QUARKS

The *u*-, *d*-, and *s*-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\text{MS}}$ at a scale $\mu \approx 2$ GeV. The *c*- and *b*-quark masses are the "running" masses in the $\overline{\text{MS}}$ scheme. For the *b*-quark we also quote the 1S mass. These can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $m_u = 1.7$ –3.3 MeV Charge $= \frac{2}{3} e I_z = +\frac{1}{2} m_u/m_d = 0.35$ –0.60

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $m_d = 4.1$ -5.8 MeV Charge $= -\frac{1}{3} e$ $I_z = -\frac{1}{2}$ $m_s/m_d = 17$ to 22 $\overline{m} = (m_u + m_d)/2 = 3.0$ -4.8 MeV

$$I(J^P)=0(\tfrac{1}{2}^+)$$

 $m_s = 101^{+29}_{-21}$ MeV Charge $= -\frac{1}{3} e$ Strangeness = -1 $m_s / ((m_u + m_d)/2) = 22$ to 30

$$I(J^P) = 0(\tfrac{1}{2}^+)$$

С

5

U

d

$m_c = 1.27^{+0.07}_{-0.09} \; { m GeV}$	$Charge = \frac{2}{3} e$	Charm=+1
--	--------------------------	----------

b

$$I(J^{P}) = 0(\frac{1}{2}^{+})$$
Charge = $-\frac{1}{3}e$ Bottom
 $m_{P}(\overline{\text{MS}}) = 4.19^{+0.18} \text{ GeV}$

$$m_b(1S) = 4.67^{+0.18}_{-0.06} \text{ GeV}$$

$$I(J^P) = 0(rac{1}{2}^+)$$

Charge $= rac{2}{3} e$ Top $= +1$

HTTP://PDG.LBL.GOV

Created: 7/30/2010 16:19

= -1

Mass $m = 172.0 \pm 0.9 \pm 1.3$ GeV ^[a] (direct observation of top events) Full width $\Gamma < 13.1$ GeV, CL = 95% $\Gamma(Wb)/\Gamma(Wq(q = b, s, d)) = 0.99^{+0.09}_{-0.08}$

t DECAY MODES	Fraction	(Г _і /Г) (Confidence level	р (MeV/c)	
Wq(q = b, s, d) Wb				-	
ℓu_ℓ anything	[b,c] (9.4±2	2.4) %		_	
$\gamma q(q=u,c)$	[<i>d</i>] < 5.9	$\times 10^{-3}$	95%	-	
$\Delta T = 1$ weak neutral current (T1) modes					
Zq(q=u,c)	T1 [e] < 3.7	%	95%	-	
	_				
<i>b</i> ' (4 th Generation) Qua	ark, Searches f	or			
b' (4 th Generation) Qua Mass $m > 190$ (ark, Searches for GeV, $CL = 95\%$	or (<i>p</i> p, qua	si-stable <i>b</i> ')		
b' (4 th Generation) Quantum Mass $m > 190$ (Mass $m > 199$) (Mass $m > 199$ (Mass $m > 190$ (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$) (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$) (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$ (Mass $m > 190$) (Mass $m > 190$	GeV, $CL = 95\%$ GeV, $CL = 95\%$	or (<i>p</i> ₱, qua (<i>p</i> ₱, neu	nsi-stable <i>b</i> ′) Itral-current de	ecays)	
b' (4 th Generation) Qua Mass $m > 190$ (Mass $m > 199$ (Mass $m > 128$ (GeV, $CL = 95\%$ GeV, $CL = 95\%$ GeV, $CL = 95\%$ GeV, $CL = 95\%$	or (<i>р</i> <u>р</u> , qua (<i>р</i> <u>р</u> , neu (<i>р</i> <u>р</u> , cha	nsi-stable b') ntral-current de nged-current c	ecays) lecays)	

Mass m > 256 GeV, CL = 95% $(p \overline{p}, t' \overline{t}' \text{ prod.}, t' \rightarrow W q)$

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] Based on published top mass measurements using data from Tevatron Run-I and Run-II. Including also the most recent unpublished results from Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.1 \pm 0.6 \pm 1.1 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- $[b] \ell$ means e or μ decay mode, not the sum over them.
- [c] Assumes lepton universality and W-decay acceptance.
- [d] This limit is for $\Gamma(t \rightarrow \gamma q)/\Gamma(t \rightarrow W b)$.
- [e] This limit is for $\Gamma(t \rightarrow Zq)/\Gamma(t \rightarrow Wb)$.

HTTP://PDG.LBL.GOV