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9. QUANTUM CHROMODYNAMICS

Written October 2009 by G. Dissertori (ETH, Zurich) and G. P. Salam (LPTHE, Paris).

9.1. Basics

Quantum Chromodynamics (QCD), the gauge field theory that describes the
strong interactions of colored quarks and gluons, is the SU(3) component of the
SU(3)×SU(2)×U(1) Standard Model of Particle Physics.

The Lagrangian of QCD is given by

L =
∑
q

ψ̄q,a(iγµ∂µδab − gsγ
µtCabAC

µ − mqδab)ψq,b −
1
4
FA

µνFA µν , (9.1)

where repeated indices are summed over. The γµ are the Dirac γ-matrices. The ψq,a are
quark-field spinors for a quark of flavor q and mass mq, with a color-index a that runs
from a = 1 to Nc = 3, i.e. quarks come in three “colors.” Quarks are said to be in the
fundamental representation of the SU(3) color group.

The AC
µ correspond to the gluon fields, with C running from 1 to N2

c − 1 = 8, i.e.
there are eight kinds of gluon. Gluons are said to be in the adjoint representation of the
SU(3) color group. The tCab correspond to eight 3 × 3 matrices and are the generators of
the SU(3) group (cf. the section on “SU(3) isoscalar factors and representation matrices”
in this Review with tCab ≡ λC

ab/2). They encode the fact that a gluon’s interaction with
a quark rotates the quark’s color in SU(3) space. The quantity gs is the QCD coupling
constant. Finally, the field tensor FA

µν is given by

FA
µν = ∂µAA

ν − ∂νAA
µ − gs fABCAB

µ AC
ν [tA, tB] = ifABCtC , (9.2)

where the fABC are the structure constants of the SU(3) group.

Neither quarks nor gluons are observed as free particles. Hadrons are color-singlet (i.e.
color-neutral) combinations of quarks, anti-quarks, and gluons.

Ab-initio predictive methods for QCD include lattice gauge theory and perturbative
expansions in the coupling. The Feynman rules of QCD involve a quark-antiquark-
gluon (qq̄g) vertex, a 3-gluon vertex (both proportional to gs), and a 4-gluon vertex
(proportional to g2

s). A full set of Feynman rules is to be found for example in Ref. 1.

Useful color-algebra relations include: tAabt
A
bc = CF δac, where CF ≡ (N2

c − 1)/(2Nc) =
4/3 is the color-factor (“Casimir”) associated with gluon emission from a quark;
fACDfBCD = CAδAB where CA ≡ Nc = 3 is the color-factor associated with gluon
emission from a gluon; tAabt

B
ab = TRδAB , where TR = 1/2 is the color-factor for a gluon to

split to a qq̄ pair.

The fundamental parameters of QCD are the coupling gs (or αs =
g2
s

4π
) and the quark

masses mq.
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2 9. Quantum chromodynamics

This review will concentrate mainly on perturbative aspects of QCD as they
relate to collider physics. Related textbooks include Refs. 1–3. Some discussion of
non-perturbative aspects, including lattice QCD, is to be found in the reviews on “Quark
Masses” and “The CKM quark-mixing matrix” of this Review. Lattice-QCD textbooks
and lecture notes include Refs. 4–6, while recent developments are summarized for
example in Ref. 7. For a review of some of the QCD issues in heavy-ion physics, see for
example Ref. 8.

9.1.1. Running coupling :
In the framework of perturbative QCD (pQCD), predictions for observables are

expressed in terms of the renormalized coupling αs(µ2
R), a function of an (unphysical)

renormalization scale µR. When one takes µR close to the scale of the momentum
transfer Q in a given process, then αs(µ2

R � Q2) is indicative of the effective strength of
the strong interaction in that process.

The coupling satisfies the following renormalization group equation (RGE):

µ2
R

dαs

dµ2
R

= β(αs) = −(b0α2
s + b1α

3
s + b2α

4
s + · · ·) (9.3)

where b0 = (11CA − 4nfTR)/(12π) = (33 − 2nf )/(12π) is referred to as the 1-loop beta-
function coefficient, the 2-loop coefficient is b1 = (17C2

A − nfTR(10CA + 6CF ))/(24π2) =
(153− 19nf )/(24π2), and the 3-loop coefficient is b2 = (2857− 5033

9 nf + 325
27 n2

f )/(128π3).

The 4-loop coefficient, b3, is to be found in Refs. 9, 10†. The minus sign in Eq. (9.3)
is the origin of asymptotic freedom, i.e. the fact that the strong coupling becomes
weak for processes involving large momentum transfers (“hard processes”), αs ∼ 0.1 for
momentum transfers in the 100 GeV –TeV range.

The β-function coefficients, the bi, are given for the coupling of an effective theory in
which nf of the quark flavors are considered light (mq � µR), and in which the remaining
heavier quark flavors decouple from the theory. One may relate the coupling for the
theory with nf + 1 light flavors to that with nf flavors through an equation of the form

α
(nf +1)
s (µ2

R) = α
(nf )
s (µ2

R)

(
1 +

∞∑
n=1

n∑
�=0

cn� [α
(nf )
s (µ2

R)]n ln� µ2
R

m2
h

)
, (9.4)

where mh is the mass of the (nf +1)th flavor, and the first few cn� coefficients are
c11 = 1

6π , c10 = 0, c22 = c211, c21 = 19
24π2 , and c20 = − 11

72π2 when mh is the MS mass at
scale mh (c20 = 7

24π2 when mh is the pole mass — mass definitions are discussed below
and in the review on “Quark Masses”). Terms up to c4� are to be found in Refs. 11, 12.
Numerically, when one chooses µR = mh, the matching is a small effect, owing to the
zero value for the c10 coefficient.

† One should be aware that the b2 and b3 coefficients are renormalization-scheme de-
pendent, and given here in the MS scheme, as discussed below.
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9. Quantum chromodynamics 3

Working in an energy range where the number of flavors is constant, a simple exact
analytic solution exists for Eq. (9.3) only if one neglects all but the b0 term, giving
αs(µ2

R) = (b0 ln(µ2
R/Λ2))−1. Here Λ is a constant of integration, which corresponds

to the scale where the perturbatively-defined coupling would diverge, i.e. it is the
non-perturbative scale of QCD. A convenient approximate analytic solution to the RGE
that includes also the b1, b2, and b3 terms is given by (see for example Ref. 13),

αs(µ2
R) � 1

b0t

(
1 − b1

b20

ln t

t
+

b21(ln
2 t − ln t − 1) + b0b2

b40t
2

(9.5)

−
b31(ln

3 t − 5
2

ln2 t − 2 ln t +
1
2
) + 3b0b1b2 ln t − 1

2
b20b3

b60t
3

)
, t ≡ ln

µ2
R

Λ2
,

again parametrized in terms of a constant Λ. Note that Eq. (9.5) is one of several possible
approximate 4-loop solutions for αs(µ2

R), and that a value for Λ only defines αs(µ2
R)

once one knows which particular approximation is being used. An alternative to the use
of formulas such as Eq. (9.5) is to solve the RGE exactly, numerically (including the
discontinuities, Eq. (9.4), at flavor thresholds). In such cases the quantity Λ is not defined
at all. For these reasons, in determinations of the coupling, it has become standard
practice to quote the value of αs at a given scale (typically MZ) rather than to quote a
value for Λ.

The value of the coupling, as well as the exact forms of the b2, c10 (and higher order)
coefficients, depend on the renormalization scheme in which the coupling is defined,
i.e. the convention used to subtract infinities in the context of renormalization. The
coefficients given above hold for a coupling defined in the modified minimal subtraction
(MS) scheme [14], by far the most widely used scheme.

A discussion of determinations of the coupling and a graph illustrating its scale
dependence (“running”) are to be found in Section 9.3.4.

9.1.2. Quark masses :
Free quarks are never observed, i.e. a quark never exists on its own for a time longer

than ∼ 1/Λ: up, down, strange, charm, and bottom quarks all hadronize, i.e. become part
of a meson or baryon, on a timescale ∼ 1/Λ; the top quark instead decays before it has
time to hadronize. This means that the question of what one means by the quark mass is
a complex one, which requires that one adopts a specific prescription. A perturbatively
defined prescription is the pole mass, mq , which corresponds to the position of the
divergence of the propagator. This is close to one’s physical picture of mass. However,
when relating it to observable quantities, it suffers from substantial non-perturbative
ambiguities (see e.g. Ref. 15). An alternative is the MS mass, mq(µ2

R), which depends on
the renormalization scale µR.

