Neutrino Properties

A REVIEW GOES HERE - Check our WWW List of Reviews

$\overline{\nu}$ MASS (electron based)

Those limits given below are for the square root of $m_{\nu_e}^{2({\rm eff})} \equiv \sum_i |{\rm U}_{ei}|^2$ $m_{\nu_i}^2$. Limits that come from the kinematics of ${}^3{\rm H}\beta^-\overline{\nu}$ decay are the square roots of the limits for $m_{\nu_e}^{2({\rm eff})}$. Obtained from the measurements reported in the Listings for " $\overline{\nu}$ Mass Squared," below.

<i>VALUE</i> (eV)	CL%	DOCUMENT ID	TECN	COMMENT		
< 2 OUR EVALUAT	ION					
< 2.3	95	1 KRAUS 05	5 SPEC	3 H β decay		
< 2.5	95	² LOBASHEV 99	9 SPEC	3 H β decay		
• • • We do not use the following data for averages, fits, limits, etc. • •						
< 5.8	95	³ PAGLIAROLI 10) ASTR	SN1987A		
<21.7	90	⁴ ARNABOLDI 03	BA BOLO	187 Re eta -decay		
< 5.7	95	⁵ LOREDO 02	2 ASTR	_		
< 2.8	95	⁶ WEINHEIMER 99	9 SPEC	3 H β decay		
< 4.35	95		5 SPEC	3 H β decay		
<12.4	95		5 SPEC	3 H β decay		
<92	95	⁹ HIDDEMANN 95	5 SPEC	3 H β decay		
$15 \begin{array}{c} +32 \\ -15 \end{array}$		HIDDEMANN 95	5 SPEC	3 H $_{eta}$ decay		
<19.6	95	KERNAN 95	5 ASTR	SN 1987A		
< 7.0	95	¹⁰ STOEFFL 95		3 H β decay		
< 7.2	95	¹¹ WEINHEIMER 93	3 SPEC	3 H β decay		
<11.7	95		2B SPEC	3 H β decay		
<13.1	95	¹³ KAWAKAMI 91	1 SPEC	3 H β decay		
< 9.3	95	¹⁴ ROBERTSON 91	1 SPEC	3 H β decay		
<14	95	AVIGNONE 90) ASTR	SN 1987A		
<16		SPERGEL 88	3 ASTR	SN 1987A		
17 to 40		¹⁵ BORIS 87	7 SPEC	3 H β decay		

¹ KRAUS 05 is a continuation of the work reported in WEINHEIMER 99. This result represents the final analysis of data taken from 1997 to 2001. Various sources of systematic uncertainties have been identified and quantified. The background has been reduced compared to the initial running period. A spectral anomaly at the endpoint, reported in LOBASHEV 99, was not observed.

²LOBASHEV 99 report a new measurement which continues the work reported in BELE-SEV 95. This limit depends on phenomenological fit parameters used to derive their best fit to m_{ν}^2 , making unambiguous interpretation difficult. See the footnote under " $\overline{\nu}$ Mass Squared."

³ PAGLIAROLI 10 is critical of the likelihood method used by LOREDO 02.

⁴ ARNABOLDI 03A *etal.* report kinematical neutrino mass limit using β -decay of ¹⁸⁷Re. Bolometric AgReO₄ micro-calorimeters are used. Mass bound is substantially weaker than those derived from tritium β -decays but has different systematic uncertainties.

⁵LOREDO 02 updates LOREDO 89.

- 6 WEINHEIMER 99 presents two analyses which exclude the spectral anomaly and result in an acceptable m_{ν}^2 . We report the most conservative limit, but the other is nearly the same. See the footnote under " $\overline{\nu}$ Mass Squared."
- 7 BELESEV 95 (Moscow) use an integral electrostatic spectrometer with adiabatic magnetic collimation and a gaseous tritium sources. A fit to a normal Kurie plot above 18300–18350 eV (to avoid a low-energy anomaly) plus a monochromatic line 7–15 eV below the endpoint yields $m_{\nu}^2=-4.1\pm10.9~{\rm eV}^2$, leading to this Bayesian limit.
- ⁸ CHING 95 quotes results previously given by SUN 93; no experimental details are given. A possible explanation for consistently negative values of m_{11}^2 is given.
- ⁹ HIDDEMANN 95 (Munich) experiment uses atomic tritium embedded in a metal-dioxide lattice. Bayesian limit calculated from the weighted mean $m_{\nu}^2=221\pm4244~{\rm eV}^2$ from the two runs listed below.
- ¹⁰ STOEFFL 95 (LLNL) result is the Bayesian limit obtained from the m_{ν}^2 errors given below but with m_{ν}^2 set equal to 0. The anomalous endpoint accumulation leads to a value of m_{ν}^2 which is negative by more than 5 standard deviations.
- ¹¹ WEINHEIMER 93 (Mainz) is a measurement of the endpoint of the tritium β spectrum using an electrostatic spectrometer with a magnetic guiding field. The source is molecular tritium frozen onto an aluminum substrate.
- ¹² HOLZSCHUH 92B (Zurich) result is obtained from the measurement $m_{\nu}^2 = -24 \pm 48 \pm 61$ (1 σ errors), in eV², using the PDG prescription for conversion to a limit in m_{ν} .
- 13 KAWAKAMI 91 (Tokyo) experiment uses tritium-labeled arachidic acid. This result is the Bayesian limit obtained from the m_{ν}^2 limit with the errors combined in quadrature. This was also done in ROBERTSON 91, although the authors report a different procedure.
- 14 ROBERTSON 91 (LANL) experiment uses gaseous molecular tritium. The result is in strong disagreement with the earlier claims by the ITEP group [LUBIMOV 80, BORIS 87 (+ BORIS 88 erratum)] that m_{ν} lies between 17 and 40 eV. However, the probability of a positive m^2 is only 3% if statistical and systematic error are combined in quadrature.
- $^{15}\,\mathrm{See}$ also comment in BORIS 87B and erratum in BORIS 88.

HTTP://PDG.LBL.GOV

$\overline{\nu}$ MASS SQUARED (electron based)

Given troubling systematics which result in improbably negative estimators of $m_{\nu_e}^{2({\rm eff})} \equiv \sum_i |{\rm U}_{ei}|^2 \ m_{\nu_i}^2$, in many experiments, we use only KRAUS 05 and LOBASHEV 99 for our average.

<i>VALUE</i> (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
- 1.1± 2.4	OUR AVERAGE	'			
$-$ 0.6 \pm 2.2 \pm	± 2.1	¹⁶ KRAUS	05		3 H β decay
$-$ 1.9 \pm 3.4 \pm	± 2.2	¹⁷ LOBASHEV	99	SPEC	3 H β decay
\bullet \bullet We do not	use the followin	g data for averages	, fits,	limits, e	etc. • • •
- 3.7± 5.3±	± 2.1	¹⁸ WEINHEIMER	99	SPEC	3 H β decay
$-$ 22 \pm 4.8		¹⁹ BELESEV			3 H β decay
129 ± 6010		²⁰ HIDDEMANN	95		3 H β decay
313 ± 5994		²⁰ HIDDEMANN	95	SPEC	3 H β decay
-130 \pm 20 \pm	± 15 95	²¹ STOEFFL	95	SPEC	3 H β decay
$-$ 31 \pm 75 \pm	±48	²² SUN	93	SPEC	3 H $_{eta}$ decay
$-$ 39 \pm 34 \pm	± 15	²³ WEINHEIMER	93	SPEC	3 H β decay
$-$ 24 \pm 48 \pm	± 61	²⁴ HOLZSCHUH	92 B	SPEC	
$-$ 65 \pm 85 \pm	± 65	²⁵ KAWAKAMI	91	SPEC	3 H β decay
-147 \pm 68 \pm	\pm 41	²⁶ ROBERTSON	91	SPEC	3 H β decay

Page 2

 16 KRAUS 05 is a continuation of the work reported in WEINHEIMER 99. This result represents the final analysis of data taken from 1997 to 2001. Problems with significantly negative squared neutrino masses, observed in some earlier experiments, have

been resolved in this work. 17 LOBASHEV 99 report a new measurement which continues the work reported in BELE-SEV 95. The data were corrected for electron trapping effects in the source, eliminating the dependence of the fitted neutrino mass on the fit interval. The analysis assuming a pure beta spectrum yields significantly negative fitted $m_{\nu}^2 \approx -(20\text{-}10) \text{ eV}^2$. This problem is attributed to a discrete spectral anomaly of about 6×10^{-11} intensity with a time-dependent energy of 5–15 eV below the endpoint. The data analysis accounts for this anomaly by introducing two extra phenomenological fit parameters resulting in a best fit of $m_{\nu}^2 = -1.9 \pm 3.4 \pm 2.2 \,\mathrm{eV}^2$ which is used to derive a neutrino mass limit. However, the introduction of phenomenological fit parameters which are correlated with the derived m_{ij}^2 limit makes unambiguous interpretation of this result difficult.

- $^{18}\!$ WEINHEIMER 99 is a continuation of the work reported in WEINHEIMER 93 . Using a lower temperature of the frozen tritium source eliminated the dewetting of the T_2 film, which introduced a dependence of the fitted neutrino mass on the fit interval in the earlier work. An indication for a spectral anomaly reported in LOBASHEV 99 has been seen, but its time dependence does not agree with LOBASHEV 99. Two analyses, which exclude the spectral anomaly either by choice of the analysis interval or by using a particular data set which does not exhibit the anomaly, result in acceptable m_{ij}^2 fits and are used to derive the neutrino mass limit published by the authors. We list the most conservative of the two.
- 19 BELESEV 95 (Moscow) use an integral electrostatic spectrometer with adiabatic magnetic collimation and a gaseous tritium sources. This value comes from a fit to a normal Kurie plot above 18300-18350 eV (to avoid a low-energy anomaly), including the effects of an apparent peak 7-15 eV below the endpoint.

 $^{20}\,\mathrm{HIDDEMANN}$ 95 (Munich) experiment uses atomic tritium embedded in a metal-dioxide

lattice. They quote measurements from two data sets.

²¹ STOEFFL 95 (LLNL) uses a gaseous source of molecular tritium. An anomalous pileup of events at the endpoint leads to the negative value for m_{ν}^2 . The authors acknowledge that "the negative value for the best fit of $m_{
u}^2$ has no physical meaning" and discuss possible explanations for this effect.

22 SUN 93 uses a tritiated hydrocarbon source. See also CHING 95.

 23 WEINHEIMER 93 (Mainz) is a measurement of the endpoint of the tritium eta spectrum using an electrostatic spectrometer with a magnetic guiding field. The source is molecular tritium frozen onto an aluminum substrate.

24 HOLZSCHUH 92B (Zurich) source is a monolayer of tritiated hydrocarbon.

²⁵ KAWAKAMI 91 (Tokyo) experiment uses tritium-labeled arachidic acid.

 26 ROBERTSON 91 (LANL) experiment uses gaseous molecular tritium. The result is in strong disagreement with the earlier claims by the ITEP group [LUBIMOV 80, BORIS 87 (+BORIS 88 erratum)] that m_{ν} lies between 17 and 40 eV. However, the probability of a positive m_{ν}^2 is only 3% if statistical and systematic error are combined in quadrature.

ν MASS (electron based)

These are measurement of m_{ν} (in contrast to $m_{\overline{\nu}}$, given above). The masses can be different for a Dirac neutrino in the absence of CPT invariance. The possible distinction between ν and $\overline{\nu}$ properties is usually ignored elsewhere in these Listings.

VALUE (eV)	CL%	DOCUMENT ID	TECN	COMMENT
<460 <225	68 95	YASUMI SPRINGER		163 Ho decay 163 Ho decay

ν MASS (muon based)

Limits given below are for the square root of $\mathit{m}_{\nu_{\mu}}^{2(\mathrm{eff})} \equiv \sum_{i} |\mathsf{U}_{\mu i}|^2 \; \mathit{m}_{\nu_{i}}^2.$

In some of the COSM papers listed below, the authors did not distinguish between weak and mass eigenstates.

OUR EVALUATION is based on OUR AVERAGE for the π^\pm mass and the ASSAMAGAN 96 value for the muon momentum for the π^+ decay at rest. The limit is calculated using the unified classical analysis of FELDMAN 98 for a Gaussian distribution near a physical boundary. WARNING: since $m_{
u_{\mu}}^{2({\rm eff})}$ is calculated from the differences of large numbers, it and the corresponding limits are extraordinarily sensitive to small changes in the pion mass, the decay muon momentum, and their errors. For example, the limits obtained using JECKELMANN 94, LENZ 98, and the weighted averages are 0.15, 0.29, and 0.19 MeV, respectively.

_			-	-			
VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT		
<0.19 (CL = 90%	OUR EVALU	JATION					
< 0.17	90	²⁷ ASSAMAGAN	96	SPEC	$m_{\nu}^2 = -0.016 \pm 0.023$		
● ● We do not use the following data for averages, fits, limits, etc. ● ●							
< 0.15		²⁸ DOLGOV	95	COSM	Nucleosynthesis		
< 0.48		²⁹ ENQVIST	93	COSM	Nucleosynthesis		
< 0.3		³⁰ FULLER	91	COSM	Nucleosynthesis		
< 0.42		³⁰ LAM	91		Nucleosynthesis		
< 0.50	90	³¹ ANDERHUB	82	SPEC	$m_{\nu}^2 = -0.14 \pm 0.20$		
< 0.65	90	CLARK			$K_{\mu 3}^{ u}$ decay		
27 ACCANAACAN	06 massurama	nt of n from -+		+	ost combined with IECK		

²¹ ASSAMAGAN 96 measurement of ho_{μ} from $\pi^+
ightarrow \mu^+
u$ at rest combined with JECK-ELMANN 94 Solution B pion mass yields $m_{\nu}^2=-0.016\pm0.023$ with corresponding Bayesian limit listed above. If Solution A is used, $m_{\nu}^2=-0.143\pm0.024$ MeV². Replaces ASSAMAGAN 94.

 $^{28}\,\dot{\text{DOLGOV}}\,95$ removes earlier assumptions (DOLGOV 93) about thermal equilibrium below T_{QCD} for wrong-helicity Dirac neutrinos (ENQVIST 93, FULLER 91) to set more strin-

²⁹ ENQVIST 93 bases limit on the fact that thermalized wrong-helicity Dirac neutrinos would speed up expansion of early universe, thus reducing the primordial abundance. FULLER 91 exploits the same mechanism but in the older calculation obtains a larger production rate for these states, and hence a lower limit. Neutrino lifetime assumed to exceed nucleosynthesis time, $\sim 1\,\mathrm{s}$.

 30 Assumes neutrino lifetime $>\!1\,\text{s.}$ For Dirac neutrinos only. See also ENQVIST 93. 31 ANDERHUB 82 kinematics is insensitive to the pion mass.

ν MASS (tau based)

The limits given below are the square roots of limits for $m_{\nu_-}^{2({\rm eff})}$ $\sum_i |\mathsf{U}_{\tau i}|^2 m_{\nu_i}^2$.

In some of the ASTR and COSM papers listed below, the authors did not distinguish between weak and mass eigenstates.

<i>VALUE</i> (MeV)	CL% EVTS	DOCUMENT ID		TECN	COMMENT
< 18.2	95	32 BARATE	98F	ALEP	1991–1995 LEP runs
HTTP://PD	G.LBL.GOV	Page 4		Creat	ted: 6/16/2011 12:06

• • We do not use the following data for averages, fits, limits, etc. •

< 28	95		³³ ATHANAS	00	CLEO	$E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
< 27.6	95		³⁴ ACKERSTAFF	98T	OPAL	1990-1995 LEP runs
< 30	95	473	³⁵ AMMAR	98	CLEO	$E_{ m cm}^{ m ee}=10.6~{ m GeV}$
< 60	95		³⁶ ANASTASSOV	97	CLEO	$E_{ m cm}^{ m ee} = 10.6 \; { m GeV}$
< 0.37 or > 22			³⁷ FIELDS	97	COSM	Nucleosynthesis
< 68	95		³⁸ SWAIN	97	THEO	$m_{ au},~ au_{ au},~ au$ partial widths
< 29.9	95		³⁹ ALEXANDER	96M	OPAL	1990-1994 LEP runs
<149			⁴⁰ BOTTINO	96	THEO	π , μ , τ leptonic decays
<1 or $>$ 25			⁴¹ HANNESTAD	96 C	COSM	Nucleosynthesis
< 71	95		⁴² SOBIE	96	THEO	m_{τ} , τ_{τ} , $B(\tau^- \rightarrow$
						$e^-\overline{ u}_{m{e}} u_{ au})$
< 24	95	25	⁴³ BUSKULIC	95H	ALEP	1991-1993 LEP runs
< 0.19			44 DOLGOV	95	COSM	Nucleosynthesis
< 3			⁴⁵ SIGL	95	ASTR	SN 1987A
< 0.4 or > 30			46 DODELSON	94	COSM	Nucleosynthesis
$<0.1\ or>50$			47 KAWASAKI	94	COSM	Nucleosynthesis
155-225			⁴⁸ PERES	94	THEO	π , K , μ , $ au$ weak decays
< 32.6	95	113	⁴⁹ CINABRO	93	CLEO	$E_{ m cm}^{\it ee} pprox ~10.6~{ m GeV}$
< 0.3 or > 35			⁵⁰ DOLGOV	93	COSM	Nucleosynthesis
< 0.74			⁵¹ ENQVIST	93	COSM	Nucleosynthesis
< 31	95	19	⁵² ALBRECHT	92M	ARG	$E_{\rm cm}^{\it ee} = 9.4 - 10.6 \; {\rm GeV}$
< 0.3			⁵³ FULLER	91	COSM	Nucleosynthesis
< 0.5 or > 25			⁵⁴ KOLB	91	COSM	Nucleosynthesis
< 0.42			⁵³ LAM	91	COSM	Nucleosynthesis

 $^{^{32}}$ BARATE 98F result based on kinematics of 2939 $\tau^-\to 2\pi^-\pi^+\nu_\tau$ and 52 $\tau^-\to 3\pi^-2\pi^+(\pi^0)\nu_\tau$ decays. If possible 2.5% excited a_1 decay is included in 3-prong sample analysis, limit increases to 19.2 MeV.

³³ ATHANAS 00 bound comes from analysis of $\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$ decays.

 $^{^{34}}$ ACKERSTAFF 98T use $\tau\to 5\pi^\pm\nu_\tau$ decays to obtain a limit of 43.2 MeV (95%CL). They combine this with ALEXANDER 96M value using $\tau\to 3h^\pm\nu_\tau$ decays to obtain quoted limit.

 $^{^{35}}$ AMMAR 98 limit comes from analysis of $\tau^-\to 3\pi^-\,2\pi^+\,\nu_\tau$ and $\tau^-\to 2\pi^-\,\pi^+\,2\pi^0\,\nu_\tau$ decay modes.

 $^{^{36}}$ ANASTASSOV 97 derive limit by comparing their m_{τ} measurement (which depends on $m_{\nu_{\tau}}$) to BAI 96 m_{τ} threshold measurement.

 $^{^{37}}$ FIELDS 97 limit for a Dirac neutrino. For a Majorana neutrino the mass region < 0.93 or >31 MeV is excluded. These bounds assume N_{ν} <4 from nucleosynthesis; a wider excluded region occurs with a smaller N_{ν} upper limit.

 $^{^{38}}$ SWAIN 97 derive their limit from the Standard Model relationships between the tau mass, lifetime, branching fractions for $\tau^- \to e^- \overline{\nu}_e \nu_\tau, \, \tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau, \, \tau^- \to \pi^- \nu_\tau$, and $\tau^- \to K^- \nu_\tau$, and the muon mass and lifetime by assuming lepton universality and using world average values. Limit is reduced to 48 MeV when the CLEO τ mass measurement (BALEST 93) is included; see CLEO's more recent m_{ν_τ} limit (ANASTASSOV 97). Consideration of mixing with a fourth generation heavy neutrino yields $\sin^2\!\theta_L < 0.016$ (95%CL).

³⁹ ALEXANDER 96M bound comes from analyses of $\tau^- \to 3\pi^- 2\pi^+ \nu_\tau$ and $\tau^- \to h^- h^- h^+ \nu_\tau$ decays.

