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Revised September 2009 by G. Cowan (RHUL).

This chapter gives an overview of statistical methods used in high-energy physics. In
statistics, we are interested in using a given sample of data to make inferences about
a probabilistic model, e.g., to assess the model’s validity or to determine the values
of its parameters. There are two main approaches to statistical inference, which we
may call frequentist and Bayesian. In frequentist statistics, probability is interpreted as
the frequency of the outcome of a repeatable experiment. The most important tools
in this framework are parameter estimation, covered in Section 32.1, and statistical
tests, discussed in Section 32.2. Frequentist confidence intervals, which are constructed
so as to cover the true value of a parameter with a specified probability, are treated in
Section 32.3.2. Note that in frequentist statistics one does not define a probability for a
hypothesis or for a parameter.

Frequentist statistics provides the usual tools for reporting the outcome of an
experiment objectively, without needing to incorporate prior beliefs concerning the
parameter being measured or the theory being tested. As such, they are used for
reporting most measurements and their statistical uncertainties in high-energy physics.

In Bayesian statistics, the interpretation of probability is more general and includes
degree of belief (called subjective probability). One can then speak of a probability
density function (p.d.f.) for a parameter, which expresses one’s state of knowledge about
where its true value lies. Bayesian methods allow for a natural way to input additional
information, such as physical boundaries and subjective information; in fact they require
the prior p.d.f. as input for the parameters, i.e., the degree of belief about the parameters’
values before carrying out the measurement. Using Bayes’ theorem Eq. (31.4), the prior
degree of belief is updated by the data from the experiment. Bayesian methods for
interval estimation are discussed in Sections 32.3.1 and 32.3.2.6

Bayesian techniques are often used to treat systematic uncertainties, where the author’s
beliefs about, say, the accuracy of the measuring device may enter. Bayesian statistics
also provides a useful framework for discussing the validity of different theoretical
interpretations of the data. This aspect of a measurement, however, will usually be
treated separately from the reporting of the result.

For many inference problems, the frequentist and Bayesian approaches give similar
numerical answers, even though they are based on fundamentally different interpretations
of probability. For small data samples, however, and for measurements of a parameter
near a physical boundary, the different approaches may yield different results, so we are
forced to make a choice. For a discussion of Bayesian vs. non-Bayesian methods, see
References written by a statistician[1], by a physicist[2], or the more detailed comparison
in Ref. [3].

Following common usage in physics, the word “error” is often used in this chapter to
mean “uncertainty.” More specifically it can indicate the size of an interval as in “the
standard error” or “error propagation,” where the term refers to the standard deviation
of an estimator.

C. Amsler et al., PL B667, 1 (2008) and 2009 partial update for the 2010 edition (http://pdg.lbl.gov)
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2 32. Statistics

32.1. Parameter estimation

Here we review point estimation of parameters, first with an overview of the frequentist
approach and its two most important methods, maximum likelihood and least squares,
treated in Sections 32.1.2 and 32.1.3. The Bayesian approach is outlined in Sec. 32.1.4.

An estimator 0 (written with a hat) is a function of the data whose value, the
estimate, is intended as a meaningful guess for the value of the parameter #. There is no
fundamental rule dictating how an estimator must be constructed. One tries, therefore,
to choose that estimator which has the best properties. The most important of these are
(a) consistency, (b) bias, (c) efficiency, and (d) robustness.

(a) An estimator is said to be consistent if the estimate 6 converges to the true value 6
as the amount of data increases. This property is so important that it is possessed by all
commonly used estimators.

(b) The bias, b = E[@] — 0, is the difference between the expectation value of the
estimator and the true value of the parameter. The expectation value is taken over a
hypothetical set of similar experiments in which 6 is constructed in the same way. When
b = 0, the estimator is said to be unbiased. The bias depends on the chosen metric, i.e., if
0 is an unbiased estimator of ¢, then 0 02 is not in general an unbiased estimator for 92 It
we have an estimate b for the bias, we can subtract it from 0 to obtain a new 8’ =0 — b.
The estimate b may, however, be subject to statistical or systematic uncertainties that
are larger than the bias itself, so that the new 8’ may not be better than the original.

(¢c) Efficiency is the inverse of the ratio of the variance V[8] to the minimum possible
variance for any estimator of #. Under rather general conditions, the minimum variance
is given by the Rao-Cramér-Frechet bound,

2
o2, = (1 + %) /1(0) , (32.1)

where

2
I1(0)=E (% Z In f(z;; 9)) (32.2)

is the Fisher information. The sum is over all data, assumed independent, and distributed
according to the p.d.f. f(x;#), b is the bias, if any, and the allowed range of z must not
depend on 6.

The mean-squared error,

MSE = E[(6 — 6)%] = V[0] + b?, (32.3)

is a measure of an estimator’s quality which combines the uncertainties due to bias and
variance.
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32. Statistics 3

(d) Robustness is the property of being insensitive to departures from assumptions in the
p-d.f., e.g., owing to uncertainties in the distribution’s tails.

Simultaneously optimizing for all the measures of estimator quality described above
can lead to conflicting requirements. For example, there is in general a trade-off between
bias and variance. For some common estimators, the properties above are known exactly.
More generally, it is possible to evaluate them by Monte Carlo simulation. Note that they
will often depend on the unknown 6.

32.1.1. Estimators for mean, variance and median :

Suppose we have a set of NV independent measurements, x;, assumed to be unbiased

measurements of the same unknown quantity g with a common, but unknown, variance
o2. Then

1 N
i= sz (32.4)
=1
2 L ™\2
ot =g Zl(wz 1) (32.5)
1=

—

are unbiased estimators of y and o2. The variance of [i is 02/N and the variance of o2 is

- 1 N -3
2| _ 4
V [O’ } =N <m4 10 ) , (32.6)

where my is the 4th central moment of x. For Gaussian distributed x;, this becomes
204 /(N — 1) for any N > 2, and for large N, the standard deviation of & (the “error of
the error”) is o/v/2N. Again, if the z; are Gaussian, i1 is an efficient estimator for p, and

the estimators /i and 02 are uncorrelated. Otherwise the arithmetic mean (32.4) is not
necessarily the most efficient estimator; this is discussed further in Sec. 8.7 of Ref. [4].

If o2 is known, it does not improve the estimate fi, as can be seen from Eq. (32.4);
however, if i is known, substitute it for i in Eq. (32.5) and replace N — 1 by N to obtain
an estimator of o2 still with zero bias but smaller variance. If the x; have different,
known variances af, then the weighted average

1 N
o= - Zl Wi T4 (32.7)
1=

is an unbiased estimator for p with a smaller variance than an unweighted average; here
w; = 1/0? and w = >, w;. The standard deviation of /i is 1//w.

As an estimator for the median x4, one can use the value Tp,oq such that half the
x; are below and half above (the sample median). If the sample median lies between
two observed values, it is set by convention halfway between them. If the p.d.f. of x
has the form f(x — p) and p is both mean and median, then for large N the variance
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4 32. Statistics

of the sample median approaches 1/[4N f2(0)], provided f(0) > 0. Although estimating
the median can often be more difficult computationally than the mean, the resulting
estimator is generally more robust, as it is insensitive to the exact shape of the tails of a
distribution.

32.1.2. The method of maximum likelihood :

Suppose we have a set of N measured quantities @ = (x1, ...,z ) described by a joint
p.d.f. f(x;0), where 8 = (01,...,0,) is set of n parameters whose values are unknown.
The likelihood function is given by the p.d.f. evaluated with the data x, but viewed as a
function of the parameters, i.e., L(0) = f(a;@). If the measurements x; are statistically
independent and each follow the p.d.f. f(x;8), then the joint p.d.f. for & factorizes and
the likelihood function is

N
L(6) =[] f(zi;0) . (32.8)
=1

The method of maximum likelihood takes the estimators @ to be those values of 6 that
maximize L(6).
Note that the likelihood function is not a p.d.f. for the parameters 0; in frequentist

statistics this is not defined. In Bayesian statistics, one can obtain from the likelihood
the posterior p.d.f. for 8, but this requires multiplying by a prior p.d.f. (see Sec. 32.3.1).

