QUARKS

The \(u \)-, \(d \)-, and \(s \)-quark masses are estimates of so-called “current-quark masses,” in a mass-independent subtraction scheme such as \(\overline{\text{MS}} \) at a scale \(\mu \approx 2 \text{ GeV} \). The \(c \)- and \(b \)-quark masses are the “running” masses in the \(\overline{\text{MS}} \) scheme. For the \(b \)-quark we also quote the 1S mass. These can be different from the heavy quark masses obtained in potential models.

<table>
<thead>
<tr>
<th>Quark</th>
<th>(I(J^P) = \frac{1}{2}(\frac{1}{2}^+))</th>
<th>(m_u = 1.7\pm 3.3 \text{ MeV})</th>
<th>(m_u/m_d = 0.35\pm 0.60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(I(J^P) = \frac{1}{2}(\frac{1}{2}^+))</td>
<td>(m_d = 4.1\pm 5.8 \text{ MeV})</td>
<td>(m_d/m_u = 17 \text{ to } 22)</td>
</tr>
<tr>
<td>(d)</td>
<td>(I(J^P) = 0(\frac{1}{2}^+))</td>
<td>(m_s = 101_{-21}^{+29} \text{ MeV})</td>
<td>(m_s/m_d = 22 \text{ to } 30)</td>
</tr>
<tr>
<td>(s)</td>
<td>(I(J^P) = 0(\frac{1}{2}^+))</td>
<td>(m_c = 1.27_{-0.09}^{+0.07} \text{ GeV})</td>
<td>(m_c/m_d = 1)</td>
</tr>
<tr>
<td>(c)</td>
<td>(I(J^P) = 0(\frac{1}{2}^+))</td>
<td>(m_b(\overline{\text{MS}}) = 4.19_{-0.06}^{+0.18} \text{ GeV})</td>
<td>(m_b(1S) = 4.67_{-0.06}^{+0.18} \text{ GeV})</td>
</tr>
<tr>
<td>(b)</td>
<td>(I(J^P) = 0(\frac{1}{2}^+))</td>
<td>(m_t = (m_u + m_d)/2 = 3.0\pm 4.8 \text{ MeV})</td>
<td>(m_t = (m_u + m_d)/2 = 3.0\pm 4.8 \text{ MeV})</td>
</tr>
<tr>
<td>(t)</td>
<td>(I(J^P) = 0(\frac{1}{2}^+))</td>
<td>(m_t = (m_u + m_d)/2 = 3.0\pm 4.8 \text{ MeV})</td>
<td>(m_t = (m_u + m_d)/2 = 3.0\pm 4.8 \text{ MeV})</td>
</tr>
</tbody>
</table>

\(\Delta E = \frac{2}{3} e \quad I = \frac{1}{2} \quad \Delta S = +1 \quad \Delta L = 0 \quad \Delta I = 0 \quad \Delta Z = +1 \)
Mass \(m = 172.0 \pm 0.9 \pm 1.3 \text{ GeV} \) [\(^a\)] (direct observation of top events)

Full width \(\Gamma < 13.1 \text{ GeV}, \text{ CL = 95\%} \)

\[
\Gamma(Wb) / \Gamma(Wq(q = b, s, d)) = 0.99 \pm 0.09 \pm 0.08
\]

\(t \) DECAY MODES

<table>
<thead>
<tr>
<th>Fraction ((\Gamma_i/\Gamma))</th>
<th>Confidence level ((\text{MeV/c}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Wq(q = b, s, d))</td>
<td>–</td>
</tr>
<tr>
<td>(Wb)</td>
<td>–</td>
</tr>
<tr>
<td>(\ell \nu) anything</td>
<td>([b,c]) (9.4\pm2.4) %</td>
</tr>
<tr>
<td>(\gamma q(q=\mu,\ell))</td>
<td>([d]) (< 5.9 \times 10^{-3})</td>
</tr>
</tbody>
</table>

\[\Delta T = 1 \text{ weak neutral current (}T1\text{) modes} \]

| \(Zq(q=\mu,\ell) \) | \(T1 \) | \([e]\) \(< 3.7 \times 95% \) |

\(b' \) (4th Generation) Quark, Searches for

- Mass \(m > 190 \text{ GeV}, \text{ CL = 95\%} \) \((p\overline{p}, \text{ quasi-stable } b')\)
- Mass \(m > 199 \text{ GeV}, \text{ CL = 95\%} \) \((p\overline{p}, \text{ neutral-current decays})\)
- Mass \(m > 128 \text{ GeV}, \text{ CL = 95\%} \) \((p\overline{p}, \text{ charged-current decays})\)
- Mass \(m > 46.0 \text{ GeV}, \text{ CL = 95\%} \) \((e^+ e^-, \text{ all decays})\)

\(t' \) (4th Generation) Quark, Searches for

- Mass \(m > 256 \text{ GeV}, \text{ CL = 95\%} \) \((p\overline{p}, t'\overline{t'}, \text{ prod., } t' \rightarrow Wq)\)

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

[a] Based on published top mass measurements using data from Tevatron Run-I and Run-II. Including also the most recent unpublished results from Run-II, the Tevatron Electroweak Working Group reports a top mass of \(173.1 \pm 0.6 \pm 1.1 \text{ GeV} \). See the note ‘The Top Quark’ in the Quark Particle Listings of this Review.

[b] \(\ell \) means \(e \) or \(\mu \) decay mode, not the sum over them.

[c] Assumes lepton universality and \(W \)-decay acceptance.

[d] This limit is for \(\Gamma(t \rightarrow \gamma q) / \Gamma(t \rightarrow Wb) \).

[e] This limit is for \(\Gamma(t \rightarrow Zq) / \Gamma(t \rightarrow Wb) \).