- 40 BOTTINO 96 assumes three generations of neutrinos with mixing, finds consistency with massless neutrinos with no mixing based on 1995 data for masses, lifetimes, and leptonic partial widths.
- 41 HANNESTAD 96C limit is on the mass of a Majorana neutrino. This bound assumes $N_{\nu} <$ 4 from nucleosynthesis. A wider excluded region occurs with a smaller N_{ν} upper limit. This paper is the corrected version of HANNESTAD 96; see the erratum: HANNESTAD 96B.
- ⁴² SOBIE 96 derive their limit from the Standard Model relationship between the tau mass, lifetime, and leptonic branching fraction, and the muon mass and lifetime, by assuming lepton universality and using world average values.
- ⁴³ BUSKULIC 95H bound comes from a two-dimensional fit of the visible energy and invariant mass distribution of $\tau \to 5\pi (\pi^0) \nu_{\tau}$ decays. Replaced by BARATE 98F.
- 44 DOLGOV 95 removes earlier assumptions (DOLGOV 93) about thermal equilibrium below $T_{\rm QCD}$ for wrong-helicity Dirac neutrinos (ENQVIST 93, FULLER 91) to set more stringent limits. DOLGOV 96 argues that a possible window near 20 MeV is excluded.
- 45 SIGL 95 exclude massive Dirac or Majorana neutrinos with lifetimes between 10^{-3} and 10^{8} seconds if the decay products are predominantly γ or $e^{+}e^{-}$.
- 46 DODELSON 94 calculate constraints on ν_{τ} mass and lifetime from nucleosynthesis for 4 generic decay modes. Limits depend strongly on decay mode. Quoted limit is valid for all decay modes of Majorana neutrinos with lifetime greater than about 300 s. For Dirac neutrinos limits change to < 0.3 or > 33.
- ⁴⁷ KAWASAKI 94 excluded region is for Majorana neutrino with lifetime >1000 s. Other limits are given as a function of $\nu_{ au}$ lifetime for decays of the type $\nu_{ au}
 ightarrow \nu_{\mu} \phi$ where ϕ is a Nambu-Goldstone boson.
- 48 PERES 94 used PDG 92 values for parameters to obtain a value consistent with mixing. Reexamination by BOTTINO 96 which included radiative corrections and 1995 PDG parameters resulted in two allowed regions, $m_{\rm 3} < 70$ MeV and 140 MeV $m_{\rm 3} < 149$ MeV
- ⁴⁹ CINABRO 93 bound comes from analysis of $\tau^- \to 3\pi^- 2\pi^+ \nu_{\tau}$ and $\tau^- \to 2\pi^- \pi^+ 2\pi^0 \nu_{\tau}$ decay modes.
- 50 DOLGOV 93 assumes neutrino lifetime >100 s. For Majorana neutrinos, the low mass limit is 0.5 MeV. KAWANO 92 points out that these bounds can be overcome for a Dirac neutrino if it possesses a magnetic moment. See also DOLGOV 96.
- 51 ENQVIST 93 bases limit on the fact that thermalized wrong-helicity Dirac neutrinos would speed up expansion of early universe, thus reducing the primordial abundance. FULLER 91 exploits the same mechanism but in the older calculation obtains a larger production rate for these states, and hence a lower limit. Neutrino lifetime assumed to exceed nucleosynthesis time, $\sim 1\,\mathrm{s}$.
- 52 ALBRECHT 92M reports measurement of a slightly lower τ mass, which has the effect of reducing the ν_{τ} mass reported in ALBRECHT 88B. Bound is from analysis of $\tau^- \to 3\pi^- \, 2\pi^+ \, \nu_{\tau}$ mode.
- 53 Assumes neutrino lifetime >1 s. For Dirac neutrinos. See also ENQVIST 93.
- 54 KOLB 91 exclusion region is for Dirac neutrino with lifetime >1 s; other limits are given.

A REVIEW GOES HERE - Check our WWW List of Reviews

SUM OF THE NEUTRINO MASSES, m_{tot}

(Defined in the above note), of effectively stable neutrinos (i.e., those with mean lives greater than or equal to the age of the universe). These papers assumed Dirac neutrinos. When necessary, we have generalized the results reported so they apply to $m_{\rm tot}$. For other limits, see SZA-LAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84, and COWSIK 85.

VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
ullet $ullet$ $ullet$ We do not use	the follo	wing data for avera	ges, f	its, limit	s, etc. • • •
< 0.44	95	⁵⁵ HANNESTAD	10	COSM	
< 0.6	95	⁵⁶ SEKIGUCHI	10	COSM	
< 0.28	95	⁵⁷ THOMAS	10	COSM	
< 1.1		⁵⁸ ICHIKI	09	COSM	
< 1.3	95	⁵⁹ KOMATSU	09	COSM	WMAP
< 1.2		60 TERENO	09	COSM	
< 0.33		61 VIKHLININ	09	COSM	
< 0.28		62 BERNARDIS	80	COSM	
< 0.17-2.3		63 FOGLI	07	COSM	
< 0.42	95	64 KRISTIANSEN	07	COSM	
< 0.63-2.2		65 ZUNCKEL	07	COSM	
< 0.24	95	66 CIRELLI	06	COSM	
< 0.62	95	67 HANNESTAD	06	COSM	
< 1.2		68 SANCHEZ	06	COSM	
< 0.17	95	66 SELJAK	06	COSM	
< 2.0	95	69 ICHIKAWA	05	COSM	
< 0.75		⁷⁰ BARGER	04	COSM	
< 1.0		⁷¹ CROTTY	04	COSM	
< 0.7		72 SPERGEL	03		WMAP
< 0.9		⁷³ LEWIS	02	COSM	
< 4.2		⁷⁴ WANG	02	COSM	CMB
< 2.7		⁷⁵ FUKUGITA	00	COSM	
< 5.5		⁷⁶ CROFT	99		Ly α power spec
<180		SZALAY	74	COSM	
<132		COWSIK	72	COSM	
<280		MARX	72	COSM	
<400		GERSHTEIN	66	COSM	

⁵⁵ Constrains the total mass of neutrinos from the 7-year WMAP data including SDSS and HST data. Limit relaxes to 1.19 eV when CMB data is used alone. Supersedes HANNESTAD 06.

 $^{^{56}}$ Constrains the total mass of neutrinos from a combination of CMB data, a recent measurement of H_0 (SHOES), and baryon acoustic oscillation data from SDSS.

⁵⁷ Constrains the total mass of neutrinos from SDSS MegaZ LRG DR7 galaxy clustering data combined with CMB, HST, supernovae and baryon acoustic oscillation data. Limit relaxes to 0.47 eV when the equation of state parameter, $w \neq 1$.

⁵⁸ Constrains the total mass of neutrinos from weak lensing measurements when combined with CMB. Limit improves to 0.54 eV when supernovae and baryon acoustic oscillation observations are included. Assumes ΛCDM model.

⁵⁹ Constrains the total mass of neutrinos from five-year WMAP data. Limit improves to 0.67 eV when supernovae and baryon acoustic oscillation observations are included. Limits quoted assume the ΛCDM model. Supersedes SPERGEL 07.

- 60 Constrains the total mass of neutrinos from weak lensing measurements when combined with CMB. Limit improves to 0.03 $< \Sigma m_{\nu} <$ 0.54 eV when supernovae and baryon acoustic oscillation observations are included. The slight preference for massive neutrinos at the two-sigma level disappears when systematic errors are taken into account. Assumes ΛCDM model.
- 61 Constrains the total mass of neutrinos from recent Chandra X-ray observations of galaxy clusters when combined with CMB, supernovae, and baryon acoustic oscillation measurements. Assumes flat universe and constant dark-energy equation of state, w.
- 62 Constraints the total mass of neutrinos from recent CMB and SOSS LRG power spectrum data along with bias mass relations from SDSS, DEEP2, and Lyman-Break Galaxies. It assumes ΛCDM model. Limit degrades to 0.59 eV in a more general wCDM model.
- 63 Constrains the total mass of neutrinos from neutrino oscillation experiments and cosmological data. The most conservative limit uses only WMAP three-year data, while the most stringent limit includes CMB, large-scale structure, supernova, and Lyman-alpha data.
- 64 Constrains the total mass of neutrinos from recent CMB, large scale structure, SN1a, and baryon acoustic oscillation data. The limit relaxes to 1.75 when WMAP data alone is used with no prior. Paper shows results with several combinations of data sets. Supersedes KRISTIANSEN 06.
- ⁶⁵ Constrains the total mass of neutrinos from the CMB and the large scale structure data. The most conservative limit is obtained when generic initial conditions are allowed.
- 66 Constrains the total mass of neutrinos from recent CMB, large scale structure, Lymanalpha forest, and SN1a data.
- 67 Constrains the total mass of neutrinos from recent CMB and large scale structure data. See also GOOBAR 06. Superseded by HANNESTAD 10.
- ⁶⁸ Constrains the total mass of neutrinos from the CMB and the final 2dF Galaxy Redshift Survey.
- 69 Constrains the total mass of neutrinos from the CMB experiments alone, assuming ΛCDM Universe. FUKUGITA 06 show that this result is unchanged by the 3-year WMAP data.
- ⁷⁰ Constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the Sloan Digital Sky Survey and the 2dF galaxy redshift survey, WMAP and 27 other CMB experiments and measurements by the HST Key project.
- ⁷¹ Constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the Sloan Digital Sky Survey, the 2dF galaxy redshift survey, WMAP and ACBAR. The limit is strengthened to 0.6 eV when measurements by the HST Key project and supernovae data are included.
- 72 Constrains the fractional contribution of neutrinos to the total matter density in the Universe from WMAP data combined with other CMB measurements, the 2dfGRS data, and Lyman α data. The limit does not noticeably change if the Lyman α data are not used.
- 73 LEWIS 02 constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the CMB, HST Key project, 2dF galaxy redshift survey, supernovae type Ia, and BBN.
- 74 WANG 02 constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the CMB and other cosmological data sets such as galaxy clustering and the Lyman α forest.
- 75 FUKUGITA 00 is a limit on neutrino masses from structure formation. The constraint is based on the clustering scale σ_8 and the COBE normalization and leads to a conservative limit of 0.9 eV assuming 3 nearly degenerate neutrinos. The quoted limit is on the sum of the light neutrino masses.
- 76 CROFT 99 result based on the power spectrum of the Ly α forest. If $\Omega_{\rm matter} <$ 0.5, the limit is improved to $m_{\nu} <$ 2.4 ($\Omega_{\rm matter}/0.17$ –1) eV.

Limits on MASSES of Light Stable Right-Handed ν (with necessarily suppressed interaction strengths)

VALUE (eV)	DOCUMENT ID		TECN COMMENT			
• • • We do not use the following data for averages, fits, limits, etc. • •						
<100-200	⁷⁷ OLIVE	82	COSM Dirac $ u$			
<200-2000	⁷⁷ OLIVE	82	COSM Majorana $ u$			
77 Depending on interaction strength G_R where $G_R < G_F$.						

Limits on MASSES of Heavy Stable Right-Handed ν (with necessarily suppressed interaction strengths)

<i>VALUE</i> (GeV)	DOCUMENT II)	TECN	COMMENT	
• • • We do not use the f	ollowing data for averag	es, fits,	limits, e	etc. • • •	
> 10	⁷⁸ OLIVE	82	COSM	$G_R/G_F < 0.1$	
>100	⁷⁸ OLIVE	82	COSM	$G_R/G_F < 0.01$	

⁷⁸ These results apply to heavy Majorana neutrinos and are summarized by the equation: $m_{\nu} > 1.2 \text{ GeV } (G_F/G_R)$. The bound saturates, and if G_R is too small no mass range is allowed.

ν CHARGE

VALUE (units: electron cha	rge) CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the following	ng data for averages	, fits,	limits, e	etc. • • •
$< 3.7 \times 10^{-12}$	90	⁷⁹ GNINENKO		RVUE	Nuclear reactor
$< 2 \times 10^{-14}$		⁸⁰ RAFFELT			Red giant luminosity
$< 6 \times 10^{-14}$		81 RAFFELT	99	ASTR	Solar cooling
$<$ 4 \times 10 ⁻⁴		⁸² BABU	94	RVUE	BEBC beam dump
$< 3 \times 10^{-4}$		⁸³ DAVIDSON	91	RVUE	SLAC e^- beam dump
$< 2 \times 10^{-15}$		⁸⁴ BARBIELLINI	87	ASTR	SN 1987A
$< 1 \times 10^{-13}$					Solar energy losses

 $^{^{79}}$ GNINENKO 07 use limit on $\overline{\nu}_e$ magnetic moment from LI 03B to derive this result. The limit is considerably weaker than the limits on the charge of ν_e and $\overline{\nu}_e$ from various astrophysics considerations.

⁸⁰ This RAFFELT 99 limit applies to all neutrino flavors which are light enough (<5 keV) to be emitted from globular-cluster red giants.

 $^{^{81}}$ This RAFFELT 99 limit is derived from the helioseismological limit on a new energy-loss channel of the Sun, and applies to all neutrino flavors which are light enough ($<1 \, \text{keV}$) to be emitted from the sun.

 $^{^{82}}$ BABU 94 use COOPER-SARKAR 92 limit on ν magnetic moment to derive quoted result. It applies to $\nu_{\tau}.$

 $^{^{83}\,\}mathrm{DAVIDSON}$ 91 use data from early SLAC electron beam dump experiment to derive charge limit as a function of neutrino mass. It applies to $\nu_{\mathcal{T}}.$

⁸⁴ Exact BARBIELLINI 87 limit depends on assumptions about the intergalactic or galactic magnetic fields and about the direct distance and time through the field. It applies to ν_e .

⁸⁵ The limit applies to all flavors.

ν (MEAN LIFE) / MASS

Measures $\left[\sum |U_{\ell j}|^2 \; \Gamma_j \; m_j\right]^{-1}$, where the sum is over mass eigenstates which cannot be resolved experimentally. Some of the limits constrain the radiative decay and are based on the limit of the corresponding photon flux. Other apply to the decay of a heavier neutrino into the lighter one and a Majoron or other invisible particle. Many of these limits apply to any ν within the indicated mass range.

Limits on the radiative decay are either directly based on the limits of the corresponding photon flux, or are derived from the limits on the neutrino magnetic moments. In the later case the transition rate for $\nu_i \rightarrow \nu_i + \gamma$

is constrained by
$$\Gamma_{ij}=rac{1}{ au_{ij}}=rac{(m_i^2-m_j^2)^3}{m_i^3}~\mu_{ij}^2$$
 where μ_{ij} is the neutrino

transition moment in the mass eigenstates basis. Typically, the limits on lifetime based on the magnetic moments are many orders of magnitude more restrictive than limits based on the nonobservation of photons.

VALUE (s/eV)	CL%	DOCUMENT ID		TECN	COMMENT
> 15.4	90	⁸⁶ KRAKAUER	91	CNTR	$ u_{\mu}$, $\overline{ u}_{\mu}$ at LAMPF
> 7 × 10 ⁹		⁸⁷ RAFFELT	85	ASTR	r r
> 300	90	⁸⁸ REINES	74	CNTR	$\overline{ u}_{\mathbf{e}}$
• • • We do not use the	followir	ng data for averages	, fits,	limits, e	etc. • • •
$> 10^5 - 10^{10}$	95	⁸⁹ CECCHINI	11	ASTR	$\nu_2 \rightarrow \nu_1$ radiative decay
	90	⁹⁰ MIRIZZI	07	CMB	radiative decay
	90	⁹¹ MIRIZZI	07	CIB	radiative decay
		⁹² WONG	07	CNTR	Reactor $\overline{\nu}_e$
> 0.11	90	⁹³ XIN	05	CNTR	Reactor ν_e
		⁹⁴ XIN	05	CNTR	Reactor ν_e
> 0.004	90	⁹⁵ AHARMIM	04	SNO	quasidegen. $ u$ masses
$> 4.4 \times 10^{-5}$	90	⁹⁵ AHARMIM	04	SNO	hierarchical $ u$ masses
≳ 100	95	⁹⁶ CECCHINI	04	ASTR	Radiative decay for $ u$ mass $> 0.01 \text{ eV}$
> 0.067	90	⁹⁷ EGUCHI	04	KLND	quasidegen. $ u$ masses
$> 1.1 \times 10^{-3}$	90	⁹⁷ EGUCHI	04	KLND	hierarchical $ u$ masses
$> 8.7 \times 10^{-5}$	99	⁹⁸ BANDYOPA	03	FIT	nonradiative decay
≥ 4200	90	⁹⁹ DERBIN	02 B	CNTR	Solar pp and Be ν
$> 2.8 \times 10^{-5}$	99	¹⁰⁰ JOSHIPURA	02 B	FIT	nonradiative decay
		101 DOLGOV	99	COSM	
		102 BILLER	98	ASTR	$m_{ u} =$ 0.05–1 eV
$>$ 2.8 \times 10 ¹⁵	103,	, ¹⁰⁴ BLUDMAN	92	ASTR	$m_{ u} < 50 \; \mathrm{eV}$
none $10^{-12} - 5 \times 10^4$		¹⁰⁵ DODELSON	92	ASTR	$m_{ u}$ =1–300 keV
$<~10^{-12}~\text{or} >~5 \times 10^4$		¹⁰⁵ DODELSON	92	ASTR	$m_{ u}$ =1–300 keV
		¹⁰⁶ GRANEK	91	COSM	Decaying L^0
> 6.4	90	¹⁰⁷ KRAKAUER	91	CNTR	$ u_{m{e}}$ at LAMPF
$>$ 1.1 \times 10 ¹⁵		¹⁰⁸ WALKER	90	ASTR	$m_{\nu} = 0.03 - \sim 2 \text{ MeV}$
$>$ 6.3 $\times 10^{15}$	104,	, ¹⁰⁹ CHUPP	89	ASTR	$m_{\nu}^{\nu} < 20 \text{ eV}$
$>$ 1.7 \times 10 ¹⁵		¹⁰⁴ KOLB	89	ASTR	$m_{11}^{\nu} < 20 \text{ eV}$
		¹¹⁰ RAFFELT	89	RVUE	$\overline{\nu}$ (Dirac, Majorana)
		¹¹¹ RAFFELT	89 B	ASTR	

```
\times 10^{14}
                                            <sup>112</sup> VONFEILIT... 88
       8.3
                                            <sup>113</sup> OBERAUER
     22
                                  68
                                                                                          \overline{\nu}_R (Dirac)
>
                                            <sup>113</sup> OBERAUER
     38
                                   68
                                                                                          \overline{\nu} (Majorana)
                                            <sup>113</sup> OBERAUER
     59
                                  68
                                                                                          \overline{\nu}_I (Dirac)
                                  68
                                                  KETOV
                                                                               CNTR \overline{\nu} (Dirac)
     30
     20
                                  68
                                                  KETOV
                                                                               CNTR \overline{\nu} (Majorana)
                                            <sup>114</sup> BINETRUY
                                                                               COSM m_{\nu} \sim 1 \text{ MeV}
                                            <sup>115</sup> FRANK
       0.11
                                  90
                                                                               CNTR \nu \overline{\nu} LAMPF
>
               \times 10^{21}
                                            <sup>116</sup> STECKER
       2
                                                                               ASTR m_{\nu} = 10-100 \text{ eV}
>
                                            <sup>115</sup> BLIETSCHAU 78
       1.0
               \times 10^{-2}
                                  90
>
                                                                               HLBC \nu_{\mu}, CERN GGM
                                            <sup>115</sup> BLIETSCHAU 78
               \times 10^{-2}
                                   90
                                                                               HLBC \overline{\nu}_{\mu}, CERN GGM
                                            <sup>117</sup> FALK
               \times 10^{-11}
       3
                                                                               ASTR m_{\nu} <10 MeV
               \times 10^{-3}
                                            <sup>115</sup> BARNES
                                                                        77
                                                                               DBC
                                                                                          \nu, ANL 12-ft
                                            <sup>118</sup> COWSIK
                                                                        77
                                                                               ASTR
                                            <sup>115</sup> BELLOTTI
                                                                               HLBC \nu, CERN GGM
            \times 10^{-2}
                                            <sup>115</sup> BELLOTTI
                                                                        76
                                                                               HLBC \overline{\nu}, CERN GGM
```

- ⁸⁶ KRAKAUER 91 quotes the limit $\tau/m_{\nu_1} > (0.75a^2 + 21.65a + 26.3)\,\mathrm{s/eV}$, where a is a parameter describing the asymmetry in the neutrino decay defined as $dN_{\gamma}/d\mathrm{cos}\theta = (1/2)(1+a\cos\theta)$ The parameter a=0 for a Majorana neutrino, but can vary from -1 to 1 for a Dirac neutrino. The bound given by the authors is the most conservative (which applies for a=-1).
- 87 RAFFELT 85 limit on the radiative decay is from solar x- and γ -ray fluxes. Limit depends on ν flux from $p\,p$, now established from GALLEX and SAGE to be > 0.5 of expectation.
- 88 REINES 74 looked for ν of nonzero mass decaying radiatively to a neutral of lesser mass $+~\gamma.$ Used liquid scintillator detector near fission reactor. Finds lab lifetime $6\times10^7\,\mathrm{s}$ or more. Above value of (mean life)/mass assumes average effective neutrino energy of 0.2 MeV. To obtain the limit $6\times10^7\,\mathrm{s}$ REINES 74 assumed that the full $\overline{\nu}_e$ reactor flux could be responsible for yielding decays with photon energies in the interval 0.1 MeV 0.5 MeV. This represents some overestimate so their lower limit is an over-estimate of the lab lifetime (VOGEL 84). If so, OBERAUER 87 may be comparable or better.
- 89 CECCHINI 11 search for radiative decays of solar neutrinos into visible photons during the 2006 total solar eclipse. The range of (mean life)/mass values corresponds to a range of ν_1 masses between 10^{-4} and 0.1 eV.
- 90 MIRIZZI 07 determine a limit on the neutrino radiative decay from analysis of the maximum allowed distortion of the CMB spectrum as measured by the COBE/FIRAS. For the decay $\nu_2 \rightarrow \nu_1$ the lifetime limit is $\lesssim 4 \times 10^{20}$ s for $m_{min} \lesssim 0.14$ eV. For transition with the $|\Delta m_{31}|$ mass difference the lifetime limit is $\sim 2 \times 10^{19}$ s for $m_{min} \lesssim 0.14$ eV and $\sim 5 \times 10^{20}$ s for $m_{min} \gtrsim 0.14$ eV.
- 91 MIRIZZI 07 determine a limit on the neutrino radiative decay from analysis of the cosmic infrared background (CIB) using the Spitzer Observatory data. For transition with the $|\Delta m_{31}|$ mass difference they obtain the lifetime limit $\sim 10^{20}$ s for $m_{min} \lesssim 0.14$ eV.
- WONG 07 use their limit on the neutrino magnetic moment together with the assumed experimental value of $\Delta m_{13}^2 \sim 2\times 10^{-3}~\text{eV}^2$ to obtain $\tau_{13}/m_1^3>3.2\times 10^{27}~\text{s/eV}^3$ for the radiative decay in the case of the inverted mass hierarchy. Similarly to RAFFELT 89 this limit can be violated if electric and magnetic moments are equal to each other. Analogous, but numerically somewhat different limits are obtained for τ_{23} and τ_{21} .
- 93 XIN 05 search for the γ from radiative decay of $\nu_{\rm e}$ produced by the electron capture on $^{51}{\rm Cr.}$ No events were seen and the limit on τ/m_{ν} was derived. This is a weaker limit on the decay of $\nu_{\rm e}$ than KRAKAUER 91.