It is usually easier to work with In L, and since both are maximized for the same
parameter values 0, the maximum likelihood (ML) estimators can be found by solving
the likelihood equations,

OlnL

90,

0, i=1,....,n. (32.9)

Often the solution must be found numerically. Maximum likelihood estimators are
important because they are approximately unbiased and efficient for large data samples,
under quite general conditions, and the method has a wide range of applicability.

In evaluating the likelihood function, it is important that any normalization factors in
the p.d.f. that involve @ be included. However, we will only be interested in the maximum
of L and in ratios of L at different values of the parameters; hence any multiplicative
factors that do not involve the parameters that we want to estimate may be dropped,
including factors that depend on the data but not on 6.

Under a one-to-one change of parameters from 6 to n, the ML estimators 0 transform
to n(@). That is, the ML solution is invariant under change of parameter. However, other
properties of ML estimators, in particular the bias, are not invariant under change of

parameter.

The inverse V1 of the covariance matrix Vij = cov[@-, 53] for a set of ML estimators
can be estimated by using

B 9%InL
90;00; |5

(Vhy = (32.10)
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32. Statistics 5

For finite samples, however, Eq. (32.10) can result in an underestimate of the variances.
In the large sample limit (or in a linear model with Gaussian errors), L has a Gaussian
form and InL is (hyper)parabolic. In this case, it can be seen that a numerically
equivalent way of determining s-standard-deviation errors is from the contour given by
the @’ such that

InL(0") = In Lyax — 52/2 , (32.11)

where In Ly ax is the value of In L at the solution point (compare with Eq. (32.56)). The
extreme limits of this contour on the 6, axis give an approximate s-standard-deviation
confidence interval for 6; (see Section 32.3.2.4).

In the case where the size n of the data sample x1,...,z, is small, the unbinned
maximum likelihood method, i.e., use of equation (32.8), is preferred since binning can
only result in a loss of information, and hence larger statistical errors for the parameter
estimates. The sample size n can be regarded as fixed, or the user can choose to treat
it as a Poisson-distributed variable; this latter option is sometimes called “extended
maximum likelihood” (see, e.g., [6-8]) .

If the sample is large, it can be convenient to bin the values in a histogram, so
that one obtains a vector of data m = (ny,...,ny) with expectation values v = E[n]
and probabilities f(n;v). Then one may maximize the likelihood function based on the
contents of the bins (so i labels bins). This is equivalent to maximizing the likelihood
ratio A\(0) = f(n;v(0))/f(n;n), or to minimizing the equivalent quantity —21n \(0). For
independent Poisson distributed n; this is [9]

2

vi(0)]

N
—2In\(0) =2) [yi(e) —n; 4 n;ln (32.12)
=1

where for bins with n; = 0, the last term in (32.12) is zero. The expression (32.12)
without the terms v; — n; also gives —21In A(@) for multinomially distributed n;, i.e.,
when the total number of entries is regarded as fixed. In the limit of zero bin width,
maximizing (32.12) is equivalent to maximizing the unbinned likelihood function (32.8).

A benefit of binning is that it allows for a goodness-of-fit test (see Sec. 32.2.2).
According to Wilks’ theorem, for sufficiently large v; and providing certain regularity
conditions are met, the minimum of —2In\ as defined by Eq. (32.12) follows a x?
distribution (see, e.g., Ref. [3]). If there are N bins and m fitted parameters, then the
number of degrees of freedom for the x? distribution is N — m if the data are treated as
Poisson-distributed, and N —m — 1 if the n; are multinomially distributed.

Suppose the n; are Poisson-distributed and the overall normalization vyor = > ; v; is
taken as an adjustable parameter, so that v; = votp;(€), where the probability to be in
the ith bin, p;(@), does not depend on rot. Then by minimizing Eq. (32.12), one obtains
that the area under the fitted function is equal to the sum of the histogram contents,
i.e., y ;v; = » ;n;. This is not the case for parameter estimation methods based on a
least-squares procedure with traditional weights (see, e.g., Ref. [8]).
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6 32. Statistics

32.1.3. The method of least squares :

The method of least squares (LS) coincides with the method of maximum likelihood in
the following special case. Consider a set of N independent measurements y; at known
points ;. The measurement y; is assumed to be Gaussian distributed with mean F(x;; )
and known variance 022 . The goal is to construct estimators for the unknown parameters
0. The likelihood function contains the sum of squares

N
_ F(r::0 2
X*(0) = —2In L() + constant =y (yi (;”“ ) (32.13)
i—1 i

The set of parameters @ which maximize L is the same as those which minimize y2.

The minimum of Equation (32.13) defines the least-squares estimators 6 for the more
general case where the y; are not Gaussian distributed as long as they are independent.
If they are not independent but rather have a covariance matrix V;; = cov(y;,y;], then
the LS estimators are determined by the minimum of

X*(60)=(y—F(6)'V iy -F(), (32.14)

where y = (y1,...,yn) is the vector of measurements, F'(0) is the corresponding vector
of predicted values (understood as a column vector in (32.14)), and the superscript T
denotes transposed (i.e., row) vector.

In many practical cases, one further restricts the problem to the situation where
F(x;;0) is a linear function of the parameters, i.e.,

m
F(z30) =Y 0;hj(x;) . (32.15)
j=1
Here the hj(z) are m linearly independent functions, e.g., 1,z, z2,...,2™ 1 or Legendre

polynomials. We require m < N and at least m of the x; must be distinct.

Minimizing x? in this case with m parameters reduces to solving a system of m
linear equations. Defining H;; = h;(x;) and minimizing X2 by setting its derivatives with
respect to the 6; equal to zero gives the LS estimators,

6=HV'H)'HTV ly=Dy. (32.16)
The covariance matrix for the estimators U;; = cov[@-, 53] is given by

U=DvDl =@HT'v1H)!, (32.17)

or equivalently, its inverse U ! can be found from

B 1 82X2
200,00,

N
= Y hi(ep) (V" rh(z) - (32.18)

~1
(U™ )i =
0=0 k=1
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32. Statistics 7

The LS estimators can also be found from the expression

6=Ug, (32.19)
where the vector g is defined by
N
gi= > yihi(zr) (V) (32.20)
Jk=1

For the case of uncorrelated y;, for example, one can use (32.19) with

N
U Nij = M , (32.21)
k=1 k
N
gi=> %ﬁ?’”ﬂ) . (32.22)
k=1 k

Expanding X2(0) about 5, one finds that the contour in parameter space defined by

~

XP(0) = x*(6) + 1= xpy + 1 (32.23)

has tangent planes located at approximately plus-or-minus-one standard deviation o5
from the LS estimates 0.

In constructing the quantity XQ(B), one requires the variances or, in the case of
correlated measurements, the covariance matrix. Often these quantities are not known
a priori and must be estimated from the data; an important example is where the
measured value y; represents a counted number of events in the bin of a histogram.
If, for example, y; represents a Poisson variable, for which the variance is equal to the
mean, then one can either estimate the variance from the predicted value, F'(z;;0), or
from the observed number itself, y;. In the first option, the variances become functions
of the fitted parameters, which may lead to calculational difficulties. The second option
can be undefined if y; is zero, and in both cases for small y;, the variance will be poorly
estimated. In either case, one should constrain the normalization of the fitted curve to
the correct value, i.e., one should determine the area under the fitted curve directly from
the number of entries in the histogram (see [8], Section 7.4). A further alternative is to

use the method of maximum likelihood; for binned data this can be done by minimizing
Eq. (32.12)

As the minimum value of the y? represents the level of agreement between the
measurements and the fitted function, it can be used for assessing the goodness-of-fit; this
is discussed further in Section 32.2.2.
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8 32. Statistics

32.1.4. The Bayesian approach :

In the frequentist methods discussed above, probability is associated only with data,
not with the value of a parameter. This is no longer the case in Bayesian statistics,
however, which we introduce in this section. Bayesian methods are considered further
in Sec. 32.3.1 for interval estimation and in Sec. 32.2.3 for model selection. For general
introductions to Bayesian statistics see, e.g., Refs. [19,20,21, 22].