Results for the masses of heavier quarks are often quoted either as the pole mass or
as the MS mass evaluated at a scale equal to the mass, mq(m2

q); light quark masses are
generally quoted in the MS scheme at a scale µR ∼ 2 GeV . The pole and MS masses are
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4 9. Quantum chromodynamics

related by a slowly converging series that starts mq = mq(m2
q)(1 +

4αs(m2
q)

3π
+ O(α2

s)),

while the scale-dependence of MS masses is given by

µ2
R

dmq(µ2
R)

dµ2
R

=

[
−αs(µ2

R)
π

+ O(α2
s)

]
mq(µ2

R) . (9.6)

Quark masses are discussed in detail in a dedicated section of the Review, “Quark
Masses.”

9.2. Structure of QCD predictions

9.2.1. Inclusive cross sections :
The simplest observables in QCD are those that do not involve initial-state hadrons

and that are fully inclusive with respect to details of the final state. One example is the
total cross section for e+e− → hadrons at center-of-mass energy Q, for which one can
write

σ(e+e− → hadrons, Q)
σ(e+e− → µ+µ−, Q)

≡ R(Q) = REW(Q)(1 + δQCD(Q)) , (9.7)

where REW(Q) is the purely electroweak prediction for the ratio and δQCD(Q) is the
correction due to QCD effects. To keep the discussion simple, we can restrict our
attention to energies Q � MZ , where the process is dominated by photon exchange
(REW = 3

∑
q e2

q , neglecting finite-quark-mass corrections),

δQCD(Q) =
∞∑

n=1

cn ·
(

αs(Q2)
π

)n

+ O
(

Λ4

Q4

)
. (9.8)

The first four terms in the αs series expansion are then to be found in Refs. 16, 17

c1 = 1 , c2 = 1.9857 − 0.1152nf , (9.9a)

c3 = −6.63694 − 1.20013nf − 0.00518n2
f − 1.240η (9.9b)

c4 = −156.61 + 18.77nf − 0.7974n2
f + 0.0215n3

f + Cη , (9.9c)

with η = (
∑

eq)2/(3
∑

e2
q) and where the coefficient C of the η-dependent piece in the α4

s
term has yet to be determined. For corresponding expressions including also Z exchange
and finite-quark-mass effects, see Ref. 18.

A related series holds also for the QCD corrections to the hadronic decay width of the
τ lepton, which essentially involves an integral of R(Q) over the allowed range of invariant
masses of the hadronic part of the τ decay (see e.g. Ref. 16). The series expansions for
QCD corrections to Higgs-boson (partial) decay widths are summarized in Refs. 19, 20.

One characteristic feature of the Eq. (9.8) is that the coefficients of αn
s increase rapidly

order by order: calculations in perturbative QCD tend to converge more slowly than
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9. Quantum chromodynamics 5

would be expected based just on the size of αs
††. Another feature is the existence of an

extra “power-correction” term O(Λ4/Q4) in Eq. (9.8), which accounts for contributions
that are fundamentally non-perturbative. All high-energy QCD predictions involve such
corrections, though the exact power of Λ/Q depends on the observable.
Scale dependence. In Eq. (9.8) the renormalization scale for αs has been chosen
equal to Q. The result can also be expressed in terms of the coupling at an arbitrary
renormalization scale µR,

δQCD(Q) =
∞∑

n=1

cn

(
µ2

R

Q2

)
·
(

αs(µ2
R)

π

)n

+ O
(

Λ4

Q4

)
, (9.10)

where c1(µ2
R/Q2) ≡ c1, c2(µ2

R/Q2) = c2 + πb0c1 ln(µ2
R/Q2), c3(µ2

R/Q2) = c3 + (2b0c2π +
b1c1π

2) ln(µ2
R/Q2) + b20c1π

2 ln2(µ2
R/Q2), etc.. Given an infinite number of terms in the

αs expansion, the µR dependence of the cn(µ2
R/Q2) coefficients will exactly cancel that of

αs(µ2
R), and the final result will be independent of the choice of µR: physical observables

do not depend on unphysical scales.
With just terms up to n = N , a residual µR dependence will remain, which implies

an uncertainty on the prediction of R(Q) due to the arbitrariness of the scale choice.
This uncertainty will be O(αN+1

s ), i.e. of the same order as the neglected terms. For
this reason it is standard to use QCD predictions’ scale dependence as an estimate of the
uncertainties due to neglected terms. One usually takes a central value for µR ∼ Q, in
order to avoid the poor convergence of the perturbative series that results from the large
lnn−1(µ2

R/Q2) terms in the cn coefficients when µR � Q or µR � Q.

9.2.1.1. Processes with initial-state hadrons:
Deep Inelastic Scattering. To illustrate the key features of QCD cross sections in
processes with initial-state hadrons, let us consider deep-inelastic scattering (DIS),
ep → e + X , where an electron e with four-momentum k emits a highly off-shell photon
(momentum q) that interacts with the proton (momentum p). For photon virtualities
Q2 ≡ −q2 far above the squared proton mass (but far below the Z mass), the differential
cross section in terms of the kinematic variables Q2, x = Q2/(2p · q) and y = (q · p)/(k · p)
is

d2σ

dxdQ2
=

4πα

2xQ4

[
(1 + (1 − y)2)F2(x, Q2) − y2FL(x, Q2)

]
, (9.11)

where α is the electromagnetic coupling and F2(x, Q2) and FL(x, Q2) are proton structure
functions, which encode the interaction between the photon (in given polarization states)
and the proton (for an extended review, see Sec. 16).

Structure functions are not calculable in perturbative QCD, nor is any other cross
section that involves initial-state hadrons. To zeroth order in αs, the structure functions

†† The situation is significantly worse near thresholds, e.g. the tt̄ production threshold.
An overview of some of the “effective field theory” techniques used in such cases is to be
found for example in Ref. 21.
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6 9. Quantum chromodynamics

are given directly in terms of non-perturbative parton (quark or gluon) distribution
functions (PDFs),

F2(x, Q2) = x
∑
q

e2
qfq/p(x) , FL(x, Q2) = 0 , (9.12)

where fq/p(x) is the PDF for quarks of type q inside the proton, i.e. the number density
of quarks of type q inside a fast-moving proton that carry a fraction x of its longitudinal
momentum (the quark flavor index q, here, is not to be confused with the photon
momentum q in the lines preceding Eq. (9.11)). Since PDFs are non-perturbative, and
difficult to calculate in lattice QCD [22], they must be extracted from data.

The above result, with PDFs fq/p(x) that are independent of the scale Q, corresponds
to the “quark-parton model” picture in which the photon interacts with point-like free
quarks, or equivalently, one has incoherent elastic scattering between the electron and
individual constituents of the proton. As a consequence, in this picture also F2 and FL

are independent of Q. When including higher orders in pQCD, Eq. (9.12) becomes

F2(x, Q2) = x

∞∑
n=0

αn
s (µ2

R)
(2π)n

∑
i=q,g

∫ 1

x

dz

z
C

(n)
2,i (z, Q2, µ2

R, µ2
F ) fi/p

(x

z
, µ2

F

)
+O

( Λ2

Q2

)
. (9.13)

Just as in Eq. (9.10), we have a series in powers αs(µ2
R), each term involving a coefficient

C
(n)
2,i that can be calculated using Feynman graphs. An important difference relative to

Eq. (9.10) stems from the fact that the quark’s momentum, when it interacts with the
photon, can differ from its momentum when it was extracted from the proton, because it
may have radiated gluons in between. As a result, the C

(n)
2,i coefficients are functions that

depend on the ratio, z, of these two momenta, and one must integrate over z. At zeroth
order, C

(0)
2,q = e2

qδ(1 − z) and C
(0)
2,g = 0.

The majority of the emissions that modify a parton’s momentum are actually collinear
(parallel) to that parton, and don’t depend on the fact that the parton is destined to
interact with a photon. It is natural to view these emissions as modifying the proton’s
structure rather than being part of the coefficient function for the parton’s interaction
with the photon. The separation between the two categories is somewhat arbitrary and
parametrized by a factorization scale, µF . Technically, one uses a procedure known
as factorization to give rigorous meaning to this distinction, most commonly through
the MS factorization scheme, defined in the context of dimensional regularization. The
MS factorization scheme involves an arbitrary choice of factorization scale, µF , whose
meaning can be understood roughly as follows: emissions with transverse momenta above
µF are included in the C

(n)
2,q (z, Q2, µ2

R, µ2
F ); emissions with transverse momenta below µF

are accounted for within the PDFs, fi/p(x, µ2
F ).