- 94 XIN 05 use their limit on the neutrino magnetic moment of ν_e together with the assumed experimental value of $\Delta m_{1,3}^2 \sim 2 \times 10^{-3} \, \mathrm{eV^2}$ to obtain $\tau_{13}/m_1^3 > 1 \times 10^{23} \, \mathrm{s/eV^3}$ for the radiative decay in the case of the inverted mass hierarchy. Similarly to RAFFELT 89 this limit can be violated if electric and magnetic moments are equal to each other. Analogous, but numerically somewhat different limits are obtained for τ_{23} and τ_{21} . Again, this limit is specific for ν_e .
- ⁹⁵ AHARMIM 04 obtained these results from the solar $\overline{\nu}_e$ flux limit set by the SNO measurement assuming ν_2 decay through nonradiative process $\nu_2 \to \overline{\nu}_1 X$, where X is a Majoron or other invisible particle. Limits are given for the cases of quasidegenerate and hierarchical neutrino masses.
- 96 CECCHINI 04 obtained this bound through the observations performed on the occasion of the 21 June 2001 total solar eclipse, looking for visible photons from radiative decays of solar neutrinos. Limit is a τ/m_{ν_2} in $\nu_2 \rightarrow ~\nu_1 \gamma.$ Limit ranges from $\sim~100$ to 10^7 s/eV for 0.01 $< m_{\nu_1} <$ 0.1 eV.
- ⁹⁷EGUCHI 04 obtained these results from the solar $\overline{\nu}_e$ flux limit set by the KamLAND measurement assuming ν_2 decay through nonradiative process $\nu_2 \to \overline{\nu}_1 X$, where X is a Majoron or other invisible particle. Limits are given for the cases of quasidegenerate and hierarchical neutrino masses.
- The ratio of the lifetime over the mass derived by BANDYOPADHYAY 03 is for ν_2 . They obtained this result using the following solar-neutrino data: total rates measured in Cl and Ga experiments, the Super-Kamiokande's zenith-angle spectra, and SNO's day and night spectra. They assumed that ν_1 is the lowest mass, stable or nearly stable neutrino state and ν_2 decays through nonradiative Majoron emission process, $\nu_2 \to \overline{\nu}_1 + J$, or through nonradiative process with all the final state particles being sterile. The best fit is obtained in the region of the LMA solution.
- ⁹⁹ DERBIN 02B (also BACK 03B) obtained this bound for the radiative decay from the results of background measurements with Counting Test Facility (the prototype of the Borexino detector). The laboratory gamma spectrum is given as $dN_{\gamma}/d\cos\theta = (1/2)(1+\alpha\cos\theta)$ with $\alpha=0$ for a Majorana neutrino, and α varying to -1 to 1 for a Dirac neutrino. The listed bound is for the case of $\alpha=0$. The most conservative bound 1.5×10^3 s eV $^{-1}$ is obtained for the case of $\alpha=-1$.
- The ratio of the lifetime over the mass derived by JOSHIPURA 02B is for ν_2 . They obtained this result from the total rates measured in all solar neutrino experiments. They assumed that ν_1 is the lowest mass, stable or nearly stable neutrino state and ν_2 decays through nonradiative process like Majoron emission decay, $\nu_2 \rightarrow \nu_1' + J$ where ν_1' state is sterile. The exact limit depends on the specific solution of the solar neutrino problem. The quoted limit is for the LMA solution.
- 101 DOLGOV 99 places limits in the (Majorana) τ -associated ν mass-lifetime plane based on nucleosynthesis. Results would be considerably modified if neutrino oscillations exist.
- 102 BILLER 98 use the observed TeV $\gamma\text{-ray}$ spectra to set limits on the mean life of any radiatively decaying neutrino between 0.05 and 1 eV. Curve shows $\tau_{\nu}/\text{B}_{\gamma}>0.15\times10^{21}\,\text{s}$ at 0.05 eV, $>1.2\times10^{21}\,\text{s}$ at 0.17 eV, $>3\times10^{21}\,\text{s}$ at 1 eV, where B_{γ} is the branching ratio to photons.
- 103 BLUDMAN 92 sets additional limits by this method for higher mass ranges. Cosmological limits are also obtained.
- Limit on the radiative decay based on nonobservation of γ 's in coincidence with ν 's from SN 1987A.
- 105 DODELSON 92 range is for wrong-helicity keV mass Dirac ν 's from the core of neutron star in SN 1987A decaying to ν 's that would have interacted in KAM2 or IMB detectors.
- $^{106}\,\mathrm{GRANEK}$ 91 considers heavy neutrino decays to $\gamma\nu_L$ and $3\nu_L$, where m_{ν_L} <100 keV. Lifetime is calculated as a function of heavy neutrino mass, branching ratio into $\gamma\nu_L$, and m_{ν_I} .
- 107 KRAKAUER 91 quotes the limit for ν_e , $\tau/m_{\nu} > (0.3a^2 + 9.8a + 15.9)$ s/eV, where a is a parameter describing the asymmetry in the radiative neutrino decay defined as

- $dN_{\gamma}/d\cos\theta = (1/2)(1 + a\cos\theta)$ a = 0 for a Majorana neutrino, but can vary from -1to 1 for a Dirac neutrino. The bound given by the authors is the most conservative (which applies for a = -1).
- $^{108}\,\mathrm{WALKER}$ 90 uses SN 1987A γ flux limits after 289 days.
- 109 CHUPP 89 should be multiplied by a branching ratio (about 1) and a detection efficiency (about 1/4), and pertains to radiative decay of any neutrino to a lighter or sterile neutrino.
- $^{110}\,\text{RAFFELT}$ 89 uses KYULDJIEV 84 to obtain $\tau m^3>3\times 10^{18}\,\text{s eV}^3$ (based on $\overline{\nu}_e\,e^-$ cross sections). The bound for the radiative decay is not valid if electric and magnetic transition moments are equal for Dirac neutrinos.
- 111 RAFFELT 89B analyze stellar evolution and exclude the region $3 \times 10^{12} < \tau m^3$ $< 3 \times 10^{21} \,\mathrm{s}\,\mathrm{eV}^3$.
- 112 Model-dependent theoretical analysis of SN 1987A neutrinos. Quoted limit is for $\left[\sum_{j}|U_{\ell j}|^{2}\Gamma_{j}m_{j}\right]^{-1}$, where $\ell\!=\!\mu$, au. Limit is $3.3 imes10^{14}$ s/eV for $\ell\!=\!e$.
- 113 OBERAUER 87 looks for photons and e^+e^- pairs from radiative decays of reactor neutrinos.
 114 BINETRUY 84 finds $\tau < 10^8$ s for neutrinos in a radiation-dominated universe.
 115 These experiments look for $\nu_k \to \nu_j \gamma$ or $\overline{\nu}_k \to \overline{\nu}_j \gamma$.

- ¹¹⁶ STECKER 80 limit based on UV background; result given is $\tau > 4 \times 10^{22}$ s at $m_{\nu} = 20$ eV.
- ¹¹⁷ FALK 78 finds lifetime constraints based on supernova energetics.
- 118 COWSIK 77 considers variety of scenarios. For neutrinos produced in the big bang, present limits on optical photon flux require $\tau > 10^{23}\,\mathrm{s}$ for $m_{\nu} \sim 1\,\mathrm{eV}$. See also COWSIK 79 and GOLDMAN 79.

u MAGNETIC MOMENT

The coupling of neutrinos to an electromagnetic field is a characterized by a 3×3 matrix λ of the magnetic (μ) and electric (d) dipole moments $(\lambda = \mu - id)$. For Majorana neutrinos the matrix λ is antisymmetric and only transition moments are allowed, while for Dirac neutrinos λ is a general 3×3 matrix. In the standard electroweak theory extended to include neutrino masses (see FUJIKAWA 80) $\mu_{\nu} = 3eG_F m_{\nu}/(8\pi^2\sqrt{2}) =$ $3.2 \times 10^{-19} (m_{\nu}/{\rm eV}) \mu_B$, i.e. it is unobservably small given the known small neutrino masses. In more general models there is no longer a proportionality between neutrino mass and its magnetic moment, even though only massive neutrinos have nonvanishing magnetic moments without fine tuning.

Laboratory bounds on λ are obtained via elastic ν -e scattering, where the scattered neutrino is not observed. The combinations of matrix elements of λ that are constrained by various experiments depend on the initial neutrino flavor and on its propagation between source and detector (e.g., solar ν_e and reactor $\overline{\nu}_e$ do not constrain the same combinations). The listings below therefore identify the initial neutrino flavor.

Other limits, e.g. from various stellar cooling processes, apply to all neutrino flavors. Analogous flavor independent, but weaker, limits are obtained from the analysis of $e^+e^- \rightarrow \nu \overline{\nu} \gamma$ collider experiments.

VALU	$E(10^{-10} \mu_B)$	CL%	DOCUMENT ID		TECN	COMMENT
<	0.32		119 BEDA	10	CNTR	Reactor $\overline{\nu}_e$
<	6.8	90	¹²⁰ AUERBACH	01	LSND	$ u_e e, \nu_\mu e$ scattering
< 3	900	90	¹²¹ SCHWIENHO.	01	DONU	$ u_{\tau} e^{-} \rightarrow \nu_{\tau} e^{-}$