Suppose the outcome of an experiment is characterized by a vector of data @, whose
probability distribution depends on an unknown parameter (or parameters) 6 that we
wish to determine. In Bayesian statistics, all knowledge about 6 is summarized by the
posterior p.d.f. p(8]x), which gives the degree of belief for € to take on values in a certain
region given the data «. It is obtained by using Bayes’ theorem,

L(x|6)7(6)

p(Oz) = fL(:B\B/)W(O’) 46’ ’

(32.24)

where L(x|0) is the likelihood function, i.e., the joint p.d.f. for the data viewed as a
function of 6, evaluated with the data actually obtained in the experiment, and 7 (0) is
the prior p.d.f. for 8. Note that the denominator in Eq. (32.24) serves to normalize the
posterior p.d.f. to unity.

As it can be difficult to report the full posterior p.d.f. p(8|x), one would usually
summarize it with statistics such as the mean (or median), and covariance matrix. In
addition one may construct intervals with a given probability content, as is discussed in
Sec. 32.3.1 on Bayesian interval estimation.

Bayesian statistics supplies no unique rule for determining the prior 7(0); this reflects
the experimenter’s subjective degree of belief (or state of knowledge) about @ before the
measurement was carried out. For the result to be of value to the broader community,
whose members may not share these beliefs, it is important to carry out a sensitivity
analysis, that is, to show how the result changes under a reasonable variation of the prior
probabilities.

One might like to construct 7(6@) to represent complete ignorance about the parameters
by setting it equal to a constant. A problem here is that if the prior p.d.f. is flat in 6,
then it is not flat for a nonlinear function of @, and so a different parametrization of the
problem would lead in general to a non-equivalent posterior p.d.f.

For the special case of a constant prior, one can see from Bayes’ theorem (32.24) that
the posterior is proportional to the likelihood, and therefore the mode (peak position) of
the posterior is equal to the ML estimator. The posterior mode, however, will change in
general upon a transformation of parameter. A summary statistic other than the mode
may be used as the Bayesian estimator, such as the median, which is invariant under
parameter transformation. But this will not in general coincide with the ML estimator.

The difficult and subjective nature of encoding personal knowledge into priors has led
to what is called objective Bayesian statistics, where prior probabilities are based not on
an actual degree of belief but rather derived from formal rules. These give, for example,
priors which are invariant under a transformation of parameters or which result in a
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32. Statistics 9

maximum gain in information for a given set of measurements. For an extensive review
see, e.g., Ref. [23].

Objective priors do not in general reflect degree of belief, but they could in some
cases be taken as possible, although perhaps extreme, subjective priors. The posterior
probabilities as well therefore do not necessarily reflect a degree of belief. However one
may regard investigating a variety of objective priors to be an important part of the
sensitivity analysis. Furthermore, use of objective priors with Bayes’ theorem can be
viewed as a recipe for producing estimators or intervals which have desirable frequentist
properties.

An important procedure for deriving objective priors is due to Jeffreys. According to
Jeffreys’ rule one takes the prior as

7(8) x \/det(1(8)) (32.25)

where
9% 1n L(x|0) 9% 1n L(x|0)

,;@)=—-F|——|=— | —————= L(x|0)dx 32.26

5(0) =8 | T5s S Lalo) (32.26)
is the Fisher information matriz. One can show that the Jeffreys prior leads to inference
that is invariant under a transformation of parameters. One should note that the Jeffreys
prior depends on the likelihood function, and thus contains information about the
measurement model itself, which goes beyond one’s degree of belief about the value of a
parameter. As examples, the Jeffreys prior for the mean p of a Gaussian distribution is a
constant, and for the mean of a Poisson distribution one finds 7(p) oc 1/,/1.

Neither the constant nor 1/,/i priors can be normalized to unit area and are said to
be improper. This can be allowed because the prior always appears multiplied by the
likelihood function, and if the likelihood falls off sufficiently quickly then one may have a
normalizable posterior density.

Bayesian statistics provides a framework for incorporating systematic uncertainties into
a result. Suppose, for example, that a model depends not only on parameters of interest
0, but on nuisance parameters v, whose values are known with some limited accuracy.
For a single nuisance parameter v, for example, one might have a p.d.f. centered about
its nominal value with a certain standard deviation o,. Often a Gaussian p.d.f. provides
a reasonable model for one’s degree of belief about a nuisance parameter; in other cases,
more complicated shapes may be appropriate. If, for example, the parameter represents
a non-negative quantity then a log-normal or gamma p.d.f. can be a more natural choice
than a Gaussian truncated at zero. The likelihood function, prior, and posterior p.d.f.s
then all depend on both 6 and v, and are related by Bayes’ theorem, as usual. One can
obtain the posterior p.d.f. for @ alone by integrating over the nuisance parameters, i.e.,

p(6]a) = / (6, v|z) dv . (32.27)
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10 32. Statistics

Such integrals can often not be carried out in closed form, and if the number of nuisance
parameters is large, then they can be difficult to compute with standard Monte Carlo
methods. Markov Chain Monte Carlo (MCMC) is often used for computing integrals of
this type (see Sec. 33.5).

If the prior joint p.d.f. for 8 and v factorizes, then integrating the posterior p.d.f. over
v is equivalent to replacing the likelihood function by (see [24]),

L'(x]0) = /L(:c|0, v)m(v)dv . (32.28)

The function L'(x|@) can also be used together with frequentist methods that employ
the likelihood function such as ML estimation of parameters. The results then have a
mixed frequentist/Bayesian character, where the systematic uncertainty due to limited
knowledge of the nuisance parameters is built in. Although this may make it more
difficult to disentangle statistical from systematic effects, such a hybrid approach may
satisfy the objective of reporting the result in a convenient way.

32.1.5. Propagation of errors :
Consider a set of n quantities @ = (61,...,6,) and a set of m functions n(@) =

(m(0),...,mm(0)). Suppose we have estimated 0 = (51, .. .,gn), using, say, maximum-
likelihood or least-squares, and we also know or have estimated the covariance matrix
Vij = cov|f;,0;]. The goal of error propagation is to determine the covariance matrix for

the functions, U;; = cov(n;,7;], where 7 = n(é\ ). In particular, the diagonal elements
U;; = V0] give the variances. The new covariance matrix can be found by expanding the

functions (@) about the estimates 6 to first order in a Taylor series. Using this one finds

~ on; 877]
ZJ Z tol% 691

Vi - (32.29)

This can be written in matrix notation as U ~ AV AL where the matrix of derivatives A
is

on;

A = 21
Y000

(32.30)

and AT is its transpose. The approximation is exact if () is linear (it holds, for
example, in equation (32.17)). If this is not the case, the approximation can break down

if, for example, 1(0) is significantly nonlinear close to 8 in a region of a size comparable
to the standard deviations of 6.
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32.2. Statistical tests

In addition to estimating parameters, one often wants to assess the validity of certain
statements concerning the data’s underlying distribution. Frequentist Hypothesis tests,
described in Sec. 32.2.1, provide a rule for accepting or rejecting hypotheses depending
on the outcome of a measurement. In significance tests, covered in Sec. 32.2.2, one
gives the probability to obtain a level of incompatibility with a certain hypothesis that
is greater than or equal to the level observed with the actual data. In the Bayesian
approach, the corresponding procedure is referred to as model selection, which is based
fundamentally on the probabilities of competing hypotheses. In Sec. 32.2.3 we describe a
related construct called the Bayes factor, which can be used to quantify the degree to
which the data prefer one or another hypothesis.