The PDFs’ resulting dependence on µF is described by the Dokshitzer-Gribov-Lipatov-
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9. Quantum chromodynamics 7

Altarelli-Parisi (DGLAP) equations [23], which to leading order (LO) read∗

∂fi/p(x, µ2
F )

∂µ2
F

=
∑
j

αs(µ2
F )

2π

∫ 1

x

dz

z
P

(1)
i←j(z)fj/p

(x

z
, µ2

F

)
, (9.14)

with, for example, P
(1)
q←g(z) = TR(z2 + (1 − z)2). The other LO splitting functions are

listed in Sec. 16 of this Review, while results up to next-to-next-to-leading order (NNLO),
α3

s, are given in Refs. 24, 25. The coefficient functions are also µF dependent, for

example C
(1)
2,i (x, Q2, µ2

R, µ2
F ) = C

(1)
2,i (x, Q2, µ2

R, Q2) − ln(
µ2

F
Q2 )

∑
j

∫ 1
x

dz
z P

(1)
i←j(z)C(0)

2,j (x
z ).

For the electromagnetic component of DIS with light quarks and gluons they are known
to O(α3

s) (N3LO) [26]. For weak currents they are known fully to α2
s (NNLO) [27] with

substantial results known also at N3LO [28]. For heavy quark production they are known
to O(α2

s) [29] (next-to-leading order (NLO) insofar as the series starts at O(αs)), with
work ongoing towards NNLO [30].

As with the renormalization scale, the choice of factorization scale is arbitrary, but
if one has an infinite number of terms in the perturbative series, the µF -dependences
of the coefficient functions and PDFs will compensate each other fully. Given only N
terms of the series, a residual uncertainty O(αN+1

s ) is associated with the ambiguity in
the choice of µF . As with µR, varying µF provides an input in estimating uncertainties
on predictions. In inclusive DIS predictions, the default choice for the scales is usually
µR = µF = Q.
Hadron-hadron collisions. The extension to processes with two initial-state hadrons
is straightforward, and for example the total (inclusive) cross section for W boson
production in pp̄ collisions can be written as

σ(pp̄ → W + X) =
∞∑

n=0

αn
s (µ2

R)
∑
i,j

∫
dx1dx2 fi/p

(
x1, µ

2
F

)
fj/p̄

(
x2, µ

2
F

)

× σ̂
(n)
ij→W+X

(
x1x2s, µ

2
R, µ2

F

)
, (9.15)

where s is the squared center-of-mass energy of the collision. At LO, n = 0, the
hard (partonic) cross section σ̂

(0)
ij→W+X(x1x2s, µ

2
R, µ2

F ) is simply proportional to
δ(x1x2s−M2

W ), in the narrow W -boson width approximation (see Sec. 39 of this Review

∗ LO is generally taken to mean the lowest order at which a quantity is non-zero. This
definition is nearly always unambiguous, the one major exception being for the case of the
hadronic branching ratio of virtual photons, Z, τ , etc., for which two conventions exist:
LO can either mean the lowest order that contributes to the hadronic branching fraction,
i.e. the term “1” in Eq. (9.7); or it can mean the lowest order at which the hadronic
branching ratio becomes sensitive to the coupling, n = 1 in Eq. (9.8), as is relevant when
extracting the value of the coupling from a measurement of the branching ratio. Because
of this ambiguity, we avoided use of the term “LO” in that context.
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8 9. Quantum chromodynamics

for detailed expressions for this and other hard scattering cross sections). It is non-zero
only for choices of i, j that can directly give a W , such as i = u, j = d̄. At higher
orders, n ≥ 1, new partonic channels contribute, such as gq, and there is no restriction
x1x2s = M2

W .
Equation 9.15 involves a factorization between hard cross section and PDFs, just

like Eq. (9.13). As long as the same factorization scheme is used in DIS and pp or pp̄
(usually the MS scheme), then PDFs extracted in DIS can be directly used in pp and pp̄
predictions [31].

The fully inclusive hard cross sections are known to NNLO, α2
s , for Drell-Yan

(DY) lepton-pair and vector-boson production [32,33], and for Higgs-boson production
[33–36].
Photoproduction. γp (and γγ) collisions are similar to pp collisions, with the subtlety
that the photon can behave in two ways: there is “direct” photoproduction, in which
the photon behaves as a point-like particle and takes part directly in the hard collision,
with hard subprocesses such as γg → qq̄; there is also resolved photoproduction, in which
the photon behaves like a hadron, with non-perturbative partonic substructure and a
corresponding PDF for its quark and gluon content, fi/γ(x, Q2).

While useful to understand the general structure of γp collisions, the distinction
between direct and resolved photoproduction is not well defined beyond leading order, as
discussed for example in Ref. 37.
The high-energy limit. In situations in which the total center-of-mass energy

√
s is

much larger than other scales in the problem (e.g. Q in DIS, mb for bb̄ production in pp
collisions, etc.), each power of αs beyond LO can be accompanied by a power of ln(s/Q2)
(or ln(s/m2

b), etc.). This is known as the high-energy or Balitsky-Fadin-Kuraev-Lipatov
(BFKL) limit [38–40]. Currently it is possible to account for the dominant and first
subdominant [41,42] power of ln s at each order of αs, and also to estimate further
subdominant contributions that are numerically large (see Refs. 43–45 and references
therein).

Physically, the summation of all orders in αs can be understood as leading to a growth
with s of the gluon density in the proton. At sufficiently high energies this implies
non-linear effects, whose treatment has been the subject of intense study (see for example
Refs. 46, 47 and references thereto).

9.2.2. Non-inclusive cross-sections :
QCD final states always consist of hadrons, while perturbative QCD calculations

deal with partons. Physically, an energetic parton fragments (“showers”) into many
further partons, which then, on later timescales, undergo a transition to hadrons
(“hadronization”). Fixed-order perturbation theory captures only a small part of these
dynamics.

This does not matter for the fully inclusive cross sections discussed above: the
showering and hadronization stages are “unitary”, i.e. they do not change the overall
probability of hard scattering, because they occur long after it has taken place.

Non-inclusive measurements, in contrast, may be affected by the extra dynamics. For
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9. Quantum chromodynamics 9

those sensitive just to the main directions of energy flow (jet rates, event shapes, cf.
Sec. 9.3.1) fixed order perturbation theory is often still adequate, because showering and
hadronization don’t substantially change the overall energy flow. This means that one
can make a prediction using just a small number of partons, which should correspond
well to a measurement of the same observable carried out on hadrons. For observables
that instead depend on distributions of individual hadrons (which, e.g., are the inputs
to detector simulations), it is mandatory to account for showering and hadronization.
The range of predictive techniques available for QCD final states reflects this diversity of
needs of different measurements.

While illustrating the different methods, we shall for simplicity mainly use expressions
that hold for e+e− scattering. The extension to cases with initial-state partons will
be mostly straightforward (space constraints unfortunately prevent us from addressing
diffraction and exclusive hadron-production processes; extensive discussion is to be found
in Refs. 48, 49).

9.2.2.1. Preliminaries: Soft and collinear limits:
Before examining specific predictive methods, it is useful to be aware of a general

property of QCD matrix elements in the soft and collinear limits. Consider a squared
tree-level matrix element |M2

n(p1, . . . , pn)| for the production of n partons with momenta
p1, . . . , pn, and a corresponding phase-space integration measure dΦn. If particle n is
a gluon, and additionally it becomes collinear (parallel) to another particle i and its
momentum tends to zero (it becomes “soft”), the matrix element simplifies as follows,

lim
θin→0, En→0

dΦn|M2
n(p1, . . . , pn)| = dΦn−1|M2

n−1(p1, . . . , pn−1)|αsCi

π

dθ2
in

θ2
in

dEn

En
, (9.16)

where Ci = CF (CA) if i is a quark (gluon). This formula has non-integrable divergences
both for the inter-parton angle θin → 0 and for the gluon energy En → 0, which are
mirrored also in the structure of divergences in loop diagrams. These divergences are
important for at least two reasons: firstly, they govern the typical structure of events
(inducing many emissions either with low energy or at small angle with respect to
hard partons); secondly, they will determine which observables can be calculated within
perturbative QCD.