• • • We do not use the	followi	ng data for a	verages, fits,	limits, e	tc. • • •
< 2.2	90	122 DENIZ	10	TEXO	Reactor $\overline{\nu}_e$
< 0.011-0.027		¹²³ KUZNE	TSOV 09		$\nu_L \rightarrow \nu_R^{e}$ in SN1987A
< 0.54	90	124 ARPES		BORX	Solar ν spectrum shape
< 0.58	90	¹²⁵ BEDA	07		Reactor $\overline{\nu}_{e}$
< 0.74	90	$^{126}\mathrm{WONG}$	07	CNTR	Reactor $\overline{\nu}_e$
< 0.9	90	¹²⁷ DARAK	TCH 05		Reactor $\overline{\nu}_e$
< 130	90	¹²⁸ XIN	05	CNTR	Reactor ν_e
< 37	95	129 GRIFOL	.S 04	FIT	Solar 8 B $^{\nu}$ (SNO NC)
< 3.6	90	¹³⁰ LIU	04	SKAM	Solar ν spectrum shape
< 1.1	90	¹³¹ LIU	04	SKAM	Solar ν spectrum shape (LMA region)
< 5.5	90	¹³² BACK	03 B	CNTR	Solar pp and Be ν
< 1.0	90	133 DARAK	TCH 03		Reactor $\overline{ u}_e$
< 1.3	90	¹³⁴ LI	03 B	CNTR	Reactor $\overline{ u}_e$
< 2	90	135 GRIMU		FIT	solar $+$ reactor (Majorana $ u$)
<80000	90	136 TANIM	OTO 00	RVUE	,
< 0.01–0.04		137 AYALA	99	ASTR	$\nu_L \rightarrow \nu_R \text{ in SN 1987A}$
< 1.5	90	138 BEACO	M 99		u spectrum shape
< 0.03		139 RAFFEI	_T 99		Red giant luminosity
< 4		¹⁴⁰ RAFFEI			Solar cooling
<44000	90	ABREU		DLPH	
<33000	90	141 ACCIAF	RRI 97Q	L3	$e^+e^- ightarrow \ u \overline{ u} \gamma$ at LEP
< 0.62		¹⁴² ELMFO	RS 97	COSM	Depolarization in early universe plasma
<27000	95	143 ESCRIB	ANO 97	RVHF	
<27000 < 30	95 90	143 ESCRIB		RVUE CHM2	$\Gamma(Z \rightarrow \nu \nu)$ at LEP
< 30	90	VILAIN	95 B	CHM2	$\Gamma(Z ightarrow u u)$ at LEP $ u_{\mu} e ightarrow u_{\mu} e$
< 30 <55000	90 90	VILAIN GOULD	95B 94	CHM2 RVUE	$\begin{array}{ll} \Gamma(Z\to \ \nu \nu) \ {\rm at\ LEP} \\ \nu_{\mu}{\rm e} \to \ \nu_{\mu}{\rm e} \\ {\rm e}^{+}{\rm e}^{-} \to \ \nu \overline{\nu} \gamma \ {\rm at\ LEP} \end{array}$
< 30 <55000 < 1.9	90 90 95	VILAIN GOULD ¹⁴⁴ DERBIN	95B 94 N 93	CHM2 RVUE CNTR	$\begin{array}{ll} \Gamma(Z \to \ \nu \nu) \ \text{at LEP} \\ \nu_{\mu} e \to \ \nu_{\mu} e \\ e^{+} e^{-} \to \ \nu \overline{\nu} \gamma \ \text{at LEP} \\ \text{Reactor} \ \overline{\nu} e \to \ \overline{\nu} e \end{array}$
< 30 <55000 < 1.9 < 5400	90 90 95 90	VILAIN GOULD 144 DERBIN 145 COOPE	95B 94 N 93 :R 92	CHM2 RVUE CNTR BEBC	$\begin{array}{l} \Gamma(Z \to \ \nu \nu) \ \text{at LEP} \\ \nu_{\mu} e \to \ \nu_{\mu} e \\ e^{+} e^{-} \to \ \nu \overline{\nu} \gamma \ \text{at LEP} \\ \text{Reactor} \ \overline{\nu} e \to \ \overline{\nu} e \\ \nu_{\tau} e^{-} \to \ \nu_{\tau} e^{-} \end{array}$
< 30 <55000 < 1.9 < 5400 < 2.4	90 90 95 90 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN	958 94 N 93 :R 92 KIN 92	CHM2 RVUE CNTR BEBC CNTR	$\begin{array}{l} \Gamma(Z \to \ \nu \nu) \ \text{at LEP} \\ \nu_{\mu} e \to \ \nu_{\mu} e \\ e^{+} e^{-} \to \ \nu \overline{\nu} \gamma \ \text{at LEP} \\ \text{Reactor} \ \overline{\nu} e \to \ \overline{\nu} e \\ \nu_{\tau} e^{-} \to \ \nu_{\tau} e^{-} \\ \text{Reactor} \ \overline{\nu} e \to \ \overline{\nu} e \end{array}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000	90 90 95 90 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP	958 94 N 93 RR 92 KIN 92 ANDE 91	CHM2 RVUE CNTR BEBC CNTR RVUE	$\begin{array}{l} \Gamma(Z\rightarrow \ \nu\nu) \ \text{at LEP} \\ \nu_{\mu}e\rightarrow \ \nu_{\mu}e \\ e^{+}e^{-}\rightarrow \ \nu\overline{\nu}\gamma \ \text{at LEP} \\ \text{Reactor} \ \overline{\nu}e\rightarrow \ \overline{\nu}e \\ \nu_{\tau}e^{-}\rightarrow \ \nu_{\tau}e^{-} \\ \text{Reactor} \ \overline{\nu}e\rightarrow \ \overline{\nu}e \\ e^{+}e^{-}\rightarrow \ \nu\overline{\nu}\gamma \end{array}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100	90 90 95 90 90 90 95	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN	958 94 N 93 FR 92 KIN 92 ANDE 91 IBOS 91	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM	$\begin{array}{l} \Gamma(Z\rightarrow \ \nu\nu) \ \text{at LEP} \\ \nu_{\mu} e \rightarrow \ \nu_{\mu} e \\ e^{+} e^{-} \rightarrow \ \nu\overline{\nu}\gamma \ \text{at LEP} \\ \text{Reactor} \ \overline{\nu} e \rightarrow \ \overline{\nu} e \\ \nu_{\tau} e^{-} \rightarrow \ \nu_{\tau} e^{-} \\ \text{Reactor} \ \overline{\nu} e \rightarrow \ \overline{\nu} e \\ e^{+} e^{-} \rightarrow \ \nu\overline{\nu}\gamma \\ \nu_{\mu} e \rightarrow \ \nu_{\mu} e \end{array}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5	90 90 95 90 90 90 95 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN	958 94 N 93 R 92 KIN 92 ANDE 91 IBOS 91 S 90	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM CNTR	$\begin{array}{l} \Gamma(Z\rightarrow \ \nu\nu) \ \text{at LEP} \\ \nu_{\mu}e\rightarrow \ \nu_{\mu}e \\ e^{+}e^{-}\rightarrow \ \nu\overline{\nu}\gamma \ \text{at LEP} \\ \text{Reactor } \overline{\nu}e\rightarrow \ \overline{\nu}e \\ \nu_{\tau}e^{-}\rightarrow \ \nu_{\tau}e^{-} \\ \text{Reactor } \overline{\nu}e\rightarrow \ \overline{\nu}e \\ e^{+}e^{-}\rightarrow \ \nu\overline{\nu}\gamma \\ \nu_{\mu}e\rightarrow \ \nu_{\mu}e \\ \nu_{\mu}e\rightarrow \ \nu_{\mu}e \end{array}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8	90 90 95 90 90 90 95 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA	958 94 N 93 ER 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM CNTR	$\begin{array}{l} \Gamma(Z\rightarrow \ \nu\nu) \ \text{at LEP} \\ \nu_{\mu}e\rightarrow \ \nu_{\mu}e \\ e^{+}e^{-}\rightarrow \ \nu\overline{\nu}\gamma \ \text{at LEP} \\ \text{Reactor } \overline{\nu}e\rightarrow \ \overline{\nu}e \\ \nu_{\tau}e^{-}\rightarrow \ \nu_{\tau}e^{-} \\ \text{Reactor } \overline{\nu}e\rightarrow \ \overline{\nu}e \\ e^{+}e^{-}\rightarrow \ \nu\overline{\nu}\gamma \\ \nu_{\mu}e\rightarrow \ \nu_{\mu}e \\ \nu_{\mu}e\rightarrow \ \nu_{\mu}e \\ \text{LAMPF } \nu e\rightarrow \ \nu e \end{array}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4	90 90 95 90 90 90 95 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA	958 94 N 93 R 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90 UER 90	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR	$\begin{split} &\Gamma(Z \to \nu \nu) \text{ at LEP} \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \text{ at LEP} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &\nu_{\tau} e^{-} \to \nu_{\tau} e^{-} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\text{LAMPF } \nu e \to \nu e \\ &\text{LAMPF } (\nu_{\mu}, \overline{\nu}_{\mu}) e \\ &\text{elast.} \end{split}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4 < 0.02	90 90 95 90 90 90 95 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA 148 KRAKA	958 94 N 93 R 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90 UER 90	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR CNTR	$\begin{array}{l} \Gamma(Z\rightarrow \ \nu\nu) \ {\rm at\ LEP} \\ \nu_{\mu} e \rightarrow \ \nu_{\mu} e \\ e^{+} e^{-} \rightarrow \ \nu\overline{\nu}\gamma \ {\rm at\ LEP} \\ {\rm Reactor} \ \overline{\nu} e \rightarrow \ \overline{\nu} e \\ \nu_{\tau} e^{-} \rightarrow \ \nu_{\tau} e^{-} \\ {\rm Reactor} \ \overline{\nu} e \rightarrow \ \overline{\nu} e \\ e^{+} e^{-} \rightarrow \ \nu\overline{\nu}\gamma \\ \nu_{\mu} e \rightarrow \ \nu_{\mu} e \\ \nu_{\mu} e \rightarrow \ \nu_{\mu} e \\ {\rm LAMPF} \ \nu e \rightarrow \ \nu e \\ {\rm LAMPF} \ (\nu_{\mu}, \ \overline{\nu}_{\mu}) e \\ {\rm elast.} \\ {\rm Red\ giant\ luminosity} \end{array}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4	90 90 95 90 90 90 95 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA 148 KRAKA 149 RAFFEI 150 RAFFEI	958 94 N 93 GR 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90 UER 90 LT 90 LT 898	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR CNTR ASTR ASTR	$\begin{split} &\Gamma(Z\to\nu\nu) \text{ at LEP} \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &e^{+}e^{-}\to\nu\overline{\nu}\gamma \text{ at LEP} \\ &\text{Reactor } \overline{\nu}e\to\overline{\nu}e \\ &\nu_{\tau}e^{-}\to\nu_{\tau}e^{-} \\ &\text{Reactor } \overline{\nu}e\to\overline{\nu}e \\ &e^{+}e^{-}\to\nu\overline{\nu}\gamma \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &\text{LAMPF } \nu e\to\nu e \\ &\text{LAMPF } (\nu_{\mu},\overline{\nu}_{\mu})e \\ &\text{elast.} \\ &\text{Red giant luminosity} \\ &\text{Cooling helium stars} \end{split}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4 < 0.02 < 0.1	90 90 95 90 90 90 95 90 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA 148 KRAKA 149 RAFFEI 150 RAFFEI 151 FUKUG	958 94 N 93 R 92 KIN 92 ANDE 91 BOS 91 S 90 UER 90 UER 90 T 90 T 898 ITA 88	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR CNTR ASTR ASTR COSM	$\begin{split} &\Gamma(Z\to\nu\nu) \text{ at LEP} \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &e^{+}e^{-}\to\nu\overline{\nu}\gamma \text{ at LEP} \\ &\text{Reactor } \overline{\nu}e\to\overline{\nu}e \\ &\nu_{\tau}e^{-}\to\nu_{\tau}e^{-} \\ &\text{Reactor } \overline{\nu}e\to\overline{\nu}e \\ &e^{+}e^{-}\to\nu\overline{\nu}\gamma \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &\text{LAMPF } \nu e\to\nu e \\ &\text{LAMPF } (\nu_{\mu},\overline{\nu}_{\mu})e \\ &\text{elast.} \\ &\text{Red giant luminosity} \\ &\text{Cooling helium stars} \\ &\text{Primordial magn. fields} \end{split}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4 < 0.02 < 0.1	90 90 95 90 90 90 95 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA 148 KRAKA 149 RAFFEI 150 RAFFEI 151 FUKUG 152 GROTO	958 94 N 93 R 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90 UER 90 LT 90 LT 898 ITA 88 SH 88	RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR CNTR CNTR ASTR ASTR ASTR COSM RVUE	$\begin{split} &\Gamma(Z \to \nu \nu) \text{ at LEP} \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \text{ at LEP} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &\nu_{\tau} e^{-} \to \nu_{\tau} e^{-} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\text{LAMPF } \nu e \to \nu e \\ &\text{LAMPF } (\nu_{\mu}, \overline{\nu}_{\mu}) e \\ &\text{elast.} \\ &\text{Red giant luminosity} \\ &\text{Cooling helium stars} \\ &\text{Primordial magn. fields} \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \end{split}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4 < 0.02 < 0.1 <40000 < .3	90 90 95 90 90 90 95 90 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA 148 KRAKA 149 RAFFEI 150 RAFFEI 151 FUKUG 152 GROTO 150 RAFFEI	958 94 N 93 R 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90 UER 90 LT 90 LT 898 ITA 88 LH 88 LT 888	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR CNTR CNTR ASTR ASTR ASTR COSM RVUE ASTR	$\begin{split} &\Gamma(Z \to \nu \nu) \text{ at LEP} \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \text{ at LEP} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &\nu_{\tau} e^{-} \to \nu_{\tau} e^{-} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\text{LAMPF } \nu e \to \nu e \\ &\text{LAMPF } (\nu_{\mu}, \overline{\nu}_{\mu}) e \\ &\text{elast.} \\ &\text{Red giant luminosity} \\ &\text{Cooling helium stars} \\ &\text{Primordial magn. fields} \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \\ &\text{He burning stars} \end{split}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4 < 0.02 < 0.1 <40000 < .3 < 0.11	90 90 95 90 90 90 95 90 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA 148 KRAKA 149 RAFFEI 150 RAFFEI 151 FUKUG 152 GROTO 150 RAFFEI 150 FUKUG	958 94 N 93 GR 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90 UER 90 T 898 ITA 88 ITA 88 ITA 87	RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR CNTR ASTR ASTR ASTR COSM RVUE ASTR ASTR	$\begin{split} &\Gamma(Z \to \nu \nu) \text{ at LEP} \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \text{ at LEP} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &\nu_{\tau} e^{-} \to \nu_{\tau} e^{-} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\text{LAMPF } \nu e \to \nu e \\ &\text{LAMPF } (\nu_{\mu}, \overline{\nu}_{\mu}) e \\ &\text{elast.} \\ &\text{Red giant luminosity} \\ &\text{Cooling helium stars} \\ &\text{Primordial magn. fields} \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \\ &\text{He burning stars} \\ &\text{Cooling helium stars} \end{split}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4 < 0.02 < 0.1 <40000 < .3	90 90 95 90 90 90 95 90 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA 148 KRAKA 149 RAFFEI 150 RAFFEI 151 FUKUG 152 GROTO 150 RAFFEI	958 94 N 93 GR 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90 UER 90 T 898 ITA 88 ITA 88 ITA 87	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR CNTR CNTR ASTR ASTR ASTR COSM RVUE ASTR	$\begin{split} &\Gamma(Z\to\nu\nu) \text{ at LEP} \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &e^{+}e^{-}\to\nu\overline{\nu}\gamma \text{ at LEP} \\ &\text{Reactor } \overline{\nu}e\to\overline{\nu}e \\ &\nu_{\tau}e^{-}\to\nu_{\tau}e^{-} \\ &\text{Reactor } \overline{\nu}e\to\overline{\nu}e \\ &e^{+}e^{-}\to\nu\overline{\nu}\gamma \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &\text{LAMPF } (\nu_{\mu},\overline{\nu}_{\mu})e \\ &\text{elast.} \\ &\text{Red giant luminosity} \\ &\text{Cooling helium stars} \\ &\text{Primordial magn. fields} \\ &e^{+}e^{-}\to\nu\overline{\nu}\gamma \\ &\text{He burning stars} \\ &\text{Cosmic EM back-} \end{split}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4 < 0.02 < 0.1 <40000 ≤ .3 < 0.11 < 0.0006	90 90 95 90 90 90 95 90 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA 148 KRAKA 149 RAFFEI 150 RAFFEI 151 FUKUG 152 GROTO 150 RAFFEI 150 FUKUG 153 NUSSIN	958 94 N 93 R 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90 UER 90 LT 90 LT 89B ITA 88 SH 88 LT 88B ITA 87 IOV 87	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR CNTR ASTR ASTR ASTR ASTR ASTR ASTR ASTR	$\begin{split} &\Gamma(Z\to\nu\nu) \text{ at LEP} \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &e^+e^-\to\nu\overline{\nu}\gamma \text{ at LEP} \\ &\text{Reactor } \overline{\nu}e\to\overline{\nu}e \\ &\nu_{\tau}e^-\to\nu_{\tau}e^- \\ &\text{Reactor } \overline{\nu}e\to\overline{\nu}e \\ &e^+e^-\to\nu\overline{\nu}\gamma \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &\nu_{\mu}e\to\nu_{\mu}e \\ &\text{LAMPF } (\nu_{\mu},\overline{\nu}_{\mu})e \\ &\text{elast.} \\ &\text{Red giant luminosity} \\ &\text{Cooling helium stars} \\ &\text{Primordial magn. fields} \\ &e^+e^-\to\nu\overline{\nu}\gamma \\ &\text{He burning stars} \\ &\text{Cosmic EM backgrounds} \end{split}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4 < 0.02 < 0.1 <40000 ≤ .3 < 0.11 < 0.0006 < 0.1-0.2	90 90 95 90 90 90 95 90 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA 148 KRAKA 149 RAFFEI 150 RAFFEI 151 FUKUG 152 GROTO 150 RAFFEI 150 FUKUG	958 94 N 93 R 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90 UER 90 LT 90 LT 89B ITA 88 SH 88 LT 88B ITA 87 IOV 87	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR CNTR ASTR ASTR ASTR ASTR ASTR ASTR ASTR AS	$\begin{split} &\Gamma(Z \to \nu \nu) \text{ at LEP} \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \text{ at LEP} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &\nu_{\tau} e^{-} \to \nu_{\tau} e^{-} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\text{LAMPF } \nu e \to \nu e \\ &\text{LAMPF } (\nu_{\mu}, \overline{\nu}_{\mu}) e \\ &\text{elast.} \\ &\text{Red giant luminosity} \\ &\text{Cooling helium stars} \\ &\text{Primordial magn. fields} \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \\ &\text{He burning stars} \\ &\text{Cosmic EM backgrounds} \\ &^{4} \text{He abundance} \end{split}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4 < 0.02 < 0.1 <40000 ≤ .3 < 0.11 < 0.0006	90 90 95 90 90 90 95 90 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA 148 KRAKA 149 RAFFEI 150 RAFFEI 151 FUKUG 152 GROTO 150 RAFFEI 150 FUKUG 153 NUSSIN MORGA BEG	958 94 N 93 R 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90 UER 90 LT 90 LT 89B ITA 88 LT 88B LT 88B ITA 87 IOV 87 AN 81 78	CHM2 RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR CNTR ASTR ASTR ASTR ASTR ASTR ASTR ASTR	$\begin{split} &\Gamma(Z \to \nu \nu) \text{ at LEP} \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \text{ at LEP} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &\nu_{\tau} e^{-} \to \nu_{\tau} e^{-} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\text{LAMPF } \nu e \to \nu e \\ &\text{LAMPF } (\nu_{\mu}, \overline{\nu}_{\mu}) e \\ &\text{elast.} \\ &\text{Red giant luminosity} \\ &\text{Cooling helium stars} \\ &\text{Primordial magn. fields} \\ &e^{+} e^{-} \to \nu \overline{\nu} \gamma \\ &\text{He burning stars} \\ &\text{Cooling helium stars} \\ &\text{Cosmic EM backgrounds} \\ &^{4} \text{He abundance} \\ &^{5} \text{tellar plasmons} \end{split}$
< 30 <55000 < 1.9 < 5400 < 2.4 <56000 < 100 < 8.5 < 10.8 < 7.4 < 0.02 < 0.1 <40000 ≤ .3 < 0.11 < 0.0006 < 0.1-0.2 < 0.85	90 90 95 90 90 90 95 90 90	VILAIN GOULD 144 DERBIN 145 COOPE 146 VIDYAN DESHP 147 DOREN AHREN 148 KRAKA 148 KRAKA 149 RAFFEI 150 RAFFEI 151 FUKUG 152 GROTO 150 RAFFEI 150 FUKUG 153 NUSSIN	958 94 N 93 R 92 KIN 92 ANDE 91 IBOS 91 S 90 UER 90 UER 90 LT 90 LT 89B ITA 88 LT 88B LT 88B ITA 87 IOV 87 AN 81 78	RVUE CNTR BEBC CNTR RVUE CHRM CNTR CNTR CNTR CNTR ASTR ASTR ASTR ASTR ASTR ASTR ASTR AS	$\begin{split} &\Gamma(Z \to \nu \nu) \text{ at LEP} \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &e^{+} e^{-} \to \nu_{\overline{\nu}} \gamma \text{ at LEP} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &\nu_{\tau} e^{-} \to \nu_{\tau} e^{-} \\ &\text{Reactor } \overline{\nu} e \to \overline{\nu} e \\ &e^{+} e^{-} \to \nu_{\overline{\nu}} \gamma \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\nu_{\mu} e \to \nu_{\mu} e \\ &\text{LAMPF } \nu e \to \nu e \\ &\text{LAMPF } (\nu_{\mu}, \overline{\nu}_{\mu}) e \\ &\text{elast.} \\ &\text{Red giant luminosity} \\ &\text{Cooling helium stars} \\ &\text{Primordial magn. fields} \\ &e^{+} e^{-} \to \nu_{\overline{\nu}} \gamma \\ &\text{He burning stars} \\ &\text{Cooling helium stars} \\ &\text{Cosmic EM backgrounds} \\ &^{4} \text{He abundance} \\ &^{5} \text{tellar plasmons} \\ &\text{Red giants } + \text{degenerate dwarfs} \end{split}$

< 1 BERNSTEIN 63 ASTR Solar cooling < 14 COWAN 57 CNTR Reactor $\overline{\nu}$

- $^{119}\, \rm BEDA~10~report~\overline{\nu}_e\,e^-$ scattering results, using the Kalinin Nuclear Power Plant and a shielded Ge detector. The recoil electron spectrum is analyzed between 2.9 and 45 keV. Supersedes BEDA 07. This is the most stringent limit on the magnetic moment of reactor $\overline{\nu}_e$.
- 120 AUERBACH 01 limit is based on the LSND ν_e and ν_μ electron scattering measurements. The limit is slightly more stringent than KRAKAUER 90.
- 121 SCHWIENHORST 01 quote an experimental sensitivity of 4.9×10^{-7} .
- $^{122}\, {\sf DENIZ}\,\, 10$ observe reactor $\overline{\nu}_e\, e$ scattering with recoil kinetic energies 3–8 MeV using CsI(TI) detectors. The observed rate and spectral shape are consistent with the Standard Model prediction, leading to the reported constraint on $\overline{\nu}_e$ magnetic moment.
- 123 KUZNETSOV 09 obtain a limit on the flavor averaged magnetic moment of Dirac neutrinos from the time averaged neutrino signal of SN1987A. Improves and supersedes the analysis of BARBIERI 88 and AYALA 99.
- 124 ARPESELLA 08A obtained this limit using the shape of the recoil electron energy spectrum from the Borexino 192 live days of solar neutrino data.
- 125 BEDA 07 performed search for electromagnetic $\overline{\nu}_e$ -e scattering at Kalininskaya nuclear reactor. A Ge detector with active and passive shield was used and the electron recoil spectrum between 3.0 and 61.3 keV analyzed. Superseded by BEDA 10.
- 126 WONG 07 performed search for non-standard $\overline{\nu}_e$ -e scattering at the Kuo-Sheng nuclear reactor. Ge detector equipped with active anti-Compton shield is used. Most stringent laboratory limit on magnetic moment of reactor $\overline{\nu}_e$. Supersedes LI 03B.
- ¹²⁷ DARAKTCHIEVA 05 present the final analysis of the search for non-standard $\overline{\nu}_e$ -e scattering component at Bugey nuclear reactor. Full kinematical event reconstruction of both the kinetic energy above 700 keV and scattering angle of the recoil electron, by use of TPC. Most stringent laboratory limit on magnetic moment. Supersedes DARAKTCHIEVA 03.
- XIN 05 evaluated the ν_e flux at the Kuo-Sheng nuclear reactor and searched for non-standard ν_e -e scattering. Ge detector equipped with active anti-Compton shield was used. This laboratory limit on magnetic moment is considerably less stringent than the limits for reactor $\overline{\nu}_e$, but is specific to ν_e .
- ¹²⁹ GRIFOLS 04 obtained this bound using the SNO data of the solar 8 B neutrino flux measured with deuteron breakup. This bound applies to $\mu_{\rm eff} = (\mu_{21}^2 + \mu_{22}^2 + \mu_{23}^2)^{1/2}$.
- ¹³⁰ LIU 04 obtained this limit using the shape of the recoil electron energy spectrum from the Super-Kamiokande-I 1496 days of solar neutrino data. Neutrinos are assumed to have only diagonal magnetic moments, $\mu_{\nu 1} = \mu_{\nu 2}$. This limit corresponds to the oscillation parameters in the vacuum oscillation region.
- 131 LIU 04 obtained this limit using the shape of the recoil electron energy spectrum from the Super-Kamiokande-I 1496 live-day solar neutrino data, by limiting the oscillation parameter region in the LMA region allowed by solar neutrino experiments plus KamLAND. $\mu_{\nu 1}=\mu_{\nu 2}$ is assumed. In the LMA region, the same limit would be obtained even if neutrinos have off-diagonal magnetic moments.
- 132 BACK 03B obtained this bound from the results of background measurements with Counting Test Facility (the prototype of the Borexino detector). Standard Solar Model flux was assumed. This μ_{ν} can be different from the reactor μ_{ν} in certain oscillation scenarios (see BEACOM 99).
- 133 DARAKTCHIEVA 03 searched for non-standard $\overline{\nu}_e$ -e scattering component at Bugey nuclear reactor. Full kinematical event reconstruction by use of TPC. Superseded by DARAKTCHIEVA 05.
- 134 LI 03B used Ge detector in active shield near nuclear reactor to test for nonstandard $\overline{\nu}_e$ -e scattering.
- 135 GRIMUS 02 obtain stringent bounds on all Majorana neutrino transition moments from a simultaneous fit of LMA-MSW oscillation parameters and transition moments to global

- solar neutrino data + reactor data. Using only solar neutrino data, a 90% CL bound of $6.3 \times 10^{-10} \mu_B$ is obtained.
- ¹³⁶ TANIMOTO 00 combined $e^+e^- \rightarrow \nu \overline{\nu} \gamma$ data from VENUS, TOPAZ, and AMY.
- ¹³⁷ AYALA 99 improves the limit of BARBIERI 88.
- $^{138}\,\mathrm{BEACOM}$ 99 obtain the limit using the shape, but not the absolute magnitude which is affected by oscillations, of the solar neutrino spectrum obtained by Superkamiokande (825 days). This μ_{ν} can be different from the reactor μ_{ν} in certain oscillation scenarios.
- 139 RAFFELT 99 is an update of RAFFELT 90. This limit applies to all neutrino flavors which are light enough (< 5 keV) to be emitted from globular-cluster red giants. This limit pertains equally to electric dipole moments and magnetic transition moments, and it applies to both Dirac and Majorana neutrinos.
- $^{140}\,\mathrm{RAFFELT}$ 99 is essentially an update of BERNSTEIN 63, but is derived from the helioseismological limit on a new energy-loss channel of the Sun. This limit applies to all neutrino flavors which are light enough ($<1 \, \text{keV}$) to be emitted from the Sun. This limit pertains equally to electric dipole and magnetic transition moments, and it applies to both Dirac and Majorana neutrinos.
- 141 ACCIARRI 97Q result applies to both direct and transition magnetic moments and for $q^2 = 0$.
- $^{142}\,\text{ELMFORS}$ 97 calculate the rate of depolarization in a plasma for neutrinos with a magnetic moment and use the constraints from a big-bang nucleosynthesis on additional degrees of freedom.
- ¹⁴³ Applies to absolute value of magnetic moment.
- ¹⁴⁴ DERBIN 93 determine the cross section for 0.6–2.0 MeV electron energy as (1.28 \pm 0.63) \times $\sigma_{\rm weak}.$ However, the (reactor on reactor off)/(reactor off) is only \sim 1/100.
- 145 COOPER-SARKAR 92 assume $f_{D_S}/f_{\pi}=2$ and $D_S,~\overline{D}_S$ production cross section =2.6 μ b to calculate u flux.
- 146 VIDYAKIN 92 limit is from a $e\overline{\nu}_e$ elastic scattering experiment. No experimental details are given except for the cross section from which this limit is derived. Signal/noise was 1/10. The limit uses $\sin^2 \theta_{W} = 0.23$ as input.
- 147 DORENBOSCH 91 corrects an incorrect statement in DORENBOSCH 89 that the ν magnetic moment is $<1\times10^{-9}$ at the 95%CL. DORENBOSCH 89 measures both $\nu_{\mu}\,e$ and $\overline{\nu}e$ elastic scattering and assume $\mu(\nu) = \mu(\overline{\nu})$.
- $^{148}\,\mathrm{KRAKAUER}$ 90 experiment fully reported in ALLEN 93.
- 149 RAFFELT 90 limit applies for a diagonal magnetic moment of a Dirac neutrino, or for a transition magnetic moment of a Majorana neutrino. In the latter case, the same analysis gives $< 1.4 \times 10^{-12}$. Limit at 95%CL obtained from δM_c .
- $^{150}\,\mathrm{Significant}$ dependence on details of stellar models.
- ¹⁵¹ FUKUGITA 88 find magnetic dipole moments of any two neutrino species are bounded by $\mu < 10^{-16} \ [10^{-9} \ G/B_0]$ where B_0 is the present-day intergalactic field strength.
- ¹⁵² GROTCH 88 combined data from MAC, ASP, CELLO, and Mark J.
- 153 For $m_{
 u}=$ 8–200 eV. NUSSINOV 87 examines transition magnetic moments for $u_{\mu}
 ightarrow$ ν_e and obtain $< 3 \times 10^{-15}$ for $m_{\nu} > 16$ eV and $< 6 \times 10^{-14}$ for $m_{\nu} > 4$ eV.
- ¹⁵⁴We obtain above limit from SUTHERLAND 76 using their limit f < 1/3.
- 155 KIM 74 is a theoretical analysis of $\overline{
 u}_{\mu}$ reaction data.

NEUTRINO CHARGE RADIUS SQUARED

We report limits on the so-called neutrino charge radius squared. While the straight-forward definition of a neutrino charge radius has been proven to be gauge-dependent and, hence, unphysical (LEE 77C), there have been recent attempts to define a physically observable neutrino charge radius (BERNABEU 00, BERNABEU 02). The issue is still controversial (FUJIKAWA 03, BERNABEU 03). A more general interpretation of the experimental results is that they are limits on certain nonstandard contributions to neutrino scattering.