32.2.1. Huypothesis tests :

Consider an experiment whose outcome is characterized by a vector of data x. A
hypothesis is a statement about the distribution of x. It could, for example, define
completely the p.d.f. for the data (a simple hypothesis), or it could specify only the
functional form of the p.d.f., with the values of one or more parameters left open (a
composite hypothesis).

A statistical test is a rule that states for which values of @ a given hypothesis (often
called the null hypothesis, Hy) should be rejected in favor of its alternative H;. This
is done by defining a region of x-space called the critical region; if the outcome of the
experiment lands in this region, Hg is rejected, otherwise it is accepted.

Rejecting Hy if it is true is called an error of the first kind. The probability for this to
occur is called the size or significance level of the test, a, which is chosen to be equal to
some pre-specified value. It can also happen that Hj is false and the true hypothesis is
the alternative, Hy. If Hy is accepted in such a case, this is called an error of the second
kind, which will have some probability 3. The quantity 1 — ( is called the power of the
test relative to Hy.

In high-energy physics, the components of & might represent the measured properties
of candidate events, and the acceptance region is defined by the cuts that one imposes in
order to select events of a certain desired type. Here Hg could represent the background
hypothesis and the alternative H; could represent the sought after signal.

Often rather than using the full set of quantities x, it is convenient to define a test
statistic, t, which can be a single number, or in any case a vector with fewer components
than x. Each hypothesis for the distribution of & will determine a distribution for ¢, and
the acceptance region in a-space will correspond to a specific range of values of ¢. In
constructing ¢, one attempts to reduce the volume of data without losing the ability to
discriminate between different hypotheses.

Often one tries to construct a test to maximize power for a given significance level,
i.e., to maximize the signal efficiency for a given significance level. The Neyman—Pearson
lemma states that this is done by defining the acceptance region such that, for  in that
region, the ratio of p.d.f.s for the hypotheses H; (signal) and Hy (background),
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12 32. Statistics

S (x| H1)

M) Fla|Ho) (32.31)
is greater than a given constant, the value of which is chosen to give the desired
signal efficiency. Here Hy and H; must be simple hypotheses, i.e., they should not
contain undetermined parameters. The lemma is equivalent to the statement that (32.31)
represents the test statistic with which one may obtain the highest signal efficiency for a
given purity for the selected sample. It can be difficult in practice, however, to determine
A(z), since this requires knowledge of the joint p.d.f.s f(x|Hp) and f(x|Hq).

In the usual case where the likelihood ratio (32.31) cannot be used explicitly, there
exist a variety of other multivariate classifiers that effectively separate different types
of events. Methods often used in HEP include neural networks or Fisher discriminants
(see [10]). Recently, further classification methods from machine-learning have been
applied in HEP analyses; these include probability density estimation (PDE) techniques,
kernel-based PDE (KDE or Parzen window), support vector machines, and decision trees.
Techniques such as “boosting” and “bagging” can be applied to combine a number of
classifiers into a stronger one with greater stability with respect to fluctuations in the
training data. Descriptions of these methods can be found in [11-13], and Proceedings
of the PHYSTAT conference series [14]. Software for HEP includes the TMVA [15] and
StatPatternRecognition [16] packages.

32.2.2. Significance tests :

Often one wants to quantify the level of agreement between the data and a hypothesis
without explicit reference to alternative hypotheses. This can be done by defining a
statistic ¢, which is a function of the data whose value reflects in some way the level of
agreement between the data and the hypothesis. The user must decide what values of
the statistic correspond to better or worse levels of agreement with the hypothesis in
question; for many goodness-of-fit statistics, there is an obvious choice.

The hypothesis in question, say, Hy, will determine the p.d.f. g(¢|Hp) for the statistic.
The significance of a discrepancy between the data and what one expects under the
assumption of Hy is quantified by giving the p-value, defined as the probability to find ¢ in
the region of equal or lesser compatibility with Hy than the level of compatibility observed
with the actual data. For example, if ¢ is defined such that large values correspond to
poor agreement with the hypothesis, then the p-value would be

p= /too g(t|Hp) dt , (32.32)

obs

where t.1,¢ is the value of the statistic obtained in the actual experiment. The p-value
should not be confused with the size (significance level) of a test, or the confidence level
of a confidence interval (Section 32.3), both of which are pre-specified constants.

The p-value is a function of the data, and is therefore itself a random variable. If
the hypothesis used to compute the p-value is true, then for continuous data, p will be
uniformly distributed between zero and one. Note that the p-value is not the probability
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for the hypothesis; in frequentist statistics, this is not defined. Rather, the p-value is
the probability, under the assumption of a hypothesis Hy, of obtaining data at least as
incompatible with Hy as the data actually observed.

When searching for a new phenomenon, one tries to reject the hypothesis Hpy that
the data are consistent with known, e.g., Standard Model processes. If the p-value of
Hy is sufficiently low, then one is willing to accept that some alternative hypothesis is
true. Often one converts the p-value into an equivalent significance Z, defined so that a
Z standard deviation upward fluctuation of a Gaussian random variable would have an
upper tail area equal to p, i.e.,

Z=0"1(1-p). (32.33)

Here ® is the cumulative distribution of the Standard Gaussian, and ®~! is its inverse
(quantile) function. Often in HEP, the level of significance where an effect is said to
qualify as a discovery is Z = 5, i.e., a 5o effect, corresponding to a p-value of 2.87 x 10~7.
One’s actual degree of belief that a new process is present, however, will depend in
general on other factors as well, such as the plausibility of the new signal hypothesis and
the degree to which it can describe the data, one’s confidence in the model that led to
the observed p-value, and possible corrections for multiple observations out of which one
focuses on the smallest p-value obtained (the “look-elsewhere effect”). For a review of
how to incorporate systematic uncertainties into p-values see, e.g., [17].

When estimating parameters using the method of least squares, one obtains the
minimum value of the quantity x? (32.13). This statistic can be used to test the
goodness-of-fit, i.e., the test provides a measure of the significance of a discrepancy
between the data and the hypothesized functional form used in the fit. It may also
happen that no parameters are estimated from the data, but that one simply wants to
compare a histogram, e.g., a vector of Poisson distributed numbers n = (ny,...,ny),
with a hypothesis for their expectation values v; = E[n;]. As the distribution is Poisson

with variances af = v;, the x? (32.13) becomes Pearson’s x? statistic,

2
2 (n; —v;)
= - 32.34
= (32.34)
=1
If the hypothesis v = (v1,...,vN) is correct, and if the expected values v; in (32.34) are

sufficiently large (in practice, this will be a good approximation if all v; > 5), then the
x?2 statistic will follow the 2 p.d.f. with the number of degrees of freedom equal to the
number of measurements N minus the number of fitted parameters. The minimized y?
from Eq. (32.13) also has this property if the measurements y; are Gaussian.

Alternatively, one may fit parameters and evaluate goodness-of-fit by minimizing
—2In A from Eq. (32.12). One finds that the distribution of this statistic approaches the
asymptotic limit faster than does Pearson’s x?, and thus computing the p-value with the
x2 p.d.f. will in general be better justified (see [9] and references therein).

Assuming the goodness-of-fit statistic follows a x2 p.d.f., the p-value for the hypothesis
is then
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Figure 32.1: One minus the x? cumulative distribution, 1 — F(x?;n), for n degrees

of freedom. This gives the p-value for the x? goodness-of-fit test as well as one

minus the coverage probability for confidence regions (see Sec. 32.3.2.4).
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p= /X f(zna)dz, (32.35)

where f(z;nq) is the x? p.d.f. and nq is the appropriate number of degrees of freedom.
Values can be obtained from Fig. 32.1 or from the CERNLIB routine PROB or the ROOT
function TMath: :Prob. If the conditions for using the x? p.d.f. do not hold, the statistic
can still be defined as before, but its p.d.f. must be determined by other means in order
to obtain the p-value, e.g., using a Monte Carlo calculation.

