$$I(J^P) = 0(\frac{1}{2}^+)$$

 $\begin{array}{rl} & \mbox{Charge} = \frac{2}{3} \ e & \mbox{Top} = +1 \\ \mbox{A REVIEW GOES HERE} - \mbox{Charge} & \mbox{WWW List of Reviews} \end{array}$

t-Quark Mass in $p\overline{p}$ Collisions

t

OUR EVALUATION of 172.0 \pm 0.9 \pm 1.3 GeV (TEVEWWG 10) is an average of top mass measurements from Tevatron Run-I (1992–1996) and Run-II (2001–present) that were published at the time of preparing this *Review*. This average was provided by the Tevatron Electroweak Working Group (TEVEWWG). It takes correlated uncertainties properly into account and has a χ^2 of 5.8 for 10 degrees of freedom.

For earlier search limits see PDG 96, Physical Review **D54** 1 (1996). We no longer include a compilation of indirect top mass determinations from Standard Model Electroweak fits in the Listings (our last compilation can be found in the Listings of the 2007 partial update). For a discussion of current results see the reviews "The Top Quark" and "Electroweak Model and Constraints on New Physics."

VALUE (GeV)	DOCUMENT ID	TI	ECN	COMMENT
172.0± 0.9± 1.3 O	UR EVALUATION Se	ee comm	nents ir	n the header above.
$172.7 \pm \ 1.8 \pm \ 1.2$	¹ AALTONEN	09J C	DF	$\ell + ot\!$
$171.1\pm~3.7\pm~2.1$	² AALTONEN	09K C		6 jets, vt× <i>b</i> -tag
$171.2\pm~2.7\pm~2.9$	³ AALTONEN	090 C		dilepton
$174.7\pm~4.4\pm~2.0$	⁴ ABAZOV	09ah D		dilepton + <i>b</i> -tag (ν WT+MWT)
$171.5 \pm \ 1.8 \pm \ 1.1$	⁵ ABAZOV	08ah D	00	$\ell + ot\!$
$180.7^{+15.5}_{-13.4}\pm$ 8.6	⁶ ABULENCIA	07J C	DF	lepton + jets
$180.1\pm~3.6\pm~3.9$	^{7,8} ABAZOV	04G D	00	lepton + jets
$176.1 \pm \ 5.1 \pm \ 5.3$	⁹ AFFOLDER	01 C	DF	lepton + jets
$167.4 \pm 10.3 \pm$ 4.8	^{10,11} ABE	99B C	DF	dilepton
$168.4 \pm 12.3 \pm$ 3.6	⁸ ABBOTT	98d D	00	dilepton
186 ± 10 \pm 5.7	^{10,12} ABE	97r C	DF	6 or more jets
• • • We do not use	the following data for	averages	s, fits,	limits, etc. • • •
$180.5 \pm 12.0 \pm$ 3.6	¹³ AALTONEN	09AK C	DF	$\ell + ot\!$
$171.9 \pm \ 1.7 \pm \ 1.1$	¹⁴ AALTONEN	09L C	DF	ℓ + jets, $\ell\ell$ + jets
$165.5^+\ {3.4 \atop 3.3 \pm}\pm\ 3.1$	¹⁵ AALTONEN	09x C	DF	$\ell\ell + ot\!$
$169.1^+\ 5.9_{5.2}$	¹⁶ ABAZOV	09ag D	00	cross sects, theory $+ \exp$
$171.5^+\ 9.9_{-8}$	¹⁷ ABAZOV	09r D	00	cross sects, theory $+ \exp$
$170.7^+\ {\begin{array}{c} 4.2\\ 3.9 \end{array}}\pm\ 3.5$	^{18,19} AALTONEN	08C C	DF	dilepton, $\sigma_{t\overline{t}}$ constrained
$177.1\pm$ $4.9\pm$ 4.7	^{20,21} AALTONEN	07 C	DF	6 jets with \geq 1 <i>b</i> vtx
$172.3^{+10.8}_{-9.6}{\pm}10.8$	²² AALTONEN	07B C	DF	\geq 4 jets (<i>b</i> -tag)
$174.0 \pm \ 2.2 \pm \ 4.8$	²³ AALTONEN	07D C	DF	\geq 6 jets, vtx <i>b</i> -tag
$170.8 \pm \ 2.2 \pm \ 1.4$	^{24,25} AALTONEN	071 C	DF	lepton + jets (b -tag)
$173.7 \pm \ 4.4 {+}{-}{2.0} 2.0$	^{21,26} ABAZOV	07f D	00	lepton + jets
$176.2\pm~9.2\pm~3.9$	²⁷ ABAZOV	07W D	00	dilepton (MWT)
$179.5 \pm \ 7.4 \pm \ 5.6$	²⁷ ABAZOV	07W D	00	dilepton (νWT)
$164.5 \pm \ 3.9 \pm \ 3.9$	^{25,28} ABULENCIA	07D C	DF	dilepton
HTTP://PDG.LB	L.GOV Pa	ge 1		Created: 7/30/2010 16:47

170.3^+ $\begin{array}{r}4.1+\\4.5-\\1.8\end{array}$	^{25,29} ABAZOV	06 ∪	D0	lepton + jets (b-tag)
$173.2^+\ {}^{2.6}_{2.4}\pm\ 3.2$	^{30,31} ABULENCIA	06 D	CDF	lepton + jets
$173.5^{+}_{-}\ \ 3.7_{-}\pm\ \ 1.3$	^{19,30} ABULENCIA	06 D	CDF	lepton + jets
$165.2\pm~6.1\pm~3.4$	^{25,32} ABULENCIA	06 G	CDF	dilepton
$170.1\pm~6.0\pm~4.1$	^{19,33} ABULENCIA	06V	CDF	dilepton
$178.5 \pm 13.7 \pm$ 7.7	^{34,35} ABAZOV	05	D0	6 or more jets
$176.1\pm$ 6.6	³⁶ AFFOLDER	01	CDF	dilepton, lepton+jets, all-jets
$172.1 \pm \ 5.2 \pm \ 4.9$	³⁷ АВВОТТ	99 G	D0	di-lepton, lepton+jets
$176.0\pm$ 6.5	^{11,38} ABE	99 B	CDF	dilepton, lepton+jets, all-jets
$173.3\pm~5.6\pm~5.5$	^{8,39} АВВОТТ	98F	D0	lepton + jets
$175.9 \pm \ 4.8 \pm \ 5.3$	^{10,40} ABE	98E	CDF	lepton + jets
161 ± 17 ± 10	¹⁰ ABE	98F	CDF	dilepton
$172.1 \pm 5.2 \pm 4.9$	⁴¹ ВНАТ	98 B	RVUE	dilepton and lepton+jets
$173.8\pm$ 5.0	⁴² ВНАТ	98 B	RVUE	dilepton, lepton+jets, all-jets
$173.3\pm~5.6\pm~6.2$	⁸ ABACHI	97E	D0	lepton+jets
$199 \ \begin{array}{c} +19 \\ -21 \end{array} \pm 22$	ABACHI	95	D0	lepton + jets
$176~\pm~8~\pm10$	ABE	95F	CDF	lepton $+ b$ -jet
$174 \pm 10 \ +13 \ -12$	ABE	94E	CDF	lepton + b-jet

 $^1\,\text{Based}$ on 1.9 fb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV. The first error is from statistics and jet energy scale uncertainty, and the latter is from the other systematics. Matrix element method with effective propagators.

- ² Based on 943 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is from statistical and jet-energy-scale uncertainties, and the latter is from other systematics. AALTONEN 09K selected 6 jet events with one or more vertex *b*-tags and used the tree-level matrix element to construct template models of signal and background.
- ³ Based on 2 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Matrix Element method. Optimal selection criteria for candidate events with two high p_T leptons, high $\not\!\!\!E_T$, and two or more jets with and without *b*-tag are obtained by neural network with neuroevolution technique to minimize the statistical error of m_t .
- ⁴ Based on 1 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Events with two identified leptons, and those with one lepton plus one isolated track and a *b*-tag were used to constrain m_t . The result is a combination of the ν WT (ν Weighting Technique) result of 176.2 \pm 4.8 \pm 2.1 GeV and the MWT (Matrix-element Weighting Technique) result of 173.2 \pm 4.9 \pm 2.0 GeV.
- 5 Result is based on 1 fb⁻¹ of data at 1.96 TeV. The first error is from statistics and jet energy scale uncertainty, and the latter is from the other systematics.
- ⁶Based on 695 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The transverse decay length of the *b* hadron is used to determine m_t , and the result is free from the JES (jet energy scale) uncertainty.
- ⁷ Obtained by re-analysis of the lepton + jets candidate events that led to ABBOTT 98F. It is based upon the maximum likelihood method which makes use of the leading order matrix elements.
- ⁸Based on 125 \pm 7 pb⁻¹ of data at $\sqrt{s} = 1.8$ TeV.
- ⁹Based on $\sim 106 \text{ pb}^{-1}$ of data at $\sqrt{s} = 1.8 \text{ TeV}$.
- $^{10}\,\text{Based}$ on 109 \pm 7 pb^{-1} of data at \sqrt{s} = 1.8 TeV.
- ¹¹See AFFOLDER 01 for details of systematic error re-evaluation.
- ¹² Based on the first observation of all hadronic decays of t t pairs. Single b-quark tagging with jet-shape variable constraints was used to select signal enriched multi-jet events. The updated systematic error is listed. See AFFOLDER 01, appendix C.