$VALUE (10^{-32} \text{ cm}^2)$	CL%	DOCUMENT ID		TECN	COMMENT
-2.1 to 3.3	90	¹⁵⁶ DENIZ	10	TEXO	Reactor $\overline{\nu}_e$ e
● ● We do not use	the foll	owing data for avera	ges, f	its, limit	s, etc. • •
-0.53 to 0.68	90	¹⁵⁷ HIRSCH	03		$ u_{\mu}$ e scat.
-8.2 to 9.9	90	¹⁵⁸ HIRSCH	03		anomalous $e^+e^- ightarrow u \overline{ u} \gamma$
-2.97 to 4.14	90	¹⁵⁹ AUERBACH	01	LSND	$\nu_e e \rightarrow \nu_e e$
-0.6 to 0.6	90	VILAIN	95 B		$\nu_{\mu}e$ elastic scat.
0.9 ± 2.7		ALLEN	93	CNTR	LAMPF $\nu e \rightarrow \nu e$
< 2.3	95	MOURAO	92	ASTR	HOME/KAM2 ν rates
< 7.3	90	¹⁶⁰ VIDYAKIN	92	CNTR	Reactor $\overline{\nu}e \rightarrow \overline{\nu}e$
1.1 ± 2.3		ALLEN	91	CNTR	Repl. by ALLEN 93
$-1.1\ \pm1.0$		¹⁶¹ AHRENS	90	CNTR	$ u_{\mu}$ e elastic scat.
$-0.3\ \pm1.5$		¹⁶¹ DORENBOS	89		$ u_{\mu}^{r}e$ elastic scat.
		¹⁶² GRIFOLS	89 B	ASTR	, SN 1987A

- $^{156}\, {\sf DENIZ}$ 10 observe reactor $\overline{\nu}_e\, e$ scattering with recoil kinetic energies 3–8 MeV using Csl(Tl) detectors. The observed rate and spectral shape are consistent with the Standard Model prediction, leading to the reported constraint on $\overline{\nu}_e$ charge radius.
- 157 Based on analysis of CCFR 98 results. Limit is on $\langle {\rm r}_V^2 \rangle + \langle {\rm r}_A^2 \rangle$. The CHARM II and E734 at BNL results are reanalyzed, and weaker bounds on the charge radius squared than previously published are obtained. The NuTeV result is discussed; when tentatively interpreted as ν_μ charge radius it implies $\langle {\rm r}_V^2 \rangle + \langle {\rm r}_A^2 \rangle = (4.20 \pm 1.64) \times 10^{-33} \ {\rm cm}^2.$
- 158 Results of LEP-2 are interpreted as limits on the axial-vector charge radius squared of a Majorana ν_{τ} . Slightly weaker limits for both vector and axial-vector charge radius squared are obtained for the Dirac case, and somewhat weaker limits are obtained from the analysis of lower energy data (LEP-1.5 and TRISTAN).
- 159 AUERBACH 01 measure $\nu_e\,e$ elastic scattering with LSND detector. The cross section agrees with the Standard Model expectation, including the charge and neutral current interference. The 90% CL applies to the range shown.
- 160 VIDYAKIN 92 limit is from a $e\overline{\nu}$ elastic scattering experiment. No experimental details are given except for the cross section from which this limit is derived. Signal/noise was 1/10. The limit uses $\sin^2\!\theta_W=0.23$ as input.
- Result is obtained from reanalysis given in ALLEN 91, followed by our reduction to obtain 1σ errors
- ¹⁶² GRIFOLS 89B sets a limit of $\langle r^2 \rangle < 0.2 \times 10^{-32} \, \mathrm{cm}^2$ for right-handed neutrinos.

REFERENCES FOR Neutrino Properties

CECCUINII	11	ASD 24 496	S. Cecchini <i>et al.</i>	
CECCHINI BEDA	11 10	ASP 34 486 PPNL 7 406	A.G. Beda <i>et al.</i>	(GEMMA Collab.)
DENIZ	10	PR D81 072001	M. Deniz <i>et al.</i>	(TEXONO Collab.)
HANNESTAD	10	JCAP 1008 001	S. Hannestad <i>et al.</i>	(TEXONO COND.)
PAGLIAROLI	10	ASP 33 287	G. Pagliaroli, F. Rossi-Torres, E. Vissa	ani (INFN+)
SEKIGUCHI	10	JCAP 1003 015	T. Sekiguchi <i>et al.</i>	()
THOMAS	10	PRL 105 031301	S.A. Thomas, F.B. Abdalla, O. Lahav	(LOUC)
ICHIKI	09	PR D79 023520	K. Ichiki, M. Takada, T. Takahashi	(/
KOMATSU	09	APJS 180 330	E. Komatsu et al.	
KUZNETSOV	09	IJMP A24 5977	A.V. Kuznetsov, N.V. Mikheev, A.A.	Okrugin (YARO)
TERENO	09	AA 500 657	I. Tereno <i>et al.</i>	
VIKHLININ	09	APJ 692 1060	A. Vikhlinin <i>et al.</i>	
ARPESELLA	08A	PRL 101 091302	C. Arpesella <i>et al.</i>	(Borexino Collab.)
BERNARDIS	08	PR D78 083535	F. De Bernardis <i>et al.</i>	
BEDA	07	PAN 70 1873	A.G. Beda <i>et al.</i>	
FOGLI	07	Translated from YAF 70 PR D75 053001	G.L. Fogli <i>et al.</i>	
GNINENKO	07	PR D75 035001	S.N. Gninenko, N.V. Krasnikov, A. R	ubbia
KRISTIANSEN		PR D75 073014 PR D75 083510	J. Kristiansen, O. Elgaroy, H. Dahle	ирыа
MIRIZZI	07	PR D76 053007	A. Mirizzi, D. Montanino, P.D. Serpic	CO
SPERGEL	07	APJS 170 377	D.N. Spergel <i>et al.</i>	CO
WONG	07	PR D75 012001	H.T. Wong et al.	(TEXONO Collab.)
ZUNCKEL	07	JCAP 0708 004	C. Zunckel, P. Ferreira	(
CIRELLI	06	JCAP 0612 013	M. Cirelli <i>et al.</i>	
FUKUGITA	06	PR D74 027302	M. Fukugita <i>et al.</i>	
GOOBAR	06	JCAP 0606 019	A. Goobar <i>et al.</i>	
HANNESTAD	06	JCAP 0611 016	S. Hannestad, G. Raffelt	
KRISTIANSEN	06	PR D74 123005	J. Kristiansen, O. Elgaroy, H. Eriksen	
SANCHEZ	06	MNRAS 366 189	A.G. Sanchez et al.	
SELJAK	06	JCAP 0610 014	U. Seljak, A. Slosar, P. McDonald	
DARAKTCH	05	PL B615 153	Z. Daraktchieva et al.	(MUNU Collab.)
ICHIKAWA	05	PR D71 043001	K. Ichikawa, M. Fukugita, M. Kawasa	aki (ICRR)
KRAUS	05	EPJ C40 447	Ch. Kraus <i>et al.</i>	
XIN	05	PR D72 012006	B. Xin et al.	(TEXONO Collab.)
AHARMIM	04	PR D70 093014	B. Aharmim et al.	(SNO Collab.)
BARGER	04	PL B595 55	V. Barger, D. Marfatia, A. Tregre	(DCNIA)
CECCHINI	04	ASP 21 183	S. Cecchini <i>et al.</i>	(BGNA+)
CROTTY	04	PR D69 123007	P. Crotty, J. Lesgourgues, S. Pastor	(IC LAND CILL)
EGUCHI	04	PRL 92 071301		(KamLAND Collab.)
GRIFOLS	04	PL B587 184	J.A. Grifols, E. Masso, S. Mohanty	(BARC, AHMED)
LIU ARNABOLDI	04 03A	PRL 93 021802 PRL 91 161802	D.W. Liu <i>et al.</i> (Super-l C. Arnaboldi <i>et al.</i>	Kamiokande Collab.)
BACK	03A	PL B563 35	H.O. Back <i>et al.</i>	(Borexino Collab.)
BANDYOPA	03	PL B555 33	A. Bandyopadhyay, S. Choubey, S. G	`
BERNABEU	03	hep-ph/0303202	J. Bernabeu, J. Papavassiliou, J. Vida	(',
DARAKTCH	03	PL B564 190	Z. Daraktchieva <i>et al.</i>	(MUNU Collab.)
FUJIKAWA	03	hep-ph/0303188	K. Fujikawa, R. Shrock	()
HIRSCH	03	PR D67 033005	M. Hirsch <i>et al.</i>	
LI	03B	PRL 90 131802	H.B. Li et al.	(TEXONO Collab.)
SPERGEL	03	APJS 148 175	D.N. Spergel et al.	,
BERNABEU	02	PRL 89 101802	J. Bernabeu, J. Papavassiliou, J. Vida	
Also		PRL 89 229902 (erratum	n)J. Bernabeu, J. Papavassiliou, J. Vida	al
DERBIN	02B	JETPL 76 409	A.V. Derbin, O.Ju. Smirnov	
CDIMILIC		Translated from ZETFP		
GRIMUS	02	NP B648 376	W. Grimus et al.	
JOSHIPURA	02B	PR D66 113008	A.S. Joshipura, E. Masso, S. Mohant	y
LEWIS	02	PR D66 103511	A. Lewis, S. Bridle	
LOREDO	02	PR D65 063002	T.J. Loredo, D.Q. Lamb	
WANG	02	PR D65 123001	X. Wang, M. Tegmark, M. Zaldarriag	
AUERBACH SCHWIENHO	01	PR D63 112001 PL B513 23	L.B. Auerbach <i>et al.</i> R. Schwienhorst <i>et al.</i>	(LSND Collab.) (DONUT Collab.)
ATHANAS	. 01		M. Athanas <i>et al.</i>	(CLEO Collab.)
BERNABEU	00	PR D61 052002 PR D62 113012	J. Bernabeu <i>et al.</i>	(CLLO CONAD.)
FUKUGITA	00	PRL 84 1082	M. Fukugita, G.C. Liu, N. Sugiyama	
TANIMOTO	00	PL B478 1	N. Tanimoto <i>et al.</i>	
AYALA	99	PR D59 111901	A. Ayala, J.C. D'Olivo, M. Torres	
BEACOM	99	PRL 83 5222	J.F. Beacom, P. Vogel	
CROFT	99	PRL 83 1092	R.A.C. Croft, W. Hu, R. Dave	
DOLGOV	99	NP B548 385	A.D. Dolgov et al.	
			-	