If one finds a x? value much greater than ng, and a correspondingly small p-value,
one may be tempted to expect a high degree of uncertainty for any fitted parameters.
Although this may be true for systematic errors in the parameters, it is not in general the
case for statistical uncertainties. If, for example, the error bars (or covariance matrix)
used in constructing the y? are underestimated, then this will lead to underestimated
statistical errors for the fitted parameters. But in such a case, an estimate 6 can differ
from the true value # by an amount much greater than its estimated statistical error.
The standard deviations of estimators that one finds from, say, Eq. (32.11) reflect how
widely the estimates would be distributed if one were to repeat the measurement many
times, assuming that the measurement errors used in the x? are also correct. They do not
include the systematic error which may result from an incorrect hypothesis or incorrectly
estimated measurement errors in the x?.

Since the mean of the y? distribution is equal to ng, one expects in a “reasonable”
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experiment to obtain x? ~ ng. Hence the quantity x? /nq is sometimes reported. Since
the p.d.f. of x? /nq depends on ng, however, one must report ngq as well if one wishes to
determine the p-value. The p-values obtained for different values of x?2 /nq are shown in
Fig. 32.2.

2.5 |||||||

2.0

15

x2In
1.0

~ ™

0.5

10 20 30 40 50
Degrees of freedom n

0.0

(@)

Figure 32.2: The ‘reduced’ x?2, equal to x?2 /mn, for n degrees of freedom. The
curves show as a function of n the y? /m that corresponds to a given p-value.

32.2.3. Bayesian model selection :

In Bayesian statistics, all of one’s knowledge about a model is contained in its posterior
probability, which one obtains using Bayes’ theorem (32.24). Thus one could reject a
hypothesis H if its posterior probability P(H|x) is sufficiently small. The difficulty here
is that P(H|x) is proportional to the prior probability P(H), and there will not be a
consensus about the prior probabilities for the existence of new phenomena. Nevertheless
one can construct a quantity called the Bayes factor (described below), which can be
used to quantify the degree to which the data prefer one hypothesis over another, and is
independent of their prior probabilities.

Consider two models (hypotheses), H; and H;, described by vectors of parameters 6;
and 6, respectively. Some of the components will be common to both models and others
may be distinct. The full prior probability for each model can be written in the form

m(H;,0;) = P(H;)m(6;|H;) , (32.36)
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Here P(H;) is the overall prior probability for H;, and 7(6;|H;) is the normalized p.d.f. of
its parameters. For each model, the posterior probability is found using Bayes’ theorem,

P(H;|z) = fL(fB\Oi,Hi)];((ZI)i)W(@i\H@') do; | (32.37)

where the integration is carried out over the internal parameters @; of the model. The
ratio of posterior probabilities for the models is therefore

P(H;lx) [ L(x|6;, H;)w(0;|H;) d6; P(H;)

= ) (32.38)
The Bayes factor is defined as
L(x|0;,H;)m(0;|H;) dO;
Bjj = f (x]0;, H;)w(0;|H;) dO; (32.39)

[ L(x|0;, H;)w(0;|H;)d6;

This gives what the ratio of posterior probabilities for models i and j would be if the
overall prior probabilities for the two models were equal. If the models have no nuisance
parameters i.e., no internal parameters described by priors, then the Bayes factor is
simply the likelihood ratio. The Bayes factor therefore shows by how much the probability
ratio of model ¢ to model 5 changes in the light of the data, and thus can be viewed as a
numerical measure of evidence supplied by the data in favour of one hypothesis over the
other.

Although the Bayes factor is by construction independent of the overall prior
probabilities P(H;) and P(H;), it does require priors for all internal parameters of a
model, i.e., one needs the functions 7(6;|H;) and m(0;|H;). In a Bayesian analysis
where one is only interested in the posterior p.d.f. of a parameter, it may be acceptable
to take an unnormalizable function for the prior (an improper prior) as long as the
product of likelihood and prior can be normalized. But improper priors are only defined
up to an arbitrary multiplicative constant, which does not cancel in the ratio (32.39).
Furthermore, although the range of a constant normalized prior is unimportant for
parameter determination (provided it is wider than the likelihood), this is not so for the
Bayes factor when such a prior is used for only one of the hypotheses. So to compute
a Bayes factor, all internal parameters must be described by normalized priors that
represent meaningful probabilities over the entire range where they are defined.

An exception to this rule may be considered when the identical parameter appears in
the models for both numerator and denominator of the Bayes factor. In this case one
can argue that the arbitrary constants would cancel. One must exercise some caution,
however, as parameters with the same name and physical meaning may still play different
roles in the two models.

Both integrals in equation (32.39) are of the form
m = /L(a:|0)7r(0) ae (32.40)
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which is called the marginal likelihood (or in some fields called the evidence). A review of
Bayes factors including a discussion of computational issues is Ref. [26].

32.3. Intervals and limits

When the goal of an experiment is to determine a parameter 6, the result is usually
expressed by quoting, in addition to the point estimate, some sort of interval which
reflects the statistical precision of the measurement. In the simplest case, this can be
given by the parameter’s estimated value 6 plus or minus an estimate of the standard
deviation of 6, oy If, however, the p.d.f. of the estimator is not Gaussian or if there
are physical boundaries on the possible values of the parameter, then one usually quotes
instead an interval according to one of the procedures described below.

In reporting an interval or limit, the experimenter may wish to

e communicate as objectively as possible the result of the experiment;

e provide an interval that is constructed to cover the true value of the parameter with
a specified probability;

e provide the information needed by the consumer of the result to draw conclusions
about the parameter or to make a particular decision;

e draw conclusions about the parameter that incorporate stated prior beliefs.

With a sufficiently large data sample, the point estimate and standard deviation (or
for the multiparameter case, the parameter estimates and covariance matrix) satisfy
essentially all of these goals. For finite data samples, no single method for quoting an
interval will achieve all of them.

In addition to the goals listed above, the choice of method may be influenced by
practical considerations such as ease of producing an interval from the results of several
measurements. Of course the experimenter is not restricted to quoting a single interval
or limit; one may choose, for example, first to communicate the result with a confidence
interval having certain frequentist properties, and then in addition to draw conclusions
about a parameter using Bayesian statistics. It is recommended, however, that there be a
clear separation between these two aspects of reporting a result. In the remainder of this
section, we assess the extent to which various types of intervals achieve the goals stated
here.

32.3.1. Bayesian intervals :

As described in Sec. 32.1.4, a Bayesian posterior probability may be used to determine
regions that will have a given probability of containing the true value of a parameter.
In the single parameter case, for example, an interval (called a Bayesian or credible
interval) [f),, Oup) can be determined which contains a given fraction 1 —« of the posterior
probability, i.e.,

l—a= / p(f|x) do . (32.41)
0

lo
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Sometimes an upper or lower limit is desired, i.e., 0}, can be set to zero or 0y, to infinity.
In other cases, one might choose 6, and 6y, such that p(f|x) is higher everywhere inside
the interval than outside; these are called highest posterior density (HPD) intervals. Note
that HPD intervals are not invariant under a nonlinear transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior p.d.f. can simply be
set to zero for negative values. An important example is the case of a Poisson variable n,
which counts signal events with unknown mean s, as well as background with mean b,
assumed known. For the signal mean s, one often uses the prior

7(s) = {(1) ’ ; 8 . (32.42)

This prior is regarded as providing an interval whose frequentist properties can be studied,
rather than as representing a degree of belief. In the absence of a clear discovery, (e.g., if
n = 0 or if in any case n is compatible with the expected background), one usually wishes
to place an upper limit on s (see, however, Sec. 32.3.2.6 on “flip-flopping” concerning
frequentist coverage). Using the likelihood function for Poisson distributed n,

b n
L(n|s) = Me—(%b) : (32.43)
n!
along with the prior (32.42) in (32.24) gives the posterior density for s. An upper limit
sup at confidence level (or here, rather, credibility level) 1 — a can be obtained by
requiring

