W

J = 1

A REVIEW GOES HERE – Check our WWW List of Reviews

W MASS

The W-mass listed here corresponds to the mass parameter in a Breit-Wigner distribution with mass-dependent width. To obtain the world average, common systematic uncertainties between experiments are properly taken into account. The LEP-2 average W mass based on published results is 80.376 ± 0.033 GeV [CERN-PH-EP/2006-042]. The combined Tevatron data yields an average W mass of 80.420 ± 0.031 GeV [FERMILAB-TM-2439-E].

OUR FIT uses these average LEP and Tevatron mass values and combines them assuming no correlations.

VALUE (GeV)	EVTS	DOCUMENT ID		TECN	COMMENT
80.399 \pm 0.023 OUR F	T				_
80.401 ± 0.043	500k	¹ ABAZOV	09 AB	D0	$E_{ m cm}^{p\overline{p}}=1.96~ m TeV$
$80.336 \pm 0.055 \pm 0.039$	10.3k	² ABDALLAH	08A	DLPH	CIII
$80.413 \pm 0.034 \pm 0.034$	115k	³ AALTONEN	07F	CDF	$E_{cm}^{p\overline{p}} = 1.96 \text{ TeV}$
$80.415 \pm \ 0.042 \pm 0.031$	11830	⁴ ABBIENDI	06	OPAL	E ^{ee} _{cm} = 170–209 GeV
$80.270\pm~0.046\pm0.031$	9909	⁵ ACHARD	06	L3	$E_{\rm cm}^{ee}$ = 161–209 GeV
$80.440 \pm 0.043 \pm 0.027$	8692	⁶ SCHAEL	06	ALEP	$E_{\rm cm}^{ee}$ = 161–209 GeV
80.483 ± 0.084	49247	⁷ ABAZOV	02 D	D0	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV
80.433 ± 0.079	53841	⁸ AFFOLDER	01E	CDF	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV
• • • We do not use t	he followi	ng data for averages	s, fits,	limits, e	etc. ● ● ●
$82.87 ~\pm~ 1.82 ~+ 0.30 \\ - 0.16$	1500	⁹ AKTAS	06	H1	$e^{\pm} p ightarrow ~ \overline{ u}_e(u_e) X, \ \sqrt{s} pprox 300 \; { m GeV}$
$80.3 \pm 2.1 \pm 1.2 \pm 1.0$	645	¹⁰ CHEKANOV	02C	ZEUS	$e^- p \rightarrow \nu_e X, \sqrt{s} = 318 \text{ GeV}$
$81.4^{+2.7}_{-2.6}\pm2.0^{+3.3}_{-3.0}$	1086	¹¹ BREITWEG	00 D	ZEUS	$ \begin{array}{c} \text{318 GeV} \\ e^+ p \rightarrow \overline{\nu}_e X, \sqrt{s} \approx \\ \text{300 GeV} \end{array} $
$80.84~\pm~0.22~\pm0.83$	2065	¹² ALITTI	92 B	UA2	See W/Z ratio below
$80.79~\pm~0.31~\pm0.84$		¹³ ALITTI	90 B	UA2	E ^{pp} _{cm} = 546,630 GeV
$80.0 \hspace{0.2cm} \pm \hspace{0.2cm} 3.3 \hspace{0.2cm} \pm 2.4$	22	¹⁴ ABE	891	CDF	$E_{cm}^{p\overline{p}}$ = 1.8 TeV
$82.7 \hspace{0.2cm} \pm \hspace{0.2cm} 1.0 \hspace{0.2cm} \pm 2.7$	149	¹⁵ ALBAJAR	89	UA1	E ^{pp} _{cm} = 546,630 GeV
$81.8 \ \ + \ \ 6.0 \ \ \pm 2.6$	46	¹⁶ ALBAJAR	89	UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
$89 \pm 3 \pm 6$	32	¹⁷ ALBAJAR	89	UA1	E ^{pp} _{cm} = 546,630 GeV
81. ± 5.	6	ARNISON	83	UA1	$E_{\rm cm}^{ee}$ = 546 GeV
80. $+10.$ - 6.	4	BANNER	83 B	UA2	Repl. by ALITTI 90B

- ¹ ABAZOV 09AB study the transverse mass, transverse electron momentum, and transverse missing energy in a sample of 0.5 million $W \rightarrow e\nu$ decays selected in Run-II data. The quoted result combines all three methods, accounting for correlations.
- ²ABDALLAH 08A use direct reconstruction of the kinematics of $W^+ W^- \rightarrow q \bar{q} \ell \nu$ and $W^+ W^- \rightarrow q \bar{q} q \bar{q}$ events for energies 172 GeV and above. The W mass was also extracted from the dependence of the WW cross section close to the production threshold and combined appropriately to obtain the final result. The systematic error includes ± 0.025 GeV due to final state interactions and ± 0.009 GeV due to LEP energy uncertainty.
- ³AALTONEN 07F obtain high purity $W \rightarrow e\nu_e$ and $W \rightarrow \mu\nu_\mu$ candidate samples totaling 63,964 and 51,128 events respectively. The W mass value quoted above is derived by simultaneously fitting the transverse mass and the lepton, and neutrino p_T distributions.
- ⁴ ABBIENDI 06 use direct reconstruction of the kinematics of $W^+W^- \rightarrow q\bar{q}\ell\nu_{\ell}$ and $W^+W^- \rightarrow q\bar{q}q\bar{q}$ events. The result quoted here is obtained combining this mass value with the results using $W^+W^- \rightarrow \ell\nu_{\ell}\ell'\nu_{\ell'}$ events in the energy range 183–207 GeV (ABBIENDI 03C) and the dependence of the WW production cross-section on m_W at threshold. The systematic error includes ± 0.009 GeV due to the uncertainty on the LEP beam energy.
- ⁵ ACHARD 06 use direct reconstruction of the kinematics of $W^+ W^- \rightarrow q \overline{q} \ell \nu_{\ell}$ and $W^+ W^- \rightarrow q \overline{q} q \overline{q}$ events in the C.M. energy range 189–209 GeV. The result quoted here is obtained combining this mass value with the results obtained from a direct W mass reconstruction at 172 and 183 GeV and with those from the dependence of the WW production cross-section on m_W at 161 and 172 GeV (ACCIARRI 99).
- ⁶ SCHAEL 06 use direct reconstruction of the kinematics of $W^+W^- \rightarrow q \bar{q} \ell \nu_{\ell}$ and $W^+W^- \rightarrow q \bar{q} q \bar{q}$ events in the C.M. energy range 183–209 GeV. The result quoted here is obtained combining this mass value with those obtained from the dependence of the W pair production cross-section on m_W at 161 and 172 GeV (BARATE 97 and BARATE 97S respectively). The systematic error includes ± 0.009 GeV due to possible effects of final state interactions in the $q \bar{q} q \bar{q}$ channel and ± 0.009 GeV due to the uncertainty on the LEP beam energy.
- ⁷ ABAZOV 02D improve the measurement of the *W*-boson mass including $W \rightarrow e\nu_e$ events in which the electron is close to a boundary of a central electromagnetic calorimeter module. Properly combining the results obtained by fitting $m_T(W)$, $p_T(e)$, and $p_T(\nu)$, this sample provides a mass value of 80.574 \pm 0.405 GeV. The value reported here is a combination of this measurement with all previous DØ *W*-boson mass measurements.
- ⁸ AFFOLDER 01E fit the transverse mass spectrum of 30115 $W \rightarrow e\nu_e$ events ($M_W = 80.473 \pm 0.065 \pm 0.092$ GeV) and of 14740 $W \rightarrow \mu\nu_{\mu}$ events ($M_W = 80.465 \pm 0.100 \pm 0.103$ GeV) obtained in the run IB (1994-95). Combining the electron and muon results, accounting for correlated uncertainties, yields $M_W = 80.470 \pm 0.089$ GeV. They combine this value with their measurement of ABE 95P reported in run IA (1992-93) to obtain the quoted value.
- 9 AKTAS 06 fit the Q² dependence (300 < Q² < 30,000 GeV²) of the charged-current differential cross section with a propagator mass. The first error is experimental and the second corresponds to uncertainties due to input parameters and model assumptions.
- ¹⁰ CHEKANOV 02C fit the Q^2 dependence (200< Q^2 <60000 GeV²) of the charged-current differential cross sections with a propagator mass fit. The last error is due to the uncertainty on the probability density functions.
- $^{11}\,\text{BREITWEG}$ 00D fit the Q^2 dependence (200 $< Q^2 <$ 22500 GeV²) of the charged-current differential cross sections with a propagator mass fit. The last error is due to the uncertainty on the probability density functions.
- 12 ALITTI 92B result has two contributions to the systematic error (±0.83); one (±0.81) cancels in m_W/m_Z and one (±0.17) is noncancelling. These were added in quadrature. We choose the ALITTI 92B value without using the LEP m_Z value, because we perform our own combined fit.

 13 There are two contributions to the systematic error (±0.84): one (±0.81) which cancels in m_W/m_Z and one (±0.21) which is non-cancelling. These were added in quadrature.

 14 ABE 891 systematic error dominated by the uncertainty in the absolute energy scale.

 15 ALBAJAR 89 result is from a total sample of 299 W
ightarrow e
u events.

¹⁶ ALBAJAR 89 result is from a total sample of 67 $W \rightarrow \mu \nu$ events.

¹⁷ ALBAJAR 89 result is from $W \rightarrow \tau \nu$ events.

W/Z MASS RATIO

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.8819 ± 0.0012 OUR AVE	RAGE				
$0.8821\ \pm 0.0011\ \pm 0.0008$	28323	¹⁸ АВВОТТ	98N	D0	$E_{cm}^{p\overline{p}}$ = 1.8 TeV
$0.88114 \!\pm\! 0.00154 \!\pm\! 0.00252$	5982	¹⁹ ABBOTT	98 P	D0	$E_{cm}^{p\overline{p}}$ = 1.8 TeV
$0.8813\ \pm 0.0036\ \pm 0.0019$	156	²⁰ ALITTI	92 B	UA2	<i>Е<mark>рр</mark></i> = 630 GeV

¹⁸ABBOTT 98N obtain this from a study of 28323 $W \rightarrow e\nu_e$ and 3294 $Z \rightarrow e^+e^-$ decays. Of this latter sample, 2179 events are used to calibrate the electron energy scale.

¹⁹ABBOTT 98P obtain this from a study of 5982 $W \rightarrow e\nu_e$ events. The systematic error includes an uncertainty of ±0.00175 due to the electron energy scale.

²⁰ Scale error cancels in this ratio.

1722

$m_Z - m_W$ VALUE (GeV) DOCUMENT ID TECN COMMENT $E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV $10.4 \pm 1.4 \pm 0.8$ ALBAJAR 89 UA1 • • • We do not use the following data for averages, fits, limits, etc. $E_{\rm cm}^{p\overline{p}} = 546,630 \,\,{\rm GeV}$ 87 UA2 ANSARI $11.3\!\pm\!1.3\!\pm\!0.9$ $m_{W^+} - m_{W^-}$ Test of CPT invariance. VALUE (GeV) DOCUMENT ID TECN COMMENT **EVTS** $E_{\rm cm}^{p\overline{p}} = 1.8 \text{ TeV}$

W WIDTH

ABE

90G CDF

The W width listed here corresponds to the width parameter in a Breit-Wigner distribution with mass-dependent width. To obtain the world average, common systematic uncertainties between experiments are properly taken into account. The LEP-2 average W width based on published results is 2.196 ± 0.083 GeV [CERN-PH-EP/2006-042]. The combined Tevatron data yields an average W width of 2.046 \pm 0.049 GeV [FERMILAB-TM-2460-E].