RAFFELT 99	LOBASHEV	99	PL B460 227	V.M. Lobashev et al.
WEINHEIMER 99				
AMMAR 98 PL B431 209 R. Ammar et al. (CLEO Collab.) BILLER 98 FPL 22 399 S. D. Biller et al. (WHIPPLE Collab.) BILLER 98 PRL 80 2992 S. D. Biller et al. (WHIPPLE Collab.) FELDMAN 98 PR 57 3873 G. J. Feldman, R. D. Cousins LENZ 98 PL B416 50 S. Lenz et al. (DELPHI Collab.) AGREY 97, 2PH C74 577 S. D. Acciarri et al. (LS Collab.) ACCIARRI 970, PL B412 201 M. Acciarri et al. (LG Collab.) ACCIARRI 970, PL B412 201 M. Acciarri et al. (LG Collab.) ACCIARRI 970, PL B412 201 M. Acciarri et al. (LG Collab.) ELMFORS 97 PR D58 119903 (erratum) A. Anastassov et al. (CLEO Collab.) ELMFORS 97 NP B593 39 PR Escribano, E. Masso et al. (CLEO Collab.) ELMFORS 97 NP B593 39 P. Elmfors et al. SEcribano, E. Masso (BARC, PARIT) FIELDS 97 ASP 6 169 B. D. Fields, K. Kainulainen, K.A. Olive (NDAM+) SWAIN 97 PR D55 R1 J. Swain, L. Taylor (NEAS) ALEXANDER 6M ZPHY C72 231 A. SSAMAGAN 66 PR D53 6065 K.A. Assamagan et al. (PSI, ZURI, VILL+) BAI 96 PR D53 306 K.A. Assamagan et al. (BES Collab.) BOTTINO 96 PR D53 306 K.A. Assamagan et al. (BES Collab.) BOTTINO 96 PR D53 306 K.A. Assamagan et al. (BES Collab.) BOTTINO 96 PR D53 306 A. Bottino et al. AD Dolgoy, S. Pestor, JW.F. Valle (FIC, VALE) BOLLED 96 PR D7 51 488 (erratum) S. Hannestad, J. Madsen (AARH) HANNESTAD 96 PR D7 51 488 (erratum) S. Hannestad, J. Madsen (AARH) HANNESTAD 96 PR D7 51 489 PR J. Sobie, R.K. Keeler, I. Lawson (VICT) BELESEV 95 PL B350 263 Al. Belesev et al. (INRM, KIAE) D. BUSKUILI 0 95 PL B349 985 C. B. B1499 S. Hannestad, J. Madsen (AARH) HANNESTAD 96 PR P7 57 5488 (erratum) S. Hannestad, J. Madsen (AARH) HANNESTAD 96 PR P7 57 5488 (erratum) S. Hannestad, J. Madsen (AARH) HANNESTAD 96 PR P7 57 5488 (erratum) S. Hannestad, J. Madsen (AARH) HANNESTAD 96 PR P7 51 489 (erratum) S. Hannestad, J. Madsen (AARH) HANNESTAD 96 PR P7 52 4789 (ERRATUM) S. Hannestad, J. Madsen (AARH) S. HANNESTAD 96 PR P7 52 4789 (ERRATUM)	WEINHEIMER	99		Ch. Weinheimer et al.
AMMAR 98 PL B431 209 R. Ammar et al. (CLEO Collab.) BILLER 98 PF EP IC 20 395 R. Barate et al. (MHIPPLE Collab.) ELLDIAM 98 PR D7 3873 SPT	ACKERSTAFF	98T	EPJ C5 229	K. Ackerstaff <i>et al.</i> (OPAL Collab.)
BILLER 98 PRL 80 2992 S.D. Biller et al (WHIPPLE Collab.)	AMMAR	98	PL B431 209	
FELDMAN 98	BARATE	98F	EPJ C2 395	R. Barate et al. (ALEPH Collab.)
LENZ	BILLER	98	PRL 80 2992	S.D. Biller et al. (WHIPPLE Collab.)
ABREU 97	FELDMAN	98	PR D57 3873	G.J. Feldman, R.D. Cousins
ACCIARRI 97Q PL B412 201 M. Acciarri et al. (L13 Collab) ANASTASSOV 97 PR D55 2559 A. Anastassov et al. (CLEO Collab) ELMFORS 97 NP B930 3 PR D58 119903 (erratum) A. Anastassov et al. (CLEO Collab) ESCRIBANO 97 PR D58 119903 (erratum) A. Collab PR D58 1199 (erratum) A. Collab PR D58 1199 (erratum) A. Collab PR D58 120 (er				
ANASTASSOV 97				`
Also				(,
ELMFORS 97		97		
ESCRIBANO 97			,	,
FIELDS 97				
SWAIN 97				
ALEXANDER 96M ZPHY C72 231 G. Alexander ef al. (OPAL Collab.) BASSAMAGAN 96 PR D53 605 K. A. Assamagan et al. (PSI, ZURI, VILL+) BAI 96 PR D53 605 K. A. Assamagan et al. (PSI, ZURI, VILL+) BAI 96 PR D53 6361 A. Bottino et al. (DILOV) 96 PR D53 6361 A. Bottino et al. Dollgov, S. Pastor, J.W.F. Valle (IFIC, VALE) HANNESTAD 96 PRL 76 2848 S. Hannestad, J. Madsen (AARH) HANNESTAD 968 PR L77 5148 (erratum) S. Hannestad, J. Madsen (AARH) HANNESTAD 968 PR L77 5148 (erratum) S. Hannestad, J. Madsen (AARH) HANNESTAD 968 PR D54 7894 S. Hannestad, J. Madsen (AARH) HANNESTAD 968 PR D54 7894 S. Hannestad, J. Madsen (AARH) GIRR MARKER PROMETICAL PROMETICA	-			`
ASSAMAGAN 96 PR D53 0005 K.A. Assamagan et al. (PSI, ZURI, VILL+) 96 PR D53 20 J.Z. Bai et al. (BES Collab.) BOTTINO 96 PR D53 36361 A. Bottino et al. (IFIC, VALE) ALNOWERSTAD 96 PR D76 2848 S. Hannestad, J. Madsen (AARH) HANNESTAD 96C PR D54 7894 S. Hannestad, J. Madsen (AARH) HANNESTAD 96C PR D54 7894 S. Hannestad, J. Madsen (AARH) SOBIE 96 PLHY C70 383 R.J. Sobie, R.K. Keeler, I. Lawson (VICT) SURIUS PR D54 7894 S. Hannestad, J. Madsen (ARRH) SOBIE 96 PLHY C70 383 R.J. Sobie, R.K. Keeler, I. Lawson (VICT) SURIUS PR D54 7894 S. Hannestad, J. Madsen (ARRH) SOBIE 96 PL B339 263 AI. Belsew et al. (INRM, KIAE) BUSKULIC 95 PR D51 4129 A.D. Dolgov, K. Kainulainen, I.Z. Rothstein (MICH+) HIDDEMANN 95 PR D51 4129 A.D. Dolgov, K. Kainulainen, I.Z. Rothstein (MICH+) HIDDEMANN 95 PR D51 4129 A.D. Dolgov, K. Kainulainen, I.Z. Rothstein (MICH+) KIAE SIGL 95 PR D51 1499 G. Sigl, M.S. Turner (FNAL, EFI) STOEFFL 95 PR D51 1499 G. Sigl, M.S. Turner (FNAL, EFI) STOEFFL 95 PR D51 1499 G. Sigl, M.S. Turner (FNAL, EFI) STOEFFL 95 PR D533 532 G. Sigl, M.S. Turner (FNAL, EFI) SASSAMAGAN 94 PL B331 140 K.S. Babu, T.M. Gould, I.Z. Rothstein (BART1+) DODELSON 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 S. Dodelson, G. Gyuk, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FNAL, CHIC) JECKELMANN 94 PR D49 5068 G. Sigl, M.S. Turner (FN				
BAI 96 PR D53 20 J.Z. Bai et al. (BES Collab.) BOTTINO 96 PR D53 6361 A Bottino et al. DOLGOV 96 PL B383 193 A D. Dolgov, S. Pastor, J.W.F. Valle (IFIC, VALE.) HANNESTAD 96 PRL 77 5148 (erratum) S. Hannestad, J. Madsen (AARH.) HANNESTAD 96C PR D54 7894 S. Hannestad, J. Madsen (AARH.) HANNESTAD 96C PR D54 7894 S. Hannestad, J. Madsen (AARH.) HANNESTAD 96C PR D54 7894 S. Hannestad, J. Madsen (AARH.) CITC BELESEV 95 PL B350 263 R.J. Sobie, R.K. Keeler, I. Lawson (VICT) BELESEV 95 PL B350 263 R.J. Belesev et al. (ALEPH Collab.) CHING 95 IMP A10 2841 C.R. Ching et al. (CGT, BEIJT, CIAE.) DOLGOV 95 PR D51 4129 A.D. Dolgov, K. Kainulainen, I.Z. Rothstein (MICH+) HIDDEMANN 95 JPG 21 639 K.H. Hiddemann, H. Daniel, O. Schwentker (MUNT) KERNAN 95 PR D51 4129 G. Sigl, M.S. Turner (FNAL, EFI) STOEFFL 95 PRL 75 3237 W. Stoeffl, D.J. Decman (LLINU.) VILAIN 95B PL B345 115 P. Vilain et al. (CHARM II Collab.) ASSAMAGAN 94 PL B335 231 K.A. Assamagan et al. (CHARM II Collab.) ASSAMAGAN 94 PL B335 231 K.A. Assamagan et al. (CHARM II Collab.) ASSAMAGAN 94 PL B335 231 K.A. Assamagan et al. (PSI, ZURI, VILL+) BABU 94 PL B333 545 T.M. Gould, I.Z. Rothstein (BART+) ECKELMANN 94 PL B333 545 B.D. Dolgov, I.Z. Rothstein (BART+) PLECKELMANN 94 PL B333 545 B.D. Dolgov, I.Z. Rothstein (BART+) PLECKELMANN 95 PR D47 73671 R. Balest et al. (CLC Collab.) CINABRO 93 PR D47 711 R. Collad., I.Z. Rothstein (JHU, MICH) DOLGOV 93 PR D47 73671 R. Balest et al. (CLC Collab.) CINABRO 93 PR D47 73671 R. Balest et al. (CLC Collab.) CINABRO 93 PR D47 73671 R. Balest et al. (CLC Collab.) CINABRO 94 PL B335 336 R.J. Rothstein (MICH) ROVING 95 PR D45 755 R.D. PRPDI 57 755				
DOLGOV 96				
DOLGOV 96				,
HANNESTAD 96				
HANNESTAD 96B PRL 77 5148 (erratum) S. Hannestad, J. Madsen (AARH)				
HANNESTAD 96C PR D54 7894 S. Hannestad, J. Madsen (AARH) SOBIE 96 ZPHY C70 383 R.J. Sobie, R.K. Keeler, I. Lawson (VICT) BELESEV 95 PL B350 263 Al. Belesev et al. (INRM, KIAE) BUSKULIC SPH PL B349 585 D. Buskulic et al. (ALEPH Collab.) CINRM (AIRE) CINRM				
SOBIE 96 ZPHY C70 383 R.J. Sobie, R.K. Keeler, I. Lawson (VICT)				
BELESEV 95				,
BUSKULIC 95H PL B349 585 D. Buskulic et al. (ALEPH Collab.)				
CHING				
DOLGOV 95 PR D51 4129 A.D. Dolgov, K. Kainulainen, I.Z. Rothstein (MICH+) HIDDEMANN 95 PR D51 1499 PR D51 1490 PR D51 1490 PR D51 1490 PR D51 1490 PR D51 140 PR D51				
HIDDEMANN 95				
SERNAN 95				
SIGL 95 PR D51 1499 G. Sigl, M.S. Turner (FNAL, EFI)				
STOEFFL 95				, , ,
VILAIN 95B				
ASSAMAGAN 94 PL B335 231 K.A. Assamagan et al. (PSI, ZURI, VILL+) BABU 94 PL B321 140 K.S. Babu, T.M. Gould, I.Z. Rothstein (BART+) DODELSON 94 PR D49 5068 S. Dodelson, G. Gyuk, M.S. Turner (FNAL, CHIC) GOULD 94 PL B333 545 T.M. Gould, I.Z. Rothstein (JHU, MICH) JECKELMANN 94 PL B335 326 B. Jeckelmann, P.F.A. Goudsmit, H.J. Leisi (WABRN+) KAWASAKI 94 NP B419 105 M. Kawasaki et al. (OSU) PERES 94 PR D50 513 O.L.G. Peres, V. Pleitez, R. Zukanovich Funchal YASUMI 94 PL B334 229 S. Yasumi et al. (KEK, TSUK, KYOT+) ALLEN 93 PR D47 11 R.C. Allen et al. (UCI, LANL, ANL+) BALEST 93 PR D47 R3671 R. Balest et al. (CLEO Collab.) CINABRO 93 PRL 70 3700 D. Cinabro et al. (CLEO Collab.) DERBIN 93 JETPL 57 768 Translated from Translated from Translated from JCHP) SUN 93 CJNP 15 261 A.V. Derbin et al. (CIAE, CST, BEIJT) WEINHEIMER 93 PL B300 210 C. Weinheimer et al. (MANZ) ALBRECHT 92M PL B292 221 H. Albrecht et al. (ARGUS Collab.) BLUDMAN 92 PR D45 4720 S.A. Bludman (CFPA) COOPER 92 PL B280 153 A.M. Cooper-Sarkar et al. (BEBC WA66 Collab.) DODELSON 92 PR D45 51 K. Hikasa et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) KAWANO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92 PL B287 381 R.C. Allen et al. (CIT, UCSD, LLL+) MOURAO 92				
BABU 94 PL B321 140 K.S. Babu, T.M. Gould, I.Z. Rothstein (BART+) DODELSON 94 PR D49 5068 S. Dodelson, G. Gyuk, M.S. Turrer (FNAL, CHIC+) GOULD 94 PL B333 545 T.M. Gould, I.Z. Rothstein (JHU, MICH) JECKELMANN 94 PL B335 326 B. Jeckelmann, P.F.A. Goudsmit, H.J. Leisi (WABRN+) KAWASAKI 94 PR D50 513 O.L.G. Peres, V. Pleitez, R. Zukanovich Funchal YASUMI 94 PL B334 229 S. Yasumi et al. (KEK, TSUK, KYOT+) ALLEN 93 PR D47 11 R. C. Allen et al. (UCI, LANL, ANL+) BALEST 93 PRL 70 3700 D. Cinabro et al. (CLEO Collab.) CINABRO 93 PRL 70 3700 D. Cinabro et al. (CLEO Collab.) DOLGOV 93 PRL 71 476 A.D. Dolgov, I.Z. Rothstein (MICH) ENQVIST 93 PL B301 376 K. Enqvist, H. Uibo (CIAE, CST, BEIJT) WEINHEIMER 93 PL B300 210 C. Weinheimer et al. (CIAE, CST, BEIJT) WEINHEIMER 94				
DODELSON 94 PR D49 5068 S. Dodelson, G. Gyuk, M.S. Turner (FNAL, CHIC+)				
GOULD 94 PL B333 545 T.M. Gould, I.Z. Rothstein (JHU, MICH) JECKELMANN 94 PL B335 326 B. Jeckelmann, P.F.A. Goudsmit, H.J. Leisi (WABRN+) KAWASAKI 94 NP B419 105 M. Kawasaki et al. (OSU) PERES 94 PR D50 513 O.L.G. Peres, V. Pleitez, R. Zukanovich Funchal YASUMI 94 PL B334 229 S. Yasumi et al. (KEK, TSUK, KYOT+) ALLEN 93 PR D47 11 R.C. Allen et al. (UCI, LANL, ANL+) BALEST 93 PR D47 83671 R. Balest et al. (CLEO Collab.) DERBIN 93 JETPL 57 768 Translated from T755. DOLGOV 93 PRL 70 3700 D. Cinabro et al. (CLEO Collab.) A.V. Derbin et al. (PNPI) Translated from CJUN 93 PL B301 376 K. Enqvist, H. Uibo (NORD) SUN 93 CJNP 15 261 H.C. Sun et al. (CIAE, CST, BEIJT) WEINHEIMER 93 PL B300 210 C. Weinheimer et al. (MANZ) ALBRECHT 92M PL B292 221 H. Albrecht et al. (ARGUS Collab.) BLUDMAN 92 PR D45 4720 S.A. Bludman (CFPA) COOPER 92 PL B280 153 A.M. Cooper-Sarkar et al. (BEBC WA666 Collab.) DODELSON 92 PR B280 153 A.M. Cooper-Sarkar et al. (BEBC WA666 Collab.) DODELSON 92 PR B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) KAWANO 92 PL B275 487 L.H. Kawano et al. (KEK, LBL, BOST+) PDG 92 PR D45 S1 K. Hikasa et al. (KIAE) Translated from Translated from Translated from ZETFP 55 212. ALLEN 91 PR D43 811 R.C. Allen et al. (CHARM Collab.) ETFP 55 212. ALLEN 91 PR D43 3136 G.M. Fuller, R.A. Malaney (CREG, TATA) DORENBOS 91 PR D43 3136 G.M. Fuller, R.A. Malaney (LCSD) GRANEK 91 JMP A6 2387 H. Granek, B.H.J. McKellar (MELB) KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PR C67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR C67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR C67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR C67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR C67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR C67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+)		-		
JECKELMANN 94		-		
KAWASAKI 94 NP B419 105 M. Kawasaki et al. (OSU)		-		
PERES 94 PR D50 513 O.L.G. Peres, V. Pleitez, R. Zukanovich Funchal YASUMI 94 PL B334 229 S. Yasumi et al. (KEK, TSUK, KYOT+) ALLEN 93 PR D47 11 R.C. Allen et al. (UCI, LANL, ANL+) BALEST 93 PR D47 R3671 R. Balest et al. (CLEO Collab.) CINABRO 93 PRL 70 3700 D. Cinabro et al. (CLEO Collab.) DOLGOV 93 PRL 71 476 A.V. Derbin et al. (PNPI) Translated from Trans				
YASUMI 94 PL B334 229 S. Yasumi et al. (KEK, TSUK, KYOT+) ALLEN 93 PR D47 11 R.C. Allen et al. (UCI, LANL, ANL+) BALEST 93 PR D47 R3671 R. Balest et al. (CLEO Collab.) CINABRO 93 PRL 70 3700 D. Cinabro et al. (CLEO Collab.) DOLGOV 93 PRL 71 476 A.V. Derbin et al. (PNPI) DOLGOV 93 PRL 71 476 A.V. Derbin et al. (PNPI) ENQVIST 93 PL B301 376 K. Enqvist, H. Uibo (NORD) SUN 93 PL B302 221 H.C. Sun et al. (CIAE, CST, BEIJT) WEINHEIMER 93 PL B292 221 H. Albrecht et al. (ARGUS Collab.) ALBRECHT 92M PL B292 221 H. Albrecht et al. (ARGUS Collab.) BLUDMAN 92 PR L 68 2572 S. Dodelson, J.A. Frieman, M.S. Turner (FPA) COOPER 92 PL B283 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) KAWANO 92 PL B285 364 A.M. Mourao, J. Puli		94		
ALLEN 93 PR D47 11 R.C. Allen et al. (UCI, LANL, ANL+) BALEST 93 PR D47 R3671 R. Balest et al. (CLEO Collab.) CINABRO 93 PRL 70 3700 D. Cinabro et al. (CLEO Collab.) DERBIN 93 JETPL 57 768 A.V. Derbin et al. (PNPI) Translated from ZETFP 57 755. DOLGOV 93 PRL 71 476 A.D. Dolgov, I.Z. Rothstein (MICH) ENQVIST 93 PL B301 376 K. Enqvist, H. Uibo (NORD) SUN 93 CJNP 15 261 H.C. Sun et al. (CIAE, CST, BEIJT) WEINHEIMER 93 PL B300 210 C. Weinheimer et al. (ARGUS Collab.) BLUDMAN 92 PR D45 4720 S.A. Bludman (CFPA) COOPER 92 PL B280 153 A.M. Cooper-Sarkar et al. (BEBC WA66 Collab.) DODELSON 92 PRL 68 2572 S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+) HOLZSCHUH 92B PL B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) KAWANO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 Translated from ZETFP 55 212. ALLEN 91 PR D43 2314 S. Davidson, B.A. Campbell, D. Bailey (ALBE+) DORENBOS 91 PR D43 3136 G.M. Fuller, R.A. Malaney (OREG, TATA) DORENBOS 91 PR D43 3136 G.M. Fuller, R.A. Malaney (UCSD) GRANEK 91 JIMP A6 2387 H. Granek, B.H.J. McKellar KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOUB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOUB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L67 533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L76 7533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L76 7533 E.W. Kolb et al. (INUS, TOHOK, TINT+) KOLB 91 PR L76 7533 E.W. Kolb et	YASUMI	94	PL B334 229	
CINABRO 93	ALLEN	93	PR D47 11	
CINABRO 93	BALEST	93	PR D47 R3671	
Translated from ZETFP 57 755.	CINABRO	93	PRL 70 3700	
DOLGOV 93 PRL 71 476 A.D. Dolgov, I.Z. Rothstein (MICH) ENQVIST 93 PL B301 376 K. Enqvist, H. Uibo (NORD) SUN 93 CJNP 15 261 H.C. Sun et al. (CIAE, CST, BEIJT) WEINHEIMER 93 PL B300 210 C. Weinheimer et al. (MANZ) ALBRECHT 92M PL B292 221 H. Albrecht et al. (ARGUS Collab.) BLUDMAN 92 PR D45 4720 S.A. Bludman (CFPA) COOPER 92 PL B280 153 A.M. Cooper-Sarkar et al. (BEBC WA66 Collab.) DODELSON 92 PRL 68 2572 S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+) HOLZSCHUH 92B PL B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) KAWANO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 G.S. Vidyakin et al. (KIAE) Translated from Translated from Translated from Translated from Tr	DERBIN	93	JETPL 57 768	A.V. Derbin et al. (PNPI)
ENQVIST 93 PL B301 376 K. Enqvist, H. Uibo (NORD) SUN 93 CJNP 15 261 H.C. Sun et al. (CIAE, CST, BEIJT) WEINHEIMER 93 PL B300 210 C. Weinheimer et al. (MANZ) ALBRECHT 92M PL B292 221 H. Albrecht et al. (ARGUS Collab.) BLUDMAN 92 PR D45 4720 S.A. Bludman (CFPA) COOPER 92 PL B280 153 A.M. Cooper-Sarkar et al. (BEBC WA66 Collab.) DODELSON 92 PR L 68 2572 S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+) HOLZSCHUH 92B PL B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) KAWANO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) MOURAO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) VIDYAKIN 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 91 PR D43 R1 R.C. Allen et al. (UCI, LANL, UMD) DAVIDSON 91				
SUN 93 CJNP 15 261 H.C. Sun et al. (CIAE, CST, BEIJT) WEINHEIMER 93 PL B300 210 C. Weinheimer et al. (MANZ) ALBRECHT 92M PL B292 221 H. Albrecht et al. (ARGUS Collab.) BLUDMAN 92 PR D45 4720 S.A. Bludman (CFPA) COOPER 92 PL B280 153 A.M. Cooper-Sarkar et al. (BEBC WA66 Collab.) DODELSON 92 PRL 68 2572 S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+) HOLZSCHUH 92B PL B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) KAWANO 92 PL B275 487 L.H. Kawano et al. (CIT, UCSD, LLL+) MOURAO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 G.S. Vidyakin et al. (KEK, LBL, BOST+) ALLEN 91 PR D43 2314 S. Davidson, B.A. Campbell, D. Bailey (ALBE+) DOSENBOS 91 <td></td> <td></td> <td></td> <td></td>				
WEINHEIMER 93 PL B300 210 C. Weinheimer et al. (MANZ) ALBRECHT 92M PL B292 221 H. Albrecht et al. (ARGUS Collab.) BLUDMAN 92 PR D45 4720 S.A. Bludman (CFPA) COOPER 92 PL B280 153 A.M. Cooper-Sarkar et al. (BEBC WA66 Collab.) DODELSON 92 PR 68 2572 S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+) HOLZSCHUH 92B PL B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) KAWANO 92 PL B275 487 L.H. Kawano et al. (CIT, UCSD, LLL+) MOURAO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) PDG 92 PR D45 S. K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 91	_			
ALBRECHT 92M PL B292 221 H. Albrecht et al. (ARGUS Collab.) BLUDMAN 92 PR D45 4720 S.A. Bludman (CFPA) COOPER 92 PL B280 153 A.M. Cooper-Sarkar et al. (BEBC WA66 Collab.) DODELSON 92 PRL 68 2572 S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+) HOLZSCHUH 92B PL B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) KAWANO 92 PL B275 487 L.H. Kawano et al. (CIT, UCSD, LLL+) MOURAO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 G.S. Vidyakin et al. (KIAE) Translated from Translat				
BLUDMAN 92 PR D45 4720 S.A. Bludman (CFPA) COOPER 92 PL B280 153 A.M. Cooper-Sarkar et al. (BEBC WA66 Collab.) DODELSON 92 PRL 68 2572 S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+) HOLZSCHUH 92B PL B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) (ZURI) KAWANO 92 PL B275 487 L.H. Kawano et al. (CIT, UCSD, LLL+) (CIT, UCSD, LLL+) MOURAO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 G.S. Vidyakin et al. (KIAE) (KIAE) Translated from Translated fr				C. Weinheimer et al. (MANZ)
COOPER 92 PL B280 153 A.M. Cooper-Sarkar et al. (BEBC WA66 Collab.) DODELSON 92 PRL 68 2572 S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+) HOLZSCHUH 92B PL B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) KAWANO 92 PL B285 487 L.H. Kawano et al. (CIT, UCSD, LLL+) MOURAO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 G. Vidyakin et al. (KIAE) (KIAE) Translated from Translated fr				
DODELSON 92 PRL 68 2572 S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+) HOLZSCHUH 92B PL B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURI) KAWANO 92 PL B275 487 L.H. Kawano et al. (CIT, UCSD, LLL+) MOURAO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 G.S. Vidyakin et al. (KIAE) Translated from ZETFP 55 212. (KIAE) ALLEN 91 PR D43 R1 R.C. Allen et al. (UCI, LANL, UMD) DAVIDSON 91 PR D43 2314 S. Davidson, B.A. Campbell, D. Bailey (ALBE+) DESHPANDE 91 PR D43 943 N.G. Deshpande, K.V.L. Sarma (OREG, TATA) DORENBOS 91 PR D43 3136 G.M. Fuller, R.A. Malaney (UCSD) GRANEK 91 JIMP A6 2387 H. Granek, B.H.J. McKellar (INUS, TOHOK, TINT+) KOLB 91 PR L 67 533 E				
HOLZSCHUH 92B PL B287 381 E. Holzschuh, M. Fritschi, W. Kundig (ZURÍ) KAWANO 92 PL B275 487 L.H. Kawano et al. (CIT, UCSD, LLL+) MOURAO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 G.S. Vidyakin et al. (KIAE) Translated from Translated f				
KAWANO 92 PL B275 487 L.H. Kawano et al. (CIT, UCSD, LLL+) MOURAO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 Translated from ZETFP 55 212. (KIAE) (KIAE) ALLEN 91 PR D43 R1 R.C. Allen et al. (UCI, LANL, UMD) DAVIDSON 91 PR D43 2314 S. Davidson, B.A. Campbell, D. Bailey (ALBE+) DESHPANDE 91 PR D43 943 N.G. Deshpande, K.V.L. Sarma (OREG, TATA) DORENBOS 91 PR D43 3136 G.M. Fuller, R.A. Malaney (UCSD) GRANEK 91 JIMP A6 2387 H. Granek, B.H.J. McKellar (MELB) KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)				
MOURAO 92 PL B285 364 A.M. Mourao, J. Pulido, J.P. Ralston (LISB, LISBT+) PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 Translated from ZETFP 55 212. G.S. Vidyakin et al. (UCI, LANL, UMD) ALLEN 91 PR D43 R1 R.C. Allen et al. (UCI, LANL, UMD) DAVIDSON 91 PR D43 2314 S. Davidson, B.A. Campbell, D. Bailey (ALBE+) DESHPANDE 91 PR D43 943 N.G. Deshpande, K.V.L. Sarma (OREG, TATA) DORENBOS 91 ZPHY C51 142 (erratum)J. Dorenbosch et al. (CHARM Collab.) FULLER 91 PR D43 3136 G.M. Fuller, R.A. Malaney (UCSD) GRANEK 91 IJMP A6 2387 H. Granek, B.H.J. McKellar (MELB) KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)				
PDG 92 PR D45 S1 K. Hikasa et al. (KEK, LBL, BOST+) VIDYAKIN 92 JETPL 55 206 Translated from ZETFP 55 212. G.S. Vidyakin et al. (KIAE) ALLEN 91 PR D43 R1 R.C. Allen et al. (UCI, LANL, UMD) DAVIDSON 91 PR D43 2314 S. Davidson, B.A. Campbell, D. Bailey (ALBE+) DESHPANDE 91 PR D43 943 N.G. Deshpande, K.V.L. Sarma (OREG, TATA) DORENBOS 91 ZPHY C51 142 (erratum)J. Dorenbosch et al. (CHARM Collab.) FULLER 91 PR D43 3136 G.M. Fuller, R.A. Malaney (UCSD) GRANEK 91 IJMP A6 2387 H. Granek, B.H.J. McKellar (MELB) KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)				
VIDYAKIN 92 JETPL 55 206 Translated from ZETFP 55 212. ALLEN 91 PR D43 R1 R.C. Allen et al. (UCI, LANL, UMD) DAVIDSON 91 PR D43 2314 S. Davidson, B.A. Campbell, D. Bailey (ALBE+) DESHPANDE 91 PR D43 943 N.G. Deshpande, K.V.L. Sarma DORENBOS 91 ZPHY C51 142 (erratum) J. Dorenbosch et al. (CHARM Collab.) FULLER 91 PR D43 3136 G.M. Fuller, R.A. Malaney GRANEK 91 IJMP A6 2387 H. Granek, B.H.J. McKellar KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)				
Translated from ZETFP 55 212. ALLEN 91 PR D43 R1 R.C. Allen et al. (UCI, LANL, UMD) DAVIDSON 91 PR D43 2314 S. Davidson, B.A. Campbell, D. Bailey (ALBE+) DESHPANDE 91 PR D43 943 N.G. Deshpande, K.V.L. Sarma (OREG, TATA) DORENBOS 91 ZPHY C51 142 (erratum) J. Dorenbosch et al. (CHARM Collab.) FULLER 91 PR D43 3136 G.M. Fuller, R.A. Malaney GRANEK 91 IJMP A6 2387 H. Granek, B.H.J. McKellar KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)				
ALLEN 91 PR D43 R1 R.C. Allen et al. (UCI, LANL, UMD) DAVIDSON 91 PR D43 2314 S. Davidson, B.A. Campbell, D. Bailey (ALBE+) DESHPANDE 91 PR D43 943 N.G. Deshpande, K.V.L. Sarma (OREG, TATA) DORENBOS 91 ZPHY C51 142 (erratum) J. Dorenbosch et al. (CHARM Collab.) FULLER 91 PR D43 3136 G.M. Fuller, R.A. Malaney (UCSD) GRANEK 91 IJMP A6 2387 H. Granek, B.H.J. McKellar (MELB) KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)	VIDTARIIN	92		
DAVIDSON 91 PR D43 2314 S. Davidson, B.A. Campbell, D. Bailey (ALBE+) DESHPANDE 91 PR D43 943 N.G. Deshpande, K.V.L. Sarma DORENBOS 91 ZPHY C51 142 (erratum) J. Dorenbosch et al. (CHARM Collab.) FULLER 91 PR D43 3136 G.M. Fuller, R.A. Malaney GRANEK 91 IJMP A6 2387 H. Granek, B.H.J. McKellar KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)	ALLEN	91		
DESHPANDE 91 PR D43 943 N.G. Deshpande, K.V.L. Sarma (OREĞ, TATA) DORENBOS 91 ZPHY C51 142 (erratum)J. Dorenbosch et al. (CHARM Collab.) FULLER 91 PR D43 3136 G.M. Fuller, R.A. Malaney (UCSD) GRANEK 91 IJMP A6 2387 H. Granek, B.H.J. McKellar (MELB) KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)				
DORENBOS 91 ZPHY C51 142 (erratum) J. Dorenbosch et al. (CHARM Collab.) FULLER 91 PR D43 3136 G.M. Fuller, R.A. Malaney (UCSD) GRANEK 91 IJMP A6 2387 H. Granek, B.H.J. McKellar KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)				
FULLER 91 PR D43 3136 G.M. Fuller, R.A. Malaney (UCSD) GRANEK 91 IJMP A6 2387 H. Granek, B.H.J. McKellar (MELB) KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)				
GRANEK 91 IJMP A6 2387 H. Granek, B.H.J. McKellar (MELB) KAWAKAMI 91 PL B256 105 H. Kawakami et al. (INUS, TOHOK, TINT+) KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)			`	,
KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)				· · · · · · · · · · · · · · · · · · ·
KOLB 91 PRL 67 533 E.W. Kolb et al. (FNAL, CHIC)	KAWAKAMI	91	PL B256 105	H. Kawakami <i>et al.</i> (INUS, TOHOK, TINT+)
KRAKAUER 91 PR D44 R6 D.A. Krakauer et al. (LAMPF E225 Collab.)	KOLB	91		E.W. Kolb <i>et al.</i> (FNAL, CHIC)
	KRAKAUER	91	PR D44 R6	D.A. Krakauer <i>et al.</i> (LAMPF E225 Collab.)

