{(*)}X(n\pi^{\pm})$	[k,p]	(9	+	5 4) %		-
$B \rightarrow$	$D^*(2010)\gamma$		<	1.1			imes 10 ⁻³	CL=90%	2257
$B \rightarrow$	$D_{s}^{+}\pi^{-}, D_{s}^{*+}\pi^{-},$	[k]	<	4			imes 10 ⁻⁴	CL=90%	-
D	$^{+}_{s}\rho^{-}$, $D_{s}^{*+}\rho^{-}$, $D_{s}^{+}\pi^{0}$,								
D	$^{*+}\pi^0$. D^+n . $D^{*+}n$.								
	$+ 0^{0} D^{*+} 0^{0} D^{+} \omega$								
	$s \rho$, $D_s \rho$, $D_s \omega$, $*+$								
	s^{ω}						3		
$B \rightarrow$	$D_{s1}(2536)$ ' anything		<	9.5			$\times 10^{-3}$	CL=90%	_
	(Charm	noni	ium n	nod	les			
$B \to$	$J/\psi(1S)$ anything		(1.09	$4\pm$	0.0	32) %	S=1.1	-
Β-	$\rightarrow J/\psi(1S)(\text{direct})$		(7.8	±	0.4) × 10 ⁻³	S=1.1	-
$B \rightarrow$	$\psi(2S)$ anything		(3.07	±	0.2	1) $ imes$ 10 $^{-3}$:	-
нтті	P://PDG.LBL.GOV	F	Dage	e 34			Created:	7/18/2008	14:28
	1.1		0					/ /	

$B \rightarrow \chi_{c1}(1P)$ anything		(3.86	\pm	0.27	$) \times 10^{-3}$		_
$B ightarrow \chi_{c1}(1P)({ m direct})$ any-		(3.16	\pm	0.25	$) \times 10^{-3}$		_
thing								
$B \rightarrow \chi_{c2}(1P)$ anything		(1.3	±	0.4	$) \times 10^{-3}$	S=1.9	-
$B \rightarrow \chi_{c2}(1P)$ (direct) any-		(1.65	±	0.31) × 10 ⁻³		_
thing						2		
$B \rightarrow \eta_c(1S)$ anything		< ,	9			$\times 10^{-3}$	CL=90%	_
$ \begin{array}{ccc} B^{\circ} \rightarrow & X(3872) K \times B(X \rightarrow D^{0} \overline{D}^{0} \pi^{0}) \end{array} $		(1.2	±	0.4) × 10 +		1141
$B \rightarrow KX(3945) \times$	[q]	(7.1	±	3.4	$) \times 10^{-5}$		1083
$B(X(3945) ightarrow\ \omegaJ/\psi)$								
	Ko	r <i>K</i>	* mo	des				
$B ightarrow K^{\pm}$ anything	[k]	(78.9	±	2.5) %		_
$B \rightarrow K^+$ anything		(66	\pm	5) %		_
$B \rightarrow K^-$ anything		(13	±	4) %		_
$B \rightarrow K^0 / \overline{K}^0$ anything	[k]	(64	\pm	4) %		-
$B ightarrow K^*(892)^\pm$ anything		(18	±	6) %		_
$B \rightarrow$	[k]	(14.6	±	2.6) %		-
$K^*(892)^0 / K^*(892)^0$ any-								
thing		,				Б		
$B \rightarrow K^{*}(892)\gamma$		(4.2	±	0.6) × 10 ⁻⁵		2564
$B \rightarrow \eta K \gamma$		(8.5	+	1.8 1.6	$) \times 10^{-6}$		2588
$B \rightarrow K_1(1400)\gamma$		<	1.27			imes 10 ⁻⁴	CL=90%	2453
$B \rightarrow K_2^*(1430)\gamma$		(1.7	+	0.6 0.5	$) imes 10^{-5}$		2447
$B \rightarrow K_2(1770)\gamma$		<	1.2			imes 10 ⁻³	CL=90%	2342
$B \rightarrow \tilde{K_3}(1780)\gamma$		<	3.7			imes 10 ⁻⁵	CL=90%	2341
$B \rightarrow K_{4}^{*}(2045)\gamma$		<	1.0			imes 10 ⁻³	CL=90%	2244
$B \rightarrow K \eta'(958)$		(8.3	±	1.1	$) imes 10^{-5}$		2528
$B \rightarrow K^*(892) \eta'(958)$		(4.1	±	1.1	$) \times 10^{-6}$		2472
$B \rightarrow K \eta$		<	5.2			$\times 10^{-6}$	CL=90%	2588
$B ightarrow K^*(892) \eta$		(1.8	\pm	0.5	$) imes 10^{-5}$		2534
$B \rightarrow \underline{K} \phi \phi$		(2.3	\pm	0.9	$) imes 10^{-6}$		2306
$B \rightarrow \overline{b} \rightarrow \overline{s}\gamma$		(3.56	±	0.25	$) \times 10^{-4}$		_
$B \rightarrow b \rightarrow \overline{s}$ gluon		<	6.8			%	CL=90%	_
$B \rightarrow \eta$ anything		<	4.4			$\times 10^{-4}$	CL=90%	-
$B o \ \eta'$ anything		(4.2	±	0.9) × 10 ⁻⁴		-
Light ι	unflav	/or€	ed me	son	mod	des		
$B \rightarrow \rho \gamma$		(1.36	±	0.30) × 10 ⁻⁶		2583
$B \rightarrow \rho / \omega \gamma$		(1.28	\pm	0.21) × 10 ⁻⁶		_
$B ightarrow \pi^{\pm}$ anything	[k,r]	(3	358	\pm	7) %		_
$B \rightarrow \pi^0$ anything	-	(2	235	±	11) %		-