- ¹³ Based on 2 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The top mass is obtained from the measurement of the invariant mass of the lepton (e or μ) from W decays and the soft μ in *b*-jet. The result is insensitive to jet energy scaling.
- ¹⁴ Based on 1.9 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is from statistical and jet-energy-scale (JES) uncertainties, and the second is from other systematics. Events with lepton + jets and those with dilepton + jets were simultaneously fit to constrain m_t and JES. Lepton + jets data only give $m_t = 171.8 \pm 2.2$ GeV, and dilepton data only give $m_t = 171.2^{+5.3}_{-5.1}$ GeV.
- ¹⁵ Based on 2.9 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Mass m_t is estimated from the likelihood for the eight-fold kinematical solutions in the plane of the azimuthal angles of the two reutrino momenta.
- ¹⁶ Based on 1 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Uses ℓ +jets, $\ell\ell$ and $\ell\tau$ +jets. Compares the measured $t\bar{t}$ cross section to an approx. NNLO theoretical prediction see their Table IV.
- 17 Based on 1 fb⁻¹ of data at \sqrt{s} = 1.96 TeV. Uses $\ell\ell$ and $\ell\tau+{\rm jets.}$ Compares the measured $t\,\overline{t}$ cross section to a partial NNLO theoretical prediction.
- ¹⁸ Reports measurement of $170.7^{+4.2}_{-3.9} \pm 2.6 \pm 2.4$ GeV based on 1.2 fb⁻¹ of data at \sqrt{s} = 1.96 TeV. The last error is due to the theoretical uncertainty on $\sigma_{t\bar{t}}$. Without the cross-section constraint a top mass of $169.7^{+5.2}_{-4.9} \pm 3.1$ GeV is obtained.
- ¹⁹ Template method.
- ²⁰Based on 310 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV.
- ²¹ Ideogram method.
- ²²Based on 311 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Events with 4 or more jets with $E_T > 15$ GeV, significant missing E_T , and secondary vertex *b*-tag are used in the fit. About 44% of the signal acceptance is from $\tau \nu + 4$ jets. Events with identified *e* or μ are vetoed to provide a statistically independent measurement.
- $^{23}\,\text{Based}$ on 1.02 fb $^{-1}$ of data at \sqrt{s} = 1.96 TeV.
- 24 Based on 955 pb $^{-1}$ of data $\sqrt{s}=1.96$ TeV. m_t and JES (Jet Energy Scale) are fitted simultaneously, and the first error contains the JES contribution of 1.5 GeV.
- ²⁵ Matrix element method.
- ²⁶ Based on 425 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is a combination of statistics and JES (Jet Energy Scale) uncertainty, which has been measured simultaneously to give JES = 0.989 \pm 0.029(stat).
- ²⁷ Based on 370 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Combined result of MWT (Matrixelement Weighting Technique) and ν WT (ν Weighting Technique) analyses is 178.1 ± 6.7 ± 4.8 GeV.
- 28 Based on 1.0 fb $^{-1}$ of data at $\sqrt{s} =$ 1.96 TeV. ABULENCIA 07D improves the matrix element description by including the effects of initial-state radiation.
- 29 Based on $\sim 400~{\rm pb}^{-1}$ of data at $\sqrt{s}=1.96$ TeV. The first error includes statistical and systematic jet energy scale uncertainties, the second error is from the other systematics. The result is obtained with the *b*-tagging information. The result without *b*-tagging is $169.2^{+5.0}_{-7.4} + 1.5_{-1.4}$ GeV. Superseded by ABAZOV 08AH.
- 30 Based on 318 pb $^{-1}$ of data at $\sqrt{s} = 1.96$ TeV.
- ³¹ Dynamical likelihood method.
- $^{32}\,\text{Based}$ on 340 pb^{-1} of data at $\sqrt{s}=$ 1.96 TeV.
- ³³Based on 360 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV.
- 34 Based on 110.2 \pm 5.8 pb $^{-1}$ at \sqrt{s} = 1.8 TeV.
- ³⁵ Based on the all hadronic decays of $t\bar{t}$ pairs. Single *b*-quark tagging via the decay chain $b \rightarrow c \rightarrow \mu$ was used to select signal enriched multijet events. The result was obtained by the maximum likelihood method after bias correction.
- ³⁶ Obtained by combining the measurements in the lepton + jets [AFFOLDER 01], all-jets [ABE 97R, ABE 99B], and dilepton [ABE 99B] decay topologies.

- 37 Obtained by combining the D0 result m_t (GeV) = 168.4 \pm 12.3 \pm 3.6 from 6 di-lepton events (see also ABBOTT 98D) and m_t (GeV) = 173.3 \pm 5.6 \pm 5.5 from lepton+jet events (ABBOTT 98F).
- ³⁸ Obtained by combining the CDF results of m_t (GeV)=167.4 ± 10.3 ± 4.8 from 8 dilepton events, m_t (GeV)=175.9 ± 4.8 ± 5.3 from lepton+jet events (ABE 98E), and m_t (GeV)=186.0 ± 10.0 ± 5.7 from all-jet events (ABE 97R). The systematic errors in the latter two measurements are changed in this paper.
- ³⁹See ABAZOV 04G.
- 40 The updated systematic error is listed. See AFFOLDER 01, appendix C.
- ⁴¹ Obtained by combining the DØ results of m_t (GeV)=168.4 ± 12.3 ± 3.6 from 6 dilepton events and m_t (GeV)=173.3 ± 5.6 ± 5.5 from 77 lepton+jet events.
- ⁴²Obtained by combining the DØ results from dilepton and lepton+jet events, and the CDF results (ABE 99B) from dilepton, lepton+jet events, and all-jet events.

$$2(m_t - m_{\overline{t}}) / (m_t + m_{\overline{t}})$$

Test of <i>CPT</i> cor	servation.		
VALUE	DOCUMENT ID	TECN	COMMENT
0.022 ± 0.022	1 ABAZOV	09AA D0	$\ell + ot\!$
1 Based on 1 fb $^{-1}$ of d	ata in <i>pp</i> collisions a	t $\sqrt{s} = 1.96$ [·]	TeV. $m_t - m_{\overline{t}} = 3.8 \pm 3.7$ GeV.

t-quark DECAY WIDTH

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT		
<13.1	95	¹ AALTONEN	0 9M	CDF	$m_t(rec)$ distribution		
<i>t</i> t candidate events the decay width de	¹ Based on 955 pb ⁻¹ of $p\overline{p}$ collision data at $\sqrt{s} = 1.96$ TeV. AALTONEN 09M selected $t\overline{t}$ candidate events for the $\ell + \!$						

t DECAY MODES

_	Mode	Fraction (Γ_i/Γ)	Confidence level				
Γ_1	Wq(q = b, s, d)						
Γ ₂	Wb						
Г ₃	ℓu_ℓ anything	[a,b] (9.4±2.4) %					
Г4	$ au u_{ au} m{b}$						
Г ₅	$\gamma q(q=u,c)$	$[c] < 5.9 imes 10^{-3}$	95%				
	$\Delta T = 1$ weak neutral current (<i>T1</i>) modes						
Г ₆	Zq(q=u,c) T1	[d] < 3.7 %	95%				
-	[a] ℓ means <i>e</i> or μ decay mode, not the sum over them. [b] Assumes lepton universality and <i>W</i> -decay acceptance.						
[c	[c] This limit is for $\Gamma(t \rightarrow \gamma q)/\Gamma(t \rightarrow Wb)$.						
[d] This limit is for $\Gamma(t o Zq)/\Gamma(t)$	$t \rightarrow W b$).					

t BRANCHING RATIOS

$\Gamma(Wb)/\Gamma(Wq(q=b, s, d))$			TECN	Γ_2/Γ_1
<u>VALUE</u> 0.99+0.09 OUR AVERAGE	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>
$0.97 \substack{+0.09 \\ -0.08}$	¹ ABAZOV	08M	D0	ℓ + n jets with 0,1,2 <i>b</i> -tag
$1.12 \substack{+0.21 + 0.17 \\ -0.19 - 0.13}$	² ACOSTA	05 A	CDF	
• • • We do not use the follow	ng data for aver	ages, f	its, limi [.]	ts, etc. ● ● ●
$1.03 \substack{+0.19 \\ -0.17}$	³ ABAZOV	06 K	D0	
$0.94 \substack{+0.26 + 0.17 \\ -0.21 - 0.12}$	⁴ AFFOLDER	0 1C	CDF	
statistical and the second sy ³ ABAZOV 06K result is from data at $\sqrt{s} = 1.96$ TeV. It g ABAZOV 08M. ⁴ AFFOLDER 01C measures t q is a d, s, or b quark, by error is statistical and the se function gives $R > 0.61$ (0.56	$\sim 162 \text{ pb}^{-1}$ of stematic. It give in the analysis of gives R > 0.61 a he top-quark dec using the numbe econd systematic b) at 90% (95%) > 0.78 (0.75)	data s R > $t\overline{t} \rightarrow$ nd $ V_t $ cay wider of even cay wider cay wider	at $\sqrt{s} = 0.61$, or $\ell \nu + \ell \nu + b > 0.7$ dth ratio vents with umerical v assum	= 1.96 TeV. The first error is r $ V_{tb} > 0.78$ at 95% CL. $t \ge 3$ jets with 230 pb ⁻¹ of 78 at 95% CL. Superseded by
$\Gamma(\ell \nu_{\ell} \text{ anything}) / \Gamma_{\text{total}}$				Г ₃ /Г
VALUE	DOCUMENT			
0.094±0.024	¹ ABE	9	8x CD	F

 1_{ℓ} means e or μ decay mode, not the sum. Assumes lepton universality and W-decay acceptance.

