QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\mathsf{MS}}$ at a scale $\mu \approx 2$ GeV. The c- and b-quark masses are the "running" masses in the $\overline{\rm MS}$ scheme. For the *b*-quark we also quote the 1S mass. These can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \tfrac{1}{2}(\tfrac{1}{2}^+)$$

Mass m = 1.5 to 3.3 MeV ^[a] $m_u/m_d = 0.35$ to 0.60

Charge = $\frac{2}{3} e I_z = +\frac{1}{2}$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Charge $= -\frac{1}{3} e I_z = -\frac{1}{2}$ Mass m = 3.5 to 6.0 MeV [a] $m_s/m_d = 17 \text{ to } 22$ $\overline{m} = (m_u + m_d)/2 = 2.5 \text{ to } 5.0 \text{ MeV}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass $m=105^{+25}_{-35}$ MeV $^{[a]}$ Charge $=-\frac{1}{3}$ e Strangeness =-1 m_s / $((m_u+m_d)/2)=25$ to 30

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Mass $m = 1.27^{+0.07}_{-0.11} \text{ GeV}$ Charge $= \frac{2}{3} e$ Charm = +1

$$I(J^P)=0(\tfrac{1}{2}^+)$$

 $\mathsf{Charge} = -\frac{1}{3} \ e \qquad \mathsf{Bottom} = -1$

Mass $m = 4.20^{+0.17}_{-0.07}$ GeV (MS mass)

t

$$I(J^P) = 0(\tfrac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \; e \qquad \qquad \mathsf{Top} = +1$$

$$\mathsf{Top} = +1$$

Mass $m=171.3\pm1.1\pm1.2$ GeV ^[b] (direct observation of top events) $\Gamma(W\,b)/\Gamma(W\,q\,(q=b,\,s,\,d))=0.99^{+0.09}_{-0.08}$

HTTP://PDG.LBL.GOV

Page 1

Created: 6/1/2009 14:31

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
Wq(q = b, s, d)			_
W b			_
ℓu_ℓ anything	$[c,d]$ (9.4 ± 2.4) %		_
$\gamma q(q=u,c)$	$[e] < 5.9 imes 10^{-3}$	-3 95%	_
$\Delta T = 1$ weak neutral current (T1) modes			
Zq(q=u,c) T1	[f] < 3.7 %	95%	_

b' (4th Generation) Quark, Searches for

```
Mass m>190 GeV, CL =95\% (p\overline{p}, \text{ quasi-stable }b')
Mass m>199 GeV, CL =95\% (p\overline{p}, \text{ neutral-current decays})
Mass m>128 GeV, CL =95\% (p\overline{p}, \text{ charged-current decays})
Mass m>46.0 GeV, CL =95\% (e^+e^-, \text{ all decays})
```

t' (4th Generation) Quark, Searches for

Mass m > 256 GeV, CL = 95% $(p\overline{p}, t'\overline{t}' \text{ prod.}, t' \rightarrow Wq)$

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] The ratios m_u/m_d and m_s/m_d are extracted from pion and kaon masses using chiral symmetry. The estimates of u and d masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from SU(3) splittings in hadron masses.
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II. Including also the most recent unpublished results from Run-II, the Tevatron Electroweak Working Group reports a top mass of $173.1 \pm 0.6 \pm 1.1$ GeV. See the note "The Top Quark" in the Quark Particle Listings of this *Review*.
- [c] ℓ means e or μ decay mode, not the sum over them.
- [d] Assumes lepton universality and W-decay acceptance.
- [e] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [f] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 6/1/2009 14:31