Page 35

$B \rightarrow \eta$ anything $B \rightarrow \rho^0$ anything $B \rightarrow \omega$ anything		((<	17.6 21 81	± ±	1.6 5) %) % %	CI =90%	- -
$B \rightarrow \phi \text{ anything} \\ B \rightarrow \phi K^*(892)$		(<	3.43 2.2	±	0.12) % × 10 ⁻⁵	CL=90%	_ 2460
	Bar	yon	mod	es				
$B ightarrow \ \Lambda_c^+ \ / \ \overline{\Lambda}_c^-$ anything		(4.5	\pm	1.2) %		-
$B \rightarrow \overline{\Lambda}_c^- e^+$ anything		<	2.3			imes 10 ⁻³	CL=90%	-
$B \rightarrow \overline{\Lambda}_c^- p$ anything		(2.6	±	0.8) %		-
$B \rightarrow \overline{\Lambda}_{c}^{-} p e^{+} \nu_{e}$		<	1.0			imes 10 ⁻³	CL=90%	2021
$B \rightarrow \overline{\Sigma}_{c}^{}$ anything		(4.2	±	2.4	$) imes 10^{-3}$		_
$B \rightarrow \overline{\Sigma}_{c}^{-}$ anything		<	9.6			imes 10 ⁻³	CL=90%	_
$B \rightarrow \overline{\Sigma}_{c}^{0}$ anything		(4.6	\pm	2.4	$) \times 10^{-3}$		_
$B \rightarrow \overline{\Sigma}_{c}^{0} N(N = p \text{ or } n)$		<	1.5			imes 10 ⁻³	CL=90%	1938
$B \rightarrow \Xi_c^{0}$ anything		(1.93	±	0.30	$) \times 10^{-4}$	S=1.1	_
$\times B(\overline{\Xi}_{c}^{0} \rightarrow \overline{\Xi}^{-}\pi^{+})$								
$B \rightarrow =^+$ anything		(45	+	1.3	$) \times 10^{-4}$		_
		(_	1.2) / 20		
$A = D(\underline{a}_{c} + \underline{a}_{c} + \underline{a}_{c})$ $B \to p/\overline{p} = p/p$	[]	(8.0	+	0.4)%		_
$B \rightarrow p/\overline{p}$ (direct) anything	$\begin{bmatrix} k \end{bmatrix}$	(5.5	+	0.5)%		_
$B \rightarrow \Lambda/\overline{\Lambda}$ anything	[k]	(4.0	±	0.5)%		_
$B \rightarrow \overline{\Xi}^{-} / \overline{\Xi}^{+}$ anything	[k]	(2.7	±	0.6	$) \times 10^{-3}$		_
$B \rightarrow$ baryons anything		(6.8	±	0.6)%		_
$B \rightarrow p \overline{p}$ anything		(2.47	±	0.23) %		-
$B \rightarrow \Lambda \overline{p} / \overline{\Lambda} p$ anything	[k]	(2.5	±	0.4) %		_
$B \rightarrow \Lambda \Lambda$ anything		<	5			$\times 10^{-3}$	CL=90%	_
Lepton Family	numt	ber ((LF)	vic	latin	g modes	or	
$\Delta B = 1$ wea	ak nei	utra	Ì curr	ent	t (<i>B</i> 1) modes		
$B \rightarrow s e^+ e^-$ B1		(4.7	\pm	1.3	$) imes 10^{-6}$		_
$B \rightarrow s \mu^+ \mu^-$ B1		(4.3	±	1.2) × 10 ⁻⁶		_
$B \rightarrow s \ell^+ \ell^-$ B1	[a]	(4.5	±	1.0	$) \times 10^{-6}$		-
$B ightarrow \pi \ell^+ \ell^-$		<	9.1			$\times 10^{-8}$	CL=90%	2638
$B \rightarrow K e^+ e^-$ B1		(3.8	+	0.8 0.7	$) \times 10^{-7}$		2617
$B ightarrow K^*(892) e^+ e^-$ B1		(1.13	±	0.27	$) imes 10^{-6}$		2564
$B \rightarrow K \mu^+ \mu^-$ B1		(4.2	+ -	0.9 0.8) × 10 ⁻⁷		2612
$B ightarrow \ K^*(892) \mu^+ \mu^-$ B1		(1.03	+	0.26 0.23	$) imes 10^{-6}$		2560