$\Gamma(\tau \nu_{\tau} b) / \Gamma_{total}$

Γ₄/Γ

' (' " T ") / ' total					• 4/ •
VALUE	DOCUMENT ID		TECN	COMMENT	
$\bullet \bullet \bullet$ We do not use the follow	ving data for average	s, fits,	limits,	etc. ● ● ●	
	¹ ABULENCIA	06 R	CDF	$\ell au + jets$	
	² ABE	9 7∨	CDF	$\ell au + jets$	
	$t + \overline{t} = (0, 1) (1, 1)$	1. T.			

¹ABULENCIA 06R looked for $t \bar{t} \rightarrow (\ell \nu_{\ell}) (\tau \nu_{\tau}) b \bar{b}$ events in 194 pb⁻¹ of $p \bar{p}$ collisions at $\sqrt{s} =$ 1.96 TeV. 2 events are found where 1.00 \pm 0.17 signal and 1.29 \pm 0.25 background events are expected, giving a 95% CL upper bound for the partial width ratio $\Gamma(t \rightarrow \tau \nu q) / \Gamma_{SM}(t \rightarrow \tau \nu q) < 5.2$.

²ABE 97V searched for $t\bar{t} \rightarrow (\ell \nu_{\ell}) (\tau \nu_{\tau}) b\bar{b}$ events in 109 pb⁻¹ of $p\bar{p}$ collisions at $\sqrt{s}=1.8$ TeV. They observed 4 candidate events where one expects ~ 1 signal and ~ 2 background events. Three of the four observed events have jets identified as b candidates.

$\Gamma(\gamma q(q=u,c))/\Gamma_1$	total				Г ₅ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.0064	95	¹ AARON	09A		$t \rightarrow \gamma u$
<0.0059	95	² CHEKANOV	03	ZEUS	$B(t \rightarrow \gamma u)$
• • • We do not use	the follov	ving data for averag	ges, fi	ts, limits	s, etc. ● ● ●
<0.0465	95	³ ABDALLAH	04C	DLPH	$B(\gamma \boldsymbol{c} \operatorname{or} \gamma \boldsymbol{u})$
<0.0132	95	⁴ AKTAS	04	H1	$B(t \rightarrow \gamma u)$
<0.041	95	⁵ ACHARD	02J	L3	$B(t ightarrow \gamma c ext{ or } \gamma u)$
<0.032	95	⁶ ABE	98 G	CDF	$t \overline{t} \rightarrow (W b) (\gamma c \text{ or } \gamma u)$

¹AARON 09A looked for single top production via FCNC in $e^{\pm} p$ collisions at HERA with 474 pb⁻¹. The upper bound of the cross section gives the bound on the FCNC coupling $\kappa_{t\,u\gamma}/\Lambda < 1.03 \text{ TeV}^{-1}$, which corresponds to the result for $m_t = 175 \text{ GeV}$.

² CHEKANOV 03 looked for single top production via FCNC in the reaction $e^{\pm} p \rightarrow e^{\pm}$ (*t* or \overline{t}) X in 130.1 pb⁻¹ of data at \sqrt{s} =300–318 GeV. No evidence for top production and its decay into *bW* was found. The result is obtained for m_t =175 GeV when B(γc)=B(Z q)=0, where *q* is a *u* or *c* quark. Bounds on the effective *t*-*u*- γ and *t*-*u*-*Z* couplings are found in their Fig. 4. The conversion to the constraint listed is from private communication, E. Gallo, January 2004.

- ³ABDALLAH 04C looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \overline{t}c$ or $\overline{t}u$ in 541 pb⁻¹ of data at \sqrt{s} =189–208 GeV. No deviation from the SM is found, which leads to the bound on B($t \rightarrow \gamma q$), where q is a u or a c quark, for $m_t = 175$ GeV when B($t \rightarrow Zq$)=0 is assumed. The conversion to the listed bound is from private communication, O. Yushchenko, April 2005. The bounds on the effective t-q- γ and t-q-Z couplings are given in their Fig. 7 and Table 4, for $m_t = 170$ -180 GeV, where most conservative bounds are found by choosing the chiral couplings to maximize the negative interference between the virtual γ and Z exchange amplitudes.
- ⁴ AKTAS 04 looked for single top production via FCNC in e^{\pm} collisions at HERA with 118.3 pb⁻¹, and found 5 events in the *e* or μ channels. By assuming that they are due to statistical fluctuation, the upper bound on the $t u \gamma$ coupling $\kappa_{t u \gamma} < 0.27$ (95% CL) is obtained. The conversion to the partial width limit, when $B(\gamma c) = B(Z u) = B(Z c) = 0$, is from private communication, E. Perez, May 2005.
- ⁵ ACHARD 02J looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \bar{t}c$ or $\bar{t}u$ in 634 pb⁻¹ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to a bound on the top-quark decay branching fraction B(γq), where q is a u or c quark. The bound assumes B(Zq)=0 and is for m_t = 175 GeV; bounds for m_t =170 GeV and 180 GeV and B(Zq) \neq 0 are given in Fig. 5 and Table 7.
- ⁶ABE 98G looked for $t\bar{t}$ events where one t decays into $q\gamma$ while the other decays into bW. The quoted bound is for $\Gamma(\gamma q)/\Gamma(W b)$.

$\Gamma(Zq(q=u,c))/\Gamma_{total}$

Γ₆/Γ

Test for $\Delta T=1$ weak neutral current. Allowed by higher-order electroweak interaction.

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	_
<0.037	95	¹ AALTONEN	08AD CDF	$t \rightarrow Zq (q = u, c)$	
<0.159	95	² ABDALLAH	04c DLPH	$e^+e^- \rightarrow \overline{t}c \text{ or } \overline{t}u$	
<0.137	95	³ ACHARD	02J L3	$e^+e^- \rightarrow \overline{t}c \text{ or } \overline{t}u$	
<0.14	95	⁴ HEISTER	02Q ALEP	$e^+e^- ightarrow \overline{t}c$ or $\overline{t}u$	
<0.137	95	⁵ ABBIENDI	01⊤ OPAL	$e^+e^- ightarrow \overline{t}c$ or $\overline{t}u$	
• • • We do not	use the fo	llowing data for a	verages, fits, l	imits, etc. • • •	
<0.083	95	⁶ AALTONEN	09AL CDF	$t \rightarrow Zq \; (q{=}c)$	
<0.17	95	⁷ BARATE	00s ALEP	$e^+e^- \rightarrow \overline{t}c \text{ or } \overline{t}u$	
<0.33	95	⁸ ABE	98G CDF	$t \overline{t} \rightarrow (W b) (Z c \text{or} Z u)$	

