BOTTOM BARYONS

$$(B=-1)$$

$$\Lambda_b^0=u\,d\,b,\; \Xi_b^0=u\,s\,b,\; \Xi_b^-=d\,s\,b,\; \Omega_b^-=s\,s\,b$$

 Λ_b^0

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$I(J^P)$$
 not yet measured; $0(\frac{1}{2}^+)$ is the quark model prediction. Mass $m=5620.2\pm1.6$ MeV $m_{\Lambda_b}-m_{B^0}=339.2\pm1.4$ MeV Mean life $\tau=(1.391^{+0.038}_{-0.037})\times10^{-12}$ s $c au=417~\mu{\rm m}$

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b \to \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

$\Lambda_{m{b}}^0$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	p (MeV/ c)
$J/\psi(1S)$ $\Lambda imes B(b o \ arLambda_b^0)$	$(4.7\pm2.3)\times10^{-1}$	-5	1741
$\Lambda_c^+\pi^-$	$(8.8\pm3.2)\times10^{-3}$	-3	2343
$\Lambda_c^+ \pi^- \Lambda_c^+ a_1(1260)^-$	seen		2153
$ec{\Lambda_c^+}\ell^-\overline{ u}_\ell$ anything	[a] (10.7 ± 3.2) %		_
$\Lambda_c^+ \ell^- \overline{ u}_\ell$	$(5.0^{+1.9}_{-1.4})\%$		2345
$\Lambda_c^+ \pi^+ \pi^- \ell^- \overline{\nu}_\ell$	$(5.6\pm3.1)\%$		2335
$\Lambda_c(2595)^+\ell^-\overline{ u}_\ell$	$(6.3^{+4.0}_{-3.1}) \times 10^{-3}$	-3	2211
$\Lambda_c(2625)^+ \ell^- \overline{ u}_\ell$	$(1.1^{+0.6}_{-0.4})\%$		2196
p h ⁻	$[b] < 2.3 \times 10^{-1}$	-5 90%	2730
$ ho\pi^-$	$(3.8\pm1.3)\times10^{-1}$	-6	2730
ρK ⁻	$(6.0\pm1.9)\times10^{-1}$	-6	2709
$\Lambda \gamma$	< 1.3 × 10	-3 90%	2699

Created: 7/30/2010 16:19

$$\Sigma_b$$

$$I(J^P) = 1(\frac{1}{2}^+)$$
 I, J, P need confirmation.

Mass
$$m(\Sigma_b^+)=5807.8\pm 2.7$$
 MeV Mass $m(\Sigma_b^-)=5815.2\pm 2.0$ MeV

Σ_h	DECAY	MODE	S
-n			_

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi$$

dominant

128

$$I(J^P) = 1(\frac{3}{2}^+)$$

I, J, P need confirmation.

Mass
$$m(\Sigma_b^{*+}) = 5829.0 \pm 3.4 \text{ MeV}$$

Mass $m(\Sigma_b^{*-}) = 5836.4 \pm 2.8 \text{ MeV}$
 $m_{\Sigma_b^*} - m_{\Sigma_b} = 21.2 \pm 2.0 \text{ MeV}$

Σ_h^* DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi$$

dominant

156

$$\Xi_b^0$$
, Ξ_b^-

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

I, J, P need confirmation.

Mass
$$m=5790.5\pm2.7~{
m MeV}$$

Mean life $au_{\varXi_b}=(1.56\pm0.26)\times10^{-12}~{
m s}$
Mean life $au_{\varXi_b}=(1.49^{+0.19}_{-0.18})\times10^{-12}~{
m s}$

Ξ _b	DECAY	MODES

Scale factor (MeV/c)

$$\begin{array}{ll} \underline{\mathbf{\mathcal{Z}}_b \; \mathsf{DECAY} \; \mathsf{MODES}} & \mathsf{Fraction} \; (\Gamma_i/\Gamma) \\ \\ \underline{\mathbf{\mathcal{Z}}_b \; \rightarrow \; \mathbf{\mathcal{Z}}^- \ell^- \overline{\nu}_\ell X \times \mathsf{B}(\overline{b} \to \overline{\mathbf{\mathcal{Z}}_b})} & (3.9 \pm 1.2) \times 10^{-4} \\ \underline{\mathbf{\mathcal{Z}}_b^- \; \rightarrow \; J/\psi \; \underline{\mathbf{\mathcal{Z}}}^- \times \; \mathsf{B}(b \to \overline{\mathbf{\mathcal{Z}}_b^-})} & (8 \; \pm 4 \;) \times 10^{-6} \\ \end{array}$$

$$(3.9\pm1.2)\times10^{-4}$$

1.4

Created: 7/30/2010 16:19

$$\Omega_b^-$$

$$I(J^P) = O(\frac{1}{2}^+)$$

I, J, P need confirmation.

Mass
$$m = 6071 \pm 40$$
 MeV (S = 6.2)
Mean life $\tau = (1.1^{+0.5}_{-0.4}) \times 10^{-12}$ s

Ω_b^- DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$J/\psi \Omega^- imes B(b o \Omega_b)$	$(2.4\pm1.2)\times10^{-6}$	1826

b-baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$

Mean life
$$au = (1.345 \pm 0.032) imes 10^{-12} \ {
m s}$$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates in Z decay (or high-energy $p\overline{p}$), branching ratios, and detection efficiencies. They scale with the LEP b-baryon production fraction $B(b \rightarrow b$ -baryon) and are evaluated for our value $B(b \rightarrow b$ -baryon) = $(9.2 \pm 1.8)\%$.

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one

b-baryon ADMIXTURE DECAY MODES

Fraction (Γ_i/Γ)	p (MeV/c)
(5.8 + 2.6) %	_
(5.6 ± 1.7) %	_
(69 ±27)%	_
(3.7± 1.0) %	_
$(39 \pm 11)\%$	_
$(6.5\pm\ 2.2)\times10^{-3}$	_
	(5.8 + 2.6) % (5.6 ± 1.7) % (69 ±27) % (3.7 ± 1.0) % (39 ±11) %

NOTES

- [a] Not a pure measurement. See note at head of Λ_b^0 Decay Modes.
- [b] Here h^- means π^- or K^- .

Created: 7/30/2010 16:19