 $B \to K \ell^+ \ell^- \qquad B1 \qquad (3.9 \pm 0.7) \times 10^{-7} \\ B \to K^* (892) \ell^+ \ell^- \qquad B1 \qquad (9.4 \pm 1.8) \times 10^{-7}$

HTTP://PDG.LBL.GOV

 $S{=}1.2$

S=1.1

2617

2564

$B \rightarrow$	$se^{\pm}\mu^{\mp}$	LF	[k] <	2.2	imes 10 ⁻⁵	CL=90%	_
$B \rightarrow$	$\pi e^{\pm} \mu^{\mp}$	LF	<	9.2	imes 10 ⁻⁸	CL=90%	2637
$B \rightarrow$	$ ho e^{\pm} \mu^{\mp}$	LF	<	3.2	imes 10 ⁻⁶	CL=90%	2582
$B \rightarrow$	K e $^\pm\mu^\mp$	LF	<	3.8	imes 10 ⁻⁸	CL=90%	2616
$B \rightarrow$	K*(892) $e^{\pm}\mu^{\mp}$	LF	<	5.1	imes 10 ⁻⁷	CL=90%	2563

$B^{\pm}/B^{0}/B^{0}_{s}/b$ -baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LEP, Tevatron, $Sp\overline{p}S$).

> Mean life au = (1.568 \pm 0.009) imes 10⁻¹² s Mean life $\tau = (1.72 \pm 0.10) \times 10^{-12}$ s Charged *b*-hadron admixture Mean life $\tau = (1.58 \pm 0.14) \times 10^{-12}$ s Neutral *b*-hadron admixture $au_{
> m charged \ b-hadron}/ au_{
> m neutral \ b-hadron} = 1.09 \pm 0.13$ $|\Delta \tau_b| / \tau_b \overline{b} = -0.001 \pm 0.014$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LEP, Tevatron, $Sp \overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LEP and at the Tevatron.

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

		Scale factor/	р
DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)

PRODUCTION FRACTIONS

The production fractions for weakly decaying *b*-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFAG) as described in the note " $B^0 - \overline{B}^0$ Mixing" in the B^0 Particle Listings. The production fractions in b-hadronic Z decay are also listed at the end of the section. Values assume

$$\begin{array}{l} \mathsf{B}(\overline{b} \to \ B^+) = \mathsf{B}(\overline{b} \to \ B^0) \\ \mathsf{B}(\overline{b} \to \ B^+) + \mathsf{B}(\overline{b} \to \ B^0) + \mathsf{B}(\overline{b} \to \ B^0) + \mathsf{B}(\overline{b} \to \ B^0) \\ \end{array} \\ + \mathsf{B}(b \to \ b^-) + \mathsf{B}(b \to \ b^-) \\ \end{array}$$

The notation for production fractions varies in the literature (f_d, d_{R^0}, d_{R^0}) $f(b \rightarrow \overline{B}^0)$, Br $(b \rightarrow \overline{B}^0)$). We use our own branching fraction notation here, $B(\overline{b} \rightarrow B^{0})$.