- ¹Result is based on 1.9 fb⁻¹ of data at 1.96 TeV. $t\bar{t} \rightarrow WbZq$ or ZqZq processes have been looked for in $Z + \ge 4$ jet events with and without *b*-tag. No signal leads to the bound B($t \rightarrow Zq$) < 0.037 (0.041) for $m_t = 175$ (170) GeV.
- ²ABDALLAH 04C looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \overline{tc}$ or \overline{tu} in 541 pb⁻¹ of data at \sqrt{s} =189–208 GeV. No deviation from the SM is found, which leads to the bound on B($t \rightarrow Zq$), where q is a u or a c quark, for $m_t = 175$ GeV when B($t \rightarrow \gamma q$)=0 is assumed. The conversion to the listed bound is from private communication, O. Yushchenko, April 2005. The bounds on the effective t-q- γ and t-q-Z couplings are given in their Fig. 7 and Table 4, for $m_t = 170$ -180 GeV, where most conservative bounds are found by choosing the chiral couplings to maximize the negative interference between the virtual γ and Z exchange amplitudes.
- ³ ACHARD 02J looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \overline{t}c$ or $\overline{t}u$ in 634 pb⁻¹ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to a bound on the top-quark decay branching fraction B(Zq), where q is a u or c quark. The bound assumes B(γq)=0 and is for m_t = 175 GeV; bounds for m_t =170 GeV and 180 GeV and B(γq) \neq 0 are given in Fig. 5 and Table 7. Table 6 gives constraints on t-c-e-e four-fermi contact interactions.
- ⁴ HEISTER 02Q looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \overline{t}c$ or $\overline{t}u$ in 214 pb⁻¹ of data at \sqrt{s} = 204–209 GeV. No deviation from the SM is found, which leads to a bound on the branching fraction B(Zq), where q is a u or c quark. The bound assumes B(γq)=0 and is for m_t = 174 GeV. Bounds on the effective t- (c or u)- γ and t- (c or u)- Z couplings are given in their Fig. 2.
- ⁵ ABBIENDI 01T looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \bar{t}c$ or $\bar{t}u$ in 600 pb⁻¹ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to bounds on the branching fractions B(Zq) and B(γq), where q is a u or c quark. The result is obtained for m_t = 174 GeV. The upper bound becomes 9.7% (20.6%) for m_t = 169 (179) GeV. Bounds on the effective t- (c or u)- γ and t- (c or u)-Z couplings are given in their Fig. 4.
- ⁶ Based on $p\overline{p}$ data of 1.52 fb⁻¹. AALTONEN 09AL compared $t\overline{t} \rightarrow WbWb \rightarrow \ell \nu bjjb$ and $t\overline{t} \rightarrow ZcWb \rightarrow \ell \ell cjjb$ decay chains, and absence of the latter signal gives the bound. The result is for 100% longitudinally polarized Z boson and the theoretical $t\overline{t}$ production cross section The results for different Z polarizations and those without the cross section assumption are given in their Table XII.
- ⁷ BARATE 00S looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \bar{t}c$ or $\bar{t}u$ in 411 pb⁻¹ of data at c.m. energies between 189 and 202 GeV. No deviation from the SM is found, which leads to a bound on the branching fraction. The bound assumes $B(\gamma q)=0$. Bounds on the effective t- (c or u)- γ and t- (c or u)-Z couplings are given in their Fig. 4.
- ⁸ABE 98G looked for $t\overline{t}$ events where one t decays into three jets and the other decays into qZ with $Z \rightarrow \ell\ell$. The quoted bound is for $\Gamma(Zq)/\Gamma(Wb)$.

t-quark EW Couplings

 $\begin{array}{c} W \mbox{ helicity fractions in top decays. } F_0 \mbox{ is the fraction of longitudinal and } F_+ \mbox{ the fraction of right-handed } W \mbox{ bosons. } F_{V+A} \mbox{ is the fraction of } V+A \mbox{ current in top decays. The effective Lagrangian (cited by ABAZOV 08AI) has terms f_1^L and f_1^R for $V-A$ and $V+A$ couplings, f_2^L and f_2^R for tensor couplings with b_R and b_L respectively. \\ \hline VALUE & \underline{CL\%} & \underline{DOCUMENT\,ID} & \underline{TECN} & \underline{COMMENT} \end{array}$

ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
$0.62\ \pm 0.10\ \pm 0.05$		¹ AALTONEN	09Q CDF	$F_0 = B(t \rightarrow W_0 b)$		
$-0.04 \pm 0.04 \pm 0.03$		1 AALTONEN	09Q CDF	$F_{+} = B(t \rightarrow W_{+}b)$		
$ { m f}_1^R ^2~<1.01$	95	² ABAZOV	09J D0	$ f_1^{\dot{L}} = 1$, $ f_2^{L} = f_2^{\dot{R}} = 0$		
$ { m f}_1^R ^2 < 1.01 \ { m f}_2^L ^2 < 0.28$	95	² ABAZOV	09J D0	$ \mathbf{f}_1^L = 1, \mathbf{f}_1^R = \mathbf{f}_2^R = 0$		

P	•		•			I D I
	$ ^2 < 0.23$	95	² ABAZOV	09J	D0	$ f_1^L =$ 1, $ f_1^R {=} f_2^L {=}0$
$ f_1^R $	$ ^2 < 2.5$	95	³ ABAZOV	08AI	D0	$ \mathbf{f}_{1}^{L} ^{2} = 1.8^{+1.0}_{-1.3}^{-1.0}$
$ \mathbf{f}_2^{\hat{L}} $	$ ^2 < 0.5$	95	³ ABAZOV	08AI	D0	$ f_1^{\tilde{L}} ^2 = 1.4^{+0.6}$
$ \bar{\mathfrak{f}_2^R} $	$ ^2 < 0.3$	95	³ ABAZOV	08AI	D0	$ f_1^L ^2 = 1.4 \substack{-0.5\\-0.8}$
_	$0.425\!\pm\!0.166\!\pm\!0.102$		⁴ ABAZOV	08 B	D0	$F_0 = B(t \rightarrow W_0 b)$
	$0.119\!\pm\!0.090\!\pm\!0.053$		⁴ ABAZOV	08 B	D0	$F_+ = B(t \rightarrow W_+ b)$
	$0.056\!\pm\!0.080\!\pm\!0.057$		⁵ ABAZOV	07 D	D0	$F_{+} = B(t \rightarrow W_{+} b)$
_	$-0.06 \pm 0.22 \pm 0.12$		⁶ ABULENCIA	07 G	CDF	$F_{V+A} = B(t \rightarrow W b_R)$
<	0.29	95	⁶ ABULENCIA	07 G	CDF	$F_{V+A} = B(t \rightarrow W b_R)$
	$\begin{array}{ccc} 0.85 & +0.15 \\ -0.22 & \pm 0.06 \end{array}$		⁷ ABULENCIA	071	CDF	$F_0 = B(t \rightarrow W_0 b)$
	$0.05 \ {+0.11 \atop -0.05} \ \pm 0.03$		⁷ ABULENCIA	071	CDF	$F_+ = B(t \rightarrow W_+ b)$
<	0.26	95	⁷ ABULENCIA	071	CDF	$F_+ = B(t \rightarrow W_+ b)$
	$0.74 \begin{array}{c} +0.22 \\ -0.34 \end{array}$		⁸ ABULENCIA	06 U	CDF	$F_0 = B(t \rightarrow W_0 b)$
<	0.27	95	⁸ ABULENCIA	06 U	CDF	$F_+ = B(t \rightarrow W_+ b)$
	0.56 ± 0.31		⁹ ABAZOV	05 G	D0	$F_0 = B(t \rightarrow W_0 b)$
	$0.00\ \pm 0.13\ \pm 0.07$		¹⁰ ABAZOV	05L	D0	$F_+ = B(t \rightarrow W_+ b)$
<	0.25	95	¹⁰ ABAZOV	05L	D0	$F_+ = B(t \rightarrow W_+ b)$
<	0.80	95	¹¹ ACOSTA	05 D	CDF	$F_{V+A} = B(t \rightarrow W b_R)$
<	0.24	95	¹¹ ACOSTA	05 D	CDF	$F_+ = B(t \rightarrow W_+ b)$
	$0.91 \ \pm 0.37 \ \pm 0.13$		¹² AFFOLDER	00 B	CDF	$F_0 = B(t \rightarrow W_0 b)$
	$0.11 \ \pm 0.15$		¹² AFFOLDER	00 B	CDF	$F_+ = B(t \rightarrow W_+ b)$

¹Results are based on 1.9 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. F_0 result is obtained assuming $F_+ = 0$, while F_+ result is obtained for $F_0 = 0.70$, the SM values. Model independent fits for the two fractions give $F_0 = 0.66 \pm 0.16 \pm 0.05$ and $F_+ = -0.03 \pm 0.06 \pm 0.03$.

² Based on 1 fb⁻¹ of data at $p\overline{p}$ collisions $\sqrt{s} = 1.96$ TeV. Combined result of the W helicity measurement in $t\overline{t}$ events (ABAZOV 08B) and the search for anomalous tbW couplings in the single top production (ABAZOV 08AI). Constraints when f_1^L and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and Table 1.

³ Result is based on 0.9 fb⁻¹ of data at 1.96 TeV. Single top quark production events are used to measure the Lorentz structure of the t b W coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $f_1^L = V_{tb}^*$.

⁴Based on 1 fb⁻¹ at $\sqrt{s} = 1.96$ TeV.

- ⁵ Based on 370 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV, using the ℓ + jets and dilepton decay channels. The result assumes $F_0 = 0.70$, and it gives $F_+ < 0.23$ at 95% CL.
- ⁶Based on 700 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV.

⁷Based on 318 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV.