N p(sln)ds = > Linfs)n(s)ds (32.44)

where the lower limit of integration is effectively zero because of the cut-off in 7(s). By
relating the integrals in Eq. (32.44) to incomplete gamma functions, the equation reduces

to
—sup 2om=0(Sup + )" /m!

a=e =
mep 0™/m!

l—a= /SUP S22 L(n|s) m(s) ds

(32.45)

This must be solved numerically for the limit syp. For the special case of b = 0, the
sums can be related to the quantile FX_21 of the x? distribution (inverse of the cumulative

distribution) to give
Sup = %FX_21(1 —a;ng) , (32.46)

where the number of degrees of freedom is nq = 2(n + 1). The quantile of the 2
distribution can be obtained using the CERNLIB routine CHISIN, or the ROOT function
TMath: :ChisquareQuantile. It so happens that for the case of b = 0, the upper limits
from Eq. (32.46) coincide numerically with the values of the frequentist upper limits
discussed in Section 32.3.2.5. Values for 1 — a = 0.9 and 0.95 are given by the values
vyp in Table 32.3. The frequentist properties of confidence intervals for the Poisson mean
obtained in this way are discussed in Refs. [2] and [18].
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As in any Bayesian analysis, it is important to show how the result would change if
one uses different prior probabilities. For example, one could consider the Jeffreys prior
as described in Sec. 32.1.4. For this problem one finds the Jeffreys prior m(s) oc 1/v/s +b
for s > 0 and zero otherwise. As with the constant prior, one would not regard this as
representing one’s prior beliefs about s, both because it is improper and also as it depends
on b. Rather it is used with Bayes’ theorem to produce an interval whose frequentist
properties can be studied.

32.3.2. Frequentist confidence intervals :

The unqualified phrase “confidence intervals” refers to frequentist intervals obtained
with a procedure due to Neyman [25], described below. These are intervals (or in the
multiparameter case, regions) constructed so as to include the true value of the parameter
with a probability greater than or equal to a specified level, called the coverage probability.
In this section, we discuss several techniques for producing intervals that have, at least
approximately, this property.

32.3.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(z;0) where x represents the outcome of the experiment and 6 is the
unknown parameter for which we want to construct a confidence interval. The variable
x could (and often does) represent an estimator for 6. Using f(x;0), we can find for a
pre-specified probability 1 — «, and for every value of 6, a set of values x1(6,«) and
x2(0, ) such that

2
Plxi1<z<z9;0)=1—a= / f(z;0)dx . (32.47)
T

This is illustrated in Fig. 32.3: a horizontal line segment [z1(0, ), z2(0, )] is drawn
for representative values of . The union of such intervals for all values of 6, designated
in the figure as D(«), is known as the confidence belt. Typically the curves z1(0, ) and
x2(0, ) are monotonic functions of 6, which we assume for this discussion.

Upon performing an experiment to measure x and obtaining a value xg, one draws
a vertical line through xg. The confidence interval for € is the set of all values of 6 for
which the corresponding line segment [z1(0, ), z2(0, «)] is intercepted by this vertical
line. Such confidence intervals are said to have a confidence level (CL) equal to 1 — a.

Now suppose that the true value of 6 is g, indicated in the figure. We see from the
figure that 6y lies between 61 (x) and 02 () if and only if z lies between z1(6p) and x2(6p).
The two events thus have the same probability, and since this is true for any value g, we
can drop the subscript 0 and obtain

l—a=P(r1(0) <x <x2(0)) = P(f2(x) <0 <01(x)) . (32.48)

In this probability statement, 61 (x) and 62(z), i.e., the endpoints of the interval, are the
random variables and 6 is an unknown constant. If the experiment were to be repeated
a large number of times, the interval [0, 02] would vary, covering the fixed value € in a
fraction 1 — « of the experiments.
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Figure 32.3: Construction of the confidence belt (see text).

The condition of coverage in Eq. (32.47) does not determine z; and x2 uniquely, and
additional criteria are needed. The most common criterion is to choose central intervals
such that the probabilities excluded below 1 and above x5 are each a/2. In other cases,
one may want to report only an upper or lower limit, in which case the probability
excluded below x1 or above x9 can be set to zero. Another principle based on likelihood
ratio ordering for determining which values of x should be included in the confidence belt

is discussed in Sec. 32.3.2.2

When the observed random variable x is continuous, the coverage probability obtained
with the Neyman construction is 1 — «, regardless of the true value of the parameter. If
x is discrete, however, it is not possible to find segments [z1(6, «), z2(0, )] that satisfy
Eq. (32.47) exactly for all values of #. By convention, one constructs the confidence belt
requiring the probability P(x1 < x < x2) to be greater than or equal to 1 — .. This gives
confidence intervals that include the true parameter with a probability greater than or

equal to 1 — a.

32.3.2.2. Relationship between intervals and tests:

An equivalent method of constructing confidence intervals is to consider a test (see
Sec. 32.2) of the hypothesis that the parameter’s true value is § (assume one constructs a
test for all physical values of 8). One then excludes all values of # where the hypothesis
would be rejected at a significance level less than «. The remaining values constitute the
confidence interval at confidence level 1 — a.

In this procedure, one is still free to choose the test to be used; this corresponds to the
freedom in the Neyman construction as to which values of the data are included in the
confidence belt. One possibility is use a test statistic based on the likelihood ratio,
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: (32.49)

where 0 is the value of the parameter which, out of all allowed values, maximizes f(z;6).
This results in the intervals described in [27] by Feldman and Cousins. The same intervals
can be obtained from the Neyman construction described in the previous section by
including in the confidence belt those values of x which give the greatest values of \.

Another technique that can be formulated in the language of statistical tests has been
used to set limits on the Higgs mass from measurements at LEP [28,29]. For each value
of the Higgs mass, a statistic called CLg is determined from the ratio

_ p-value of signal plus background hypothesis

CLs (32.50)

1 — p-value of hypothesis of background only

The p-values in Eq. (32.50) are themselves based on a test statistic which depends in
general on the signal being tested, i.e., on the hypothesized Higgs mass.

In the usual procedure for constructing confidence intervals, one would exclude the
signal hypothesis if the probability to obtain a value of CLg less than the one actually
observed is less than a. The LEP Higgs group has in fact followed a more conservative
approach, and excludes the signal at a confidence level 1 — « if CLg itself (not the
probability to obtain a lower CLg value) is less than «. This prevents exclusion of a
parameter value that could result from a statistical fluctuation in situations where one
has no sensitivity, e.g., at very high Higgs masses. The procedure results in a coverage
probability that is in general greater than 1 — a.

The interpretation of such intervals is discussed in Refs.[28,29].

32.3.2.3. Profile likelihood and treatment of nuisance parameters:

As mentioned in Section 32.3.1, one may have a model containing parameters that
must be determined from data, but which are not of any interest in the final result
(nuisance parameters). Suppose the likelihood L(6,v) depends on parameters of interest
0 and nuisance parameters v. The nuisance parameters can be effectively removed from
the problem by constructing the profile likelihood, defined by

Lp(0) = L(6,5(0)) , (32.51)

where 13(0) is given by the v that maximizes the likelihood for fixed 6. The profile
likelihood may then be used to construct tests of or intervals for the parameters of
interest. This is in contrast to the integrated likelihood (32.28) used in the Bayesian
approach. For example, one may construct the profile likelihood ratio,

Ap(0) = If:(%(i)) , (32.52)
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where 0 and U are the ML estimators. The ratio Ap can be used in place of the likelihood
ratio (32.49) for inference about 6. The resulting intervals for the parameters of interest
are not guaranteed to have the exact coverage probability for all values of the nuisance
parameters, but in cases of practical interest the approximation is found to be very good.
Further discussion on use of the profile likelihood can be found in, e.g., Refs.[33,34] and
other contributions to the PHYSTAT conferences [14].