HTTP://PDG.LBL.GOV

Page 37 Created: 7/18/2008 14:28

Б

B^+	(39.9 \pm 1.1) %	_
B^0	(39.9 \pm 1.1) %	_
B_s^0	$(11.0 \pm 1.2)\%$	_
<i>b</i> -baryon	$($ 9.2 \pm 1.9 $)\%$	_
B _c		_

DECAY MODES

Semileptonic and leptonic modes

u anything		($23.1\ \pm$	1.5)	%		-
$\ell^+ u_\ell$ anything	[a]	($10.69\pm$	0.22)	%		_
$e^+ u_e$ anything		($10.86\pm$	0.35)	%		_
$\mu^+ u_\mu$ anything		($10.95 \mathop{\underline{+}}\limits$	0.29 0.25)	%		_
$D^-\ell^+ u_\ell$ anything	[<i>a</i>]	($2.3~\pm$	0.4)	%	S=1.8	_
$D^-\pi^+\ell^+ u_\ell$ anything		($4.9~\pm$	1.9)	$\times 10^{-3}$		_
$D^-\pi^-\ell^+ u_\ell$ anything		($2.6~\pm$	1.6)	$\times 10^{-3}$		_
$\overline{D}{}^0\ell^+ u_\ell$ anything	[a]	($6.84\pm$	0.35)	%		-
$\overline{D}{}^{0}_{-}\pi^{-}\ell^{+} u_{\ell}$ anything		($1.07\pm$	0.27)	%		-
$\overline{D}{}^0\pi^+\ell^+ u_\ell$ anything		($2.3\ \pm$	1.6)	$\times 10^{-3}$		_
$D^{*-}\ell^+ u_\ell$ anything	[a]	($2.75\pm$	0.19)	%		_
$D^{*-}\pi^-\ell^+ u_\ell$ anything		(6 ±	7)	$\times 10^{-4}$		_
$D^{*-}_{-}\pi^+\ell^+ u_\ell$ anything		($4.8\ \pm$	1.0)	$\times 10^{-3}$		_
$\overline{D}_{i}^{0} \ell^{+} u_{\ell}$ anything $ imes$	[<i>a</i> ,s]	($2.6\ \pm$	0.9)	$\times 10^{-3}$		_
$B(\overline{D}_{j}^{0} ightarrow D^{*+}\pi^{-})$							
$D_i^- \ell^+ \nu_\ell$ anything $ imes$	[<i>a</i> ,s]	(7.0 ±	2.3)	$\times 10^{-3}$		_
J		`		,			
$B(D^i \rightarrow D^0 \pi^-)$,			
${egin{array}{lll} {\sf B}(D^j o D^0\pi^-)\ \overline{D}^*_2(2460)^0\ell^+ u_\ell { m anything} \end{array}}$		、 <	1.4	,	× 10 ⁻³	CL=90%	_
$egin{array}{llllllllllllllllllllllllllllllllllll$		<	1.4		× 10 ⁻³	CL=90%	-
$egin{aligned} & B(D_j^- o \ D^0 \pi^-) \ & \overline{D}_2^*(2460)^0 \ell^+ u_\ell ext{anything} \ & imes B(\overline{D}_2^*(2460)^0 o \ & D^{*-} \pi^+) \end{aligned}$		<	1.4		× 10 ⁻³	CL=90%	-
$B(D_j^- ightarrow D^0 \pi^-)$ $\overline{D}_2^*(2460)^0 \ell^+ u_\ell \text{ anything}$ $ imes B(\overline{D}_2^*(2460)^0 ightarrow$ $D^{*-} \pi^+)$ $D_2^*(2460)^- \ell^+ u_\ell \text{ anything}$		<	1.4 4.2 ⁺	1.5)	$\times 10^{-3}$ $\times 10^{-3}$	CL=90%	-
$ \begin{array}{c} B(D_j^- \to D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything} \\ \times B(\overline{D}_2^*(2460)^0 \to D^{*-} \pi^+) \\ D_2^*(2460)^- \ell^+ \nu_\ell \text{ anything} \\ \times B(D_2^*(2460)^- \to D^{*-} \pi^+) \end{array} $		<	1.4 4.2 <u>+</u>	1.5 1.8)	imes 10 ⁻³ $ imes$ 10 ⁻³	CL=90%	-
$\begin{array}{c} B(D_j^- \to D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything} \\ \times B(\overline{D}_2^*(2460)^0 \to D^{*-} \pi^+) \\ D_2^*(2460)^- \ell^+ \nu_\ell \text{ anything} \\ \times B(D_2^*(2460)^- \to D^0 \pi^-) \end{array}$		< (1.4 4.2 <u>+</u>	1.5 1.8)	imes 10 ⁻³ $ imes$ 10 ⁻³	CL=90%	-
$B(D_j^- \rightarrow D^0 \pi^-)$ $\overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything}$ $\times B(\overline{D}_2^*(2460)^0 \rightarrow D^{*-} \pi^+)$ $D_2^*(2460)^- \ell^+ \nu_\ell \text{ anything}$ $\times B(D_2^*(2460)^- \rightarrow D^0 \pi^-)$ $\overline{D}^*(2460)^0 \ell^+ \nu_\ell \text{ anything}$		< (1.4 4.2 <u>+</u> 1.6 +	1.5 1.8)	$\times 10^{-3}$ $\times 10^{-3}$	CL=90%	-
$\begin{array}{cccc} B(D_{j}^{-} \to D^{0}\pi^{-}) \\ \overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell} \text{ anything} \\ \times B(\overline{D}_{2}^{*}(2460)^{0} \to \\ D^{*-}\pi^{+}) \\ D_{2}^{*}(2460)^{-}\ell^{+}\nu_{\ell} \text{ anything} \\ \times B(D_{2}^{*}(2460)^{-} \to \\ D^{0}\pi^{-}) \\ \overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell} \text{ anything} \\ \times P(\overline{D}^{*}(2460)^{0} \to \\ D^{0}\pi^{-}) \end{array}$		< (1.4 4.2 \pm 1.6 \pm	1.5 1.8) 0.8)	$ imes 10^{-3}$ $ imes 10^{-3}$ $ imes 10^{-3}$	CL=90%	-
