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THE η(1405), η(1475), f1(1420), AND f1(1510)

Revised February 2010 by C. Amsler (Zürich) and A. Masoni
(INFN Cagliari).

The first observation of the η(1440) was made in pp anni-

hilation at rest into η(1440)π+π−, η(1440) → KKπ [1]. This

state was reported to decay through a0(980)π and K∗(892)K

with roughly equal contributions. The η(1440) was also ob-

served in radiative J/ψ(1S) decay into KKπ [2–4] and γρ [5].

There is now evidence for the existence of two pseudoscalars in

this mass region, the η(1405) and η(1475). The former decays

mainly through a0(980)π (or direct KKπ) and the latter mainly

to K∗(892)K.

The simultaneous observation of two pseudoscalars is re-

ported in three production mechanisms: π−p [6,7]; radiative

J/ψ(1S) decay [8,9]; and pp annihilation at rest [11–14]. All

of them give values for the masses, widths, and decay modes in

reasonable agreement. However, Ref. [9] favors a state decay-

ing into K∗(892)K at a lower mass than the state decaying into

a0(980)π, although agreement with MARK-III is not excluded.

In J/ψ(1S) radiative decay, the η(1405) decays into KKπ

through a0(980)π, and hence a signal is also expected in the

ηππ mass spectrum. This was indeed observed by MARK III

in ηπ+π− [15], which reports a mass of 1400 MeV, in line

with the existence of the η(1405) decaying into a0(980)π. BES

[10] reports an enhancement in K+K−π0 around 1.44 GeV in

J/ψ(1S) decay, recoiling against an ω (but not a φ) without re-

solving the presence of two states nor performing a spin-parity

analysis, due to low statistics. This state could also be the

f1(1420) (see below).

The η(1405) is also observed in pp annihilation at rest into

ηπ+π−π0π0, where it decays into ηππ [16]. The intermedi-

ate a0(980)π accounts for roughly half of the ηππ signal, in

agreement with MARK III [15] and DM2 [4].

The η(1295) has been observed by four π−p experiments

[7,17–19], and evidence is reported in pp annihilation [23–25].

In J/ψ(1S) radiative decay, an η(1295) signal is evident in the

0−+ ηππ wave of the DM2 data [9]. Also BaBar [20] reports

evidence for a signal around 1295 MeV in B decays into ηππK.
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However, the existence of the η(1295) is questioned in Refs.

[21] and [22]. The authors claim a single pseudoscalar meson

in the 1400 MeV region. This conclusion is based on properties

of the wave functions in the 3P0 model (and on an unpublished

analysis of the annihilation p̄p → 4πη). The pseudoscalar signal

around 1400 MeV is then attributed to the first radial excitation

of the η.

Assuming establishment of the η(1295), the η(1475) could

be the first radial excitation of the η′, with the η(1295) being

the first radial excitation of the η. Ideal mixing, suggested

by the η(1295) and π(1300) mass degeneracy, would then

imply that the second isoscalar in the nonet is mainly ss, and

hence couples to K∗K, in agreement with properties of the

η(1475). Also, its width matches the expected width for the

radially excited ss state [26,27]. A study of radial excitations

of pseudoscalar mesons [28] favors the ss̄ interpretation of the

η(1475). However, due to the strong kinematical suppression

the data are not sufficient to exclude a sizeable ss̄ admixture

also in the η(1405).

The KKπ and ηππ channels were studied in γγ collisions

by L3 [29]. The analysis leads to a clear η(1475) signal in

KKπ, decaying into K∗K, very well identified in the untagged

data sample, where contamination from spin 1 resonances is not

allowed. At the same time, L3 [29] did not observe the η(1405),

neither in KKπ nor in ηππ. The observation of the η(1475),

combined with the absence of an η(1405) signal, strengthens

the two-resonances hypothesis. Since gluonium production is

presumably suppressed in γγ collisions, the L3 results [29]

suggest that η(1405) has a large gluonic content (see also Refs.

[30] and [31]) .