HTTP://PDG.LBL.GOV

 -0.19 ± 0.58

OUR FIT uses these average LEP and Tevatron width values and combines them assuming no correlations.

VALUE (GeV)	EVTS	DOCUMENT ID		TECN	COMMENT	_
2.085 ± 0.042 OUR FIT	Г					
$2.028 \!\pm\! 0.072$	5272	²¹ ABAZOV	09Ał	< D0	$E_{\rm cm}^{p\overline{p}} = 1.96 { m GeV}$	
$2.032\!\pm\!0.045\!\pm\!0.057$	6055	²² AALTONEN	08 B	CDF	${\cal E}^{{m p}{\overline{m p}}}_{ m cm}=1.96~{ m TeV}$	
$2.404 \pm 0.140 \pm 0.101$	10.3k	²³ ABDALLAH	08A	DLPH	E ^{ee} _{cm} = 183–209 GeV	
$1.996 \!\pm\! 0.096 \!\pm\! 0.102$	10729	²⁴ ABBIENDI	06	OPAL	<i>E^{ee}</i> _{cm} = 170–209 GeV	
$2.18\ \pm 0.11\ \pm 0.09$	9795	²⁵ ACHARD	06	L3	<i>E^{ee}</i> _{cm} = 172–209 GeV	
$2.14\ \pm 0.09\ \pm 0.06$	8717	²⁶ SCHAEL	06	ALEP	<i>E^{ee}</i> _{cm} = 183–209 GeV	
$2.23 \begin{array}{c} +0.15 \\ -0.14 \end{array} \pm 0.10$	294	²⁷ ABAZOV	02E	D0	Direct meas.	
$2.05 \ \pm 0.10 \ \pm 0.08$	662	²⁸ AFFOLDER	00M	CDF	Direct meas.	
$\bullet \bullet \bullet$ We do not use t	he followi	ng data for average	s, fits,	limits, e	etc. • • •	
2.152 ± 0.066 $2.064 \pm 0.060 \pm 0.059$	79176	²⁹ АВВОТТ ³⁰ АВЕ	00B 95W	D0 CDF	Extracted value Extracted value	
$2.10 \begin{array}{c} +0.14 \\ -0.13 \end{array} \pm 0.09$	3559	³¹ ALITTI	92	UA2	Extracted value	
$2.18 \begin{array}{c} +0.26 \\ -0.24 \end{array} \pm 0.04$		³² ALBAJAR	91	UA1	Extracted value	
²¹ ABAZOV 09AK obt	ain this re	sult fitting the high-	-end ta	nil (100-2	200 GeV) of the transverse	:

 $[\]sim$ ABAZOV 09AK obtain this result fitting the high-end tail (100-200 GeV) of the transver mass spectrum in $W \rightarrow e\nu$ decays.

²³ ABDALLAH 08A use direct reconstruction of the kinematics of $W^+ W^- \rightarrow q \overline{q} \ell \nu$ and $W^+ W^- \rightarrow q \overline{q} q \overline{q}$ events. The systematic error includes ±0.065 GeV due to final state interactions.

²⁴ ABBIENDI 06 use direct reconstruction of the kinematics of $W^+ W^- \rightarrow q \bar{q} \ell \nu_{\ell}$ and $W^+ W^- \rightarrow q \bar{q} q \bar{q}$ events. The systematic error includes ±0.003 GeV due to the uncertainty on the LEP beam energy.

²⁵ ACHARD 06 use direct reconstruction of the kinematics of $W^+W^- \rightarrow q \bar{q} \ell \nu_{\ell}$ and $W^+W^- \rightarrow q \bar{q} q \bar{q}$ events in the C.M. energy range 189–209 GeV. The result quoted here is obtained combining this value of the width with the result obtained from a direct W mass reconstruction at 172 and 183 GeV (ACCIARRI 99).

- ²⁶SCHAEL 06 use direct reconstruction of the kinematics of $W^+ W^- \rightarrow q \bar{q} \ell \nu_{\ell}$ and $W^+ W^- \rightarrow q \bar{q} q \bar{q}$ events. The systematic error includes ±0.05 GeV due to possible effects of final state interactions in the $q \bar{q} q \bar{q}$ channel and ±0.01 GeV due to the uncertainty on the LEP beam energy.
- ²⁷ ABAZOV 02E obtain this result fitting the high-end tail (90–200 GeV) of the transversemass spectrum in semileptonic $W \rightarrow e\nu_e$ decays.
- ²⁸ AFFOLDER 00M fit the high transverse mass (100–200 GeV) $W \rightarrow e\nu_e$ and $W \rightarrow \mu\nu_\mu$ events to obtain $\Gamma(W) = 2.04 \pm 0.11(\text{stat}) \pm 0.09(\text{syst})$ GeV. This is combined with the earlier CDF measurement (ABE 95C) to obtain the quoted result.
- ²⁹ ABBOTT 00B measure $R = 10.43 \pm 0.27$ for the $W \rightarrow e\nu_e$ decay channel. They use the SM theoretical predictions for $\sigma(W)/\sigma(Z)$ and $\Gamma(W \rightarrow e\nu_e)$ and the world average for B($Z \rightarrow ee$). The value quoted here is obtained combining this result (2.169 ± 0.070 GeV) with that of ABBOTT 99H.
- ³⁰ABE 95W measured $R = 10.90 \pm 0.32 \pm 0.29$. They use $m_W = 80.23 \pm 0.18$ GeV, $\sigma(W)/\sigma(Z) = 3.35 \pm 0.03$, $\Gamma(W \rightarrow e\nu) = 225.9 \pm 0.9$ MeV, $\Gamma(Z \rightarrow e^+e^-) = 83.98 \pm 0.18$ MeV, and $\Gamma(Z) = 2.4969 \pm 0.0038$ GeV.

²² AALTONEN 08B obtain this result fitting the high-end tail (90–200 GeV) of the transverse mass spectrum in semileptonic $W \rightarrow e\nu_e$ and $W \rightarrow \mu\nu_\mu$ decays.

³¹ ALITTI 92 measured $R = 10.4^{+0.7}_{-0.6} \pm 0.3$. The values of $\sigma(Z)$ and $\sigma(W)$ come from $O(\alpha_s^2)$ calculations using $m_W = 80.14 \pm 0.27$ GeV, and $m_Z = 91.175 \pm 0.021$ GeV along with the corresponding value of $\sin^2\theta_W = 0.2274$. They use $\sigma(W)/\sigma(Z) = 3.26 \pm 0.07 \pm 0.05$ and $\Gamma(Z) = 2.487 \pm 0.010$ GeV.

³² ALBAJAR 91 measured $R = 9.5^{+1.1}_{-1.0}$ (stat. + syst.). $\sigma(W)/\sigma(Z)$ is calculated in QCD at the parton level using $m_W = 80.18 \pm 0.28$ GeV and $m_Z = 91.172 \pm 0.031$ GeV along with $\sin^2\theta_W = 0.2322 \pm 0.0014$. They use $\sigma(W)/\sigma(Z) = 3.23 \pm 0.05$ and $\Gamma(Z) = 2.498 \pm 0.020$ GeV. This measurement is obtained combining both the electron and muon channels.

W⁺ DECAY MODES

 W^- modes are charge conjugates of the modes below.

_	Mode	Fraction (Γ_i/Γ)					
Γ_1	$\ell^+ \nu$	[a] $(10.80\pm~0.09)$ %					
~	$e^+ \nu$	$(10.75\pm~0.13)~\%$					
Γ ₃	$\mu^+ \nu$	$(10.57\pm~0.15)~\%$					
Г4	$\tau^+ \nu$	$(11.25\pm~0.20)~\%$					
Г ₅	hadrons	$(67.60\pm \ 0.27)\ \%$					
•	$\pi^+\gamma$	< 8 ×	10 ⁻⁵ 95%				
Γ ₇	$D_s^+ \gamma$	< 1.3 ×	10 ⁻³ 95%				
Г ₈	сX	(33.4 \pm 2.6) %					
Г ₉	C <u>5</u>	$(31 {+13\atop -11})\ \%$					
Γ ₁₀	invisible	[b] (1.4 \pm 2.9)%					

[a] ℓ indicates each type of lepton (e, μ , and τ), not sum over them.

[b] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.

W PARTIAL WIDTHS

Γ(invisible)

Γ₁₀

This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT			
30 ⁺⁵² ₋₄₈ ±33	33 BARATE 991		ALEP	<i>E</i> ^{ee} _{cm} = 161+172+183 GeV			
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet							
	³⁴ BARATE	99L	ALEP	$E_{\rm cm}^{ee} = 161 + 172 + 183 {\rm GeV}$			

³³BARATE 991 measure this quantity using the dependence of the total cross section σ_{WW} upon a change in the total width. The fit is performed to the WW measured cross sections at 161, 172, and 183 GeV. This partial width is < 139 MeV at 95%CL.

 34 BARATE 99L use *W*-pair production to search for effectively invisible *W* decays, tagging with the decay of the other *W* boson to Standard Model particles. The partial width for effectively invisible decay is < 27 MeV at 95%CL.

W BRANCHING RATIOS

Overall fits are performed to determine the branching ratios of the W. LEP averages on $W \to e
u_e$, $W \to \mu
u_\mu$, and $W \to \tau
u_{ au}$, and their correlations are first obtained by combining results from the four experiments taking properly into account the common systematics. The procedure is described in the note LEPEWWG/XSEC/2001-02, 30 March 2001, at http://lepewwg.web.cern.ch/LEPEWWG/lepww/4f/PDG01. The LEP average values so obtained, using published data, are given in the note LEPEWWG/XSEC/2005-01 accessible at http://lepewwg.web.cern.ch/ LEPEWWG/lepww/4f/PDG05/. These results, together with results from the $p \overline{p}$ colliders are then used in fits to obtain the world average W branching ratios. A first fit determines three individual leptonic branching ratios, ${\sf B}(W o e
u_e)$, ${\sf B}(W o \mu
u_\mu)$, and ${\sf B}(W o au
u_ au)$. This fit has a $\chi^2=$ 4.7 for 10 degrees of freedom. A second fit assumes lepton universality and determines the leptonic branching ratio $B(W \rightarrow \ell \nu_{\ell})$ and the hadronic branching ratio is derived as $B(W \rightarrow hadrons) = 1-3 B(W \rightarrow \ell \nu)$. This fit has a $\chi^2 = 11.3$ for 12 degrees of freedom.

The LEP $W \rightarrow \ell \nu$ data are obtained by the Collaborations using individual leptonic channels and are, therefore, not included in the overall fits to avoid double counting.