9.2.2.2. Fixed-order predictions:
Let us consider an observable O that is a function Om(p1, . . . , pm) of the four-momenta

of the m particles in an event (whether partons or hadrons). In what follows, we
shall consider the cross section for events weighted with the value of the observable,
σO. As examples, if Om ≡ 1 for all m, then σO is just the total cross section; if
Om ≡ τ̂(p1, . . . , pm) where τ̂ is the value of the thrust for that event (see Sec. 9.3.1.2),
then the average value of the thrust is 〈τ〉 = σO/σtot; if Om ≡ δ(τ − τ̂(p1, . . . , pm)) then
one gets the differential cross section as a function of the thrust, σO ≡ dσ/dτ .

In the expressions below, we shall omit to write the non-perturbative power correction
term, which for most common observables is proportional to a single power of Λ/Q.
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10 9. Quantum chromodynamics

LO. If the observable O is non-zero only for events with at least n particles, then the LO
QCD prediction for the weighted cross section in e+e− annihilation is

σO,LO = αn−2
s (µ2

R)
∫

dΦn|M2
n(p1, . . . , pn)| On(p1, . . . , pn) , (9.17)

where the squared tree-level matrix element, |M2
n(p1, . . . , pn)|, includes relevant symmetry

factors, has been summed over all subprocesses (e.g. e+e− → qq̄qq̄, e+e− → qq̄gg) and
has had all factors of αs extracted in front. In processes other than e+e− collisions, the
powers of the coupling are often brought inside the integrals, with the scale µR chosen
event by event, as a function of the event kinematics.

Other than in the simplest cases (see the review on Cross Sections in this Review),
the matrix elements in Eq. (9.17) are usually calculated automatically with programs
such as CompHEP [50], MadGraph [51], Alpgen [52], Comix/Sherpa [53], and Helac/
Phegas [54]. Some of these (CompHEP, MadGraph) use formulae obtained from direct
evaluations of Feynman diagrams. Others (Alpgen, Helac/Phegas and Comix/Sherpa) use
methods designed to be particularly efficient at high multiplicities, such as Berends-Giele
recursion [55] (see also the review Ref. 56), which builds up amplitudes for complex
processes from simpler ones.

The phase-space integration is usually carried out by Monte Carlo sampling, in order
to deal with the sometimes complicated cuts that are used in corresponding experimental
measurements. Because of the divergences in the matrix element, Eq. (9.16), the integral
converges only if the observable vanishes for kinematic configurations in which one of the
n particles is arbitrarily soft or it is collinear to another particle. As an example, the
cross section for producing any configuration of n partons will lead to an infinite integral,
whereas a finite result will be obtained for the cross section for producing n deposits of
energy (or jets, see Sec. 9.3.1.1), each above some energy threshold and well separated
from each other in angle.

LO calculations can be carried out for 2 → n processes with n � 6 − 10. The exact
upper limit depends on the process, the method used to evaluate the matrix elements
(recursive methods are more efficient), and the extent to which the phase-space integration
can be optimized to work around the large variations in the values of the matrix elements.
NLO. Given an observable that is non-zero starting from n particles, its prediction at
NLO involves supplementing the LO result with the (n + 1)-particle tree-level matrix
element (|M2

n+1|), and the interference of a n-particle tree-level and n-particle 1-loop
amplitude (2Re(MnM∗

n,1−loop)),

σNLO
O = σLO

O + αn−1
s (µ2

R)
∫

dΦn+1|M2
n+1(p1, . . . , pn+1)| On+1(p1, . . . , pn+1) (9.18)

+ αn−1
s (µ2

R)
∫

dΦn 2Re
(
Mn(p1, . . . , pn) M∗

n,1−loop(p1, . . . , pn)
)On(p1, . . . , pn) .

Relative to LO calculations, two important issues appear in the NLO calculations. Firstly,
the extra complexity of loop-calculations relative to tree-level calculations means that
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they have yet to be fully automated, though considerable progress is being made in this
direction (see Refs. 57–60 and references therein). Secondly, loop amplitudes are infinite
in 4 dimensions, while tree-level amplitudes are finite, but their integrals are infinite, due
to the divergences of Eq. (9.16). These two sources of infinities have the same soft and
collinear origins and cancel after the integration only if the observable O satisfies the
property of infrared and collinear safety,

On+1(p1, . . . , ps, . . . , pn) → On(p1, . . . , pn) if ps → 0
On+1(p1, . . . , pa, pb, . . . , pn) → On(p1, . . . , pa + pb, . . . , pn) if pa || pb . (9.19)

Examples of infrared safe quantities include event-shape distributions and jet cross
sections (with appropriate jet algorithms, see below). Unsafe quantities include the
distribution of the momentum of the hardest QCD particle (which is not conserved under
collinear splitting), observables that require the complete absence of radiation in some
region of phase-space (e.g. rapidity gaps or 100% isolation cuts, which are affected by soft
emissions), or the particle multiplicity (affected by both soft and collinear emissions). The
non-cancellation of divergences at NLO due to infrared or collinear unsafety compromises
the usefulness not only of the NLO calculation, but also that of a LO calculation, since
LO is only an acceptable approximation if one can prove that higher order terms are
smaller. Infrared and collinear unsafety usually also imply large non-perturbative effects.

As with LO calculations, the phase-space integrals in Eq. (9.18) are usually carried out
by Monte Carlo integration, so as to facilitate the study of arbitrary observables. Various
methods exist to obtain numerically efficient cancellation among the different infinities.
The most widely used in current NLO computer codes is known as dipole subtraction [61];
other methods that have seen numerous applications include FKS [62] and antenna [63]
subtraction.

NLO calculations exist for nearly all 2 → n processes with n ≤ 3 (and for 1 → 4
in e+e− → γ/Z →hadrons), as reviewed in Ref. 64. Some of the corresponding codes
are public, and those that provide access to multiple processes include NLOJet++ [65]
for e+e−, DIS, and hadron-hadron processes involving just light partons in the final
state, MCFM [66] for hadron-hadron processes with vector bosons and/or heavy quarks
in the final state, VBFNLO for vector-boson fusion processes [67], and the Phox
family [68] for processes with photons in the final state. The current forefront of NLO
calculations is 2 → 4 processes in pp scattering, for which results exist on tt̄bb̄ [59,60] and
pp → W +3jets [57,58].
NNLO. Conceptually, NNLO and NLO calculations are similar, except that one must
add a further order in αs, consisting of: the squared (n + 2)-parton tree-level amplitude,
the interference of the (n + 1)-parton tree-level and 1-loop amplitudes, the interference of
the n-parton tree-level and 2-loop amplitudes, and the squared n-parton 1-loop amplitude.

Each of these elements involves large numbers of soft and collinear divergences.
Arranging for their cancellation after numerical Monte Carlo integration is one of the
significant challenges of NNLO calculations, as is the determination of the relevant 2-loop
amplitudes. The processes for which fully exclusive NNLO calculations exist include the
3-jet cross section in e+e− collisions [69,70] (for which NNLO means α3

s), as well as
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12 9. Quantum chromodynamics

vector- [71,72] and Higgs-boson [73,74] production in pp and pp̄ collisions (for which
NNLO means α2

s).

9.2.2.3. Resummation:
Many experimental measurements place tight constraints on emissions in the final

state, for example, in e+e− events, that the thrust should be less than some value τ � 1,
or in pp → Z events that the Z-boson transverse momentum should be much smaller than
its mass, pt,Z � MZ . A further example is the production of heavy particles or jets near
threshold (so that little energy is left over for real emissions) in DIS and pp collisions.

In such cases the constraint vetoes a significant part of the integral over the soft
and collinear divergence of Eq. (9.16). As a result, there is only a partial cancellation
between real emission terms (subject to the constraint) and loop (virtual) contributions
(not subject to the constraint), causing each order of αs to be accompanied by a
large coefficient ∼ L2, where e.g. L = ln τ or L = ln(MZ/pt,Z). One ends up with a
perturbative series whose terms go as ∼ (αsL

2)n. It is not uncommon that αsL
2 � 1, so

that the perturbative series converges very poorly if at all.∗∗ In such cases one may carry
out a “resummation,” which accounts for the dominant logarithmically enhanced terms
to all orders in αs, by making use of known properties of matrix elements for multiple
soft and collinear emissions, and of the all-orders properties of the divergent parts of
virtual corrections, following original works such as Refs. 75–84 (or more recently through
soft-collinear effective theory, cf. the review in Ref. 85).