- ⁸ Based on 200 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. $t \rightarrow Wb \rightarrow \ell \nu b$ ($\ell = e \text{ or } \mu$). The errors are stat + syst.
- ⁹ABAZOV 05G studied the angular distribution of leptonic decays of W bosons in $t\overline{t}$ candidate events with lepton + jets final states, and obtained the fraction of longitudinally polarized W under the constraint of no right-handed current, $F_+ = 0$. Based on 125
- pb $^{-1}$ of data at $\sqrt{s} = 1.8$ TeV.
- ¹⁰ABAZOV 05L studied the angular distribution of leptonic decays of W bosons in $t\bar{t}$ events, where one of the W's from t or \bar{t} decays into e or μ and the other decays

hadronically. The fraction of the "+" helicity W boson is obtained by assuming $F_0 = 0.7$, which is the generic prediction for any linear combination of V and A currents. Based on 230 \pm 15 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV.

- ¹¹ ACOSTA 05D measures the $m_{\ell}^2 + b$ distribution in $t\bar{t}$ production events where one or both W's decay leptonically to $\ell = e$ or μ , and finds a bound on the V+A coupling of the $t\,b\,W$ vertex. By assuming the SM value of the longitudinal W fraction $F_0 = B(t \rightarrow W_0 b) = 0.70$, the bound on F_+ is obtained. If the results are combined with those of AFFOLDER 00B, the bounds become $F_{V+A} < 0.61$ (95% CL) and $F_+ < 0.18$ (95% %CL), respectively. Based on 109 \pm 7 pb⁻¹ of data at $\sqrt{s} = 1.8$ TeV (run I).
- ¹² AFFOLDER 00B studied the angular distribution of leptonic decays of W bosons in $t \rightarrow Wb$ events. The ratio F_0 is the fraction of the helicity zero (longitudinal) W bosons in the decaying top quark rest frame. B($t \rightarrow W_+ b$) is the fraction of positive helicity (right-handed) positive charge W bosons in the top quark decays. It is obtained by assuming the Standard Model value of F_0 .

t-quark FCNC couplings κ^{utg}/Λ and κ^{ctg}/Λ

VALUE (TeV $^{-1}$)	CL%	DOCUMENT ID	TECN	COMMENT			
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
<0.018	95	¹ AALTONEN	09N CDF	$\kappa^{tug}/\Lambda~(\kappa^{tcg}=0)$			
<0.069	95	¹ AALTONEN	09N CDF	$\kappa^{tcg}/\Lambda \; (\kappa^{tug} = 0)$			
<0.037	95	² ABAZOV	07V D0	κ^{utg}/Λ			
<0.15	95	² ABAZOV	07V D0	κ^{ctg}/Λ			
1	1		_				

¹ Based on 2.2 fb⁻¹ of data in $p\overline{p}$ collsions at $\sqrt{s} = 1.96$ TeV. Upper limit of single top quark production cross section $\sigma(u(c) + g \rightarrow t) < 1.8$ pb (95% CL) via FCNC *t-u-g* and *t-c-g* couplings lead to the bounds. B($t \rightarrow u + g$) < 3.9×10^{-4} and B($t \rightarrow c + g$) < 5.7×10^{-3} follow.

² Result is based on 230 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Absence of single top quark production events via FCNC *t-u-g* and *t-c-g* couplings lead to the upper bounds on the dimensioned couplings, κ^{utg}/Λ and κ^{ctg}/Λ , respectively.

Single *t*-Quark Production Cross Section in $p\overline{p}$ Collisions at $\sqrt{s} = 1.8$ TeV

Direct probes of the $t b W$ coupling and possible new physics at $\sqrt{s} = 1.8$ TeV.					
VALUE	E (pb) <u>CL%</u>	DOCUMENT	ID	TECN	COMMENT
• • •	We do not use the	following data for	averages,	fits, li	mits, etc. • • •
<24	95	¹ ACOSTA	04H	CDF	$p\overline{p} \rightarrow tb + X, tqb + X$
<18	95	² ACOSTA	02	CDF	$p \overline{p} \rightarrow t b + X$
<13	95	³ ACOSTA	02	CDF	$p \overline{p} \rightarrow t q b + X$
-					

¹ ACOSTA 04H bounds single top-quark production from the *s*-channel *W*-exchange process, $q'\overline{q} \rightarrow t\overline{b}$, and the *t*-channel *W*-exchange process, $q'g \rightarrow qt\overline{b}$. Based on $\sim 106 \text{ pb}^{-1}$ of data.

²ACOSTA 02 bounds the cross section for single top-quark production via the s-channel W-exchange process, $q' \overline{q} \rightarrow t \overline{b}$. Based on $\sim 106 \text{ pb}^{-1}$ of data.

³ACOSTA 02 bounds the cross section for single top-quark production via the *t*-channel *W*-exchange process, $q'g \rightarrow qt\overline{b}$. Based on $\sim 106 \text{ pb}^{-1}$ of data.

Single *t*-Quark Production Cross Section in $p\overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

Direct probes of the t b W coupling and possible new physics at $\sqrt{s} = 1.96$ TeV.

OUR EVALUATION is an average of two results below that is provided by the Tevatron Electroweak Working Group (TEVEWWG 09B). It takes correlated uncertainties into account and assumes $m_t = 170$ GeV.

VALUE (pb)	CL%	DOCUMENT ID	TECN	COMMENT
$2.76^{+0.58}_{-0.47}$ OL	IR EVALUA	ATION See comm	nents in the he	eader above.
$2.3 \ {+0.6 \atop -0.5}$		¹ AALTONEN	09AT CDF	s- + t -channel
3.94 ± 0.88		² ABAZOV	09z D0	s- + t -channel
• • • We do not	use the follo	owing data for ave	rages, fits, lim	its, etc. ● ● ●
$3.14 \substack{+0.94 \\ -0.80}$		³ ABAZOV	10 D0	<i>t</i> -channel
1.05 ± 0.81		³ ABAZOV	10 D0	<i>s</i> -channel
$2.2 \ \begin{array}{c} +0.7 \\ -0.6 \end{array}$		⁴ AALTONEN	08AH CDF	s- + t -channel
$4.7 \hspace{0.1in} \pm 1.3$		⁵ ABAZOV	081 D0	s- + t -channel
$4.9 \hspace{0.2cm} \pm 1.4$		⁶ ABAZOV	07H D0	s- + t -channel
< 6.4	95	⁷ ABAZOV	05p D0	$p \overline{p} \rightarrow t b + X$
< 5.0	95	⁷ ABAZOV	05p D0	$p \overline{p} \rightarrow t q b + X$
<10.1	95	⁸ ACOSTA	05N CDF	$p \overline{p} \rightarrow t q b + X$
<13.6	95	⁸ ACOSTA	05N CDF	$p \overline{p} \rightarrow t b + X$
<17.8	95	⁸ ACOSTA	05N CDF	$p \overline{p} \rightarrow t b + X, t q b + X$

¹ Based on 3.2 fb⁻¹ of data. Events with isolated $\ell + \not\!\!\! E_T$ + jets with at least one *b*-tag are analyzed and *s*- and *t*-channel single top events are selected by using the likelihood function, matrix element, neural-network, boosted decision tree, liklihood function optimized for *s*-channel process, and neural-networked based analysis of events with $\not\!\!\! E_T$ that has sensitivity for $W \to \tau \nu$ decays. The result is for $m_t = 175$ GeV, and the mean value decreases by 0.02 pb/GeV for smaller m_t . The signal has 5.0 sigma significance. The result gives $|V_{tb}| = 0.91 \pm 0.11$ (stat+syst) ± 0.07 (theory), or $|V_{tb}| > 0.71$ at 95% CL.

 2 Based on 2.3 fb $^{-1}$ of data. Events with isolated $\ell + \not\!\!\!E_T + \ge 2$ jets with 1 or 2 *b*-tags are analyzed and *s*- and *t*-channel single top events are selected by using boosted decision tree, Bayesian neural networks and the matrix element method. The signal has 5.0 sigma significance. The result gives $|V_{tb}| = 1.07 \pm 0.12$, or $|V_{tb}| > 0.78$ at 95% CL. The analysis assumes $m_t = 170$ GeV.

³Result is based on 2.3 fb⁻¹ of data. Events with isolated $\ell + \not\!\!E_T + 2$, 3, 4 jets with one or two *b*-tags are selected. The analysis assumes $m_t = 170$ GeV.

- ⁵ Result is based on 0.9 fb⁻¹ of data. Events with isolated $\ell + \not\!\!E_T + 2$, 3, 4 jets with one or two *b*-vertex-tag are selected, and contributions from W + jets, $t \bar{t}$, *s* and *t*-channel single top events are identified by using boosted decision trees, Bayesian neural networks, and matrix element analysis. The result can be interpreted as the measurement of the CKM matrix element $|V_{tb}| = 1.31^{+0.25}_{-0.21}$, or $|V_{tb}| > 0.68$ (95% CL) under the

HTTP://PDG.LBL.GOV Page 10

Created: 7/30/2010 16:47

 $[|]V_{tb}| < 1$ constraint.