$\begin{array}{cccc} B(D_{j}^{-} \to D^{0}\pi^{-}) \\ \overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell} \text{ anything} \\ \times B(\overline{D}_{2}^{*}(2460)^{0} \to \\ D^{*-}\pi^{+}) \\ D_{2}^{*}(2460)^{-}\ell^{+}\nu_{\ell} \text{ anything} \\ \times B(D_{2}^{*}(2460)^{-} \to \\ D^{0}\pi^{-}) \\ \overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell} \text{ anything} \\ \times B(\overline{D}_{2}^{*}(2460)^{0} \to \\ D^{-}\pi^{+}) \end{array}$		(1.4 4.2 $\stackrel{+}{_}$ 1.6 \pm	1.5 1.8) 0.8)	imes 10 ⁻³ imes 10 ⁻³ imes 10 ⁻³	CL=90%	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		< (1.4 4.2 + 1.6 ±	1.5 1.8) 0.8)	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$	CL=90%	-
$\begin{array}{c} B(D_j^- \to D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything} \\ \times B(\overline{D}_2^*(2460)^0 \to D^{*-} \pi^+) \\ D_2^*(2460)^- \ell^+ \nu_\ell \text{ anything} \\ \times B(D_2^*(2460)^- \to D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything} \\ \times B(\overline{D}_2^*(2460)^0 \to D^- \pi^+) \\ \text{charmless } \ell \overline{\nu}_\ell \\ \pi^+ \nu \text{ anything} \end{array}$	[a]	< ((1.4 4.2 $^+$ 1.6 \pm 1.7 \pm 2.41	1.5) 1.8) 0.8)	$ imes 10^{-3}$ $ imes 10^{-3}$ $ imes 10^{-3}$ $ imes 10^{-3}$	CL=90%	-
$\begin{array}{c} B(D_j^- \to D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything} \\ \times B(\overline{D}_2^*(2460)^0 \to D^{*-} \pi^+) \\ D_2^*(2460)^- \ell^+ \nu_\ell \text{ anything} \\ \times B(D_2^*(2460)^- \to D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything} \\ \times B(\overline{D}_2^*(2460)^0 \to D^- \pi^+) \\ \text{charmless } \ell \overline{\nu}_\ell \\ \tau^+ \nu_\tau \text{ anything} \\ D^{*-} \pi \nu_\tau \text{ anything} \end{array}$	[a]	< (((((((((((((((((((1.4 4.2 \pm 1.6 \pm 2.41 \pm 2.41 \pm	1.5 1.8) 0.8) 0.5) 0.23)	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$ %	CL=90%	-
$\begin{array}{c} B(D_j^- \to D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything} \\ \times B(\overline{D}_2^*(2460)^0 \to D^{*-} \pi^+) \\ D_2^*(2460)^- \ell^+ \nu_\ell \text{ anything} \\ \times B(D_2^*(2460)^- \to D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything} \\ \times B(\overline{D}_2^*(2460)^0 \to D^- \pi^+) \\ \text{charmless } \ell \overline{\nu}_\ell \\ \tau^+ \nu_\tau \text{ anything} \\ D^{*-} \tau \nu_\tau \text{ anything} \\ \overline{\mathcal{L}} \to \ell^- \overline{\mathcal{U}}_\epsilon \text{ anything} \end{array}$	[a]	< (((((((((((((((((((1.4 4.2 $^+$ 1.6 \pm 2.41 \pm 9 \pm 8.02 \downarrow	1.5 1.8) 0.8) 0.5) 0.23) 4)	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$	CL=90%	-
$\begin{array}{c} B(D_j^- \to D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything} \\ \times B(\overline{D}_2^*(2460)^0 \to D^{*-} \pi^+) \\ D_2^*(2460)^- \ell^+ \nu_\ell \text{ anything} \\ \times B(D_2^*(2460)^- \to D^0 \pi^-) \\ \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell \text{ anything} \\ \times B(\overline{D}_2^*(2460)^0 \to D^- \pi^+) \\ \text{charmless } \ell \overline{\nu}_\ell \\ \tau^+ \nu_\tau \text{ anything} \\ D^{*-} \tau \nu_\tau \text{ anything} \\ \overline{c} \to \ell^- \overline{\nu}_\ell \text{ anything} \end{array}$	[a] [a]	< ((((((1.4 4.2 $+$ 1.6 \pm 1.7 \pm 2.41 \pm 9 \pm 8.02 \pm	1.5) 1.8) 0.8) 0.5) 0.23) 4) 0.19)	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$ %	CL=90%	-