For cases with double logarithmic enhancements (two powers of logarithm per power
of αs), there are two classification schemes for resummation accuracy. Writing the cross
section including the constraint as σ(L) and the unconstrained (total) cross section as
σtot, the series expansion takes the form

σ(L) � σtot

∞∑
n=0

2n∑
k=0

Rnkαn
s (µ2

R)Lk, L � 1 (9.20)

and leading log (LL) resummation means that one accounts for all terms with k = 2n,
next-to-leading-log (NLL) includes additionally all terms with k = 2n − 1, etc.. Often
σ(L) (or its Fourier or Mellin transform) exponentiates ‡,

σ(L) � σtot exp

[ ∞∑
n=1

n+1∑
k=0

Gnkαn
s (µ2

R)Lk

]
, L � 1 , (9.21)

∗∗ To be precise one should distinguish two causes of the divergence of perturbative series.
That which interests us here is associated with the presence of a new large parameter (e.g.
ratio of scales). Nearly all perturbative series also suffer from “renormalon” divergences
αn

s n! (reviewed in Ref. 15), which however have an impact only at very high perturbative
orders and have a deep connection with non-perturbative uncertainties.

‡ Whether or not this happens depends on the quantity being resummed. A classic
example involves jet rates in e+e− collisions as a function of a jet-resolution parameter
ycut. The logarithms of 1/ycut exponentiate for the kt (Durham) jet algorithm [86], but
not [87] for the JADE algorithm [88] (both are discussed below in Sec. 9.3.1.1).
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where one notes the different upper limit on k compared to Eq. (9.20). This is a more
powerful form of resummation: the G12 term alone reproduces the full LL series in
Eq. (9.20). With the form Eq. (9.21) one still uses the nomenclature LL, but this now
means that all terms with k = n + 1 are included, and NLL implies all terms with k = n,
etc..

For a large number of observables, the state-of-the art for resummation is NLL
in the sense of Eq. (9.21) (see Refs. 89–91 and references therein). NNLL has been
achieved for the DY and Higgs-boson pt distributions [92,93] (in addition the NLL
ResBos program [94] is still widely used), the back-to-back energy-energy correlation in
e+e− [95], and the production of top anti-top pairs near threshold [96–100]. Finally,
the parts believed to be dominant in the N3LL resummation are available for the thrust
variable in e+e− annihilations [101], and for Higgs- and vector-boson production near
threshold [102,103] in hadron collisions. The inputs and methods involved in these various
calculations are somewhat too diverse to discuss in detail here, so we recommend that the
interested reader consults the original references for further details.

9.2.2.4. Fragmentation functions:
Since the parton-hadron transition is non-perturbative, it is not possible to

perturbatively calculate quantities such as the energy-spectra of specific hadrons in
high-energy collisions. However, one can factorize perturbative and non-perturbative
contributions via the concept of fragmentation functions. These are the final-state
analogue of the parton distribution functions that are used for initial-state hadrons.

It should be added that if one ignores the non-perturbative difficulties and just
calculates the energy and angular spectrum of partons in perturbative QCD with some
low cutoff scale ∼ Λ (using resummation to sum large logarithms of

√
s/Λ), then this

reproduces many features of the corresponding hadron spectra. This is often taken to
suggest that hadronization is “local” in momentum space.

Sec. 17 of this Review provides further information (and references) on these topics,
including also the question of heavy-quark fragmentation.

9.2.2.5. Parton-shower Monte Carlo generators:
Parton-shower Monte Carlo (MC) event generators like PYTHIA [104–106],

HERWIG [107–109], SHERPA [110], and ARIADNE [111] provide fully exclusive
simulations of QCD events. Because they provide access to “hadron-level” events they
are a crucial tool for all applications that involve simulating the response of detectors to
QCD events. Here we give only a brief outline of how they work and refer the reader
to [112] and references therein for a more complete overview.

The MC generation of an event involves several stages. It starts with the random
generation of the kinematics and partonic channels of whatever hard scattering process
the user has requested.

This is then followed by a parton shower, usually based on a resummed calculation of
the probability ∆(Q0, Q1) for each parton, that it does not split into other partons (e.g.
radiate a gluon) between the hard scale Q0 and some smaller scale Q1. ∆(Q0, Q1), known
as a Sudakov form factor, takes the form ∆(Q0, Q1) ∼ exp(−G12αs ln2(Q0/Q1) + . . .).
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By choosing a random number r uniformly in the range 0 < r < 1 and finding the Q1

value that solves r = ∆(Q0, Q1), the MC determines the scale of the first emission of
the shower. The procedure is repeated to obtain Q2, the scale of the next emission, and
so forth down to a scale ∼ 1 GeV that separates the perturbative and non-perturbative
part of the simulation.

Once it has generated a partonic configuration, the MC “hadronizes” it according to
some hadronization model. One widely-used model involves stretching a color “string”
across quarks and gluons, and breaking it up into hadrons [113,114]. For a discussion
of the implementation of this “Lund” model in the MC program PYTHIA, with further
improvements and extensions, see Ref. 104 and references therein. Another model breaks
each gluon into a qq̄ pair and then groups quarks and anti-quarks into colorless “clusters”,
which then give the hadrons. This cluster hadronization is implemented in the HERWIG
event generator [107–109].

For processes with initial-state hadrons, the showering off the incoming partons must
additionally take into account the scale-dependence of the PDFs and the non-per-
turbative part must account also for the proton remnants. In pp and γp scattering, the
collision between the hadron remnants generates an underlying event (UE), usually by
implementing additional 2 → 2 scatterings (“multiple parton interactions”) at a scale of a
few GeV. The separation between the UE and other parts of the shower and hadronization
is somewhat ambiguous, because they are all interconnected in terms of their color flow.

Parton showers usually generate a correct distribution of soft and collinear emission,
but they often fail to reproduce the pattern of hard wide-angle emissions that would be
given by the exact multi-parton matrix elements. In cases where this matters, it is usual
to “merge” the parton showers with the generation of exact LO multi-parton matrix
elements (Sec. 9.2.2.2), including a prescription to avoid double or under-counting of real
and virtual corrections (e.g. CKKW [115] or MLM prescriptions [116]) .

MCs as described above generate cross sections for the requested hard process that
are correct at LO. For hadron-collider applications it is common to multiply these
cross sections by an inclusive K-factor, i.e. the ratio of (N)NLO to LO results for a
related inclusive cross section. For measurements with cuts, this may not always be
adequate: higher-order corrections in a restricted phase-space region can be substantially
different from those in the inclusive case. For a number of processes there also exist MC
implementations that are correct to NLO, using the MC@NLO [117] or POWHEG [118]
prescriptions to avoid double counting the approximate NLO pieces already implicitly
included in the MCs through their showering.

9.2.3. Accuracy of predictions :
LO calculations are often said to be accurate to within a factor of two. This is based on

the observed impact of scale variation across a range of observables and of the experience
with NLO corrections in the cases where these are available. In processes involving new
partonic scattering channels at NLO and/or large ratios of scales (such as the production
of high-pt jets containing B-hadrons), the NLO to LO K-factors can be substantially
larger than 2.

The accuracy of a given particular perturbative QCD prediction is usually estimated
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by varying the renormalization and factorization scales around a central value Q that is
taken close to the physical scale of the process.‡‡ A conventional range of variation is
Q/2 < µR, µF < 2Q.

There does not seem to be a broad consensus on whether µR and µF should be
kept identical or varied independently. One option is to vary them independently with
the restriction 1

2µR < µF < 2µR [119]. This limits the risk of misleadingly small
uncertainties due to fortuitous cancellations between the µF and µR dependence when
both are varied together, while avoiding the appearance of large logarithms of µ2

R/µ2
F

when both are varied completely independently.

Calculations that involve resummations usually have an additional source of uncertainty
associated with the choice of argument of the logarithms being resummed, e.g. ln(2

pt,Z
MZ

)

as opposed to ln(1
2

pt,Z
MZ

). In addition to varying renormalization and factorization scales,
it is therefore also advisable to vary the argument of the logarithm by a factor of two in
either direction with respect to the “natural” argument.

The accuracy of QCD predictions is limited also by non-perturbative corrections,
which typically scale as a power of Λ/Q. For measurements that are directly sensitive
to the structure of the hadronic final state the corrections are usually linear in Λ/Q.
The non-perturbative corrections are further enhanced in processes with a significant
underlying event (i.e. in pp and pp̄ collisions) and in cases where the perturbative cross
sections fall steeply as a function of pt or some other kinematic variable.

Non-perturbative corrections are commonly estimated from the difference between
Monte Carlo events at the parton-level and after hadronization, though methods exist also
to analytically deduce non-perturbative effects in one observable based on measurements
of other observables (see the reviews [15,120]) .