AHRENS 90	LAM ROBERTSON	91 91	PR D44 3345 PRL 67 957	W.P. Lam, K.W. Ng R.G.H. Robertson <i>et al.</i>	(AST) (LASL, LLL)
KRAKAUER 90		90			
RAFFELT 90 PRL 64 2856 G.G. Raffelt (HPIM) WALKER 90 PR D41 689 T.P. Walker (HARV) ODDREMBOS 89 ZPHY C41 567 E.L. Chupp, W.T. Vestrand, C. Reppin (UNH, MPIM) DORREMBOS 89 ZPHY C41 567 E.L. Chupp, W.T. Vestrand, C. Reppin (UNH, MPIM) DORREMBOS 89 ZPHY C41 567 E.L. Chupp, W.T. Vestrand, C. Reppin (UNH, MPIM) D. Dorenbosch et al. (CHIC, FNAL) E.M. Child (CHI				<u> </u>	
WALKER 90					
CHULP 89					1 1
DORENDOS 99					. ' /
GRIFOLS 898				• • • •	
KOLB 89					`
RAFFELT 89 PR D39 2066 G.G. Raffelt Dearborn, J. Silk (UCB, LLL) ALBRECHT 89B PL B202 149 H. Albrecht et al. ALBRECHT 89B PL B202 149 H. Albrecht et al. ALBRECHT 89B PR D61 27 R. Barbieri, R.N. Mohapatra (PISA, UMD) BORIS 88 PRL 61 245 (erratum) S.D. Boris et al. (ITEP, ASCI) FUKUGITA 88 PRL 60 879 H. Fukugita et al. (KYOTU, MPIM, UCB) BORIS 87 PRL 50 359 H. Grotch, R.W. Robinett (PSU) RAFFELT 89B PR D37 549 G.G. Raffelt, D.S.P. Dearborn (UCB, LLL) SPERGEL 88 PL B200 366 D.N. Spergel, J.N. Bahcall (IAS) VONFEILIT 88 PL B200 360 F. von Feilitzsch, L. Oberauer (MUNT) BARBIELLIND BORIS 87 PRL 58 2019 S.D. Boris et al. (ITEP, ASCI) Also PRL 61 245 (erratum) S.D. Boris et al. (ITEP, ASCI) Also PRL 61 245 (erratum) S.D. Boris et al. (ITEP, ASCI) SPINIGER 87 PR D36 3817 ZETFP 45 267. FUKUGITA 87 PR D36 3817 ZETFP 45 267. FUKUGITA 87 PR D36 3813 LFTPL 44 146 S.D. Springer et al. (ITEP, ASCI) SPRINGER 87 PR D36 2278 S.N. usinov, Y. Rephaeli COWSIK 85 PL 151B 62 PR D31 3002 G.G. Raffelt D. Springer et al. (ILNL) SPRINGER 87 PR D36 3817 P. F. Springer et al. (ILNL) SCHARMM 84 PL 134B 174 P. Binetruy, G. Girardi, P. Slati (MPIM) BINETRUY 84 PL 134B 174 P. Binetruy, G. Girardi, P. Slati (MPIM) BINETRUY 84 PL 134B 377 D.N. Schramm (CHIC, FNAL) OGER ANDERHUB 82 PR D32 3167 K. Freese, D.N. Schramm (FNAL, BART) COWSIK 85 PL 151B 62 S.P. Springer et al. (ICAP) FREESE 84 NP B233 167 K. Freese, D.N. Schramm (FNAL, BART) COMERAM 84 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, BART) FREESE 84 PR D30 1505 P. Vogel BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (GNC) SCHRAMM 84 PL 141B 374 D.N. Schramm (FNAL, BART) FREESE 84 PR D30 1505 P. Vogel BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (GNC) SCHRAMM 84 PL 101B 39 J. Bernstein, G. Feinberg (GNC) SCHRAMM 84 PL 101B 39 J. Bernstein, G. Feinberg (GNC) SCHRAMM 85 PR D17 1395 A.R. Clark et al. (HICR) SCHRAMM 86 PR D17 1395 A.R. Clark et al. (HICR) SCHRAMM 87 PR D9 333 A.R. Clark et al. (HICR) SCHRAMM 87 P					
RAFFELT 898 APJ 336 61 G. Raffelt, D. Dearborn, J. Silk (UCB, LLL)	LOREDO	89	ANYAS 571 601		
ALBRECHT B8B PL 61 27 R. Babrier, R.N. Mohapatra PL 61 27 R. Babrier, R.N. Mohapatra PL 61 27 R. Babrier, R.N. Mohapatra PL 61 245 (erratum) PL 63 PRL 61 245 (erratum) PL 63 PRL 61 245 (erratum) PR 67 OTCH PR 52 PR 18 PR 187 349 G. G. Raffelt, D.S.P. Dearborn RAFFELT PR 68 PL 820 366 D.N. Spergel, J.N. Bahcall (UCB, LLL) PR 78 PR 187 349 G. G. Raffelt, D.S.P. Dearborn PL 61 245 (erratum) PR 78 PR 187 349 G. G. Raffelt, D.S.P. Dearborn PL 61 245 (erratum) PR 78 PR 187 349 G. G. Raffelt, D.S.P. Dearborn PR 187 NAT 329 21 G. Barbiellini, G. Cocconi (CERN) PR 187 NAT 329 21 G. Barbiellini, G. Cocconi (CERN) PR 187 NAT 329 21 G. Barbiellini, G. Cocconi (CERN) PR 187 NAT 329 21 G. Barbiellini, G. Cocconi (CERN) PR 187 PR 183 337 S.D. Boris et al. (ITEP, ASCI) PR 187 NAT 329 21 S.D. Boris et al. (ITEP, ASCI) PR 188 PL 280 380 F. von Feilitzsch, L. Oberauer PR 188 PL 280 360 F. von Feilitzsch, L. Oberauer PR 188 PL 280 380 F. von Feilitzsch, L. Oberauer PR 188 PL 280 380 F. von Feilitzsch, L. Oberauer PR 188 PL 280 380 F. von Feilitzsch, L. Oberauer PR 188 PL 280 380 F. von Feilitzsch, L. Oberauer PR 188 PL 280 380 F. von Feilitzsch, L. Oberauer PR 188 PL 280 380 F. von Feilitzsch, L. Oberauer PR 280 381 ETFP 44 114. COWSIK 85 PL 151B 62 P. P. T. Springer et al. PL 1818 113 F. D. Dearborn PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 387 F. Von Feilitzsch, R.L. Mossbauer PR 188 PL 280 3					`
BARBIERI 88 PRL 61 27 R. Barbieri, R.N. Mohapatra (PISA, UMD) BORIS 88 PRL 60 1245 (erratum) S.D. Boris et al. (ITEP, ASCI) FUKUGITA 88 PRL 60 879 M. Fukugita et al. (KYOTU, MPIM, UCB) GROTCH 88 PR PV C39 553 H. Grotch, R.W. Robinett (PSU) SPERGEL 88 PR D37 549 G.G. Raffelt, D.S.P. Dearborn (UCB, LLL) SPERGEL 88 PR D200 580 F. von Feilitzsch, L. Oberauer (MUNT) BABBIELLINI 87 NAT 329 21 G. Barbiellini, G. Cocconi (CERN) BORIS 87 PR 16 52019 S.D. Boris et al. (ITEP, ASCI) BORIS 87 PR 16 52 6erratum) S.D. Boris et al. (ITEP, ASCI) FUKUGITA 87 PR 190 3817 M. Fukugita, S. Vazaki (KYOTU, TOKY) NUSSINOV 87 PR 190 368 2278 S. Nussinov, Y. Rephaeli (TELA) ODERAUER 87 PR 1918 62 R. Covera (KIAE) FROWSING 79 PR 235 679 P.T.					
BORIS 88					
FUKUGITA					
GROTCH 88 ZPHY C39 553			` ,		
SPERGEL					`
VONFEILIT 88 P. B200 F. von Feilitzsch, L. Oberauer (MÜNT) BARBIELINI 87 NAT 329 21 G. Barbiellini, G. Cocconi (CERN) BORIS 87 PRL 58 2019 S.D. Boris et al. (ITEP, ASCI) BORIS 87 PRTPL 45 333 Translated from ZETFP 52.D. Boris et al. (ITEP, ASCI) FUKUGITA 87 PR D36 3817 M. Fukugita, S. Yazaki (KYOTU, TOKY) NUSSINOV 87 PR D36 2278 OS. Nussinov, Y. Rephaeli (TELA) OBERAUER 87 PR R A35 679 S.N. Kethor, F. von Feilitzsch, R.L. Mossbauer SPRINGER 87 PR R A35 679 S.N. Kethor et al. (LLNL) KETOV 86 JETPL 44 146 R. Cowsik (TATA) RAFFELT 8 PR D31 3002 G.G. Raffelt (MPIM) BINETRUY 4 PL 134B 174 P. Binetruy, G. Girardi, P. Salati (LAPP) FREESE 4 NP B233 167 </td <td></td> <td>88B</td> <td>PR D37 549</td> <td>G.G. Raffelt, D.S.P. Dearborn</td> <td>(UCB,`LLL)</td>		88B	PR D37 549	G.G. Raffelt, D.S.P. Dearborn	(UCB,`LLL)
BARBIELLINI 87 NAT 329 21 G. Barbiellini, G. Cocconi CCERN) BORIS 87 PRL 61 245 (erratum) S.D. Boris et al. (ITEP, ASCI) BORIS 87 PRL 61 245 (erratum) S.D. Boris et al. (ITEP, ASCI) FUKUGITA 87 PR D36 3817 M. Fukugita, S. Yazaki (KYOTU, TOKY) NUSSINOV 87 PR D36 2278 S. Nussinov, Y. Rephaeli (TELA) OBERAUER 87 PR B35 679 PR. S. Nussinov, Y. Rephaeli (TELA) KETOV 86 JETPL 44 146 Translated from ZETFP 45 267. K. Ketov et al. (LLNL) KETOW 87 PR A35 679 PR. S. Ketov et al. (LLNL) (LLNL) KETOW 87 PR D31 3002 G.G. Raffett (MPIM) BINETRUY 89 PL 134B 174 P. Binetruy, G. Girardi, P. Salati (LAPP) FREESE 84 NP B233 167 K. Freese, D.N. Schramm (FNAL, Ryuldjiev KYYULDJIEV 89 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, Ryulfy)					
BORIS Also					`
Also					
BORIS BORIS Translated from ZETFP 45 267. S.D. Boris et al. (ITEP) Translated from ZETFP 45 267. S.D. Boris et al. (ITEQ) Toky) S.D. Boris et al. (ITEQ) S.D.		87			
Translated from ZETFP 45 267. PUKUGITA 87 PR D36 3817 M. Fukugita, S. Yazaki (KYOTU, TOKY) NUSSINOV 87 PR D36 3278 S. Nussinov, Y. Rephaeli (TELA) OBERANIER 87 PR A35 679 PR D36 3278 KETOV 86 JETPL 44 146 Translated from ZETFP 45 114. COWSIK 85 PL 1518 62 FR D31 3002 BINETRUY 84 PL 134B 174 P. Binetruy, G. Girardi, P. Salati (LAPP) FREESE 84 NP B233 167 K. Freese, D.N. Schramm (CHIC, FNAL) KYULDJIEV 84 NP B233 387 A.V. Kyuldjiev SCHRAMM 84 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, BART) VOGEL 84 PR D30 1505 P. Vogel BRANSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (CHIC, UCSB) BERNSTEIN 81 PR D24 2001 J.S. Frank et al. (LASL, YALE, MIT+) MORGAN 81 PR D24 2001 J.S. Frank et a		87R			`
NUSSINOV 87 PR D36 2278 S. Nussinov, Y. Rephaeli (TELA) OBERAUER 87 PL B198 113 L.F. Oberauer, F. von Feilitzsch, R.L. Mossbauer SPRINGER 87 PR A35 679 S. N. Ketov et al. (KIAE) KETOV 86 JETPL 44 146 S.N. Ketov et al. (KIAE) COWSIK 85 PL 1518 62 R. Cowsik (TATA) BINETRUY 84 PL 134B 174 P. Binetruy, G. Girardi, P. Salati (LAPP) FREESE 84 NP B233 167 K. Freese, D.N. Schramm (CHIC, FNAL) KYULDJIEV 84 NP B233 387 A.V. Kyuldjiev (SOFI) SCHRAMM 84 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, BART) VOGEL 84 PR D30 1505 P. Vogel ANDERHUB 82 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) FRANK 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) FRANK 81 PR 1024 2001 J.S. Frank et al. (LASL, YALE, MIT+) <t< td=""><td>DOMS</td><td>OID</td><td></td><td></td><td>(1121)</td></t<>	DOMS	OID			(1121)
OBERAUER 87 PL B198 113 L.F. Oberauer, F. von Feilitzsch, R.L. Mossbauer (LLNL) SPRINGER 87 PR A35 679 P.T. Springer et al. (LLNL) KETOV 86 JETPL 44 146 CETFP 44 114. (KIAE) COWSIK 85 PR D131 3002 G.G. Raffelt (MPIM) BINETRUY 84 PL 134B 174 P. Binetruy, G. Girardi, P. Salati (LAPP) KYULDJIEV 84 NP B233 167 K. Freese, D.N. Schramm (CHIC, FNAL) KYULDJIEV 84 NP B233 387 A.V. Kyuldjiev (SOFI) SCHRAMM 84 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, BART) VOGEL 84 PR D30 1505 P. Vogel ANDERHUB 82 PL 114B 76 H.B. Anderhub et al. (ETH, SIN) OLIVE 82 PR D25 213 K.A. Olive, M.S. Turner (CHIC, UCSB) BERNSTEIN 81 PL 102B 247 J.A. Morgan (STEV, COLU) FRADRIA 81 PL 102B 247 J.A. Morgan (SUSS)		87	PR D36 3817	M. Fukugita, S. Yazaki	(KYOTU, TOKY)
SPRINGER 87 PR A35 679 P.T. Springer et al. (LLNL) KETOV 86 JETPL 44 146 S.N. Ketov et al. (KIAE) COWSIK 85 PL 151B 62 R. Cowsik (MPIM) RAFFELT 85 PR D 31 3002 G.G. Raffelt (MPIM) BINETRUY 84 PL 134B 174 P. Binetruy, G. Girardi, P. Salati (LAPP) FREESE 84 NP B233 367 K. Freese, D.N. Schramm (CHIC, FNAL) KYULDJIEV 44 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, BART) VOGEL 44 PR D30 1505 P. Vogel (ETH, SIN) ANDERHUB 82 PL 114B 76 H.B. Anderhub et al. (ETH, SIN) OLIVE 82 PR D25 213 K.A. Olive, M.S. Turner (CHIC, UCSB) BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLIU) FRANK 81 PR D24 2001 J.S. Frank et al. (LASL, YALE, MIT+) MORGAN 81 PL 102B 247 J.A. Morgan (STON) <tr< td=""><td></td><td></td><td></td><td></td><td>(,</td></tr<>					(,
KETOV 86 JETPL 44 146 Translated from ZETFP 44 114. S.N. Ketov et al. (KIAE) COWSIK RAFFELT 85 PL 151B 62 PL 151B 62 RAFFELT R. Cowsik (TATA) RAFFELT 85 PR 031 3002 PL 134B 174 P. Binetruy, G. Girardi, P. Salati (LAPP) FREESE KYULDJIEV 84 PL 134B 174 P. Binetruy, G. Girardi, P. Salati (LAPP) FREESE KYULDJIEV 84 NP B233 167 K. Freese, D.N. Schramm (CHIC, FNAL) KYULDJIEV 84 NP B243 387 A.V. Kyuldjiev (SOFI) SCHRAMM 84 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, BART) VOGEL 84 PR D30 1505 P. Vogel ANDERHUB 82 PL 114B 76 H.B. Anderhub et al. (ETH, SIN) OLIVE 82 PR D252 213 K.A. Olive, M.S. Turner (CHIC, USB) BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) FRANK 81 PR 101E 393 J. S. Frank et al. (LASL, YALE, MIT+) BERNSTEIN 81 PL 102B 24					
Translated from ZETFP 44 114.	-				
COWSIK 85 PL 151B 62 R. Cowsik (TATA) RAFFELT 85 PR D31 3002 G.G. Raffelt (MPIM) BINETRUY 84 PL 134B 174 P. Binetruy, G. Girardi, P. Salati (LAPP) FREESE 84 NP B233 167 K. Freese, D.N. Schramm (CHIC, FNAL) KYULDJIEV 84 PL 141B 337 A.V. Kyuldjiev (SOFI) SCHRAMM 84 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, BART) VOGEL 84 PR D30 1505 P. Vogel (ETH, SIN) ANDERHUB 82 PL 114B 76 H.B. Anderhub et al. (ETH, SIN) OLIVE 82 PR D25 213 K.A. Olive, M.S. Turner (CHIC, UCSB) BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) FRAMK 81 PR 1024 2001 J.S. Frank et al. (LASL, YALE, MIT+) HUBIMOV 80 PRL 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PRL 45 1460 F.W. Stecker (NASA) <tr< td=""><td>KLIOV</td><td>00</td><td></td><td></td><td>(KIAL)</td></tr<>	KLIOV	00			(KIAL)
BINETRUY 84 PL 134B 174 P. Binetruy, G. Girardi, P. Salati (LAPP) FREESE 84 NP B233 167 K. Freese, D.N. Schramm (CHIC, FNAL) KYULDJIEV 84 NP B243 387 A.V. Kyuldjiev (SOFI) SCHRAMM 84 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, BART) VOGEL 84 PR D30 1505 P. Vogel ANDERHUB 82 PL 114B 76 H.B. Anderhub et al. (ETH, SIN) OLIVE 82 PR D25 213 K.A. Olive, M.S. Turner (CHIC, UCSB) BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) FRANK 81 PR D24 2001 J.S. Frank et al. (LASL, YALE, MIT+) MORGAN 81 PR D44 2001 J.S. Frank et al. (LASL, YALE, MIT+) MORGAN 81 PR D4963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PL 94B 266 V.A. Lyubimov et al. (ITEP) STECKER 80 PRL 45 1460 F.W. Stecker (NASA) COWSIK 79 PR D19 2215 T. Goldman, G.J. Stephenson (LASL) BEG	COWSIK	85			(TATA)
FREESE 84 NP B233 167 K. Freese, D.N. Schramm (CHIC, FNAL) (SOFI) KYULDJIEV 84 NP B243 387 A.V. Kyuldjiev (SOFI) SCHRAMM 84 PL 1418 337 D.N. Schramm, G. Steigman (FNAL, BART) VOGEL 84 PR D30 1505 P. Vogel ANDERHUB 82 PL 114B 76 H.B. Anderhub et al. (ETH, SIN) OLIVE 82 PR D25 213 K.A. Olive, M.S. Turner (CHIC, UCSB) BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) FRANK 81 PL 102B 247 J.A. Morgan (LASL, YALE, MIT+) MORGAN 81 PL 102B 247 J.A. Morgan (STSO, USS) FUJIKAWA 80 PRL 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PL 94B 266 V.A. Lyubimov et al. (ITEP) STECKER 80 PRL 45 1460 F.W. Stecker (NASA) COWSIK 79 PR D19 2215 T. Goldman, G.J. Stephenson (LASL)	RAFFELT	85	PR D31 3002	G.G. Raffelt	(MPIM)
KYULDJIEV 84 NP B243 387 A.V. Kyuldjiev (SOFI) SCHRAMM 84 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, BART) VOGEL 84 PR D30 1505 P. Vogel ANDERHUB 82 PL 114B 76 H.B. Anderhub et al. (ETH, SIN) OLIVE 82 PR D25 213 K.A. Olive, M.S. Turner (CHIC, UCSB) BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) FRANK 81 PR D24 2001 J.S. Frank et al. (LASL, YALE, MIT+) MORGAN 81 PL 102B 247 J.A. Morgan (SUSS) FUJIKAWA 80 PRL 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PRL 45 1460 F.W. Stecker (NASA) COWSIK 79 PR D19 2219 R. Cowsik (TATA) GOLDMAN 79 PR D19 2219 R. Cowsik (TATA) BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 PR					
SCHRAMM 84 PL 141B 337 D.N. Schramm, G. Steigman (FNAL, BART) VOGEL 84 PR D30 1505 P. Vogel ANDERHUB 82 PR D30 1505 P. Vogel ANDERHUB 82 PR D25 213 K.A. Olive, M.S. Turner (CHIC, UCSB) BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) FRANK 81 PR D24 2001 J.S. Frank et al. (LASL, YALE, MIT+) MORGAN 81 PL 102B 247 J.A. Morgan (SUSS) FUJIKAWA 80 PRL 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PR 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PR 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PR 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PR 145 963 K. Fujikawa, R. Shrock (STON) STECKER 80 PRL 15 160 F. W. Stecker (NASA) COWSIK 79 PR D19 2215 </td <td></td> <td></td> <td></td> <td></td> <td>` '(</td>					` '(