32.3.2.4. (Gaussian distributed measurements:

An important example of constructing a confidence interval is when the data consists
of a single random variable z that follows a Gaussian distribution; this is often the case
when x represents an estimator for a parameter and one has a sufficiently large data
sample. If there is more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known o,

ISR
l—a= 21 / e_(x_“)2/202 dx = erf (
o Ju—s

4]
7 U) (32.53)
is the probability that the measured value z will fall within +6 of the true value pu. From
the symmetry of the Gaussian with respect to x and p, this is also the probability for
the interval x £ ¢ to include p. Fig. 32.4 shows a § = 1.640 confidence interval unshaded.
The choice 0 = o gives an interval called the standard error which has 1 — a = 68.27% if
o is known. Values of « for other frequently used choices of § are given in Table 32.1.

f(x; 1,0)

of2 o/2

-3 2 -1 0 1 2 3
(x-)/o

Figure 32.4: Illustration of a symmetric 90% confidence interval (unshaded) for
a measurement of a single quantity with Gaussian errors. Integrated probabilities,
defined by «, are as shown.

We can set a one-sided (upper or lower) limit by excluding above z 4+ 0 (or below
x — §). The values of « for such limits are half the values in Table 32.1.
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Table 32.1: Area of the tails o outside £+ from the mean of a Gaussian
distribution.

«Q ) «Q )
0.3173 lo 0.2 1.28¢
4.55 x102 20 0.1 1.64c
2.7 x1073 30 0.05 1.960
6.3x107° 4o 0.01 2.580
5.7x10~7 50 0.001 3.290
2.0x1079 6o 10~4 3.890

The relation (32.53) can be re-expressed using the cumulative distribution function for
the 2 distribution as

a=1-F(*n), (32.54)

for 2 = (6/0)? and n = 1 degree of freedom. This can be obtained from Fig. 32.1 on the
n = 1 curve or by using the CERNLIB routine PROB or the ROOT function TMath: : Prob.

For multivariate measurements of, say, n parameter estimates 0 = (91, ey Gn), one
requires the full covariance matrix V;; = COV[QZ, 03], which can be estimated as described
in Sections 32.1.2 and 32.1.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the estimators will be
distributed according to a multivariate Gaussian centered about the true (unknown)
values @, and furthermore, the likelihood function itself takes on a Gaussian shape.

The standard error ellipse for the pair (@\Z,é\]) is shown in Fig. 32.5, corresponding
= Xiin tlorInL =InLpax — 1 /2. The ellipse is centered about the

estimated values 0, and the tangents to the ellipse give the standard deviations of the
estimators, o; and 0. The angle of the major axis of the ellipse is given by

to a contour X2

2 ..
tan 2¢ = 4797 (32.55)

where p;; = cov[@-, é\]] /o0 is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the distance o; from the
ellipse’s horizontal centerline at which the ellipse becomes tangent to vertical, i.e., at the
distance p;jo; below the centerline as shown. As p;; goes to +1 or —1, the ellipse thins
to a diagonal line.

It could happen that one of the parameters, say, 6;, is known from previous
measurements to a precision much better than o;, so that the current measurement
contributes almost nothing to the knowledge of 6;. However, the current measurement of
0; and its dependence on #; may still be important. In this case, instead of quoting both
parameter estimates and their correlation, one sometimes reports the value of 6;, which
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Table 32.2: Ayx? or 2AIn L corresponding to a coverage probability 1 — « in the
large data sample limit, for joint estimation of m parameters.

(1—-a) (%) m=1 m=2 m=3
68.27 1.00 2.30 3.93
90. 2.71 4.61 6.25
95. 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99. 6.63 9.21 11.34
99.73 9.00 11.83 14.16

minimizes x? at a fixed value of 0, such as the PDG best value. This 6; value lies along

the dotted line between the points where the ellipse becomes tangent to vertical, and has

statistical error ginner as shown on the figure, where ojpner = (1 — p?j)l/ 25;. Instead of

the correlation p;;, one reports the dependency d@- /df; which is the slope of the dotted
g

line. This slope is related to the correlation coefficient by dgi /d0; = pi; x St.

gj

i

AN

Figure 32.5: Standard error ellipse for the estimators @ and 5] In this case the
correlation is negative.

As in the single-variable case, because of the symmetry of the Gaussian function
between 6 and 6, one finds that contours of constant In L or x? cover the true values with
a certain, fixed probability. That is, the confidence region is determined by

InL(0) >1InLypax —Aln L, (32.56)

or where a x2 has been defined for use with the method of least-squares,

X2(0) < 2+ AxE. (32.57)

Values of Ax? or 2AInL are given in Table 32.2 for several values of the coverage
probability and number of fitted parameters.
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For finite data samples, the probability for the regions determined by equations (32.56)
or (32.57) to cover the true value of 8 will depend on 6, so these are not exact confidence
regions according to our previous definition. Nevertheless, they can still have a coverage
probability only weakly dependent on the true parameter, and approximately as given
in Table 32.2. In any case, the coverage probability of the intervals or regions obtained
according to this procedure can in principle be determined as a function of the true
parameter(s), for example, using a Monte Carlo calculation.

One of the practical advantages of intervals that can be constructed from the
log-likelihood function or 2 is that it is relatively simple to produce the interval
for the combination of several experiments. If N independent measurements result in
log-likelihood functions In L;(0), then the combined log-likelihood function is simply the
sum,

N
InL(0) =) InLi(6) . (32.58)
=1

This can then be used to determine an approximate confidence interval or region with
Eq. (32.56), just as with a single experiment.

32.3.2.5. Poisson or binomial data:

Another important class of measurements consists of counting a certain number of
events, n. In this section, we will assume these are all events of the desired type, i.e.,
there is no background. If n represents the number of events produced in a reaction
with cross section o, say, in a fixed integrated luminosity £, then it follows a Poisson
distribution with mean v = ¢ L. If, on the other hand, one has selected a larger sample of
N events and found n of them to have a particular property, then n follows a binomial
distribution where the parameter p gives the probability for the event to possess the
property in question. This is appropriate, e.g., for estimates of branching ratios or
selection efficiencies based on a given total number of events.

For the case of Poisson distributed n, the upper and lower limits on the mean value v
can be found from the Neyman procedure to be

Vo = %FX_Ql (103 2n) (32.59a)

Vup = %Fgu — aup;2(n + 1)), (32.59b)

where the upper and lower limits are at confidence levels of 1 — o, and 1 — ayp,
respectively, and FX_21 is the quantile of the x? distribution (inverse of the cumulative
distribution). The quantiles FX_21 can be obtained from standard tables or from the
CERNLIB routine CHISIN. For central confidence intervals at confidence level 1 — «, set
Q) = Op = /2.

It happens that the upper limit from Eq. (32.59a) coincides numerically with the

Bayesian upper limit for a Poisson parameter, using a uniform prior p.d.f. for v. Values
for confidence levels of 90% and 95% are shown in Table 32.3.
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Table 32.3: Lower and upper (one-sided) limits for the mean v of a Poisson
variable given n observed events in the absence of background, for confidence levels
of 90% and 95%.

1 —a=90% 1—a=95%

n Yo Vup Yo Vup
0 - 2.30 - 3.00
1 0.105 3.89 0.051 4.74
2 0.532 5.32 0.355 6.30
3 1.10 6.68 0.818 7.75
4 1.74 7.99 1.37 9.15
5 2.43 9.27 1.97 10.51
6 3.15 10.53 2.61 11.84
7 3.89 11.77 3.29 13.15
8 4.66 12.99 3.98 14.43
9 5.43 14.21 4.70 15.71

10 6.22 15.41 5.43 16.96

For the case of binomially distributed n successes out of N trials with probability of
success p, the upper and lower limits on p are found to be

nFola: 2n,2(N —n + 1
Plo = r % — ( ) : (32.60a)
N —n+1+ nFp [oge;2n,2(N —n + 1)]

pup = (n+1)Fa'1 __?Up; 2(n+1),2(N —n)] | (32.600)
(N —n) + (n+1)Fp'[L — aup; 2(n +1),2(N — n))]

Here F'p lis the quantile of the F distribution (also called the Fisher—Snedecor
distribution; see [4]).