9.3. Experimental QCD

Since we are not able to directly measure partons (quarks or gluons), but only
hadrons and their decay products, a central issue for every experimental test of QCD
is establishing a correspondence between observables obtained at the partonic and the
hadronic level. The only theoretically sound correspondence is achieved by means of
infrared and collinear safe quantities, which allow one to obtain finite predictions at any
order of perturbative QCD.

As stated above, the simplest case of infrared and collinear safe observables are total
cross sections. More generally, when measuring inclusive observables, the final state is
not analyzed at all regarding its (topological, kinematical) structure or its composition.
Basically the relevant information consists in the rate of a process ending up in a partonic
or hadronic final state. In e+e− annihilation, widely used examples are the ratios of
partial widths or branching ratios for the electroweak decay of particles into hadrons
or leptons, such as Z or τ decays, (cf. Sec. 9.2.1). Such ratios are often favored over

‡‡ A more conservative scheme is to take the uncertainty to be the size of the last known
perturbative order.
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absolute cross sections or partial widths because of large cancellations of experimental
and theoretical systematic uncertainties. The strong suppression of non-perturbative
effects, O(Λ4/Q4), is one of the attractive features of such observables, however, at the
same time the sensitivity to radiative QCD corrections is small, which for example affects
the statistical uncertainty when using them for the determination of the strong coupling
constant. In the case of τ decays not only the hadronic branching ratio is of interest, but
also moments of the spectral functions of hadronic tau decays, which sample different
parts of the decay spectrum and thus provide additional information. Other examples of
inclusive observables are structure functions (and related sum rules) in DIS. These are
extensively discussed in Sec. 16 of this Review.

As soon as (parts) of the structure or composition of the final state are analyzed
and cross section differential in one or more variables characterizing this structure are
of interest, we talk about exclusive observables, such as jet rates, jet substructure
and event-shape distributions. Furthermore, any cross section differential in some
characteristic kinematic quantity of the final state falls into this category, such as
transverse momentum distributions of jets or vector bosons in hadron collisions. The case
of fragmentation functions, i.e. the measurement of hadron production as a function of
the hadron momentum relative to some hard scattering scale, is discussed in Sec. 17 of
this Review.

It is worth mentioning that, besides the correspondence between the parton and hadron
level, also a correspondence between the hadron level and the actually measured quantities
in the detector has to be established. The simplest examples are corrections for finite
experimental acceptance and efficiencies. However, measurements of exclusive observables
such as jet rates require more involved corrections in order to relate, e.g. the energy
deposits in a calorimeter to the jets at the hadron level. Typically detector simulations
are used in order to obtain these corrections. Care should be taken here in order to
have a clear separation between the parton-to-hadron level and hadron-to-detector level
corrections, as well as to ensure the independence of the latter from the MC model
used in the simulations. Finally, it is strongly suggested to provide, whenever possible,
measurements corrected for detector effects which then can be easily compared to the
results of other experiments and/or theoretical calculations.

9.3.1. Hadronic final-state observables :

9.3.1.1. Jets:
In hard interactions, final-state partons and hadrons appear predominantly in

collimated bunches. These bunches are generically called jets. To a first approximation,
a jet can be thought of as a hard parton that has undergone soft and collinear showering
and then hadronization. Jets are used both for testing our understanding and predictions
of high-energy QCD processes, and also for identifying the hard partonic structure of
decays of massive particles like top quarks.

In order to map observed hadrons onto a set of jets, one uses a jet definition. The
mapping involves explicit choices: for example when a gluon is radiated from a quark,
for what range of kinematics should the gluon be part of the quark jet, or instead form
a separate jet? Good jet definitions are infrared and collinear safe, simple to use in
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theoretical and experimental contexts, applicable to any type of inputs (parton or hadron
momenta, charged particle tracks, and/or energy deposits in the detectors) and lead to
jets that are not too sensitive to non-perturbative effects. An extensive treatment of
the topic of jet definitions is given in Ref. 121 (for e+e− collisions) and Refs. 122, 123
(for pp or pp̄ collisions). Here we briefly review the two main classes: cone algorithms,
extensively used at hadron colliders, and sequential recombination algorithms, more
widespread in e+e− and ep colliders.

Very generically, most (iterative) cone algorithms start with some seed particle i, sum
the momenta of all particles j within a cone of opening-angle R, typically defined in terms
of (pseudo-)rapidity and azimuthal angle. They then take the direction of this sum as a
new seed and repeat until the cone is stable, and call the contents of the resulting stable
cone a jet if its transverse momentum is above some threshold pt,min. The parameters R
and pt,min should be chosen according to the needs of a given analysis.

There are many variants of cone algorithm, and they differ in the set of seeds they
use and the manner in which they ensure a one-to-one mapping of particles to jets,
given that two stable cones may share particles (“overlap”). The use of seed particles
is a problem w.r.t. infrared and collinear safety, and seeded algorithms are generally
not compatible with higher-order (or sometimes even leading-order) QCD calculations,
especially in multi-jet contexts, as well as potentially subject to large non-perturbative
corrections and instabilities. Seeded algorithms (JetCLU, MidPoint, and various other
experiment-specific iterative cone algorithms) are therefore to be deprecated. A modern
alternative is to use a seedless variant, SISCone [124].

Sequential recombination algorithms at hadron colliders (and in DIS) are characterized
by a distance dij = min(k2p

t,i, k
2p
t,j)∆

2
ij/R2 between all pairs of particles i, j, where ∆ij

is their distance in the rapidity-azimuthal plane, kt,i is the transverse momentum w.r.t.
the incoming beams, and R is a free parameter. They also involve a “beam” distance
diB = k

2p
t,i . One identifies the smallest of all the dij and diB , and if it is a dij , then i and

j are merged into a new pseudo-particle (with some prescription, a recombination scheme,
for the definition of the merged four-momentum). If the smallest distance is a diB , then i
is removed from the list of particles and called a jet. As with cone algorithms, one usually
considers only jets above some transverse-momentum threshold pt,min. The parameter
p determines the kind of algorithm: p = 1 corresponds to the (inclusive-)kt algorithm
[86,125,126], p = 0 defines the Cambridge-Aachen algorithm [127,128], while for p = −1
we have the anti-kt algorithm [129]. All these variants are infrared and collinear safe to
all orders of perturbation theory. Whereas the former two lead to irregularly shaped jet
boundaries, the latter results in cone-like boundaries.

The kt algorithm in e+e− annihilations [86] uses yij = 2 min(E2
i , E2

j )(1−cos θij)/Q2 as
distance measure and repeatedly merges the pair with smallest yij , until all yij distances
are above some threshold ycut, the jet resolution parameter. The (pseudo)-particles that
remain at this point are called the jets. Here it is ycut (rather than R and pt,min)
that should be chosen according to the needs of the analysis. As mentioned above, the
kt algorithm has the property that logarithms ln(1/ycut) exponentiate in resummation
calculations. This is one reason why it is preferred over the earlier JADE algorithm [88],
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which uses the distance measure yij = 2 Ei Ej (1 − cos θij)/Q2.
Efficient implementations of the above algorithms are available through the FastJet

package [130], which is also packaged within SpartyJet [131].

9.3.1.2. Event Shapes:
Event-shape variables are functions of the four momenta in the hadronic final state

that characterize the topology of an event’s energy flow. They are sensitive to QCD
radiation (and correspondingly to the strong coupling) insofar as gluon emission changes
the shape of the energy flow.

The classic example of an event shape is the thrust [132,133] in e+e− annihilations,
defined as

τ̂ = max
�nτ

∑
i |
pi · 
nτ |∑

i |
pi|
, (9.22)

where 
pi are the momenta of the final-state particles and the maximum is obtained
for the thrust axis 
nτ . In the Born limit of the production of a perfect back-to-back
qq̄ pair the limit τ̂ → 1 is obtained, whereas a perfectly symmetric many-particle
configuration leads to τ̂ → 1/2. Further event shapes of similar nature have been defined
and extensively measured at LEP and at HERA, and for their definitions and reviews we
refer to Refs. 1,2,120,134,135. Some discussion of hadron-collider event shapes is given in
Ref. 136.

Event shapes are used for many purposes. These include measuring the strong
coupling, tuning the parameters of Monte Carlo showering programs, investigating
analytical models of hadronization and distinguishing QCD events from events that might
involve decays of new particles (giving event-shape values closer to the spherical limit).