 $^{^6}$ Result is based on 0.9 fb $^{-1}$ of data. This result constrains V_{tb} to 0.68 $<|V_{tb}| \leq 1$ at 95% CL.

- ⁷ ABAZOV 05P bounds single top-quark production from either the *s*-channel *W*-exchange process, $q'\overline{q} \rightarrow t\overline{b}$, or the *t*-channel *W*-exchange process, $q'g \rightarrow qt\overline{b}$, based on $\sim 230 \text{ pb}^{-1}$ of data.
- ⁸ ACOSTA 05N bounds single top-quark production from the *t*-channel *W*-exchange process $(q'g \rightarrow qt\overline{b})$, the *s*-channel *W*-exchange process $(q'\overline{q} \rightarrow t\overline{b})$, and from the combined cross section of *t* and *s*-channel. Based on ~ 162 pb⁻¹ of data.

Single t-Quark Production Cross Section in ep Collisions

VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not u	se the following	data for average	s, fits,	limits, e	etc. • • •
<0.25					$e^{\pm}p \rightarrow e^{\pm}tX$
<0.55	95				$e^{\pm} p \rightarrow e^{\pm} t X$
<0.225	95	³ CHEKANOV	03	ZEUS	$e^{\pm} p \rightarrow e^{\pm} t X$
1					

¹ AARON 09A looked for single top production via FCNC in $e^{\pm} p$ collisions at HERA with 474 pb⁻¹ of data at $\sqrt{s} = 301-319$ GeV. The result supersedes that of AKTAS 04.

² AKTAS 04 looked for single top production via FCNC in e^{\pm} collisions at HERA with 118.3 pb⁻¹, and found 5 events in the *e* or μ channels while 1.31 ± 0.22 events are expected from the Standard Model background. No excess was found for the hadronic channel. The observed cross section of $\sigma(ep \rightarrow et X) = 0.29^{+0.15}_{-0.14}$ pb at $\sqrt{s} = 319$ GeV gives the quoted upper bound if the observed events are due to statistical fluctuation.

³ CHEKANOV 03 looked in 130.1 pb⁻¹ of data at $\sqrt{s} = 301$ and 318 GeV. The limit is for $\sqrt{s} = 318$ GeV and assumes $m_t = 175$ GeV.

$t\bar{t}$ production cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV

Only the final combined $t\bar{t}$ production cross sections obtained from Tevatron Run I by the CDF and D0 experiments are quoted below.

VALUE (pb)	DOCUMENT ID		COMMENT
\bullet • • We do not use the following	ng data for average	s, fits, limits	, etc. ● ● ●
$5.69\!\pm\!1.21\!\pm\!1.04$	¹ ABAZOV	03A D0	Combined Run I data
$6.5 \ +1.7 \ -1.4$	² AFFOLDER	01A CDF	Combined Run I data
1 Combined result from 110 pl	o^{-1} of Tevatron Ri	un I data. As	sume $m_t = 172.1$ GeV.
² Combined result from 105 pł	o^{-1} of Tevatron R	un I data. As	sume $m_t = 175$ GeV.

$t\overline{t}$ production cross section in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV

VALUE (pb)	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the fo	llowing data for a	verages, fits	, limits, etc. ● ● ●
$9.6 \ \pm 1.2 \ {}^{+0.6}_{-0.5} \ \pm 0.6$	¹ AALTONEN	09AD CDF	$\ell\ell + ot\!$
$9.1 \ \pm 1.1 \ +1.0 \ \pm 0.6$	² AALTONEN	09н CDF	$\ell + \ \geq$ 3 jets+ $ ot\!$
$8.18\substack{+0.98\\-0.87}$	³ ABAZOV	09AG D0	$\ell+{ m jets},\ell\ell$ and $\ell au+{ m jets}$
$7.5 \hspace{.1in} \pm 1.0 \hspace{.1in} \stackrel{+ 0.7 }{- 0.6 } \hspace{.1in} \stackrel{+ 0.6 }{- 0.5 }$	⁴ ABAZOV	09R D0	$\ell\ell$ and $\ell au+{\sf jets}$
$8.18^{+0.90}_{-0.84}{\pm}0.50$	⁵ ABAZOV	08M D0	ℓ + n jets with 0,1,2 <i>b</i> -tag
7.62 ± 0.85	⁶ ABAZOV	08N D0	ℓ + n jets + <i>b</i> -tag or kinematics

8.5 + 2.7 - 2.2	⁷ ABULENCIA	08	CDF	$\ell^+\ell^-~(\ell=e,~\mu)$
$\begin{array}{c} -2.2\\ 8.3 \pm 1.0 \ -1.5 \ \pm 0.5\end{array}$	⁸ AALTONEN	07 D	CDF	\geq 6 jets, vtx <i>b</i> -tag
-1.5 7.4 $\pm 1.4 \pm 1.0$	⁹ ABAZOV			$\ell\ell$ + jets, vtx <i>b</i> -tag
$4.5 \begin{array}{c} +2.0 \\ -1.9 \end{array} \begin{array}{c} +1.4 \\ -1.1 \end{array} \pm 0.3$	¹⁰ ABAZOV			\geq 6 jets, vtx <i>b</i> -tag
$6.4 \ \begin{array}{c} +1.3 \\ -1.2 \end{array} \pm 0.7 \ \pm 0.4$	¹¹ ABAZOV	07 R	D0	$\ell + \geq$ 4 jets
$6.6\ \pm 0.9\ \pm 0.4$	¹² ABAZOV	06X	D0	ℓ + jets, vtx <i>b</i> -tag
$8.7\ \pm 0.9\ {}^{+1.1}_{-0.9}$	¹³ ABULENCIA	06z	CDF	$\ell+{\sf jets}$, vtx <i>b</i> -tag
$5.8\ \pm 1.2\ {}^{+0.9}_{-0.7}$	¹⁴ ABULENCIA,A	06 C	CDF	missing E_T + jets, vtx <i>b</i> -tag
$7.5 \ \pm 2.1 \ \begin{array}{c} +3.3 \\ -2.2 \end{array} \begin{array}{c} +0.5 \\ -0.4 \end{array}$	¹⁵ ABULENCIA,A	06E	CDF	6–8 jets, <i>b</i> -tag
$8.9 \ \pm 1.0 \ +1.1 \\ -1.0$	¹⁶ ABULENCIA, A	06F	CDF	ℓ + \geq 3 jets, <i>b</i> -tag
8.6 $^{+1.6}_{-1.5}$ ± 0.6	¹⁷ ABAZOV	0 5Q	D0	$\ell+{\sf n}$ jets
$8.6^{+3.2}_{-2.7}\pm1.1\pm0.6$	¹⁸ ABAZOV	05 R	D0	di-lepton $+$ n jets
$6.7 \begin{array}{c} +1.4 \\ -1.3 \end{array} \begin{array}{c} +1.6 \\ -1.1 \end{array} \pm 0.4$	¹⁹ ABAZOV	05X	D0	ℓ + jets / kinematics
5.3 $\pm 3.3 \ +1.3 \ -1.0$	²⁰ ACOSTA	05 S	CDF	$\ell + { m jets} \; / \; { m soft} \; \mu \; b{ m -tag}$
$6.6 \pm 1.1 \pm 1.5$	²¹ ACOSTA	05⊤	CDF	ℓ + jets / kinematics
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	²² ACOSTA	05 U	CDF	$\ell + jets/kinematics + vtx \ \mathit{b}-tag$
$5.6 \begin{array}{c} +1.2 \\ -1.1 \end{array} \begin{array}{c} +0.9 \\ -0.6 \end{array}$	²³ ACOSTA	05v	CDF	$\ell + n$ jets
$7.0 \begin{array}{c} +2.4 \\ -2.1 \end{array} \begin{array}{c} +1.6 \\ -1.1 \end{array} \pm 0.4$	²⁴ ACOSTA	041	CDF	di-lepton $+$ jets $+$ missing ET

¹ Based on 1.1 fb⁻¹. The last error is from luminosity. The result is for B($W \rightarrow \ell \nu$) = 10.8% and m_t = 175 GeV; the mean value is 9.8 for m_t = 172.5 GeV and 10.1 for m_t = 170 GeV. AALTONEN 09AD used high $p_T e$ or μ with an isolated track to select $t\bar{t}$ decays into dileptons including $\ell = \tau$. The result is based on the candidate event samples with and without vertex *b*-tag.

 $^2\,{\rm Based}$ on 2 fb $^{-1}.$ The last error is from luminosity. The result is for m_t = 175 GeV; the mean value is 3% higher for m_t = 170 GeV and 4% lower for m_t = 180 GeV.