Note: The LEP combination including the new OPAL results, ABBI-ENDI 07A, could not be performed in time for this Review. Thus, the OUR FIT values quoted below use the previous OPAL results as in ABBI-ENDI,G 00.

$\Gamma(\ell^+\nu)/\Gamma_{\rm total}$

 Γ_1/Γ

 ℓ indicates average over e, μ , and τ modes, not sum over modes.

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
10.80 \pm 0.09 OUR FIT					
$10.86 \!\pm\! 0.12 \!\pm\! 0.08$	16438	ABBIENDI	07A	OPAL	$E_{\rm cm}^{ee}$ = 161–209 GeV
$10.85\!\pm\!0.14\!\pm\!0.08$	13600	ABDALLAH	0 4G	DLPH	$E_{\rm cm}^{ee}$ = 161–209 GeV
$10.83\!\pm\!0.14\!\pm\!0.10$	11246	ACHARD	04J	L3	$E_{\rm cm}^{ee}$ = 161–209 GeV
$10.96\!\pm\!0.12\!\pm\!0.05$	16116	SCHAEL	04A	ALEP	$E_{\rm cm}^{ee}$ = 183–209 GeV
11.02 ± 0.52	11858	³⁵ ABBOTT	99H	D0	$E_{ m cm}^{p\overline{p}}$ = 1.8 TeV
10.4 ± 0.8	3642	³⁶ ABE	921	CDF	$E_{ m cm}^{p\overline{p}}$ = 1.8 TeV

³⁵ ABBOTT 99H measure $R \equiv [\sigma_W B(W \rightarrow \ell \nu_\ell)]/[\sigma_Z B(Z \rightarrow \ell \ell)] = 10.90 \pm 0.52$ combining electron and muon channels. They use $M_W = 80.39 \pm 0.06$ GeV and the SM theoretical predictions for $\sigma(W)/\sigma(Z)$ and $B(Z \rightarrow \ell \ell)$. ³⁶ $1216 \pm 38^{+27}_{-31} W \rightarrow \mu \nu$ events from ABE 92I and 2426 $W \rightarrow e\nu$ events of ABE 91C.

ABE 921 give the inverse quantity as 9.6 \pm 0.7 and we have inverted.

$\Gamma(e^+ u)/\Gamma_{ m total}$					Γ2/Γ
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
10.75 \pm 0.13 OUR FIT					
$10.71\!\pm\!0.25\!\pm\!0.11$	2374	ABBIENDI	07 A	OPAL	$E_{\rm cm}^{ee}$ = 161–209 GeV
$10.55\!\pm\!0.31\!\pm\!0.14$	1804	ABDALLAH	0 4G	DLPH	$E_{\rm cm}^{ee}$ = 161–209 GeV
$10.78\!\pm\!0.29\!\pm\!0.13$	1576	ACHARD	04J	L3	$E_{\rm cm}^{ee}$ = 161–209 GeV
$10.78\!\pm\!0.27\!\pm\!0.10$	2142	SCHAEL	04A	ALEP	$E_{\rm cm}^{ee}$ = 183–209 GeV
		-			