9.3.1.3. Jet substructure, quark vs. gluon jets:
Jet substructure, which can be resolved by finding subjets or by measuring jet shapes,

is sensitive to the details of QCD radiation in the shower development inside a jet and
has been extensively used to study differences in the properties of quark and gluon
induced jets, strongly related to their different color charges. In general there is clear
experimental evidence that gluon jets are “broader” and have a softer particle spectrum
than (light-) quark jets, whereas b-quark jets are similar to gluon jets. As an example
for an observable, the jet shape Ψ(r/R) is the fractional transverse momentum contained
within a sub-cone of cone-size r for jets of cone-size R. It is sensitive to the relative
fractions of quark and gluon jets in an inclusive jet sample and receives contributions from
soft-gluon initial-state radiation and beam remnant-remnant interactions. Therefore, it
has been widely employed for validation and tuning of Monte Carlo models. CDF has
measured the jet shape Ψ(r/R) for an inclusive jet sample [137] as well as for b-jets [138].
Similar measurements in DIS have been reported in Refs. 139, 140. Further discussions,
references and, recent summaries can be found in Refs. 135, 141, 142.

The use of jet substructure has also been suggested in order to distinguish QCD
jets from jets that originate from hadronic decays of boosted massive particles (high-pt

electroweak bosons, top quarks and hypothesized new particles). For a review and
detailed references, see sec. 5.3 of Ref. 122.
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9.3.2. State of the art QCD measurements at colliders :
There exists an enormous wealth of data on QCD-related measurements in e+e−, ep,

pp, and pp̄ collisions, to which a short overview like this would not be able to do any
justice. Extensive reviews of the subject have been published in Refs. 134, 135 for e+e−
colliders, whereas for hadron colliders comprehensive overviews are given in Refs. 123,
143, and recent summaries can be found in, e.g. Refs. 144–146, 142. Below we concentrate
our discussion on measurements that are most sensitive to hard QCD processes.

9.3.2.1. e+e− colliders: The analyses of jet production in e+e− collisions, mostly from
JADE data at center-of-mass energies between 14 and 44 GeV, as well as from LEP
data at the Z resonance and up to 209 GeV, covered the measurements of (differential
or exclusive) jet rates (with multiplicities typically up to 4, 5 or 6 jets), the study of
3-jet events and particle production between the jets as a tool for testing hadronization
models, as well as 4-jet production and angular correlations in 4-jet events, useful for
measurements of the strong coupling constant and putting constraints on the QCD color
factors, thus probing the non-abelian nature of QCD. There have also been extensive
measurements of event shapes. The tuning of parton shower MC models, typically
matched to matrix elements for 3-jet production, has led to good descriptions of the
available, highly precise data. Especially for the large LEP data sample at the Z peak, the
statistical errors are mostly negligible, whereas the experimental systematic uncertainties
are at the per-cent level or even below. These are usually dominated by the uncertainties
related to the MC model dependence of the efficiency and acceptance corrections (often
referred to as “detector corrections”).

9.3.2.2. DIS and photoproduction: Multi-jet production in ep collisions at HERA, both
in the DIS and photoproduction regime, allows for tests of QCD factorization (one
initial-state proton and its associated PDF versus the hard scattering which leads to
high-pt jets) and NLO calculations which exist for 2- and 3-jet final states. Sensitivity
is also obtained to the product of the coupling constant and the gluon PDF. By now
experimental uncertainties of the order of 5− 10% have been achieved, mostly dominated
by jet energy scale uncertainties, whereas statistical errors are negligible to a large extent.
For comparison to theoretical predictions, at large jet pt the PDF uncertainty dominates
the theoretical error (typically of order 5 - 10%, in some regions of phase-space up to
20%), therefore jet observables become useful inputs for PDF fits. In general, for Q2

above ∼ 100 GeV2 the data are well described by NLO matrix element calculations,
combined with DGLAP evolution equations. Results at lower values (Q2 < 100 GeV2)
point to the necessity of including NNLO effects. Also, at low values of Q2 and x, in
particular for large jet pseudo-rapidities, there are indications for the need of BFKL-type
evolution, though the predictions for such schemes are still limited. In the case of
photoproduction, the data-theory comparisons are hampered by the uncertainties related
to the photon PDF.

A few examples of recent measurements can be found in Refs. 147–150 for DIS and in
Refs. 151–153 for photoproduction.
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9.3.2.3. Hadron colliders: Jet measurements at the TEVATRON are now published
for data samples up to ∼ 2 fb−1. Among the most important cross sections measured is
the inclusive jet production as a function of the jet transverse energy (Et) or the jet
transverse momentum (pt), now available for several rapidity regions and for pt up to 700
GeV. Most notably, the TEVATRON experiments now have measurements based on the
infrared- and collinear-safe kt algorithm in addition to the more widely used Midpoint
and JetCLU algorithms of the past. Recent results by the CDF and D0 collaborations
can be found in Refs. 154, 155, where we observe a good description of the data by the
NLO QCD predictions. The experimental systematic uncertainties are dominated by the
jet energy scale error, by now quoted to less than 3% and thus leading to uncertainties
of 10 to 60% on the cross section, increasing with pt. The PDF uncertainties dominate
the theoretical error. In fact, inclusive jet data are important inputs to global PDF fits,
in particular for constraining the high-x gluon PDF.

A rather comprehensive summary, comparing NLO QCD predictions to data for
inclusive jet production in DIS, pp, and pp̄ collisions, is given in Ref. 156 and reproduced
here in Fig. 9.1.

Dijet events are analyzed in terms of their invariant mass and angular distributions,
which allow one to put stringent limits on deviations from the Standard Model, such as
quark compositeness (two recent examples can be found in Refs. 158, 159). Furthermore,
dijet azimuthal correlations between the two leading jets, normalized to the total dijet
cross cross section, are an extremely valuable tool for studying the spectrum of gluon
radiation in the event. As shown in Ref. 160, the LO (non-trivial) prediction for this
observable, with at most three partons in the final state, is not able to describe the
data for an azimuthal separation below 2π/3, where NLO contributions (with 4 partons)
restore the agreement with data. In addition, this observable can be employed to tune
Monte Carlo predictions of soft gluon radiation in the final state.

Similarly important tests of QCD arise from measurements of vector boson (photon,
W , Z) production together with jets. A recent analysis of photon+jet production by
D0 [161] indicates that NLO calculations, combined with modern PDF sets, are unable to
describe the shape of the photon pt across the entire measured range, showing the need
for an improved and consistent theoretical description of this process.

In the case of Z+jets, the Z momentum can be precisely reconstructed using the
leptons, allowing for a precise determination of the Z pt distribution, which is sensitive
to QCD radiation both at high and low scales and thus probes perturbative as well
as non-perturbative effects. For example, a recent D0 result [162] quotes experimental
statistical and systematic uncertainties of the order of 10%, increasing up to 20% in
the lowest momentum range. The data are compared to predictions from NLO QCD
and from different Monte Carlo models, where, for example, LO matrix elements for up
to three partons are matched to a parton shower. Whereas the total cross section is
underestimated, the shape is well reproduced over a large phase-space region. Further
examples of recent results for Z (or W ) plus jets production are found in Refs. 161,
163, 164. Among the most important recent developments is the completion of a NLO
calculation for W+3jet production [57,58], which will be relevant also for future LHC
background estimations. This type of process is an example, where jets need to be found
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Figure 9.1: A compilation of data-over-theory ratios for inclusive jet cross
sections as a function of jet transverse momentum (pT ), measured in different
hadron-induced processes at different center-of-mass energies; from Ref. 156,
including some updates [157]. The various ratios are scaled by arbitrary numbers
(indicated between parentheses) for better readability of the plot. The theoretical
predictions have been obtained at NLO accuracy, for parameter choices (coupling
constant, PDFs, renormalization, and factorization scales) as indicated at the
bottom of the figure.

with an infrared and collinear safe jet algorithm, such as SISCone, in order to obtain
finite NLO predictions. This would not be possible with algorithms such as Midpoint or
JetCLU. The latter is used for a CDF measurement [164], which is compared to the NLO
QCD prediction with SISCone as jet algorithm. Besides this inconsistency, the agreement
appears to be good.