³ Result is based on 1 fb⁻¹ of data. The result is for $m_t = 170$ GeV, and the mean value decreases with increasing m_t ; see their Fig. 2. The result is obtained after combining ℓ + jets, $\ell\ell$, and $\ell\tau$ final states, and the ratios of the extracted cross sections are $R^{\ell\ell/\ell j} = 0.86^{+0.19}_{-0.17}$ and $R^{\ell\tau/\ell\ell-\ell j} = 0.97^{+0.32}_{-0.29}$, consistent with the SM expectation of R = 1. This leads to the upper bound of B($t \rightarrow bH^+$) as a function of m_{H^+} . Results are shown in their Fig. 1 for B($H^+ \rightarrow \tau \nu$) = 1 and B($H^+ \rightarrow c\overline{s}$) = 1 cases. Comparison of the m_t dependence of the extracted cross section and a partial NNLO prediction gives

⁴ Result is based on 1 fb⁻¹ of data. The last error is from luminosity. The result is for $m_t = 170$ GeV, and the mean value changes by -0.07 [m_t (GeV)-170] pb near the reference m_t value. Comparison of the m_t dependence of the extracted cross section and a partial NNLO QCD prediction gives $m_t = 171.5^{+9.9}_{-8.8}$ GeV. The $\ell\tau$ channel alone gives $7.6^{+4.9}_{-4.3}+3.5^{+1.4}_{-3.4}$ pb and the $\ell\ell$ channel gives $7.5^{+1.2}_{-1.1}+0.7^{+0.7}_{-0.5}$ pb.

 $m_t = 169.1^{+5.9}_{-5.2}$ GeV.

- ⁵ Result is based on 0.9 fb⁻¹ of data. The first error is from stat + syst, while the latter error is from luminosity. The result is for m_t =175 GeV, and the mean value changes by $-0.09 \text{ pb} \cdot [m_t(\text{GeV})-175]$.
- ⁶ Result is based on 0.9 fb⁻¹ of data. The cross section is obtained from the $\ell + \geq 3$ jet event rates with 1 or 2 *b*-tag, and also from the kinematical likelihood analysis of the $\ell + 3$, 4 jet events. The result is for $m_t = 172.6$ GeV, and its m_t dependence shown in Fig. 3 leads to the constraint $m_t = 170 \pm 7$ GeV when compared to the SM prediction.
- ⁷ Result is based on 360 pb⁻¹ of data. Events with high p_T oppositely charged dileptons $\ell^+ \ell^-$ ($\ell = e, \mu$) are used to obtain cross sections for $t \bar{t}, W^+ W^-$, and $Z \to \tau^+ \tau^-$ production processes simultaneously. The other cross sections are given in Table IV.
- ⁸ Based on 1.02 fb⁻¹ of data. Result is for $m_t = 175$ GeV. The last error is for luminosity. Secondary vertex *b*-tag and neural network selections are used to achieve a signal-to-background ratio of about 1/2.
- 9 Based on 425 pb $^{-1}$ of data. Result is for $m_t=175$ GeV. For $m_t=170.9$ GeV, 7.8 \pm 1.8(stat + syst) pb is obtained.
- 10 Based on 405 \pm 25 pb $^{-1}$ of data. Result is for $m_t=$ 175 GeV. The last error is for luminosity. Secondary vertex *b*-tag and neural network are used to separate the signal events from the background.
- $^{11}\,\mathrm{Based}$ on 425 pb $^{-1}$ of data. Assumes $m_t=$ 175 GeV. The last error is for luminosity.
- 12 Based on $\sim~425~{\rm pb}^{-1}.$ Assuming $m_t=175$ GeV. The first error is combined statistical and systematic, the second one is luminosity.
- ¹³ Based on ~ 318 pb⁻¹. Assuming $m_t = 178$ GeV. The cross section changes by ± 0.08 pb for each ∓ 1 GeV change in the assumed m_t . Result is for at least one *b*-tag. For at least two *b*-tagged jets, $t\bar{t}$ signal of significance greater than 5σ is found, and the cross section is $10.1^{+1.6+2.0}_{-1.4-1.3}$ pb for $m_t = 178$ GeV.
- ¹⁴ Based on ~ 311 pb⁻¹. Assuming $m_t = 178$ GeV. The first error is statistical and the second systematic. For $m_t = 175$ GeV, the result is $6.0 \pm 1.2 \substack{+0.9 \\ -0.7}$. This is the first CDF measurement without lepton identification, and hence it has sensitivity to the $W \rightarrow 15 \tau \nu$ mode.
- ¹⁵ ABULENCIA, A 06E measures the $t\bar{t}$ production cross section in the all hadronic decay mode by selecting events with 6 to 8 jets and at least one b-jet. S/B = 1/5 has been achieved. Based on 311 pb⁻¹. Assuming $m_t = 178$ GeV. The first error is statistical, the second is systematic, and the third one is luminosity.
- ¹⁶ Based on ~ 318 pb⁻¹. Assuming $m_t = 178$ GeV. Result is for at least one *b*-tag. For at least two *b*-tagged jets, the cross section is $11.1^{+2.3}_{-1.9} + 2.5_{-1.9}$ pb.
- ¹⁷ ABAZOV 05Q measures the top-quark pair production cross section with ~ 230 pb⁻¹ of data, based on the analysis of W plus n-jet events where W decays into e or μ plus neutrino, and at least one of the jets is *b*-jet like. The first error is statistical and systematic, and the second accounts for the luminosity uncertainty. The result assumes $m_t = 175$ GeV; the mean value changes by $(175 m_t(\text{GeV})) \times 0.06$ pb in the mass range 160 to 190 GeV.
- ¹⁸ ABAZOV 05R measures the top-quark pair production cross section with 224–243 pb⁻¹ of data, based on the analysis of events with two charged leptons in the final state. The first error is statistical, the second one is systematic, and the last one gives the luminosity uncertainty. The result assumes $m_t = 175$ GeV; the mean value changes by $(175-m_t(\text{GeV})) \times 0.08$ pb in the mass range 160 to 190 GeV.
- ¹⁹ Based on 230 pb⁻¹. Assuming $m_t = 175$ GeV. The last error accounts for the luminosity uncertainty.
- 20 Based on 194 pb $^{-1}$. Assuming $m_t = 175$ GeV.
- $^{21}\,\mathrm{Based}$ on 194 \pm 11 pb $^{-1}.$ Assuming m_t = 175 GeV.
- 22 Based on 162 \pm 10 pb $^{-1}$. Assuming $m_t = 175$ GeV.
- ²³ACOSTA 05V measures the top-quark pair production cross section with \sim 162 pb⁻¹ data, based on the analysis of W plus n-jet events where W decays into e or μ plus

neutrino, and at least one of the jets is *b*-jet like. Assumes $m_t = 175$ GeV.The first error is statistical and the latter is systematic, which include the luminosity uncertainty.

 24 ACOSTA 04I measures the top-quark pair production cross section with 197 \pm 12 pb $^{-1}$ data, based on the analysis of events with two charged leptons in the final state. Assumes $m_t =$ 175 GeV. The first error is statistical, the second one is systematic, and the last one gives the luminosity uncertainty.

$gg \rightarrow t\overline{t}$ fraction in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV

66 6 6 6 6 6 6 6 6 	····· •• •• •• ••			-	
VALUE	CL%	DOCUMENT ID	TECN	I <u>COMMENT</u>	
$0.07 {\pm} 0.14 {\pm} 0.07$		¹ AALTONEN	08AG CDF	low p_T number of tra-	cks
• • • We do not us	e the follov	ving data for avera	ges, fits, lin	nits, etc. • • •	
<0.33	68	² AALTONEN	09F CDF	$t \overline{t}$ correllations	
1 Pacult is based		-1 of John The of		of the subpresses are	+ -

¹ Result is based on 0.96 fb⁻¹ of data. The contribution of the subprocesses $gg \rightarrow t\overline{t}$ and $q\overline{q} \rightarrow t\overline{t}$ is distinguished by using the difference between quark and gluon initiated jets in the number of small p_T (0.3 GeV < p_T < 3 GeV) charged particles in the central region ($|\eta| < 1.1$).

²Based on 955 pb⁻¹. AALTONEN 09F used differences in the $t\bar{t}$ production angular distribution and polarization correlation to descriminate between $gg \rightarrow t\bar{t}$ and $q\bar{q} \rightarrow t\bar{t}$ subprocesses. The combination with the result of AALTONEN 08AG gives 0.07 + 0.15 - 0.07.

A_{FB} of $t \overline{t}$ in $p \overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV

VALUE (%)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	data for averages	s, fits, limits, e	etc. • • •
17± 8	¹ AALTONEN	08AB CDF	pp frame
24 ± 14		08AB CDF	<i>t</i> t frame
$12\pm$ 8 ± 1	² ABAZOV	08L D0	$\ell + ot\!$

¹ Result is based on 1.9 fb⁻¹ of data. The *FB* asymmetry in the $t\bar{t}$ events has been measured in the ℓ + jets mode, where the lepton charge is used as the flavor tag. The asymmetry in the $p\bar{p}$ frame is defined in terms of $\cos(\theta)$ of hadronically decaying *t*-quark momentum, whereas that in the $t\bar{t}$ frame is defined in terms of the *t* and \bar{t} rapidity difference. The results are consistent ($\leq 2\sigma$) with the SM predictions.