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
10.61 \!\pm\! 0.28
```

³⁷ ABAZOV 04D TEVA $E_{cm}^{p\overline{p}} = 1.8 \text{ TeV}$

³⁷ ABAZOV 04D take into account all correlations to properly combine the CDF (ABE 95W) and DØ (ABBOTT 00B) measurements of the ratio R in the electron channel. The ratio R is defined as $[\sigma_W \cdot B(W \rightarrow e\nu_e)] / [\sigma_Z \cdot B(Z \rightarrow ee)]$. The combination gives $R^{Tevatron} = 10.59 \pm 0.23$. σ_W / σ_Z is calculated at next-to-next-to-leading order (3.360 \pm 0.051). The branching fraction $B(Z \rightarrow ee)$ is taken from this *Review* as (3.363 \pm 0.004)%.

$\Gamma(\mu^+ \nu) / \Gamma_{\text{total}}$

Гз/Г

$(\mu \nu)/$ total					• 3/ •
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
10.57 \pm 0.15 OUR FIT					
$10.78\!\pm\!0.24\!\pm\!0.10$	2397	ABBIENDI	07A	OPAL	$E_{\rm Cm}^{ee}$ = 161–209 GeV
$10.65\!\pm\!0.26\!\pm\!0.08$	1998	ABDALLAH	0 4G	DLPH	$E_{\rm Cm}^{ee}=$ 161–209 GeV
$10.03\!\pm\!0.29\!\pm\!0.12$	1423	ACHARD	04J	L3	$E_{\rm cm}^{ee}=161{-}209~{ m GeV}$
$10.87\!\pm\!0.25\!\pm\!0.08$	2216	SCHAEL	04A	ALEP	$E_{\mathrm{cm}}^{ee}=$ 183–209 GeV
$\Gamma(au^+ u)/\Gamma_{ ext{total}}$					Γ₄/Γ
(),					•,
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
. ,	EVTS	DOCUMENT ID		TECN	•
VALUE (units 10^{-2})	<u>EVTS</u> 2177	<u>document id</u> ABBIENDI	07A		•
VALUE (units 10 ⁻²) 11.25±0.20 OUR FIT			••••		COMMENT
$\frac{VALUE \text{ (units } 10^{-2}\text{)}}{11.25 \pm 0.20 \text{ OUR FIT}}$ $11.14 \pm 0.31 \pm 0.17$	2177	ABBIENDI	••••	OPAL DLPH	$\frac{COMMENT}{E_{cm}^{ee}} = 161-209 \text{ GeV}$
VALUE (units 10^{-2}) 11.25±0.20 OUR FIT 11.14±0.31±0.17 11.46±0.39±0.19	2177 2034	ABBIENDI ABDALLAH	04G 04J	OPAL DLPH	$\frac{COMMENT}{E_{cm}^{ee} = 161-209 \text{ GeV}}$ $E_{cm}^{ee} = 161-209 \text{ GeV}$

$\Gamma(hadrons)/\Gamma_{total}$

 Γ_5/Γ

OUR FIT value is obtained by a fit to the lepton branching ratio data assuming lepton universality.

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
67.60±0.27 OUR FIT					
$67.41 \!\pm\! 0.37 \!\pm\! 0.23$	16438	ABBIENDI	07A	OPAL	$E_{\rm cm}^{ee}$ = 161–209 GeV
$67.45 \!\pm\! 0.41 \!\pm\! 0.24$	13600	ABDALLAH	0 4G	DLPH	$E_{\rm cm}^{ee} = 161209~{ m GeV}$
$67.50\!\pm\!0.42\!\pm\!0.30$	11246	ACHARD	04J	L3	$E_{ m cm}^{ee}=161 ext{}209~ m GeV$
$67.13 \!\pm\! 0.37 \!\pm\! 0.15$	16116	SCHAEL	04A	ALEP	$E_{\rm cm}^{ee}=$ 183–209 GeV

$\Gamma(\mu^+ u)/\Gamma(e^+ u)$					Γ_3/Γ_2
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.983 ± 0.018 OUR FI	Г				
$0.89\ \pm 0.10$	13k	³⁸ ABACHI			$E_{ m cm}^{p\overline{p}}$ = 1.8 TeV
$1.02\ \pm 0.08$	1216	³⁹ ABE	921	CDF	$E_{cm}^{p\overline{p}}$ = 1.8 TeV
$1.00 \ \pm 0.14 \ \pm 0.08$	67	ALBAJAR	89	UA1	E ^{pp} _cm= 546,630 GeV
• • • We do not use t	he follow	ing data for averag	es, fits	s, limits,	etc. • • •
$1.24 \begin{array}{c} +0.6 \\ -0.4 \end{array}$	14	ARNISON	84 D	UA1	Repl. by ALBAJAR 89

³⁸ABACHI 95D obtain this result from the measured $\sigma_W B(W \rightarrow \mu\nu) = 2.09 \pm 0.23 \pm 0.11$ nb and $\sigma_W B(W \rightarrow e\nu) = 2.36 \pm 0.07 \pm 0.13$ nb in which the first error is the combined statistical and systematic uncertainty, the second reflects the uncertainty in the luminosity.

³⁹ABE 921 obtain $\sigma_W B(W \rightarrow \mu \nu) = 2.21 \pm 0.07 \pm 0.21$ and combine with ABE 91C $\sigma_W B((W \rightarrow e\nu))$ to give a ratio of the couplings from which we derive this measurement.

$\Gamma(au^+ u)/\Gamma(e^+ u)$					Γ_4/Γ_2
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
1.046 ± 0.023 OUR FIT	•				
$0.961\!\pm\!0.061$	980	⁴⁰ ABBOTT		D0	$E_{ m cm}^{p\overline{p}}$ = 1.8 TeV
$0.94\ \pm 0.14$	179	⁴¹ ABE			$E_{cm}^{p\overline{p}}$ = 1.8 TeV
$1.04 \ \pm 0.08 \ \pm 0.08$	754	⁴² ALITTI	92F		E ^{pp} _{cm} = 630 GeV
$1.02\ \pm 0.20\ \pm 0.12$	32	ALBAJAR	89	UA1	E ^{pp} _{cm} = 546,630 GeV
• • • We do not use the	ne follow	ing data for averag	es, fits	s, limits,	etc. • • •
$\begin{array}{r} 0.995 \!\pm\! 0.112 \!\pm\! 0.083 \\ 1.02 \ \pm\! 0.20 \ \pm\! 0.10 \end{array}$	198 32	ALITTI ALBAJAR	91C 87	UA2 UA1	Repl. by ALITTI 92F Repl. by ALBAJAR 89

⁴⁰ ABBOTT 00D measure $\sigma_W \times B(W \rightarrow \tau \nu_{\tau}) = 2.22 \pm 0.09 \pm 0.10 \pm 0.10$ nb. Using the ABBOTT 00B result $\sigma_W \times B(W \rightarrow e\nu_e) = 2.31 \pm 0.01 \pm 0.05 \pm 0.10$ nb, they quote the ratio of the couplings from which we derive this measurement.

⁴¹ ABE 92E use two procedures for selecting $W \rightarrow \tau \nu_{\tau}$ events. The missing E_T trigger leads to $132 \pm 14 \pm 8$ events and the τ trigger to $47 \pm 9 \pm 4$ events. Proper statistical and systematic correlations are taken into account to arrive at $\sigma B(W \rightarrow \tau \nu) = 2.05 \pm 0.27$ nb. Combined with ABE 91C result on $\sigma B(W \rightarrow e\nu)$, ABE 92E quote a ratio of the couplings from which we derive this measurement.

 42 This measurement is derived by us from the ratio of the couplings of ALITTI 92F.

$\Gamma(\pi^+\gamma)/\Gamma(e^+ u)$					Γ_6/Γ_2
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 7 \times 10^{-4}$	95	ABE	98H	CDF	$E^{p\overline{p}}_{Cm} = 1.8 \; TeV$
$<4.9\times10^{-3}$	95	⁴³ ALITTI	92 D	UA2	$E_{\rm cm}^{p\overline{p}}$ = 630 GeV
$< 58 \times 10^{-3}$	95	⁴⁴ ALBAJAR	90	UA1	E ^{pp} _{cm} = 546, 630 GeV
		•			

⁴³ ALITTI 92D limit is 3.8×10^{-3} at 90%CL.

 $^{44}\,\text{ALBAJAR}$ 90 obtain $<\,0.048$ at 90%CL.

$\Gamma(D^+_s\gamma)/\Gamma(e^+ u)$						Γ_7/Γ_2
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<1.2 × 10 ⁻²	95	ABE	98 P	CDF	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV	

Citation: K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov)

$\Gamma(cX)/\Gamma(hadrons)$					Γ ₈ /Γ ₅
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.49 \pm 0.04 OUR AVE	ERAGE				
$0.481\!\pm\!0.042\!\pm\!0.032$	3005	⁴⁵ ABBIENDI	00V	OPAL	$E_{\mathrm{cm}}^{ee} = 183 + 189 \; \mathrm{GeV}$
$0.51 \ \pm 0.05 \ \pm 0.03$	746	⁴⁶ BARATE	99M	ALEP	$E_{\rm cm}^{ee} = 172 + 183 { m ~GeV}$

⁴⁵ ABBIENDI 00V tag $W \rightarrow cX$ decays using measured jet properties, lifetime information, and leptons produced in charm decays. From this result, and using the additional measurements of $\Gamma(W)$ and $B(W \rightarrow hadrons)$, $|V_{CS}|$ is determined to be 0.969 \pm 0.045 \pm 0.036.

⁴⁶ BARATE 99M tag c jets using a neural network algorithm. From this measurement $|V_{cs}|$ is determined to be $1.00 \pm 0.11 \pm 0.07$.

$R_{cs} = \Gamma(c\overline{s})/\Gamma(hadrons)$				Γ9/Γ5
VALUE	DOCUMENT ID		TECN	COMMENT
$0.46^{+0.18}_{-0.14}\pm0.07$	⁴⁷ ABREU	98N	DLPH	<i>E</i> ^{ee} _{cm} = 161+172 GeV

⁴⁷ ABREU 98N tag c and s jets by identifying a charged kaon as the highest momentum particle in a hadronic jet. They also use a lifetime tag to independently identify a c jet, based on the impact parameter distribution of charged particles in a jet. From this measurement $|V_{cs}|$ is determined to be $0.94^{+0.32}_{-0.26} \pm 0.13$.

AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC W DECAY

Summed over particle and antiparticle, when appropriate.

$$\langle N_{\pi^{\pm}} \rangle$$
VALUE

VALUE	DOCUMENT ID		TECN	COMMENT
15.70±0.35	48 ABREU,P	00F	DLPH	$E_{\rm cm}^{ee}$ = 189 GeV

 $^{48}\,{\rm ABREU,P}$ 00F measure $\langle N_{\pi^{\pm}}\rangle = 31.65\pm0.48\pm0.76$ and 15.51 \pm 0.38 \pm 0.40 in the fully hadronic and semileptonic final states respectively. The value quoted is a weighted average without assuming any correlations.

$$\langle N_{K^{\pm}} \rangle$$

VALUE	DOCUMENT ID		TECN	COMMENT
2.20±0.19	49 ABREU,P	00F	DLPH	$E_{\rm cm}^{ee}$ = 189 GeV

 $^{49}\,{\rm ABREU,P}$ 00F measure $\langle N_{{\cal K}^\pm}\rangle = 4.38\pm0.42\pm0.12$ and 2.23 \pm 0.32 \pm 0.17 in the fully hadronic and semileptonic final states respectively. The value quoted is a weighted average without assuming any correlations.

$\langle N_p \rangle$

VALUE	DOCUMENT ID	TECN	COMMENT
0.92±0.14	⁵⁰ ABREU,P	00F DLPH	$E_{\rm cm}^{ee}$ = 189 GeV

 $^{50}\,{\rm ABREU,P}$ 00F measure $\langle N_p\rangle = 1.82\pm0.29\pm0.16$ and 0.94 \pm 0.23 \pm 0.06 in the fully hadronic and semileptonic final states respectively. The value quoted is a weighted average without assuming any correlations.

$\langle N_{\rm charged} \rangle$				
VALUE	DOCUMENT ID		TECN	COMMENT
19.39 \pm 0.08 OUR AVERAGE				
$19.38 \!\pm\! 0.05 \!\pm\! 0.08$	⁵¹ ABBIENDI	06A	OPAL	$E_{\rm cm}^{ee}$ = 189–209 GeV
19.44 ± 0.17	⁵² ABREU,P	00F	DLPH	$E_{\rm cm}^{ee}$ = 183+189 GeV
$19.3 \pm 0.3 \pm 0.3$	⁵³ ABBIENDI	99N	OPAL	$E_{\rm cm}^{ee}$ = 183 GeV
19.23 ± 0.74	⁵⁴ ABREU	98 C	DLPH	$E_{\rm cm}^{ee}$ = 172 GeV

 $^{51}\,\text{ABBIENDI}$ 06A measure $\langle N_{\text{charged}}\rangle=38.74\pm0.12\pm0.26$ when both W bosons decay hadronically and $\langle N_{\text{charged}}\rangle=19.39\pm0.11\pm0.09$ when one W boson decays semileptonically. The value quoted here is obtained under the assumption that there is no color reconnection between W bosons; the value is a weighted average taking into account correlations in the systematic uncertainties.

 $^{52}\, {\rm ABREU,P}$ 00F measure $\langle N_{\rm charged} \rangle = 39.12 \pm 0.33 \pm 0.36$ and $38.11 \pm 0.57 \pm 0.44$ in the fully hadronic final states at 189 and 183 GeV respectively, and $\langle N_{\rm charged} \rangle = 19.49 \pm 0.31 \pm 0.27$ and $19.78 \pm 0.49 \pm 0.43$ in the semileptonic final states. The value quoted is a weighted average without assuming any correlations.

⁵³ABBIENDI 99N use the final states $W^+W^- \rightarrow q \overline{q} \ell \overline{\nu}_{\ell}$ to derive this value.

 54 ABREU 98C combine results from both the fully hadronic as well semileptonic WW final states after demonstrating that the W decay charged multiplicity is independent of the topology within errors.