Finally, TEVATRON measurements of heavy quark (b, c) jet production, inclusive or
in association with vector bosons, have led to stringent tests of NLO predictions (see
Refs. 165–170 for examples of recent analyses).
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9.3.3. Tests of the non-abelian nature of QCD :

QCD is a gauge theory with SU(3) as underlying gauge group. For a general
gauge theory with a simple Lie group, the couplings of the fermion fields to the
gauge fields and the self-interactions in the non-abelian case are determined by the
coupling constant and Casimir operators of the gauge group, as introduced in Sec. 9.1.
Measuring the eigenvalues of these operators, called color factors, probes the underlying
structure of the theory in a gauge invariant way and provides evidence of the gluon
self-interactions. Typically, cross sections can be expressed as functions of the color
factors, for example σ = f(αsCF , CA/CF , nfTR/CF ). Sensitivity at leading order in
perturbation theory can be achieved by measuring angular correlations in 4-jet events
in e+e− annihilation or 3-jet events in DIS. Some sensitivity, although only at NLO,
is also obtained from event-shape distributions. Scaling violations of fragmentation
functions and the different subjet structure in quark and gluon induced jets also give
access to these color factors. In order to extract absolute values, e.g. for CF and CA,
certain assumptions have to be made for other parameters, such as TR, nf or αs, since
typically only combinations (ratios, products) of all the relevant parameters appear in
the perturbative prediction. A recent compilation of results [135] quotes world average
values of CA = 2.89 ± 0.03(stat) ± 0.21(syst) and CF = 1.30 ± 0.01(stat) ± 0.09(syst),
with a correlation coefficient of 82%. These results are in perfect agreement with the
expectations from SU(3) of CA = 3 and CF = 4/3. An overview of the history and the
current status of tests of asymptotic freedom, closely related to the non-abelian nature of
QCD, can be found in Ref. 171.

9.3.4. Measurements of the strong coupling constant :

If the quark masses are fixed, there is only one free parameter in the QCD Lagrangian,
the strong coupling constant αs. The coupling constant in itself is not a physical
observable, but rather a quantity defined in the context of perturbation theory, which
enters predictions for experimentally measurable observables, such as R in Eq. (9.7).

Many experimental observables are used to determine αs. Considerations in such
determinations include:

• The observable’s sensitivity to αs as compared to the experimental precision.
For example, for the e+e− cross section to hadrons (cf. R in Sec. 9.2.1), QCD
effects are only a small correction, since the perturbative series starts at order
α0

s ; 3-jet production or event shapes in e+e− annihilations are directly sensitive
to αs since they start at order αs; the hadronic decay width of heavy quarkonia,
Γ(Υ → hadrons), is very sensitive to αs since its leading order term is ∝ α3

s .

• The accuracy of the perturbative prediction, or equivalently of the relation between
αs and the value of the observable. The minimal requirement is generally considered
to be an NLO prediction. Some observables are predicted to NNLO (many inclusive
observables, 3-jet rates and event shapes in e+e− collisions) or even N3LO (e+e−
hadronic cross section and τ branching fraction to hadrons). In certain cases,
fixed-order predictions are supplemented with resummation. The precise magnitude
of theory uncertainties is usually estimated as discussed in Sec. 9.2.3.
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• The size of uncontrolled non-perturbative effects (except for lattice-based determina-
tions of αs). Sufficiently inclusive quantities, like the e+e− cross section to hadrons,
have small non-perturbative uncertainties ∼ Λ4/Q4. Others, such as event-shape
distributions, have uncertainties ∼ Λ/Q.

• The scale at which the measurement is performed. An uncertainty δ on a measurement
of αs(Q2), at a scale Q, translates to an uncertainty δ′ = (α2

s(M
2
Z)/α2

s(Q
2)) · δ on

αs(M2
Z). For example, this enhances the already important impact of precise low-Q

measurements, such as from τ decays, in combinations performed at the MZ scale.
In this review, we make no attempt to compile a full list of measurements of αs or

to produce a new world average value from them. We rather prefer to quote a recent
analysis by Bethke [172], which incorporates results with recently improved theoretical
predictions and/or experimental precision�. For detailed comments on the selected set of
recent results we refer to Ref. 172. Here we quote the main inputs:

• Several re-analyses of the hadronic τ decay width [16,174–179], based on the new
N3LO predictions, have been performed, with different approaches towards
the detailed treatment of the perturbative (fixed order or contour improved
perturbative expansions) and non-perturbative contributions. In Ref. 172 a value of
αs(M2

Z) = 0.1197 ± 0.0016 is quoted as average, where the uncertainty spans the
difference of those recent analyses.

• The N3LO calculation of the hadronic Z decay width was used in a recent
revision of the global fit to electroweak precision data [180], resulting in
αs(M2

Z) = 0.1193+0.0028
−0.0027 ± 0.0005, where the first error is of experimental and the

second of theoretical origin.
• A combined analysis of non-singlet structure functions from DIS [181], based on

QCD predictions up to N3LO, gives αs(M2
Z) = 0.1142 ± 0.0023. This uncertainty

includes a theoretical error of ±0.0008.
• A recent re-analysis of event shapes, measured by ALEPH at the Z peak and LEP2

energies up to 209 GeV, using NNLO predictions matched to NLL resummation, has
resulted in αs(M2

Z) = 0.1224± 0.0039 [182], with a dominant theoretical uncertainty
of 0.0035. Similarly, an analysis of JADE data [183] at center-of-mass energies
between 14 and 46 GeV gives αs(M2

Z) = 0.1172 ± 0.0051, with contributions from
hadronization model (perturbative QCD) uncertainties of 0.0035 (0.0030).

• A new combination [184] of precision measurements at HERA, based on NLO fits
to inclusive jet cross sections in neutral current DIS at high Q2, quotes a combined
result of αs(M2

Z) = 0.1198 ± 0.0032, which includes a theoretical uncertainty of
±0.0026.

• An improved extraction of the strong coupling constant from a NLO analysis of
radiative Υ decays [185] resulted in αs(MZ) = 0.119+0.006

−0.005.
• The HPQCD collaboration [186] computes Wilson loops and similar short-

distance quantities with lattice QCD and analyzes them with NNLO perturbative

� The time evolution of αs combinations can be followed by consulting Refs. 171, 173
as well as earlier editions of this Review.
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QCD. This yields a value for αs, but the lattice scale must be related to a
physical energy/momentum scale. This is achieved with the Υ′-Υ mass difference,
however, many other quantities could be used as well [187]. HPQCD obtains
αs(M2

Z) = 0.1183 ± 0.0008, where the uncertainty includes effects from truncating
perturbation theory, finite lattice spacing and extrapolation of lattice data.
An independent perturbative analysis of the same lattice-QCD data yields
αs(M2

Z) = 0.1192 ± 0.0011 [188]. The HPQCD value [186] is taken for the average.
It is the most precise of all inputs used in Ref. 172. It is worth noting that there is
a more recent result in Ref. 189, which avoids the staggered fermion treatment of
Ref. 186. There a value of αs(M2

Z) = 0.1205 ± 0.0008 ± 0.0005 +0.0000
−0.0017 [189] is found,

where the first uncertainty is statistical and the others are from systematics. Since
this approach uses a different discretization of lattice fermions and a different general
methodology, it provides an important cross check of other lattice extractions of αs.

A non-trivial exercise consists in the evaluation of a world-average value for αs(M2
Z).

A certain arbitrariness and subjective component is inevitable because of the choice of
measurements to be included in the average, the treatment of (non-Gaussian) systematic
uncertainties of mostly theoretical nature, as well as the treatment of correlations among
the various inputs, again mostly of theoretical origin. In Ref. 172 an attempt has been
made to take account of such correlations, using methods as proposed, e.g., in Ref. 190.
The central value is determined as the weighted average of the individual measurements.
For the error an overall, a-priori unknown, correlation coefficient is introduced and
determined by requiring that the total χ2 of the combination equals the number of
degrees of freedom. The world average quoted in Ref. 172 is

αs(M2
Z) = 0.1184 ± 0.0007 ,

with an astonishing precision of 0.6%. It is worth noting that a cross check performed in
Ref. 172, consisting in excluding each of the single measurements from the combination,
resulted in variations of the central value well below the quoted uncertainty, and in a
maximal increase of the combined error up to 0.0012. Most notably, excluding the most
precise determination from lattice QCD gives only a marginally different average value.
Nevertheless, there remains an apparent and long-standing systematic difference between
the results from structure functions and other determinations of similar accuracy. This
is evidenced in Fig. 9.2 (left), where the various inputs to this combination, evolved to
the Z mass scale, are shown. Fig. 9.2 (right) provides strongest evidence for the correct
prediction by QCD of the scale dependence of the strong coupling.
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Z), used as input for the

world average value; Right: Summary of measurements of αs as a function of the
respective energy scale Q. Both plots are taken from Ref. 172.
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