VOGEL 84 PR D30 1505 P. Vogel ANDERHUB 82 PL 114B 76 H.B. Anderhub et al. (ETH, SIN) OLIVE 82 PR D25 213 K.A. Olive, M.S. Turner (CHIC, UCSB) BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) FRANK 81 PL 102B 247 J.A. Morgan (SUSS) FUJIKAWA 80 PRL 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PL 94B 266 V.A. Lyubimov et al. (ITEP) STECKER 80 PRL 45 1460 F.W. Stecker (NASA) COWSIK 79 PR D19 2219 R. Cowsik (TATA) GOLDMAN 79 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 NP B133 205 J. Blietschau et al. (Gargamelle Collab.) FALK 78 PR 179B 511 S.W. Falk, D.N. Schramm (CHIC) COW					/
ANDERHUB 82 PL 114B 76 H.B. Änderhub et al. (ETH, SIN) OLIVE 82 PR D25 213 K.A. Olive, M.S. Turner (CHIC, UCSB) BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) FRANK 81 PR D24 2001 J.S. Frank et al. (LASL, YALE, MIT+) MORGAN 81 PL 102B 247 J.A. Morgan (SUSS) FUJIKAWA 80 PRL 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PL 94B 266 V.A. Lyubimov et al. (ITEP) STECKER 80 PRL 45 1460 F.W. Stecker (NASA) COWSIK 79 PR D19 2219 R. Cowsik (TATA) GOLDMAN 79 PR D19 2215 T. Goldman, G.J. Stephenson (LASL) BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 NP B133 205 J. Blietschau et al. (Gargamelle Collab.) FALK 78 PL 79B 511 S.W. Falk, D.N. Schramm (CHIC)				_	(FNAL, BART)
OLIVE 82 PR D25 213 K.A. Olive, M.S. Turner (CHIC, UCSB) BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (STEV, COLU) PRANK 81 PR D24 2001 J.S. Frank et al. (LASL, YALE, MIT+) MORGAN 81 PL 102B 247 J.A. Morgan (SUSS) FUJIKAWA 80 PRL 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PL 94B 266 V.A. Lyubimov et al. (ITEP) STECKER 80 PR 45 1460 F.W. Stecker (NASA) COWSIK 79 PR D19 2219 R. Cowsik (TATA) GOLDMAN 79 PR D19 2215 T. Goldman, G.J. Stephenson (LASL) BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 PP 179B 511 S.W. Falk, D.N. Schramm (CHIC) BARNES 77 PRL 38 1049 V.E. Barnes et al. (PURD, ANL) COWSIK 77 PRL 39 784 R. Cowsik (MILA) YSOTSKY					(FTH SIN)
BERNSTEIN 81 PL 101B 39 J. Bernstein, G. Feinberg (\$TEV, COLU) FRANK 81 PR D24 2001 J.S. Frank et al. (LASL, YALE, MIT+) MORGAN 81 PL 102B 247 J.A. Morgan (SUSS) FUJIKAWA 80 PRL 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PL 94B 266 V.A. Lyubimov et al. (ITEP) STECKER 80 PRL 45 1460 F.W. Stecker (NASA) COWSIK 79 PR D19 2219 R. Cowsik (TATA) GOLDMAN 79 PR D19 2215 T. Goldman, G.J. Stephenson (LASL) BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 NP B133 205 J. Blietschau et al. (Gargamelle Collab.) FALK 78 PR D19 231 S.W. Falk, D.N. Schramm (CHIC) BARNES 77 PRL 38 1049 V.E. Barnes et al. (PURD, ANL) COWSIK 77 PR D16 1444 B.W. Lee, R.E. Shrock (STON)					
MORGAN 81 PL 102B 247 J.A. Morgan (SUSS) FUJIKAWA 80 PRL 45 963 K. Fujikawa, R. Shrock (STON) LUBIMOV 80 PL 94B 266 V.A. Lyubimov et al. (ITEP) STECKER 80 PRL 45 1460 F.W. Stecker (NASA) COWSIK 79 PR D19 2219 R. Cowsik (TATA) GOLDMAN 79 PR D19 2215 T. Goldman, G.J. Stephenson (LASL) BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 NP B133 205 J. Blietschau et al. (Gargamelle Collab.) FALK 78 PR D39 511 S.W. Falk, D.N. Schramm (CHIC) DARNES 77 PRL 38 1049 V.E. Barnes et al. (PURD, ANL) COWSIK 77 PRL 39 784 R. Cowsik (MPIM, TATA) LEE 77C PR D16 1444 B.W. Lee, R.E. Shrock (STON) VYSOTSKY 77 LNC 17 553 E. Bellotti et al. (MILA) SUTHERLA	BERNSTEIN	81	PL 101B 39		
FUJIKAWA 80 PRL 45 963 K. Fujikawa, R. Shrock (\$TON) LUBIMOV 80 PL 94B 266 V.A. Lyubimov et al. (ITEP) STECKER 80 PRL 45 1460 F.W. Stecker (NASA) COWSIK 79 PR D19 2219 R. Cowsik (TATA) GOLDMAN 79 PR D19 2215 T. Goldman, G.J. Stephenson (LASL) BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 NP B133 205 J. Blietschau et al. (Gargamelle Collab.) FALK 78 PL 79B 511 S.W. Falk, D.N. Schramm (CHIC) BARNES 77 PRL 38 1049 V.E. Barnes et al. (PURD, ANL) COWSIK 77 PRL 39 784 R. Cowsik (MPIM, TATA) LEE 77C PR D16 1444 B.W. Lee, R.E. Shrock (STON) VYSOTSKY 77 JETPL 26 188 K. Fujikawa, R. Shrock (STON) VYSOTSKY 77 PRL 39 784 R. Cowsik (PURD, ANL) <t< td=""><td>FRANK</td><td></td><td>PR D24 2001</td><td>J.S. Frank <i>et al.</i></td><td>(LASL, YALE, MIT+)</td></t<>	FRANK		PR D24 2001	J.S. Frank <i>et al.</i>	(LASL, YALE, MIT+)
LUBIMOV 80 PL 94B 266 V.A. Lyubimov et al. (ITEP) STECKER 80 PRL 45 1460 F.W. Stecker (NASA) COWSIK 79 PR D19 2219 R. Cowsik (TATA) GOLDMAN 79 PR D19 2215 T. Goldman, G.J. Stephenson (LASL) BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 NP B133 205 J. Blietschau et al. (Gargamelle Collab.) FALK 78 PL 79B 511 S.W. Falk, D.N. Schramm (CHIC) BARNES 77 PRL 38 1049 V.E. Barnes et al. (PURD, ANL) COWSIK 77 PR D4 39 784 R. Cowsik (MPIM, TATA) LEE 77C PR D16 1444 B.W. Lee, R.E. Shrock (STON) VYSOTSKY 77 JETPL 26 188 Translated from ZETFP 26 200. (M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovich (ITEP) BELLOTTI 76 LNC 17 553 E. Bellotti et al. (MILA) SZALAY 76 AA 49 437 A.S. Szala					, , (
STECKER 80 PRL 45 1460 F.W. Stecker (NASA) COWSIK 79 PR D19 2219 R. Cowsik (TATA) GOLDMAN 79 PR D19 2215 T. Goldman, G.J. Stephenson (LASL) BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 NP B133 205 J. Blietschau et al. (Gargamelle Collab.) FALK 78 PL 79B 511 S.W. Falk, D.N. Schramm (CHIC) BARNES 77 PRL 38 1049 V.E. Barnes et al. (PURD, ANL) COWSIK 77 PRL 39 784 R. Cowsik (MPIM, TATA) LEE 77C PR D16 1444 B.W. Lee, R.E. Shrock (STON) VYSOTSKY 77 JETPL 26 188 Translated from ZETFP 26 200. M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovich (ITEP) BELLOTTI 76 LNC 17 553 E. Bellotti et al. (PENN, COLU, NYU) SZALAY 76 AA 49 437 A.S. Szalay, G. Marx (EOTV) CLARK 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S.					` . ,
COWSIK 79 PR D19 2219 R. Cowsik (TATA) GOLDMAN 79 PR D19 2215 T. Goldman, G.J. Stephenson (LASL) BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 NP B133 205 J. Blietschau et al. (Gargamelle Collab.) FALK 78 PL 79B 511 S.W. Falk, D.N. Schramm (CHIC) BARNES 77 PRL 38 1049 V.E. Barnes et al. (PURD, ANL) COWSIK 77 PRL 39 784 R. Cowsik (MPIM, TATA) LEE 77C PR D16 1444 B.W. Lee, R.E. Shrock (STON) VYSOTSKY 77 JETPL 26 188 Translated from ZETFP 26 200. M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovich (ITEP) BELLOTTI 76 LNC 17 553 E. Bellotti et al. (MILA) SUTHERLAND 76 AA 49 437 A.S. Szalay, G. Marx (EOTV) CLARK 74 PR D9 533 A.R. Clark et al. (LBL) KIM 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okub					
GOLDMAN 79 PR D19 2215 T. Goldman, G.J. Stephenson (LASL) BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 NP B133 205 J. Blietschau et al. (Gargamelle Collab.) FALK 78 PL 79B 511 S.W. Falk, D.N. Schramm (CHIC) BARNES 77 PRL 38 1049 V.E. Barnes et al. (PURD, ANL) COWSIK 77 PRL 39 784 R. Cowsik (MPIM, TATA) LEE 77C PR D16 1444 B.W. Lee, R.E. Shrock (STON) VYSOTSKY 77 JETPL 26 188 Translated from ZETFP M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovich (ITEP) VYSOTSKY 77 JETPL 26 188 Translated from ZETFP E. Bellotti et al. (MILA) SUTHERLAND 6 PR D13 2700 P. Sutherland et al. (PENN, COLU, NYU) SZALAY 76 AA 49 437 A.S. Szalay, G. Marx (EOTV) CLARK 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr					
BEG 78 PR D17 1395 M.A.B. Beg, W.J. Marciano, M. Ruderman (ROCK+) BLIETSCHAU 78 NP B133 205 J. Blietschau et al. (Gargamelle Collab.) FALK 78 PL 79B 511 S.W. Falk, D.N. Schramm (CHIC) BARNES 77 PRL 38 1049 V.E. Barnes et al. (PURD, ANL) COWSIK 77 PRL 39 784 R. Cowsik (MPIM, TATA) LEE 77C PR D16 1444 B.W. Lee, R.E. Shrock (STON) VYSOTSKY 77 JETPL 26 188 Translated from ZETFP 26 200. M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovich (ITEP) BELLOTTI 76 LNC 17 553 E. Bellotti et al. (PENN, COLU, NYU) SZALAY 76 PR D13 2700 P. Sutherland et al. (PENN, COLU, NYU) SZALAY 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest (Form ZETFP)					`
BLIETSCHAU 78 NP B133 205 J. Blietschau et al. (Gargamelle Collab.) FALK 78 PL 79B 511 S.W. Falk, D.N. Schramm (CHIC) BARNES 77 PRL 38 1049 V.E. Barnes et al. (PURD, ANL) COWSIK 77 PRL 39 784 R. Cowsik (MPIM, TATA) LEE 77C PR D16 1444 B.W. Lee, R.E. Shrock (STON) VYSOTSKY 77 JETPL 26 188 Translated from ZETFP M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovich (ITEP) BELLOTTI 76 LNC 17 553 E. Bellotti et al. (MILA) SUTHERLAND 76 PR D13 2700 P. Sutherland et al. (PENN, COLU, NYU) SZALAY 76 AA 49 437 A.S. Szalay, G. Marx (EOTV) CLARK 74 PR D9 533 A.R. Clark et al. (LBL) KIIM 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
BARNES 77 PRL 38 1049 V.E. Barnes et al. (PURD, ANL) COWSIK 77 PRL 39 784 R. Cowsik (MPIM, TATA) LEE 77C PR D16 1444 B.W. Lee, R.E. Shrock (STON) VYSOTSKY 77 JETPL 26 188 Translated from ZETFP M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovich (ITEP) BELLOTTI 76 LNC 17 553 E. Bellotti et al. (MILA) SUTHERLAND 76 PR D13 2700 P. Sutherland et al. (PENN, COLU, NYU) SZALAY 76 AA 49 437 A.S. Szalay, G. Marx (EOTV) CLARK 74 PR D9 533 A.R. Clark et al. (LBL) KIM 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay					(Gargamelle Collab.)
COWSIK 77 PRL 39 784 R. Cowsik (MPIM, TATA) LEE 77C PR D16 1444 B.W. Lee, R.E. Shrock (STON) VYSOTSKY 77 JETPL 26 188 Translated from ZETFP 26 200. M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovich (ITEP) BELLOTTI 76 LNC 17 553 E. Bellotti et al. (MILA) SUTHERLAND 76 PR D13 2700 P. Sutherland et al. (PENN, COLU, NYU) SZALAY 76 AA 49 437 A.S. Szalay, G. Marx (EOTV) CLARK 74 PR D9 533 A.R. Clark et al. (LBL) KIM 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV) GERSHTEIN 66 JETPL 4 120 S.S. Gershtein, Y.B. Zeld					(CHIC)
LEE 77C PR D16 1444 B.W. Lee, R.E. Shrock (STON) VYSOTSKY 77 JETPL 26 188 Translated from ZETFP M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovich (ITEP) BELLOTTI 76 LNC 17 553 E. Bellotti et al. (MILA) SUTHERLAND 76 PR D13 2700 P. Sutherland et al. (PENN, COLU, NYU) SZALAY 76 AA 49 437 A.S. Szalay, G. Marx (EOTV) CLARK 74 PR D9 533 A.R. Clark et al. (LBL) KIM 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV) GERSHTEIN 66 JETPL 4 120 S.S. Gershtein, Y.B. Zeldovich (KIAM) Translated from ZETFP V.S. Gershtein, M. Ruderman, G. Feinberg					
VYSOTSKY 77 JETPL 26 188 Translated from ZETFP 26 200. M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldovich (ITEP) (ITEP) BELLOTTI 76 LNC 17 553 E. Bellotti et al. (MILA) SUTHERLAND 76 PR D13 2700 P. Sutherland et al. (PENN, COLU, NYU) SZALAY 76 AA 49 437 A.S. Szalay, G. Marx (EOTV) CLARK 74 PR D9 533 A.R. Clark et al. (LBL) KIM 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV) GERSHTEIN 60 JETPL 4 120 JETFP 4 189 S.S. Gershtein, Y.B. Zeldovich (KIAM) BERNSTEIN 63 PR 132 1227 J. Bernstein, M. Ruderman, G. Feinberg (NYU+)					`
Translated from ZETFP 26 200. BELLOTTI 76 LNC 17 553 E. Bellotti et al. (MILA) SUTHERLAND 76 PR D13 2700 P. Sutherland et al. (PENN, COLU, NYU) SZALAY 76 AA 49 437 A.S. Szalay, G. Marx (EOTV) CLARK 74 PR D9 533 A.R. Clark et al. (LBL) KIM 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV) GERSHTEIN 66 JETPL 4 120 S.S. Gershtein, Y.B. Zeldovich (KIAM) Translated from ZETFP J. Bernstein, M. Ruderman, G. Feinberg (NYU+)					`
BELLOTTI 76 LNC 17 553 E. Bellotti et al. (MILA) SUTHERLAND 76 PR D13 2700 P. Sutherland et al. (PENN, COLU, NYU) SZALAY 76 AA 49 437 A.S. Szalay, G. Marx (EOTV) CLARK 74 PR D9 533 A.R. Clark et al. (LBL) KIM 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV) GERSHTEIN 66 JETPL 4 120 S.S. Gershtein, Y.B. Zeldovich (KIAM) Translated from ZETFP 4 189. J. Bernstein, M. Ruderman, G. Feinberg (NYU+)	V 130 13K 1	11			s. Zeidovicii (TTEF)
SZALAY 76 AA 49 437 A.S. Szalay, G. Marx (EOTV) CLARK 74 PR D9 533 A.R. Clark et al. (LBL) KIM 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV) GERSHTEIN 66 JETPL 4 120 S.S. Gershtein, Y.B. Zeldovich (KIAM) BERNSTEIN 63 PR 132 1227 J. Bernstein, M. Ruderman, G. Feinberg (NYU+)	BELLOTTI	76	LNC 17 553	E. Bellotti <i>et al.</i>	
CLARK 74 PR D9 533 A.R. Clark et al. (LBL) KIM 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (ROCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV) GERSHTEIN 66 JETPL 4 120 S.S. Gershtein, Y.B. Zeldovich (KIAM) Translated from ZETFP 4 189. J. Bernstein, M. Ruderman, G. Feinberg (NYU+)		76			
KIM 74 PR D9 3050 J.E. Kim, V.S. Mathur, S. Okubo (RÒCH) REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV) GERSHTEIN 66 JETPL 4 120 Translated from ZETFP 4 189. S.S. Gershtein, Y.B. Zeldovich (KIAM) BERNSTEIN 63 PR 132 1227 J. Bernstein, M. Ruderman, G. Feinberg (NYU+)					` (
REINES 74 PRL 32 180 F. Reines, H.W. Sobel, H.S. Gurr (UCI) SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EOTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV) GERSHTEIN 66 JETPL 4 120 S.S. Gershtein, Y.B. Zeldovich (KIAM) BERNSTEIN 63 PR 132 1227 J. Bernstein, M. Ruderman, G. Feinberg (NYU+)					
SZALAY 74 APAH 35 8 A.S. Szalay, G. Marx (EÒTV) COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV) GERSHTEIN 66 JETPL 4 120 S.S. Gershtein, Y.B. Zeldovich Translated from ZETFP 4 189. BERNSTEIN 63 PR 132 1227 J. Bernstein, M. Ruderman, G. Feinberg (NYU+)					
COWSIK 72 PRL 29 669 R. Cowsik, J. McClelland (UCB) MARX 72 Nu Conf. Budapest G. Marx, A.S. Szalay (EOTV) GERSHTEIN 66 JETPL 4 120 S.S. Gershtein, Y.B. Zeldovich Translated from ZETFP 4 189. BERNSTEIN 63 PR 132 1227 J. Bernstein, M. Ruderman, G. Feinberg (NYU+)					
MARX72Nu Conf. BudapestG. Marx, A.S. Szalay(EOTV)GERSHTEIN66JETPL 4 120 Translated from ZETFP 4 189.S.S. Gershtein, Y.B. Zeldovich TRANSLED Translated from ZETFP 4 189.(KIAM)BERNSTEIN63PR 132 1227J. Bernstein, M. Ruderman, G. Feinberg(NYU+)					`
GERSHTEIN 66 JETPL 4 120 S.S. Gershtein, Y.B. Zeldovich (KIAM) Translated from ZETFP 4 189. BERNSTEIN 63 PR 132 1227 J. Bernstein, M. Ruderman, G. Feinberg (NYU+)					
BERNSTEIN 63 PR 132 1227 J. Bernstein, M. Ruderman, G. Feinberg (NYU+)			JETPL 4 120	S.S. Gershtein, Y.B. Zeldovich	`
	REDNICTEINI	63			Foinborg (MVIII)
CEL COWAII, 1. NOIROS (EAINE)					
		<u> </u>		I.I. Coman, T. Remes	(2,1142)