TRIPLE GAUGE COUPLINGS (TGC'S) A REVIEW GOES HERE – Check our WWW List of Reviews

g_1^Z

1 - -

OUR FIT below is obtained by combining the measurements taking into account properly the common systematic errors (see LEPEWWG/TGC/2005-01 at http://lepewwg.web.cern.ch/LEPEWWG/lepww/tgc).

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.984^{+0.022}_{-0.019}$ our Fit					
$1.07 \ {+0.08 \atop -0.12}$	1880	⁵⁵ ABDALLAH	08C	DLPH	E ^{ee} _{cm} = 189–209 GeV
$1.001\!\pm\!0.027\!\pm\!0.013$	9310	⁵⁶ SCHAEL	05A	ALEP	$E_{\rm cm}^{ee}$ = 183–209 GeV
$0.987 \substack{+ 0.034 \\ - 0.033}$	9800	⁵⁷ ABBIENDI	04 D	OPAL	<i>E</i> ^{ee} _{cm} = 183–209 GeV
$0.966^{+0.034}_{-0.032}{\pm}0.015$	8325	⁵⁸ ACHARD	04 D	L3	$E_{\rm cm}^{ee}$ = 161–209 GeV
• • • We do not use the	ne followi	ng data for average	s, fits,	limits, e	etc. • • •
1.04 ± 0.09		⁵⁹ ABAZOV	09AD		$E_{ m cm}^{p\overline{p}}=1.96~ m TeV$
		⁶⁰ ABAZOV			$E_{\rm cm}^{p\overline{p}} = 1.96 { m ~TeV}$
	13	⁶¹ ABAZOV	07z	D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
	2.3	⁶² ABAZOV	05 S	D0	${\cal E}_{\sf cm}^{{\it p}{\overline{ m p}}}=1.96~{ m TeV}$
$0.98\ \pm 0.07\ \pm 0.01$	2114	⁶³ ABREU	011	DLPH	$E_{\mathrm{CM}}^{ee} = 183 {+} 189 \mathrm{GeV}$
	331	⁶⁴ ABBOTT	991	D0	$E_{ m cm}^{p\overline{p}}$ = 1.8 TeV

- 55 ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^+e^- \rightarrow W^+W^- \rightarrow (qq)(\ell\nu)$, where $\ell = e$ or μ . Values of all other couplings are fixed to their standard model values.
- 56 SCHAEL 05A study single-photon, single-W, and WW-pair production from 183 to 209 GeV. The result quoted here is derived from the WW-pair production sample. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values.
- ⁵⁷ ABBIENDI 04D combine results from W^+W^- in all decay channels. Only *CP*-conserving couplings are considered and each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. The 95% confidence interval is $0.923 < g_1^{2} < 1.054$.
- 58 ACHARD 04D study WW-pair production, single-W production and single-photon production with missing energy from 189 to 209 GeV. The result quoted here is obtained from the WW-pair production sample including data from 161 to 183 GeV, ACCIA-RRI 99Q. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values.
- ⁵⁹ABAZOV 09AD study the $p\overline{p} \rightarrow \ell \nu$ 2jet process arising in WW and WZ production. They select 12,473 (14,392) events in the electron (muon) channel with an expected di-boson signal of 436 (527) events. The results on the anomalous couplings are derived from an analysis of the p_T spectrum of the 2-jet system and quoted at 68% C.L. and for a form factor of 2 TeV. This measurement is not used for obtaining the mean as it is for a specific form factor.
- 60 ABAZOV 09AJ study the $p \, \overline{p}
 ightarrow 2\ell 2
 u$ process arising in $W \, W$ production. They select 100 events with an expected WW signal of 65 events. An analysis of the p_T spectrum of the two charged leptons leads to 95% C.L. limits of 0.86 $< g_1^Z < 1.3$, for a form factor $\Lambda = 2$ TeV.
- 61 ABAZOV 07z set limits on anomalous TGCs using the measured cross section and $p_T(Z)$ distribution in WZ production with both the W and the Z decaying leptonically into electrons and muons. Setting other couplings to their standard model values, the 95% C.L. limits for a form factor scale $\Lambda = 1.5$ TeV are $-0.15 < \Delta g_1^Z < 0.35$, and for $\Lambda =$

2 TeV are $-0.14 < \Delta g_1^Z < 0.34$.

- 62 ABAZOV 05S study $\overline{p} p \rightarrow WZ$ production with a subsequent trilepton decay to $\ell \nu \ell' \overline{\ell'}$ (ℓ and $\ell' = e$ or μ). Three events (estimated background 0.71 \pm 0.08 events) with WZdecay characteristics are observed from which they derive limits on the anomalous WWZcouplings. The 95% CL limit for a form factor scale Λ = 1.5 TeV is 0.51 $< g_1^Z <$ 1.66, fixing $\lambda_{\textit{7}}$ and $\kappa_{\textit{7}}$ to their Standard Model values.
- ⁶³ ABREU 011 combine results from e^+e^- interactions at 189 GeV leading to W^+W^- and Wev_e final states with results from ABREU 99L at 183 GeV. The 95% confidence interval is $0.84 < g_1^Z < 1.13$.
- ⁶⁴ABBOTT 991 perform a simultaneous fit to the $W\gamma$, $WW \rightarrow dilepton$, $WW/WZ \rightarrow$ e
 u j j, $W W/W Z \rightarrow \mu \nu j j$, and $W Z \rightarrow \,$ trilepton data samples. For $\Lambda = 2.0$ TeV, the 95%CL limits are 0.63 $< g_1^Z < 1.57$, fixing λ_Z and κ_Z to their Standard Model values, and assuming Standard Model values for the $WW\gamma$ couplings.

κ_{γ}

OUR FIT below is obtained by combining the measurements taking into account properly the common systematic errors (see LEPEWWG/TGC/2005-01 at http://lepewwg.web.cern.ch/LEPEWWG/lepww/tgc).

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.973^{+0.044}_{-0.045}$ OUR FIT	-				
$0.68 \begin{array}{c} +0.17 \\ -0.15 \end{array}$	1880	⁶⁵ ABDALLAH	08 C	DLPH	<i>E^{ee}</i> _{cm} = 189–209 GeV
$0.971\!\pm\!0.055\!\pm\!0.030$	10689	⁶⁶ SCHAEL	05A	ALEP	<i>E^{ee}</i> _{cm} = 183–209 GeV
$0.88 \begin{array}{c} +0.09 \\ -0.08 \end{array}$	9800	⁶⁷ ABBIENDI	04 D	OPAL	$E_{\rm cm}^{ee}$ = 183–209 GeV
$1.013^{+0.067}_{-0.064}{\pm}0.026$	10575	⁶⁸ ACHARD	0 4D	L3	<i>E^{ee}</i> _{cm} = 161–209 GeV
• • • We do not use t	he followir	ng data for averages	s, fits,	limits, e	etc. • • •
	53	⁶⁹ AARON	09 B	H1	$E^{ep}_{ m cm}=$ 0.3 TeV
$1.07 \begin{array}{c} +0.26 \\ -0.29 \end{array}$		⁷⁰ ABAZOV	09AD) D0	$E_{ m cm}^{p\overline{p}}=$ 1.96 TeV
		⁷¹ ABAZOV	09 AJ	D0	${\cal E}_{\sf Cm}^{{\it p}{\overline{ m p}}}=1.96{ m TeV}$
		⁷² ABAZOV	08 R	D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
	1617	⁷³ AALTONEN	07L	CDF	$E_{ m cm}^{p\overline{p}}=1.96~{ m GeV}$
	17	⁷⁴ ABAZOV	06H	D0	$E^{p\overline{p}}_{cm}=1.96\;TeV$
	141	⁷⁵ ABAZOV	05J	D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
$1.25 \ {+0.21 \atop -0.20} \ \pm 0.06$	2298	⁷⁶ ABREU	011	DLPH	$E_{\rm cm}^{ee}$ = 183+189 GeV
		77 BREITWEG	00	ZEUS	$e^+p o e^+W^\pm X$, $\underline{\sqrt{s}} pprox 300 \ { m GeV}$
0.92 ± 0.34	331	⁷⁸ АВВОТТ	991	D0	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV

⁶⁵ ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^+e^- \rightarrow W^+W^- \rightarrow (q q)(\ell \nu)$, where $\ell = e$ or μ . Values of all other couplings are fixed to their standard model values.

⁶⁶SCHAEL 05A study single-photon, single-W, and WW-pair production from 183 to 209 GeV. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values.

⁶⁷ ABBIENDI 04D combine results from W^+W^- in all decay channels. Only *CP*-conserving couplings are considered and each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. The 95% confidence interval is $0.73 < \kappa_{\gamma} < 1.07$.

⁶⁸ ACHARD 04D study WW-pair production, single-W production and single-photon production with missing energy from 189 to 209 GeV. The result quoted here is obtained including data from 161 to 183 GeV, ACCIARRI 99Q. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values.

⁶⁹ AARON 09B study single-W production in ep collisions at 0.3 TeV C.M. energy. They select 53 $W \rightarrow e/\mu$ events with a standard model expectation of 54.1 \pm 7.4 events. Fitting the transverse momentum spectrum of the hadronic recoil system they obtain a 95% C.L. limit of $-3.7 < \kappa_{\gamma} < -1.5$ or $0.3 < \kappa_{\gamma} < 1.5$, where the ambiguity is due to the quadratic dependence of the cross section to the coupling parameter.

⁷⁰ ABAZOV 09AD study the $p\overline{p} \rightarrow \ell \nu$ 2jet process arising in WW and WZ production. They select 12,473 (14,392) events in the electron (muon) channel with an expected di-boson signal of 436 (527) events. The results on the anomalous couplings are derived from an analysis of the p_T spectrum of the 2-jet system and quoted at 68% C.L. and for a form factor of 2 TeV. This measurement is not used for obtaining the mean as it is for a specific form factor.

HTTP://PDG.LBL.GOV

Page 12

- ⁷³ AALTONEN 07L set limits on anomalous TGCs using the $p_T(W)$ distribution in WW and WZ production with the W decaying to an electron or muon and the Z to 2 jets. Setting other couplings to their standard model value, the 95% C.L. limits are 0.54 $< \kappa_{\gamma} < 1.39$ for a form factor scale $\Lambda = 1.5$ TeV.
- ⁷⁴ ABAZOV 06H study $\overline{\rho}p \rightarrow WW$ production with a subsequent decay $WW \rightarrow e^+ \nu_e e^- \overline{\nu}_e$, $WW \rightarrow e^\pm \nu_e \mu^\mp \nu_\mu$ or $WW \rightarrow \mu^+ \nu_\mu \mu^- \overline{\nu}_\mu$. The 95% C.L. limit for a form factor scale $\Lambda = 1$ TeV is $-0.05 < \kappa_\gamma < 2.29$, fixing $\lambda_\gamma = 0$. With the assumption that the $WW\gamma$ and WWZ couplings are equal the 95% C.L. one-dimensional limit ($\Lambda = 2$ TeV) is $0.68 < \kappa < 1.45$.
- ⁷⁵ ABAZOV 05J perform a likelihood fit to the photon E_T spectrum of $W\gamma + X$ events, where the W decays to an electron or muon which is required to be well separated from the photon. For $\Lambda = 2.0$ TeV the 95% CL limits are 0.12 $< \kappa_{\gamma} < 1.96$. In the fit λ_{γ} is kept fixed to its Standard Model value.
- 76 ABREU 011 combine results from $e^+\,e^-$ interactions at 189 GeV leading to $W^+\,W^-$, $W\,e\,\nu_e$, and $\nu\,\overline{\nu}\,\gamma$ final states with results from ABREU 99L at 183 GeV. The 95% confidence interval is $0.87 < \kappa_\gamma < 1.68$.
- ⁷⁷ BREITWEG 00 search for W production in events with large hadronic p_T . For $p_T > 20$ GeV, the upper limit on the cross section gives the 95%CL limit $-3.7 < \kappa_{\gamma} < 2.5$ (for $\lambda_{\gamma} = 0$).