² Result is based on 0.9 fb⁻¹ of data. The asymmetry in the number of $t\overline{t}$ events with $y_t > y_{\overline{t}}$ and those with $y_t < y_{\overline{t}}$ has been measured in the lepton + jets final state. The observed value is consistent with the SM prediction of 0.8% by MC@NLO, and an upper bound on the $Z' \rightarrow t\overline{t}$ contribution for the SM Z-like couplings is given in in Fig. 2 for 350 GeV $< m_{Z'} < 1$ TeV.

t-Quark Electric Charge

VALUE	DOCUMENT ID	TECN	COMMENT
\bullet \bullet \bullet We do not use the following	g data for averag	es, fits, limits	, etc. ● ● ●
:	^l ABAZOV	07C D0	fraction of $ q $ =4e/3 pair
¹ ABAZOV 07C reports an upp quark pairs $Q \overline{Q}$ with electric lepton, missing E_T and ≥ 4 events in which the quark pair are discriminated by using the maximum CL at which the mo pb ⁻¹ of data at $\sqrt{s} = 1.96$ T	charge $ q = 4e$ jets. The result decays into W^- charge and mon del of CHANG 9	/3 in <i>t t</i> cand is obtained b ⁻ + <i>b</i> and <i>W</i> menta of track	didate events with high p_T y measuring the fraction of $T^+ + \overline{b}$, where b and \overline{b} jets is within the jet cones. The

t-Quark REFERENCES

ABAZOV	10	PL B682 363	V.M. Abazov <i>et al.</i>	(D0 Collab.)
TEVEWWG	10	Private communication	CDF, D0 Collab., Tevatron Electroweak	
AALTONEN	-	PR D79 112007	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN		PR D80 051104R	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09AL	PR D80 052001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09AT	PRL 103 092002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09F	PR D79 031101R	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09H	PR D79 052007	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09J	PR D79 072001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09K	PR D79 072010	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09L	PR D79 092005	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09M	PRL 102 042001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09N	PRL 102 151801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	090	PRL 102 152001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09Q	PL B674 160	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09X	PR D79 072005	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AARON	09A	PL B678 450	F.D. Aaron <i>et al.</i>	(H1 Collab.)
ABAZOV	09AA	PRL 103 132001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09AG	PR D80 071102R	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09AH	PR D80 092006	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09J	PRL 102 092002	V.M. Abazov <i>et al.</i>	(D0 Collab.)
	095 09R		V.M. Abazov et al.	
ABAZOV		PL B679 177		(D0 Collab.)
ABAZOV	09Z	PRL 103 092001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
TEVEWWG	09B	arXiv:0908.2171[hep-ex]	CDF, D0 Collab., Tevatron Electroweak	Working Group
AALTONEN	08AB	PRL 101 202001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	08AD	PRL 101 192002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN		PR D78 111101	T. Aaltonen <i>et al.</i>	(CDF Collab.)
		PRL 101 252001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN				
AALTONEN	08C	PRL 100 062005	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	08AH	PRL 101 182001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	08AI	PRL 101 221801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	08B	PRL 100 062004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	081	PR D78 012005	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	08L	PRL 100 142002	V.M. Abazov <i>et al.</i>	(D0 Collab.)
			V.M. Abazov et al.	
ABAZOV	08M	PRL 100 192003		(D0 Collab.)
ABAZOV	08N	PRL 100 192004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	08	PR D78 012003	A. Abulencia <i>et al.</i>	(CDF Collab.)
AALTONEN	07	PRL 98 142001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	07B	PR D75 111103R	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	07D	PR D76 072009	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	071	PRL 99 182002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	07C	PRL 98 041801	V.M. Abazov <i>et al.</i>	· · · · · · · · · · · · · · · · · · ·
				(D0 Collab.)
ABAZOV	07D	PR D75 031102R	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07F	PR D75 092001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07H	PRL 98 181802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07O	PR D76 052006	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07P	PR D76 072007	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07R	PR D76 092007	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	07V	PRL 99 191802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07W	PL B655 7	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	07D	PR D75 031105R	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	07G	PRL 98 072001	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	07I	PR D75 052001	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	07J	PR D75 071102R	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABAZOV	06K	PL B639 616	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	06U	PR D74 092005	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	06X	PR D74 112004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	06D	PRL 96 022004	A. Abulencia <i>et al.</i>	(CDF Collab.)
Also		PR D73 032003	A. Abulencia <i>et al.</i>	(CDF Collab.)
Also		PR D73 092002	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	06G	PRL 96 152002	A. Abulencia <i>et al.</i>	(CDF Collab.)
Also		PR D74 032009	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	06R	PL B639 172	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	06U	PR D73 111103R	A. Abulencia <i>et al.</i>	(CDF Collab.)
				(CDE Callab.)
ABULENCIA	06V	PR D73 112006	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	06Z	PRL 97 082004	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA,A		PRL 96 202002	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA,A	06E	PR D74 072005	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA,A	06F	PR D74 072006	A. Abulencia <i>et al.</i>	(CDF Collab.)
				. ,

HTTP://PDG.LBL.GOV Page 15 Created: 7/30/2010 16:47

Citation: K. Nakamura et al	(Particle Data Group), JPG 37 , 075021	(2010) (URL: http://pdg.lbl.gov)
-----------------------------	---	----------------------------------

ABAZOV	05	PL B606 25	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05G	PL B617 1	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05L	PR D72 011104R	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05P	PL B622 265	V.M. Abazov <i>et al.</i>	(D0 Collab.)
Also		PL B517 282	V.M. Abazov <i>et al.</i>	(D0 Collab.)
Also		PR D63 031101	B. Abbott <i>et al.</i>	(D0 Collab.)
Also		PR D75 092007	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05Q	PL B626 35	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05R	PL B626 55	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05X	PL B626 45	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ACOSTA	05A	PRL 95 102002	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05D	PR D71 031101R	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05N	PR D71 012005	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05S	PR D72 032002	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05T	PR D72 052003	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05U	PR D71 072005	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05V	PR D71 052003	D. Acosta <i>et al.</i>	(CDF Collab.)
ABAZOV	04G	NAT 429 638	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABDALLAH	04C	PL B590 21	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACOSTA	04H	PR D69 052003	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	04I	PRL 93 142001	D. Acosta <i>et al.</i>	(CDF Collab.)
AKTAS	04	EPJ C33 9	A. Aktas <i>et al.</i>	(H1 Collab.)
ABAZOV	03A	PR D67 012004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
CHEKANOV	03	PL B559 153	S. Chekanov <i>et al.</i>	(ZEUS Collab.)
ACHARD	02J	PL B549 290	P. Achard <i>et al.</i>	(L3 Collab.)
ACOSTA	02	PR D65 091102	D. Acosta <i>et al.</i>	(CDF Collab.)
HEISTER	02Q	PL B543 173	A. Heister <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	01T	PL B521 181	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
AFFOLDER	01	PR D63 032003	T. Affolder <i>et al.</i>	(CDF Collab.)
AFFOLDER	01A	PR D64 032002	T. Affolder <i>et al.</i>	(CDF Collab.)
AFFOLDER	01C	PRL 86 3233	T. Affolder <i>et al.</i>	(CDF Collab.)
AFFOLDER	00B	PRL 84 216	T. Affolder <i>et al.</i>	(CDF Collab.)
BARATE	00S	PL B494 33	S. Barate <i>et al.</i>	(ALEPH Collab.)
ABBOTT	99G	PR D60 052001	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	99B	PRL 82 271	F. Abe <i>et al.</i>	(CDF Collab.)
Also		PRL 82 2808 (erratum)	F. Abe <i>et al.</i>	(CDF Collab.)
CHANG	99	PR D59 091503	D. Chang, W. Chang, E. Ma	
ABBOTT	98D	PRL 80 2063	B. Abbott <i>et al.</i>	(D0 Collab.)
ABBOTT	98F	PR D58 052001	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	98E	PRL 80 2767	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98F	PRL 80 2779	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98G	PRL 80 2525	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98X	PRL 80 2773	F. Abe <i>et al.</i>	(CDF Collab.)
BHAT	98B	IJMP A13 5113	P.C. Bhat, H.B. Prosper, S.S. Snyder	
ABACHI	97E	PRL 79 1197	S. Abachi <i>et al.</i>	(D0 Collab.)
ABE	97R	PRL 79 1992	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	97V	PRL 79 3585	F. Abe <i>et al.</i>	(CDF Collab.)
PDG	96	PR D54 1	R. M. Barnett <i>et al.</i>	
ABACHI	95	PRL 74 2632	S. Abachi <i>et al.</i>	(D0 Collab.)
ABE	95F	PRL 74 2626	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	94E	PR D50 2966	F. Abe <i>et al.</i>	(CDF Collab.)
Also		PRL 73 225	F. Abe <i>et al.</i>	(CDF Collab.)

HTTP://PDG.LBL.GOV Page 16 Created: 7/30/2010 16:47