HTTP://PDG.LBL.GOV Page 38

Charmed m	eson	an	d baı	yo	n m	ode	S		
\overline{D}^0 anything		(59.6	±	2.9) %			-
$D^0 D_s^\pm$ anything	[k]	(9.1	+	3.9 2.8) %			-
$D^{\mp}D^{\pm}_{s}$ anything	[k]	(4.0	+	2.3 1.8) %			_
$\overline{D}^0 D^0$ anything	[<i>k</i>]	(5.1	+	2.0 1.8) %			_
$D^0 D^\pm$ anything	[k]	(2.7	+	1.8 1.6) %			-
$D^{\pm} D^{\mp}$ anything	[k] ·	<	9			×	10-3	CL=90%	-
D^- anything		(23.1	\pm	1.7) %			_
$D^*(2010)^+$ anything		(17.3	\pm	2.0) %			-
$D_1(2420)^0$ anything		(5.0	\pm	1.5) %			-
$D^*(2010)^{\mp}D^{\pm}_s$ anything	[k]	(3.3	+	1.6 1.3) %			_
$D^0 D^*(2010)^\pm$ anything	[k]	(3.0	+	1.1 0.9) %			_
$D^*(2010)^\pm D^\mp$ anything	[k]	(2.5	+	1.2 1.0) %			_
$D^{*}(2010)^{\pm} D^{*}(2010)^{\mp}$ anything	[k]	(1.2	\pm	0.4) %			-
$\overline{D}D$ anything		(10	+	11 10) %			_
$D_2^*(2460)^0$ anything		(4.7	\pm	2.7) %			-
D_s^- anything		(15.0	\pm	2.1) %			-
D_s^+ anything		(10.1	\pm	3.1) %			-
Λ_c^{+} anything		(9.7	\pm	2.9) %			_
\overline{c}/c anything	[<i>r</i>]	(116.2	±	3.2) %			-
Cha	rmon	iur	n mo	de	s				
$J/\psi(1S)$ anything		(1.16	5±	0.10) %			-
$\psi(2S)$ anything		(4.8	\pm	2.4) ×	10-3		-
$\chi_{c1}(1P)$ anything		(1.3	\pm	0.4) %			-
K	or K	*	mode	20					
$\overline{s}\gamma$	01 /1	(3.1	±	1.1) ×	10-4		_
$\overline{s}\overline{\nu}\nu$		<	6.4			, ×	10-4	CL=90%	_
K^\pm anything		(74	\pm	6) %			-
K_S^0 anything		(29.0	±	2.9) %			_
	Pion	m	odes						
π^{\pm} anything		(:	397	± 2	21) %			-
π^0 anything	[<i>r</i>]	(2	278	±	60) %			_
ϕ anything		(2.82	<u>2</u> ±	0.23	3) %			_
Baryon modes									
p/\overline{p} anything		(13.1	±	1.1) %			-