- ⁷⁸ ABBOTT 991 perform a simultaneous fit to the $W\gamma$, $WW \rightarrow \text{dilepton}$, $WW/WZ \rightarrow e\nu jj$, $WW/WZ \rightarrow \mu\nu jj$, and $WZ \rightarrow \text{trilepton}$ data samples. For $\Lambda = 2.0$ TeV, the 95%CL limits are $0.75 < \kappa_{\gamma} < 1.39$.

λ_{γ}

OUR FIT below is obtained by combining the measurements taking into account properly the common systematic errors (see LEPEWWG/TGC/2005-01 at http://lepewwg.web.cern.ch/LEPEWWG/lepww/tgc).

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
$-0.028^{+0.020}_{-0.021}$ our F	Т					
$0.16 \begin{array}{c} +0.12 \\ -0.13 \end{array}$	1880	⁷⁹ ABDALLAH	08 C	DLPH	$E_{\rm cm}^{ee}$ = 189–209 GeV	
$-0.012\!\pm\!0.027\!\pm\!0.011$	10689	⁸⁰ SCHAEL	05A	ALEP	$E_{\rm cm}^{ee}$ = 183–209 GeV	
$-0.060 \substack{+0.034 \\ -0.033}$	9800	⁸¹ ABBIENDI	04 D	OPAL	$E_{\rm cm}^{ee}$ = 183–209 GeV	
$-0.021\substack{+0.035\\-0.034}\pm0.017$	10575	⁸² ACHARD	04 D	L3	<i>E^{ee}</i> _{cm} = 161–209 GeV	
$\bullet \bullet \bullet$ We do not use the	e followir	ng data for averages	s, fits,	limits, e	etc. • • •	
	53	⁸³ AARON	09 B	H1	$E^{ep}_{ m cm}=$ 0.3 TeV	
$0.00 \ \pm 0.06$		⁸⁴ ABAZOV	09AE	D0	$E^{p\overline{p}}_{ m cm}=1.96{ m TeV}$	I
		⁸⁵ ABAZOV	09 AJ	D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$	I

⁷⁹ ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^+e^- \rightarrow W^+W^- \rightarrow (qq)(\ell\nu)$, where $\ell = e$ or μ . Values of all other couplings are fixed to their standard model values.

- ⁸⁰ SCHAEL 05A study single-photon, single-*W*, and *WW*-pair production from 183 to 209 GeV. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values.
- ⁸¹ ABBIENDI 04D combine results from $W^+ W^-$ in all decay channels. Only *CP*-conserving couplings are considered and each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. The 95% confidence interval is $-0.13 < \lambda_{\gamma} < 0.01$.
- ⁸² ACHARD 04D study WW-pair production, single-W production and single-photon production with missing energy from 189 to 209 GeV. The result quoted here is obtained including data from 161 to 183 GeV, ACCIARRI 99Q. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values.
- ⁸³ AARON 09B study single-W production in ep collisions at 0.3 TeV C.M. energy. They select 53 $W \rightarrow e/\mu$ events with a standard model expectation of 54.1 \pm 7.4 events. Fitting the transverse momentum spectrum of the hadronic recoil system they obtain a 95% C.L. limit of $-2.5 < \lambda_{\gamma} < 2.5$.
- ⁸⁴ ABAZOV 09AD study the $p\overline{p} \rightarrow \ell \nu 2$ jet process arising in WW and WZ production. They select 12,473 (14,392) events in the electron (muon) channel with an expected di-boson signal of 436 (527) events. The results on the anomalous couplings are derived from an analysis of the p_T spectrum of the 2-jet system and quoted at 68% C.L. and for a form factor of 2 TeV. This measurement is not used for obtaining the mean as it is for a specific form factor.
- ⁸⁵ ABAZOV 09AJ study the $p\overline{p} \rightarrow 2\ell 2\nu$ process arising in WW production. They select 100 events with an expected WW signal of 65 events. An analysis of the p_T spectrum of the two charged leptons leads to 95% C.L. limits of $-0.14 < \lambda_{\gamma} < 0.18$, for a form factor $\Lambda = 2$ TeV.
- ⁸⁶ ABAZOV 08R use 0.7 fb⁻¹ $p\overline{p}$ data at 1.96 TeV to select 263 $W\gamma + X$ events, of which 187 constitute signal, with the W decaying into an electron or a muon, which is required to be well separated from a photon with $E_T > 9$ GeV. A likelihood fit to the photon E_T spectrum yields a 95% CL limit $-0.12 < \lambda_{\gamma} < 0.13$ with other couplings fixed to their Standard Model values.
- ⁸⁷ AALTONEN 07L set limits on anomalous TGCs using the $p_T(W)$ distribution in WW and WZ production with the W decaying to an electron or muon and the Z to 2 jets. Setting other couplings to their standard model value, the 95% C.L. limits are $-0.18 < \lambda_{\gamma} < 0.17$ for a form factor scale $\Lambda = 1.5$ TeV.
- ⁸⁸ ABAZOV 06H study $\overline{\rho}p \rightarrow WW$ production with a subsequent decay $WW \rightarrow e^+\nu_e e^-\overline{\nu}_e$, $WW \rightarrow e^\pm\nu_e \mu^\mp\nu_\mu$ or $WW \rightarrow \mu^+\nu_\mu\mu^-\overline{\nu}_\mu$. The 95% C.L. limit for a form factor scale $\Lambda = 1$ TeV is $-0.97 < \lambda_\gamma < 1.04$, fixing $\kappa_\gamma = 1$. With the assumption that the $WW\gamma$ and WWZ couplings are equal the 95% C.L. one-dimensional limit ($\Lambda = 2$ TeV) is $-0.29 < \lambda < 0.30$.

- ⁸⁹ABAZOV 05J perform a likelihood fit to the photon E_T spectrum of $W\gamma + X$ events, where the W decays to an electron or muon which is required to be well separated from the photon. For $\Lambda = 2.0$ TeV the 95% CL limits are $-0.20 < \lambda_{\gamma} < 0.20$. In the fit κ_{γ} is kept fixed to its Standard Model value.
- ⁹⁰ ABREU 011 combine results from e^+e^- interactions at 189 GeV leading to W^+W^- , $We\nu_e$, and $\nu\overline{\nu}\gamma$ final states with results from ABREU 99L at 183 GeV. The 95% confidence interval is $-0.11 < \lambda_{\gamma} < 0.23$.
- ⁹¹ BREITWEG 00 search for W production in events with large hadronic p_T . For $p_T > 20$ GeV, the upper limit on the cross section gives the 95%CL limit $-3.2 < \lambda_{\gamma} < 3.2$ for κ_{γ} fixed to its Standard Model value.
- ⁹² ABBOTT 991 perform a simultaneous fit to the $W\gamma$, $WW \rightarrow \text{dilepton}$, $WW/WZ \rightarrow e\nu jj$, $WW/WZ \rightarrow \mu\nu jj$, and $WZ \rightarrow \text{trilepton}$ data samples. For $\Lambda = 2.0$ TeV, the 95%CL limits are $-0.18 < \lambda_{\gamma} < 0.19$.

κ_Z

This coupling is CP -conserving (C - and P - separately conserving).						
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.924^{+0.059}_{-0.056} \pm 0.024$	7171	⁹³ ACHARD	04 D	L3	$E_{\rm cm}^{ee} = 189-209 \; { m GeV}$	

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

17	⁹⁴ ABAZOV	06H D0	$E_{ m cm}^{p\overline{p}} = 1.96 \; { m TeV}$
2.3	⁹⁵ ABAZOV	05s D0	$E^{p\overline{p}}_{ m cm}=1.96~{ m TeV}$

- ⁹³ ACHARD 04D study WW-pair production, single-W production and single-photon production with missing energy from 189 to 209 GeV. The result quoted here is obtained using the WW-pair production sample. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values.
- 94 ABAZOV 06H study $\overline{p}p \rightarrow WW$ production with a subsequent decay $WW \rightarrow e^+\nu_e e^-\overline{\nu}_e$, $WW \rightarrow e^\pm\nu_e \mu^\mp\nu_\mu$ or $WW \rightarrow \mu^+\nu_\mu\mu^-\overline{\nu}_\mu$. The 95% C.L. limit for a form factor scale $\Lambda = 2$ TeV is 0.55 $< \kappa_Z < 1.55$, fixing $\lambda_Z=0$. With the assumption that the $WW\gamma$ and WWZ couplings are equal the 95% C.L. one-dimensional limit ($\Lambda = 2$ TeV) is 0.68 $< \kappa < 1.45$.
- ⁹⁵ ABAZOV 05S study $\overline{\rho} p \rightarrow WZ$ production with a subsequent trilepton decay to $\ell \nu \ell' \overline{\ell'}$ (ℓ and $\ell' = e$ or μ). Three events (estimated background 0.71 \pm 0.08 events) with WZ decay characteristics are observed from which they derive limits on the anomalous WWZ couplings. The 95% CL limit for a form factor scale $\Lambda = 1$ TeV is $-1.0 < \kappa_Z < 3.4$, fixing λ_Z and g_1^2 to their Standard Model values.

λ_Z

This coupling is *CP*-conserving (*C*- and *P*- separately conserving).

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
$-0.088^{+0.060}_{-0.057}\pm0.023$	7171	⁹⁶ ACHARD	04 D	L3	$E_{\rm cm}^{ee} = 189$ –209 GeV	
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
	13	⁹⁷ ABAZOV	07z	D0	$E^{p\overline{p}}_{ m cm}=1.96~{ m TeV}$	
	17	⁹⁸ ABAZOV	06н	D0	$E^{p\overline{p}}_{Cm}=1.96\;TeV$	
	2.3	⁹⁹ ABAZOV	05 S	D0	$E^{p\overline{p}}_{ m cm}=1.96~{ m TeV}$	

- ⁹⁶ ACHARD 04D study WW-pair production, single-W production and single-photon production with missing energy from 189 to 209 GeV. The result quoted here is obtained using the WW-pair production sample. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values.
- ⁹⁷ ABAZOV 07Z set limits on anomalous TGCs using the measured cross section and $p_T(Z)$ distribution in WZ production with both the W and the Z decaying leptonically into electrons and muons. Setting other couplings to their standard model values, the 95% C.L. limits for a form factor scale $\Lambda = 1.5$ TeV are $-0.18 < \lambda_Z < 0.22$, and for $\Lambda = 2$ TeV are $-0.17 < \lambda_Z < 0.21$.
- ⁹⁸ABAZOV 06H study $\overline{\rho}p \rightarrow WW$ production with a subsequent decay $WW \rightarrow e^+ \nu_e e^- \overline{\nu}_e$, $WW \rightarrow e^\pm \nu_e \mu^\mp \nu_\mu$ or $WW \rightarrow \mu^+ \nu_\mu \mu^- \overline{\nu}_\mu$. The 95% C.L. limit for a form factor scale $\Lambda = 2$ TeV is $-0.39 < \lambda_Z < 0.39$, fixing $\kappa_Z = 1$. With the assumption that the $WW\gamma$ and WWZ couplings are equal the 95% C.L. one-dimensional limit ($\Lambda = 2$ TeV) is $-0.29 < \lambda < 0.30$.
- ⁹⁹ ABAZOV 05S study $\overline{\rho} \rho \rightarrow WZ$ production with a subsequent trilepton decay to $\ell \nu \ell' \overline{\ell}'$ (ℓ and $\ell' = e$ or μ). Three events (estimated background 0.71 ± 0.08 events) with WZ decay characteristics are observed from which they derive limits on the anomalous WWZ couplings. The 95% CL limit for a form factor scale $\Lambda = 1.5$ TeV is $-0.48 < \lambda_Z < 0.48$, fixing g_1^Z and κ_Z to their Standard Model values.

g5

eZ.

This coupling is *CP*-conserving but *C*- and *P*-violating.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.93±0.09 OUR AV	ERAGE	Error includes scal	e fact	or of 1.1	
$0.96^{\mathrm{+0.13}}_{\mathrm{-0.12}}$	9800	¹⁰⁰ ABBIENDI	0 4D	OPAL	$E_{\rm cm}^{ee} = 183-209 {\rm GeV}$
$1.00\!\pm\!0.13\!\pm\!0.05$	7171	¹⁰¹ ACHARD	04 D	L3	$E_{\rm cm}^{ee}$ = 189–209 GeV