The L3 result is somewhat in disagreement with that of

CLEO-II, which did not observe any pseudoscalar signal in

γγ → η(1475) → K0
SK±π∓ [32]. However, more data are

required. Moreover, after the CLEO-II result, L3 performed a

further analysis with full statistics [33], confirming the evidence

of the η(1475) observed by L3. The CLEO upper limit [32] for

Γγγ(η(1475)), and the L3 results [33], are consistent with the

world average for the η(1475) width.
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BaBar [20] also reports the η(1475) in B decays into

KK̄π (and possibly ηππ). Upper limits are given for η(1405)

decay into KK̄∗. The data sample is not sufficient to identify a

possible η(1405) contribution into ηππ.

The gluonium interpretation for the η(1405) is not favored

by lattice gauge theories which predict the 0−+ state above 2

GeV [34]. However, the η(1405) is an excellent candidate for

the 0−+ glueball in the fluxtube model [35]. In this model, the

0++ f0(1500) glueball is also naturally related to a 0−+ glueball

with mass degeneracy broken in QCD. Also, Ref. [36] shows

that the pseudoscalar glueball could lie at a lower mass than

predicted from lattice calculation. In this model the η(1405)

appears as the natural glueball candidate (see also Refs. [37]

and [38]) . A detailed review of the experimental situation is

available in Ref. [39].

Let us now deal with 1++ isoscalars. The f1(1420), decaying

into K∗K, was first reported in π−p reactions at 4 GeV/c [40].

However, later analyses found that the 1400–1500 MeV region

was far more complex [41–43]. A reanalysis of the MARK III

data in radiative J/ψ(1S) decay into KKπ [8] shows the

f1(1420) decaying into K∗K. Also, a C=+1 state is observed

in tagged γγ collisions (e.g., Ref. [44]) .

In π−p → ηππn charge-exchange reactions at 8–9 GeV/c

the ηππ mass spectrum is dominated by the η(1440) and

η(1295) [17,45], and at 100 GeV/c Ref. [18] reports the

η(1295) and η(1440) decaying into ηπ0π0 with a weak f1(1285)

signal, and no evidence for the f1(1420).

Axial (1++) mesons are not observed in pp annihilation at

rest in liquid hydrogen, which proceeds dominantly through

S-wave annihilation. However, in gaseous hydrogen, P -wave

annihilation is enhanced and, indeed, Ref. [12] reports f1(1420)

decaying into K∗K. The f1(1420), decaying into KKπ, is also

seen in pp central production, together with the f1(1285). The

latter decays via a0(980)π, and the former only via K∗K, while

the η(1440) is absent [46,47]. The KSKSπ0 decay mode of the

f1(1420) establishes unambiguously C=+1. On the other hand,

there is no evidence for any state decaying into ηππ around
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1400 MeV, and hence the ηππ mode of the f1(1420) must be

suppressed [48].

We now turn to the experimental evidence for the f1(1510).

Two states, the f1(1420) and f1(1510), decaying into K∗K,

compete for the ss assignment in the 1++ nonet. The f1(1510)

was seen in K−p → ΛKKπ at 4 GeV/c [49], and at 11

GeV/c [50]. Evidence is also reported in π−p at 8 GeV/c,

based on the phase motion of the 1++ K∗K wave [43]. A

somewhat broader 1++ signal is also observed in J/ψ(1S)

radiative decay into ηπ+π− [51].

The absence of f1(1420) in K−p [50] argues against the

f1(1420) being the ss member of the 1++ nonet. However, the

f1(1420) was reported in K−p but not in π−p [52], while two

experiments do not observe the f1(1510) in K−p [52,53]. The

latter is also not seen in radiative J/ψ(1S) decay [8,9] and

possibly [10], central collisions [47], or γγ collisions [54],

although, surprisingly for an ss state, a signal is reported in 4π

decays [55]. These facts lead to the conclusion that f1(1510) is

not well established [56].

Assigning the f1(1420) to the 1++ nonet, one finds a nonet

mixing angle of ∼ 50◦ [56]. However, arguments favoring the

f1(1420) being a hybrid qqg meson, or a four-quark state, were

put forward in Refs. [57] and [58], respectively, while Ref.

[59] argued for a molecular state formed by the π orbiting in a

P -wave around an S-wave KK state.

Summarizing, there is convincing evidence for the f1(1420)

decaying into K∗K, and for two pseudoscalars in the η(1440)

region, the η(1405) and η(1475), decaying into a0(980)π and

K∗K, respectively. The f1(1510) is not well established.
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