charged anything hadron ⁺ hadron ⁻ charmless $\Lambda/\overline{\Lambda}$ anything b-baryon anything $\Delta B = 1$ wea $\mu^+ \mu^-$ anything B2	Other modes [r] $(497 \pm 7) \%$ $(1.7 + 1.0 - 7) \times 10^{-5}$ $(7 \pm 21) \times 10^{-3}$ Baryon modes $(5.9 \pm 0.6) \%$ $(10.2 \pm 2.8) \%$ at neutral current (B1) modes $1 < 3.2 \times 10^{-4}$	 CL=90%
B*	$I(J^P) = rac{1}{2}(1^-)$	
I, J, P need confirmation. predictions. Mass $m_{B^*} = 5325$ $m_{B^*} - m_B = 45$.	Quantum numbers shown are 5.1 ± 0.5 MeV 78 ± 0.35 MeV	quark-model
B* DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B\gamma$	dominant	45
$B_1(5721)^0$ $B_1(5721)^0$ MASS $m_{B_1^0} - m_{B^+} = 44$	$I(J^P) = \frac{1}{2}(1^+)$ <i>I</i> , <i>J</i> , <i>P</i> need confirmat = 5720.7 ± 2.7 MeV 41.5 ± 2.7 MeV	ion.
B1 (5721) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^{*+}\pi^-$	dominant	
$B_2^*(5747)^0$ $B_2^*(5747)^0$ MASS $m_{B_2^{*0}} - m_{B_1^0} = 20$	$I(J^{P}) = \frac{1}{2}(2^{+})$ I, J, P need confirmat $= 5746.9 \pm 2.9$ MeV 6.2 ± 3.2 MeV	ion.
<i>B</i> [*] ₂ (5747) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)

NOTES

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] An $CP(\pm 1)$ indicates the CP=+1 and CP=-1 eigenstates of the $D^0-\overline{D}^0$ system.
- [c] D denotes D^0 or \overline{D}^0 .
- [d] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- $[e] X(3872)^+$ is a hypothetical charged partner of the X(3872).
- $[f] \Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- $[g] (\overline{\Lambda}_{c}^{-} p)_{s}$ denotes a low-mass enhancement near 3.35 GeV/c².
- [h] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- [i] B^0 and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [j] This decay refers to the coherent sum of resonant and nonresonant $J^P = 0^+ K \pi$ components with $1.60 < m_{K\pi} < 2.15 \text{ GeV/c}^2$.
- [k] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [/] $\Theta(1540)^+$ denotes a possible narrow pentaquark state.
- [m] These values are model dependent.
- [n] Here "anything" means at least one particle observed.
- [o] D^{**} stands for the sum of the $D(1 \ ^1P_1)$, $D(1 \ ^3P_0)$, $D(1 \ ^3P_1)$, $D(1 \ ^3P_2)$, $D(2 \ ^1S_0)$, and $D(2 \ ^1S_1)$ resonances.
- $[p] D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [q] X(3945) denotes a near-threshold enhancement in the $\omega\,J/\psi$ mass spectrum.
- [r] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [s] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (*P*-wave) states.