$0.56^{+0.23}_{-0.22}{\pm}0.12$	1154	¹⁰² ACCIARRI	99 Q	L3	$E_{\rm cm}^{ee} = 161 + 172 + 183 {\rm ~GeV}$
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
0.84±0.23		¹⁰³ EBOLI	00	THEO	LEP1, SLC+ Tevatron

0.84±0.23 103 EBOLI

¹⁰⁰ ABBIENDI 04D combine results from $W^+ W^-$ in all decay channels. Only *CP*-conserving couplings are considered and each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. The 95% confidence interval is $0.72 < g_5^Z < 1.21$.

101 ACHARD 04D study WW-pair production, single-W production and single-photon production with missing energy from 189 to 209 GeV. The result quoted here is obtained using the WW-pair production sample. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values.

102 ACCIARRI 99Q study W-pair, single-W, and single photon events.

¹⁰³ EBOLI 00 extract this indirect value of the coupling studying the non-universal one-loop contributions to the experimental value of the $Z \rightarrow b\overline{b}$ width (Λ =1 TeV is assumed).

This coupling is CP-violating (C-violating and P-conserving).							
VALUE		EVTS	DOCUMENT ID		TECN	COMMENT	_
-0.30±0.17 OUR AVERAGE							_
-0.39^{+0}_{-0}	.19 .20	1880	¹⁰⁴ ABDALLAH	08 C	DLPH	$E_{\rm cm}^{ee}$ = 189–209 GeV	
-0.02^{+0}_{-0}	.32 .33	1065	¹⁰⁵ ABBIENDI	01H	OPAL	$E_{\rm cm}^{ee}$ = 189 GeV	

- ¹⁰⁴ ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^+e^- \rightarrow W^+W^- \rightarrow (q q)(\ell \nu)$, where $\ell = e$ or μ . Values of all other couplings are fixed to their standard model values.
- ¹⁰⁵ ABBIENDI 01H study *W*-pair events, with one leptonically and one hadronically decaying *W*. The coupling is extracted using information from the *W* production angle together with decay angles from the leptonically decaying *W*.

ĩκz

This coupling is <i>CP</i> -violating (<i>C</i> -conserving and <i>P</i> -violating).							
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT		
$-0.12^{+0.06}_{-0.04}$ OUR /	WERAGE						
$-0.09 \substack{+ \ 0.08 \\ - \ 0.05}$	1880	¹⁰⁶ ABDALLAH	08 C	DLPH	$E_{\rm cm}^{ee}$ = 189–209 GeV		
$-0.20\substack{+0.10\\-0.07}$	1065	¹⁰⁷ ABBIENDI	01н	OPAL	$E_{\rm cm}^{ee}$ = 189 GeV		

¹⁰⁶ ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^+e^- \rightarrow W^+W^- \rightarrow (q q)(\ell \nu)$, where $\ell = e$ or μ . Values of all other couplings are fixed to their standard model values.

¹⁰⁷ ABBIENDI 01H study *W*-pair events, with one leptonically and one hadronically decaying *W*. The coupling is extracted using information from the *W* production angle together with decay angles from the leptonically decaying *W*.

 $\tilde{\lambda}_{Z}$

This coupling	is	CP-violating	(c	-conserving	and	P-violating)
This coupling	13		ιv		anu	I = violating I.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.09 ± 0.07 OUR A	VERAGE				
-0.08 ± 0.07	1880	¹⁰⁸ ABDALLAH	08 C	DLPH	$E_{\rm cm}^{ee}$ = 189–209 GeV
$-0.18 \substack{+0.24 \\ -0.16}$	1065	¹⁰⁹ ABBIENDI	01н	OPAL	$E_{\rm cm}^{ee}=$ 189 GeV

¹⁰⁸ ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^+e^- \rightarrow W^+W^- \rightarrow (q q)(\ell \nu)$, where $\ell = e$ or μ . Values of all other couplings are fixed to their standard model values.

¹⁰⁹ ABBIENDI 01H study *W*-pair events, with one leptonically and one hadronically decaying W. The coupling is extracted using information from the *W* production angle together with decay angles from the leptonically decaying *W*.

W ANOMALOUS MAGNETIC MOMENT

The full magnetic moment is given by $\mu_W = e(1+\kappa+\lambda)/2m_W$. In the Standard Model, at tree level, $\kappa = 1$ and $\lambda = 0$. Some papers have defined $\Delta \kappa = 1-\kappa$ and assume that $\lambda = 0$. Note that the electric quadrupole moment is given by $-e(\kappa-\lambda)/m_W^2$. A description of the parameterization of these moments and additional references can be found in HAGIWARA 87 and BAUR 88. The parameter Λ appearing in the theoretical limits below is a regularization cutoff which roughly corresponds to the energy scale where the structure of the W boson becomes manifest.

VALUE $(e/2m_W)$	EVTS	DOCUMENT ID		TECN	COMMENT
2.22 ^{+0.20} -0.19	2298	110 ABREU	011	DLPH	<i>E</i> ^{ee} _{cm} = 183+189 GeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

111 ABE 112 ALITTI 113 SAMUEL 114 SAMUEL 115 GRIFOLS 116 GROTCH 117 VANDERBIJ 118 GRAU 119 SUZUKI	95G 92C 91 88 87 87 85 85	CDF UA2 THEO THEO THEO THEO THEO THEO THEO
¹¹⁹ SUZUKI ¹²⁰ HERZOG		
HERZOG	84	THEO

- ¹¹⁰ ABREU 011 combine results from e^+e^- interactions at 189 GeV leading to W^+W^- , $We\nu_e$, and $\nu\overline{\nu}\gamma$ final states with results from ABREU 99L at 183 GeV to determine Δg_1^Z , $\Delta\kappa_\gamma$, and λ_γ . $\Delta\kappa_\gamma$ and λ_γ are simultaneously floated in the fit to determine μ_W .
- 111 ABE 95G report $-1.3 < \kappa < 3.2$ for $\lambda=0$ and $-0.7 < \lambda < 0.7$ for $\kappa=1$ in $p\overline{p} \rightarrow e\nu_e\gamma X$ and $\mu\nu_\mu\gamma X$ at $\sqrt{s} = 1.8$ TeV.
- ¹¹² ALITTI 92C measure $\kappa = 1^{+2.6}_{-2.2}$ and $\lambda = 0^{+1.7}_{-1.8}$ in $p\overline{p} \rightarrow e\nu\gamma + X$ at $\sqrt{s} = 630$ GeV. At 95%CL they report $-3.5 < \kappa < 5.9$ and $-3.6 < \lambda < 3.5$.
- $^{113}\,\text{SAMUEL}$ 92 use preliminary CDF and UA2 data and find $-2.4 < \kappa < 3.7$ at 96%CL and $-3.1 < \kappa < 4.2$ at 95%CL respectively. They use data for $W\,\gamma$ production and radiative W decay.
- ¹¹⁴SAMUEL 91 use preliminary CDF data for $p\overline{p} \rightarrow W\gamma X$ to obtain -11.3 $\leq \Delta \kappa \leq$ 10.9. Note that their $\kappa = 1 \Delta \kappa$.
- ¹¹⁵ GRIFOLS 88 uses deviation from ρ parameter to set limit $\Delta \kappa \lesssim 65 \ (M_W^2/\Lambda^2)$.
- ¹¹⁶ GROTCH 87 finds the limit $-37 < \Delta \kappa < 73.5$ (90% CL) from the experimental limits on $e^+e^- \rightarrow \nu \overline{\nu} \gamma$ assuming three neutrino generations and $-19.5 < \Delta \kappa < 56$ for four generations. Note their $\Delta \kappa$ has the opposite sign as our definition.
- ¹¹⁷ VANDERBIJ 87 uses existing limits to the photon structure to obtain $|\Delta \kappa| < 33$ (m_W/Λ) . In addition VANDERBIJ 87 discusses problems with using the ρ parameter of the Standard Model to determine $\Delta \kappa$.
- ¹¹⁸ GRAU 85 uses the muon anomaly to derive a coupled limit on the anomalous magnetic dipole and electric quadrupole (λ) moments 1.05 > $\Delta \kappa \ln(\Lambda/m_W) + \lambda/2 > -2.77$. In the Standard Model $\lambda = 0$.
- ¹¹⁹ SUZUKI 85 uses partial-wave unitarity at high energies to obtain $|\Delta \kappa| \lesssim 190 \ (m_W/\Lambda)^2$. From the anomalous magnetic moment of the muon, SUZUKI 85 obtains $|\Delta \kappa| \lesssim 2.2/\ln(\Lambda/m_W)$. Finally SUZUKI 85 uses deviations from the ρ parameter and obtains a very qualitative, order-of-magnitude limit $|\Delta \kappa| \lesssim 150 \ (m_W/\Lambda)^4$ if $|\Delta \kappa| \ll 1$.
- 120 HERZOG 84 consider the contribution of *W*-boson to muon magnetic moment including anomalous coupling of *WW* γ . Obtain a limit $-1 < \Delta \kappa < 3$ for $\Lambda \gtrsim 1$ TeV.

ANOMALOUS W/Z QUARTIC COUPLINGS

A REVIEW GOES HERE - Check our WWW List of Reviews

a_0/Λ^2 , a_c/Λ^2 , a_n/Λ^2

Using the $WW\gamma$ final state, the LEP combined 95% CL limits on the anomalous contributions to the $WW\gamma\gamma$ and $WWZ\gamma$ vertices (as of summer 2003) are given below:

(See P. Wells, "Experimental Tests of the Standard Model," Int. Europhysics Conference on High-Energy Physics, Aachen, Germany, 17–23 July 2003)

$$\begin{array}{rll} -0.02 &< a_0^W/\Lambda^2 &< 0.02 \ {\rm GeV}^{-2}, \\ -0.05 &< a_c^W/\Lambda^2 &< 0.03 \ {\rm GeV}^{-2}, \\ -0.15 &< a_n/\Lambda^2 &< 0.15 \ {\rm GeV}^{-2}. \end{array}$$

VALUE

DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹²¹ ABBIENDI	04 B	OPAL
¹²² ABBIENDI	04L	OPAL
¹²³ HEISTER	04A	ALEP
¹²⁴ ABDALLAH	031	DLPH
¹²⁵ ACHARD	02F	L3

- ¹²¹ ABBIENDI 04B select 187 $e^+e^- \rightarrow W^+W^-\gamma$ events in the C.M. energy range 180–209 GeV, where $E_{\gamma} > 2.5$ GeV, the photon has a polar angle $|\cos\theta_{\gamma}| < 0.975$ and is well isolated from the nearest jet and charged lepton, and the effective masses of both fermion-antifermion systems agree with the W mass within 3 Γ_W . The measured differential cross section as a function of the photon energy and photon polar angle is used to extract the 95% CL limits: $-0.020 \text{ GeV}^{-2} < a_0/\Lambda^2 < 0.020 \text{ GeV}^{-2}$, $-0.053 \text{ GeV}^{-2} < a_c/\Lambda^2 < 0.037 \text{ GeV}^{-2}$ and $-0.16 \text{ GeV}^{-2} < a_n/\Lambda^2 < 0.15 \text{ GeV}^{-2}$.
- ¹²² ABBIENDI 04L select 20 $e^+e^- \rightarrow \nu \overline{\nu} \gamma \gamma$ acoplanar events in the energy range 180–209 GeV and 176 $e^+e^- \rightarrow q \overline{q} \gamma \gamma$ events in the energy range 130–209 GeV. These samples are used to constrain possible anomalous $W^+W^-\gamma\gamma$ and $ZZ\gamma\gamma$ quartic couplings. Further combining with the $W^+W^-\gamma$ sample of ABBIENDI 04B the following one-parameter 95% CL limits are obtained: $-0.007 < a_0^Z/\Lambda^2 < 0.023 \text{ GeV}^{-2}$, $-0.029 < a_0^Z/\Lambda^2 < 0.020 \text{ GeV}^{-2}$, $-0.052 < a_c^W/\Lambda^2 < 0.037 \text{ GeV}^{-2}$.
- ¹²³ In the CM energy range 183 to 209 GeV HEISTER 04A select 30 $e^+e^- \rightarrow \nu \overline{\nu} \gamma \gamma$ events with two acoplanar, high energy and high transverse momentum photons. The photon–photon acoplanarity is required to be > 5°, $E_{\gamma}/\sqrt{s} > 0.025$ (the more energetic photon having energy > 0.2 \sqrt{s}), $p_{T_{\gamma}}/E_{\text{beam}} > 0.05$ and $|\cos \theta_{\gamma}| < 0.94$. A likelihood fit to the photon energy and recoil missing mass yields the following one–parameter 95% CL limits: $-0.012 < a_0^Z/\Lambda^2 < 0.019 \text{ GeV}^{-2}$, $-0.041 < a_c^Z/\Lambda^2 < 0.044 \text{ GeV}^{-2}$, $-0.060 < a_0^W/\Lambda^2 < 0.055 \text{ GeV}^{-2}$, $-0.099 < a_c^W/\Lambda^2 < 0.093 \text{ GeV}^{-2}$.