32.3.2.6. Difficulties with intervals near a boundary:

A number of issues arise in the construction and interpretation of confidence intervals
when the parameter can only take on values in a restricted range. An important example
is where the mean of a Gaussian variable is constrained on physical grounds to be
non- negatlve This arises, for example when the square of the neutrino mass is estimated
from m2 = E2 — p2, where E and p p are independent, Gaussian-distributed estimates of
the energy and momentum. Although the true m? is constrained to be positive, random

errors in E and p can easily lead to negative values for the estimate m2.
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If one uses the prescription given above for Gaussian distributed measurements,
which says to construct the interval by taking the estimate plus-or-minus-one standard
deviation, then this can give intervals that are partially or entirely in the unphysical
region. In fact, by following strictly the Neyman construction for the central confidence
interval, one finds that the interval is truncated below zero; nevertheless an extremely
small or even a zero-length interval can result.

An additional important example is where the experiment consists of counting a
certain number of events, n, which is assumed to be Poisson-distributed. Suppose the
expectation value E[n| = v is equal to s + b, where s and b are the means for signal and
background processes, and assume further that b is a known constant. Then s =n —b
is an unbiased estimator for s. Depending on true magnitudes of s and b, the estimate
s can easily fall in the negative region. Similar to the Gaussian case with the positive
mean, the central confidence interval or even the upper limit for s may be of zero length.

The confidence interval will by construction not cover the parameter with a probability
of at most «, and if a zero-length interval results, then this is evidently one of those
experiments. So although the construction is behaving as it should, a null interval is an
unsatisfying result to report, and several solutions to this type of problem are possible.

An additional difficulty arises when a parameter estimate is not significantly far away
from the boundary, in which case it is natural to report a one-sided confidence interval
(often an upper limit). It is straightforward to force the Neyman prescription to produce
only an upper limit by setting xo2 = oo in Eq. 32.47. Then z7 is uniquely determined and
the upper limit can be obtained. If, however, the data come out such that the parameter
estimate is not so close to the boundary, one might wish to report a central (i.e.,
two-sided) confidence interval. As pointed out by Feldman and Cousins [27], however, if
the decision to report an upper limit or two-sided interval is made by looking at the data
(“flip-flopping”), then in general there will be parameter values for which the resulting
intervals have a coverage probability less than 1 — «.

With the confidence intervals suggested in [27], the prescription determines whether the
interval is one- or two-sided in a way which preserves the coverage probability. Interval
constructions that have this property and avoid the problem of null intervals are said to
be unified. The intervals based on the Feldman-Cousins prescription are of this type. For
a given choice of 1 — «, if the parameter estimate is sufficiently close to the boundary,
the method gives a one-sided limit. In the case of a Poisson variable in the presence of
background, for example, this would occur if the number of observed events is compatible
with the expected background. For parameter estimates increasingly far away from the
boundary, i.e., for increasing signal significance, the interval makes a smooth transition
from one- to two-sided, and far away from the boundary, one obtains a central interval.

The intervals according to this method for the mean of Poisson variable in the absence
of background are given in Table 32.4. (Note that « in [27] is defined following Neyman
[25] as the coverage probability; this is opposite the modern convention used here in which
the coverage probability is 1 — «.) The values of 1 — « given here refer to the coverage of
the true parameter by the whole interval [v1,15]. In Table 32.3 for the one-sided upper
limit, however, 1 — « refers to the probability to have vyp > v (or vy, < v for lower limits).
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Table 32.4: Unified confidence intervals [vq,v9] for a the mean of a Poisson
variable given n observed events in the absence of background, for confidence levels
of 90% and 95%.

1—a=90% 1—a=95%

n 141 V9 141 V9
0 0.00 2.44 0.00 3.09
1 0.11 4.36 0.05 5.14
2 0.53 5.91 0.36 6.72
3 1.10 7.42 0.82 8.25
4 1.47 8.60 1.37 9.76
) 1.84 9.99 1.84 11.26
6 221 11.47 221 12.75
7 3.56  12.53 2.58 13.81
8 3.96  13.99 2.94 15.29
9 4.36  15.30 4.36 16.77
10 5.50  16.50 4.75 17.82

A potential difficulty with unified intervals arises if, for example, one constructs such
an interval for a Poisson parameter s of some yet to be discovered signal process with,
say, 1 —a = 0.9. If the true signal parameter is zero, or in any case much less than the
expected background, one will usually obtain a one-sided upper limit on s. In a certain
fraction of the experiments, however, a two-sided interval for s will result. Since, however,
one typically chooses 1 — a to be only 0.9 or 0.95 when setting limits, the value s = 0
may be found below the lower edge of the interval before the existence of the effect is well
established. It must then be communicated carefully that in excluding s = 0 from the
interval, one is not necessarily claiming to have discovered the effect.

The intervals constructed according to the unified procedure in [27] for a Poisson
variable n consisting of signal and background have the property that for n = 0
observed events, the upper limit decreases for increasing expected background. This is
counter-intuitive, since it is known that if n = 0 for the experiment in question, then no
background was observed, and therefore one may argue that the expected background
should not be relevant. The extent to which one should regard this feature as a drawback
is a subject of some controversy (see, e.g., [32]).

Another possibility is to construct a Bayesian interval as described in Section 32.3.1.
The presence of the boundary can be incorporated simply by setting the prior density
to zero in the unphysical region. Priors based on invariance principles (rather than
subjective degree of belief) for the Poisson mean are rarely used in high-energy physics.
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An example one may consider for the Poisson problem is a prior inversely proportional to
the mean; here one obtains a posterior that diverges for the case of zero events observed,
and finds upper limits which undercover when evaluated by the frequentist definition
of coverage [2]. Rather, priors uniform in the Poisson mean have been used, although
as previously mentioned, this is generally not done to reflect the experimenter’s degree
of belief, but rather as a procedure for obtaining an interval with certain frequentist
properties. The resulting upper limits have a coverage probability that depends on the
true value of the Poisson parameter, and is nowhere smaller than the stated probability
content. Lower limits and two-sided intervals for the Poisson mean based on flat priors
undercover, however, for some values of the parameter, although to an extent that in
practical cases may not be too severe [2, 18]. Intervals constructed in this way have
the advantage of being easy to derive; if several independent measurements are to be
combined then one simply multiplies the likelihood functions (cf. Eq. (32.58)).

An additional alternative is presented by the intervals found from the likelihood
function or x? using the prescription of Equations (32.56) or (32.57). However, the
coverage probability is not, in general, independent of the true parameter, and these
intervals can for some parameter values undercover. The coverage probability can, of
course, be determined with some extra effort and reported with the result. A study of
the coverage of different intervals for a Poisson parameter can be found in [30].

Also as in the Bayesian case, intervals derived from the value of the likelihood function
from a combination of independent experiments can be determined simply by multiplying
the likelihood functions. These intervals are also invariant under transformation of the
parameter; this is not true for Bayesian intervals with a conventional flat prior, because
a uniform distribution in, say, # will not be uniform if transformed to 1/6. Use of the

likelihood function to determine approximate confidence intervals is discussed further in
[31].

In any case, it is important to always report sufficient information so that the result can
be combined with other measurements. Often this means giving an unbiased estimator
and its standard deviation, even if the estimated value is in the unphysical region.

It can also be useful with a frequentist interval to calculate its subjective probability
content using the posterior p.d.f. based on one or several reasonable guesses for the prior
p.d.f. If it turns out to be significantly less than the stated confidence level, this warns
that it would be particularly misleading to draw conclusions about the parameter’s value
from the interval alone.
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