- ¹²⁴ ABDALLAH 03I select 122 $e^+e^- \rightarrow W^+W^-\gamma$ events in the C.M. energy range 189–209 GeV, where $E_{\gamma} > 5$ GeV, the photon has a polar angle $|\cos\theta_{\gamma}| < 0.95$ and is well isolated from the nearest charged fermion. A fit to the photon energy spectra yields $a_c/\Lambda^2 = 0.000 + 0.019 0.040$ GeV⁻², $a_0/\Lambda^2 = -0.004 + 0.018 0.010$ GeV⁻², $\tilde{a}_0/\Lambda^2 = -0.007 + 0.019 0.008$ GeV⁻², $a_n/\Lambda^2 = -0.09 + 0.16 0.010$ GeV⁻², $\tilde{a}_0/\Lambda^2 = -0.007 + 0.019 0.008$ GeV⁻², $a_n/\Lambda^2 = -0.09 + 0.16 0.05$ GeV⁻², and $\tilde{a}_n/\Lambda^2 = +0.05 + 0.07 0.05$ GeV⁻², keeping the other parameters fixed to their Standard Model values (0). The 95% CL limits are: -0.063 GeV⁻² $< a_c/\Lambda^2 < +0.032$ GeV⁻², -0.020 GeV⁻², -0.18 GeV⁻² $< a_n/\Lambda^2 < +0.14$ GeV⁻², -0.16 GeV⁻² $< \tilde{a}_n/\Lambda^2 < +0.17$ GeV⁻². ¹²⁵ ACHARD 02F select 86 $e^+e^- \rightarrow W^+W^-\gamma$ events at 192–207 GeV, where $E_{\gamma} > 5$

GeV and the photon is well isolated. They also select 43 acoplanar $e^+e^- \rightarrow \nu \overline{\nu} \gamma \gamma$ events in this energy range, where the photon energies are >5 GeV and >1 GeV and the photon polar angles are between 14° and 166°. All these 43 events are in the recoil mass region corresponding to the Z (75–110 GeV). Using the shape and normalization of the photon spectra in the $W^+W^-\gamma$ events, and combining with the 42 event sample from

189 GeV data (ACCIARRI 00T), they obtain: $a_0/\Lambda^2 = 0.000 \pm 0.010 \text{ GeV}^{-2}$, $a_c/\Lambda^2 = -0.013 \pm 0.023 \text{ GeV}^{-2}$, and $a_n/\Lambda^2 = -0.002 \pm 0.076 \text{ GeV}^{-2}$. Further combining the analyses of $W^+ W^- \gamma$ events with the low recoil mass region of $\nu \overline{\nu} \gamma \gamma$ events (including samples collected at 183 + 189 GeV), they obtain the following one-parameter 95% CL limits: $-0.015 \text{ GeV}^{-2} < a_0/\Lambda^2 < 0.015 \text{ GeV}^{-2}$, $-0.048 \text{ GeV}^{-2} < a_c/\Lambda^2 < 0.026 \text{ GeV}^{-2}$, and $-0.14 \text{ GeV}^{-2} < a_n/\Lambda^2 < 0.13 \text{ GeV}^{-2}$.

W REFERENCES

AARON	09B	EPJ C64 251	F.D. Aaron <i>et al.</i>	(H1 Collab.)
ABAZOV	09AB	PRL 103 141801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09AD	PR D80 053012	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV		PRL 103 191801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV		PRL 103 231802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
AALTONEN	08B	PRL 100 071801	T. Aaltonen <i>et al.</i>	
				(CDF Collab.)
ABAZOV	08R	PRL 100 241805	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABDALLAH	08A	EPJ C55 1	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABDALLAH	08C	EPJ C54 345	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
AALTONEN	07F	PRL 99 151801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
Also		PR D77 112001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	07L	PR D76 111103R	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	07Z	PR D76 111104R	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABBIENDI	07A	EPJ C52 767	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABAZOV	06H	PR D74 057101	V.M. Abazov <i>et al.</i>	(D0 Collab.)
Also		PR D74 059904 (erratum		(D0 Collab.)
ABBIENDI	06	EPJ C45 307	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
	06A	EPJ C45 291	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI				
ACHARD	06	EPJ C45 569	P. Achard <i>et al.</i>	(L3 Collab.)
AKTAS	06	PL B632 35	A. Aktas <i>et al.</i>	(H1 Collab.)
SCHAEL	06	EPJ C47 309	S. Schael <i>et al.</i>	(ALEPH Collab.)
ABAZOV	05J	PR D71 091108R	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05S	PRL 95 141802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
SCHAEL	05A	PL B614 7	S. Schael <i>et al.</i>	(ALEPH Collab.)
ABAZOV	04D	PR D70 092008	V.M. Abazov <i>et al.</i>	(CDF, D0 Collab.)
ABBIENDI	04B	PL B580 17	G. Abbiendi <i>et al.</i>	OPAL Collab.)
ABBIENDI	04D	EPJ C33 463	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	04L	PR D70 032005	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	04G	EPJ C34 127	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACHARD	04D	PL B586 151	P. Achard <i>et al.</i>	(L3 Collab.)
ACHARD	04D 04J	PL B600 22	P. Achard <i>et al.</i>	(L3 Collab.)
			A. Heister <i>et al.</i>	(ALEPH Collab.)
HEISTER	04A	PL B602 31		
SCHAEL	04A	EPJ C38 147	S. Schael <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	03C	EPJ C26 321	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	031	EPJ C31 139	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABAZOV	02D	PR D66 012001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	02E	PR D66 032008	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ACHARD	02F	PL B527 29	P. Achard <i>et al.</i>	(L3 Collab.)
CHEKANOV	02C	PL B539 197	S. Chekanov <i>et al.</i>	(ZEUS Collab.)
ABBIENDI	01H	EPJ C19 229	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	011	PL B502 9	P. Abreu <i>et al.</i>	(DELPHI Collab.)
AFFOLDER	01E	PR D64 052001	T. Affolder <i>et al.</i>	CDF Collab.)
ABBIENDI	00V	PL B490 71	G. Abbiendi <i>et al.</i>	(ÒPAL Collab.)
ABBIENDI,G	00	PL B493 249	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBOTT	00B	PR D61 072001	B. Abbott <i>et al.</i>	(D0 Collab.)
ABBOTT	00D	PRL 84 5710	B. Abbott <i>et al.</i>	(D0 Collab.)
	00D	EPJ C18 203	P. Abreu <i>et al.</i>	
ABREU,P	UUF			(DELPHI Collab.)
Also	00 T	EPJ C25 493 (erratum)		(DELPHI Collab.)
ACCIARRI	00T	PL B490 187	M. Acciarri <i>et al.</i>	(L3 Collab.)
AFFOLDER	00M		T. Affolder <i>et al.</i>	(CDF Collab.)
BREITWEG	00	PL B471 411	J. Breitweg <i>et al.</i>	(ZEUS Collab.)
BREITWEG	00D	EPJ C12 411	J. Breitweg <i>et al.</i>	(ZEUS Collab.)
EBOLI	00	MPL A15 1	O. Eboli, M. Gonzalez-Garcia, S. N	ovaes
ABBIENDI	99N	PL B453 153	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBOTT	99H	PR D60 052003	B. Abbott <i>et al.</i>) (D0 Collab.)
ABBOTT	991	PR D60 072002	B. Abbott <i>et al.</i>	(D0 Collab.)
ABREU	99L	PL B459 382	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	99	PL B454 386	M. Acciarri <i>et al.</i>	(L3 Collab.)
				(

HTTP://PDG.LBL.GOV

Page 20

Created: 7/30/2010 16:47

ACCIARRI	99Q	PL B467 171	M. Acciarri <i>et al.</i>	(L3 Collab.)
BARATE	991	PL B453 107	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	99L	PL B462 389	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	99M	PL B465 349	R. Barate <i>et al.</i>	(ALEPH Collab.)
ABBOTT	98N	PR D58 092003	B. Abbott <i>et al.</i>	(D0 Collab.)
ABBOTT	98P	PR D58 012002	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	98H	PR D58 031101	F. Abe <i>et al.</i>	(
ABE				(CDF Collab.)
· ·= =	98P	PR D58 091101	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	98C	PL B416 233	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	98N	PL B439 209	P. Abreu <i>et al.</i>	(DELPHI Collab.)
BARATE	97	PL B401 347	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	97S	PL B415 435	R. Barate <i>et al.</i>	(ALEPH Collab.)
ABACHI	95D	PRL 75 1456	S. Abachi <i>et al.</i>	(D0 Collab.)
ABE	95C	PRL 74 341	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	95G	PRL 74 1936	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	95P	PRL 75 11	F. Abe <i>et al.</i>	(CDF Collab.)
Also		PR D52 4784	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	95W	PR D52 2624	F. Abe <i>et al.</i>	(CDF Collab.)
Also		PRL 73 220	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	92E	PRL 68 3398	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	921	PRL 69 28	F. Abe <i>et al.</i>	(CDF Collab.)
ALITTI	92	PL B276 365	J. Alitti <i>et al.</i>	(UA2 Collab.)
ALITTI	92B	PL B276 354	J. Alitti <i>et al.</i>	(UA2 Collab.)
ALITTI	92C	PL B277 194	J. Alitti <i>et al.</i>	(UA2 Collab.)
ALITTI	92C 92D	PL B277 203	J. Alitti <i>et al.</i>	(UA2 Collab.)
ALITTI	92D 92F	PL B280 137	J. Alitti <i>et al.</i>	(UA2 Collab.)
	92F 92	PL B280 137 PL B280 124	M.A. Samuel <i>et al.</i>	. , , ,
SAMUEL	-			(OKSU, CARL)
ABE	91C	PR D44 29	F. Abe <i>et al.</i>	(CDF Collab.)
ALBAJAR	91	PL B253 503	C. Albajar <i>et al.</i>	(UA1 Collab.)
ALITTI	91C	ZPHY C52 209	J. Alitti <i>et al.</i>	(UA2 Collab.)
SAMUEL	91	PRL 67 9	M.A. Samuel <i>et al.</i>	(OKSU, CARL)
Also		PRL 67 2920 (erratum)		
ABE	90G	PRL 65 2243	F. Abe <i>et al.</i>	(CDF Collab.)
Also		PR D43 2070	F. Abe <i>et al.</i>	(CDF Collab.)
ALBAJAR	90	PL B241 283	C. Albajar <i>et al.</i>	(UA1 Collab.)
ALITTI	90B	PL B241 150	J. Alitti <i>et al.</i>	(UA2 Collab.)
ABE	89I	PRL 62 1005	F. Abe <i>et al.</i>	(CDF Collab.)
ALBAJAR	89	ZPHY C44 15	C. Albajar <i>et al.</i>	(UA1 Collab.)
BAUR	88	NP B308 127	U. Baur, D. Zeppenfeld	(FSU, WISC)
GRIFOLS	88	IJMP A3 225	J.A. Grifols, S. Peris, J. Sola	(BÀRC, DESY)
Also		PL B197 437	J.A. Grifols, S. Peris, J. Sola	(BARC, DESY)
ALBAJAR	87	PL B185 233	C. Albajar <i>et al.</i>	(UA1 Collab.)
ANSARI	87	PL B186 440	R. Ansari <i>et al.</i>	(UA2 Collab.)
GROTCH	87	PR D36 2153	H. Grotch, R.W. Robinett	(PSU)
HAGIWARA	87	NP B282 253	K. Hagiwara <i>et al.</i>	(KEK, UCLA, FSU)
VANDERBIJ	87	PR D35 1088	J.J. van der Bij	(FNAL)
GRAU	85	PL 154B 283	A. Grau, J.A. Grifols	(BARC)
SUZUKI	85	PL 153B 289	M. Suzuki	(LBL)
ARNISON	84D	PL 133B 269 PL 134B 469	G.T.J. Arnison <i>et al.</i>	(UA1 Collab.)
HERZOG	84 84	PL 134B 409 PL 148B 355		
	04		F. Herzog	(WISC)
Also	02	PL 155B 468 (erratum)	0	(WISC)
ARNISON	83	PL 122B 103	G.T.J. Arnison <i>et al.</i>	(UA1 Collab.)
BANNER	83B	PL 122B 476	M. Banner <i>et al.</i>	(UA2 Collab.)

HTTP://PDG.LBL.GOV Page 21 Created: 7/30/2010 16:47